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We propose a realistic scheme to create motionally entangled states of a few bosonic atoms. It can experi-
mentally be realized with a gas of ultracold bosonic atoms trapped in a deep optical lattice potential. By
simultaneously deforming and rotating the trapping potential on each lattice site it is feasible to adiabatically
create a variety of entangled states on each lattice well. We fully address the case ofN=2 and 4 atoms per well
and identify a sequence of fractional quantum Hall states: the Pfaffian state, the 1/2-Laughlin quasiparticle,
and the 1/2-Laughlin state. Exact knowledge of the spectrum has allowed us to design adiabatic paths to these
states, with all times and parameters well within the reach of current experimental setups. We further discuss
the detection of these states by measuring different properties as their density profile, angular momentum, or
correlation functions.
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I. INTRODUCTION

The creation of highly entangled multiparticle states is
one of the most challenging goals of modern experimental
quantum mechanics. In this respect atomic systems offer a
very promising arena in which entangled states can be cre-
ated and manipulated with a high degree of control. The
experimental difficulty increases, however, with the number
of particles that are to be entangled, since the system be-
comes then more sensitive to decoherence. Starting with a
small number of particles as a first step, important achieve-
ments have been already obtained in the creation of atomic
entangled states. For example, in recent experiments with
trapped ions, entangled states of up to four ions have been
demonstrated[1]. Moreover, in experiments with neutral
bosonic atoms in optical lattices Bell-type states have been
created by accurately controlling the interactions between
neighboring atoms[2]. As a typical feature of most of the
experimentally realized entangled states, atoms get entangled
through their internal degrees of freedom, keeping separable
their motional part.

In this article we develop a scheme to createmotional
entangled states of a small number of atoms in an actual
experimental setup with an optical lattice[3–5]. These states
are a sequence of fractional quantum Hall(FQH) states,
analogous to the ones that appear in the context of the frac-
tional quantum Hall effect[6]. In contrast to typical atomic
entangled states, the particles are here entangled in real
space, and not in internal space. This peculiarity makes them
specially interesting, for it represents an unusual nature of
atomic entanglement.

The possibility of creating FQH atomic states like the
Laughlin state by rapidly rotating the trap confining the at-
oms has been discussed in several theoretical works[7,8].
However, experiments dealing with typically large number of
particles have not yet succeeded in reaching these states.
Here, we fully address the case of a small number of par-
ticles and design a realistic way of entangling them into FQH
states. The experimental setup that we have in mind corre-
sponds to a situation in which a Bose-Einstein condensate is

loaded in a deep optical lattice. When the lattice depth is
very large tunneling between different sites is strongly sup-
pressed and the system can be treated as a lattice of indepen-
dent wells, each of them with a small number of particles. By
independently rotating each of these three-dimensional(3D)
wells [9] the lowest Landau level(LLL ) regime can be
achieved for each copy. We have studied the problem exactly
within the LLL for N=2 and 4 particles per well. We have
identified a sequence of highly entangled stable ground
states, which are the Pfaffian state[10], the 1/2-Laughlin
quasiparticle[11], and the 1/2-Laughlin state[12]. The
1/2-Laughlin quasiparticle state(which had never been iden-
tified before in an atomic system) is particularly interesting.
It is the counterpart of the 1/2-Laughlin quasihole found in
[8] and contains a 1/2-anyon. Driving the system into these
strongly correlated states is, however, not trivial. By simply
increasing the frequency of rotation the system will stay in a
trivial nonentangled state with angular momentum zero. Ex-
act knowledge of the spectrum of the system has allowed us
to design adiabiatic paths to these states by simultaneously
rotating and deforming each of the wells. All parameters and
evolution times lie well within the reach of present experi-
mental setups. We further discuss how to detect these en-
tangled states by measuring different properties as their den-
sity profile, angular momentum, or correlation functions. In
particular, we propose a technique to measure the density-
density correlation function of these strongly correlated
states. Even though the number of atoms per well is small,
the lattice setup allows one to have multiple copies of the
system, so that the experimental signal is highly enhanced.

We point out that our findings also show that adiabatically
achieving FQH states for rapidly rotating traps with a large
number of particles turns out to be very challenging, since
the relevant experimental parameters scale linearly with the
number of particles. Nevertheless, we hope that our results
can shed some light on the problems that these current ex-
periments are dealing with, and even may pave the way to
additional methods of achieving FQH multiparticle en-
tangled states.
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II. IDENTIFICATION OF ENTANGLED STATES

We consider a system of bosonic atoms loaded in a 3D
optical lattice. We assume a commensurate filling ofN atoms
per lattice site[13], and a large value of the lattice depth,
V0/ER@1, whereER="2k2/2M is the recoil energy,k is the
wave vector of the laser light, andM is the atomic mass. In
this limit the lattice can be treated as a system of independent
3D harmonic wells, each of them havingN atoms and a
trapping frequencyv<ÎV0ER.

Let us rotate each of these 3D harmonic wells around the
direction x3 with frequencyV. We will identify a sequence
of motional entangled ground states of theN atoms that ap-
pear as the frequencyV is increased. We will assume the
limit of rapid rotation[8]. In this case the motion in thex3
direction is frozen, and the motion in the plane of rotationx1,
x2 is restricted to the LLL. Note that in order to project the
system onto the LLL we do not need to start with a 2D
configuration(as is the case in previous proposals[7]), since
the fast rotation itself restricts the motion in the direction of
the rotation to zero-point oscillations. The system is then
governed by a two-dimensional effective Hamiltonian, which
written in units of"v has the form

H = s1 − V/vdL + 2p hV, s1d

whereL=om=0mam
† am is the angular momentum operator in

thex3 direction, andV=om1,m2,m3,m4
Vm1,m2

m3,m4am1

† am2

† am3
am4

is the
interaction operator. Here the bosonic operatoram

† samd cre-
ate(anihilate) an atom in the stateuml of the LLL with well
defined x3 component of the angular momentumm. The
wave functions of the LLL in complex coordinates read

wmszd = kzuml =
1

Îpm!,
zme−uzu2/2, s2d

where, z=sx1+ ix2d /,, ,=Î" /Mv, and m=0,1, . . . ,̀ . As-
suming contact interactions between the atoms the interac-
tion coefficients are

Vm1,m2

m3,m4 =
sm1 + m2d!

2m1+m2Îm1!m2!m3!m4!
. s3d

In Hamiltonian(1) we have introduced the important inter-
action parameterh=Î2/pas/,, with as the 3D scattering
length. Analytical calculations for scattering potentials of fi-
nite sizea0 have confirmed that the pseudopotential approxi-
mation is also valid for tight traps withas!, as long as
a0!, is satisfied[14].

A. N=2

First we consider the case of two particles per lattice well,
which can be solved analytically. The Hamiltonian(1) is
diagonal in the statesumr ,mc.m.l of well defined relativesmrd
and center of masssmc.m.d angular momentum:

H = o
mr,mc.m.

Emr,mc.m.
umr,mc.m.lkmr,mc.m.u, s4d

with Emr,mc.m.
=dmr,0

h+s1−V /vdsmr +mc.m.d. We note that
due to the restriction tos-wave scattering, only particles with

zero relative angular momentum feel the interaction energy.
It follows that for V /v,1−h /2 the ground state of the
system isu0,0l (with total angular momentumL=0), which
is not entangled, whereas forV /v.1−h /2 the stateu2,0l
(with L=2) becomes energetically favorable. This state,
kz1,z2u2,0l~ sz1−z2d2e−uz1u2/2e−uz2u2/2, is clearly entangled
since it cannot be written as a product of two single-particle
wave functions. It is the Laughlin stateucLl for two particles
at filling factor n=1/2 [11]. In order to quantify the en-
tanglement of this state we write it in the basis of states
um1m2l with well defined single-particle angular momentum.
Then the Laughlin state takes the form of a pure two-qutrit
state: ucLl= 1

2su02l+ u20ld−s1/Î2du11l. This is already the
Schmidt decomposition of the state, and the entropy of en-
tanglement [16] can immediately be calculated to be
EsucLld=1.5. This value is close to log23, corresponding to a
maximally entangled pure two qutrit state.

B. N=3

The case of three particles per lattice well is very similiar
to the situation forN=2. The 1/2-Laughlin statesL=6d
emerges as the ground state after an intermediate state with
odd angular momentumL=3. As we will explain in the next
section, ground states with odd angular momentum cannot be
reached using our proposal. Hence we now focus on a setup
with four particles per lattice well, for which an interesting
sequence of prominent FQH states arises.

C. N=4

In order to obtain the multiparticle energy spectrum, we
have exactly diagonalized the Hamiltonian(1) numerically.
As the frequency of rotationV increases the ground state of
the system passes through a sequence of states with increas-
ing and well defined total angular momentumL=0,4,8,12
(see Fig. 1).

These states can be identified as follows. The state with
L=0 is a trivial nonentangled state in which all the atoms are
condensed in the single-particle Gaussian state with angular
momentumm=0. The first nontrivial ground state is the
L=4 state. This state is not, as one might expect, a single-
vortex state, in which all the particles would be condensed in
the single-particle statem=1. In contrast, this state is highly
entangled and is very close(fidelity 0.95) to the well-known
Pfaffian state

cPfsfzgd = p
i, j

4

szi − zjdPfS 1

zi − zj
D . s5d

This state is especially interesting, also in the context of
quantum information theory, because its elementary excita-
tions are known to exhibit non-Abelian statistics[15]. The
next stable state in rowsL=8d can be very well characterized
(fidelity 0.98) by a Laughlin quasiparticle state

cQPsfzgd =
]

]z1
¯

]

]z4
cL. s6d

This state is the counterpart of the quasihole excitation,
which has previously been studied in the context of
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1/2-anyons in rotating Bose-Einstein condensates[8]. Fi-
nally, the last stable state is identical to the 1/2-Laughlin
state, which we have already encountered in the case of two
particles per well:

cLsfzgd = p
i, j

4

szi − zjd2p
k

4

euzku2/2. s7d

This state is an exact eigenstate of(1) with zero interaction
energy. In Fig. 1 we have plotted the density distribution in
the x1, x2 plane of the different stable ground states. As the
frequency of rotationV /v increases the wave function
spreads, and the interaction between the atoms decreases.

III. ADIABATIC PATHS TO ENTANGLED STATES

The sequence of entangled states we have described
above cannot be obtained by simply adiabatically increasing
the frequency of rotationV. The reason is that the rotational
symmetry leads to level crossings between different angular
momentum states(Fig. 1). In order to pass adiabatically from
the zero angular momentum ground state to higher angular
momentum states the spherical symmetry of the trapping po-
tential has to be broken. For our optical lattice setup this can
be achieved, for example, by deforming the formerly isotro-
pic trapping potential on each well and letting the deforma-
tion rotate with frequencyV [9]. In the rotating frame the
new trapping potential has the formVp~ sv+Dvd2x1

2+v2x2
2,

and the new Hamiltonian isH+He, with

He =
e

4o
m

bmam+2
† am + sm+ 1dam

† am + H.c., s8d

wherebm=Îsm+2dsm+1d and e=Dv /v is a small param-
eter. The perturbation(8) leads to quadrupole excitations, so

that states whose total angular momenta differ by two are
coupled.

In order to design appropriate adiabatic paths to the en-
tangled states described above, we have computed numeri-
cally the energy gap between the ground and first excited
states as a function of the parametersV /v and e for N=2
andN=4 (Fig. 2).

We first note that the isolines of constant energy gap show
an approximately linear behavior. This feature can be easily
understood from a perturbative treatment of the Hamiltonian
(8). To first order, the energy of states with angular momen-
tum L is shifted by an amounteL /4. Therefore the gap pro-
file for a given e is very similar to the one fore=0 but

FIG. 1. (Color online) Lowest two eigenenergies(in units of
"v) of the Hamiltonian(1) for four particles andh=0.1 as a func-
tion of the trap rotation frequencyV /v. The circles mark the level
crossings andL denotes the total angular momentum of the ground
state. The ground state sequence can be identified as follows(with
fidelity given in brackets): L=0 Gaussian ground state(exact), L
=4 Pfaffian state(0.95), L=8 quasiparticle state(0.98), L=12
Laughlin state (exact).The change of angular momentum can
readily be obtained from the increasing width of the density distri-
bution depicted below.

FIG. 2. (Color online) Energy gap in units of"v between the
ground and first excited states as a function of the rotation fre-
quencyV /v and the trap deformatione for an interaction strength
h=0.1. The black lines mark appropriate paths in parameter space
for adiabatic ground state evolution starting from theL=0 state.
The adiabatic evolution times have been calculated for a typical
trapping frequencyv.s2pd30 kHz. TopsN=2d: For a final fidelity
F= zkcsTd zcLlu2=0.99 the Laughlin statesL=2d can be reached
within T=6.5 ms. BottomsN=4d: Adiabatic path, evolution timeT
and fidelityF for the following final states(see Fig. 1): (a) Pfaffian
state,T=8 ms,F=0.99;(b) quasiparticle state,T=12 ms,F=0.99;
(c) Laughlin state,T=215 ms,F=0.97.
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shifted an amount,e to larger rotation frequencies. As ex-
pected, we find that foreÞ0 avoided crossings emerge(see
Fig. 3). The energy gap of the avoided crossings does, how-
ever, not in general increase monotonically with the defor-
mation e. Due to the interplay with other excited states,
“saddle points” appear in the gap profile, which makes the
design of appropriate adiabatic paths a nontrivial task. For
the stable entangled states ofN=2,4 identified above these
paths are depicted in Fig. 2. The actual time needed for the
adiabatic path depends on the number of particles as well as
on the state we want to achieve. For a typical trapping fre-
quencyv.s2pd30 kHz and an interaction couplingh=0.1,
the evolution times for theN=2 Laughlin state as well as for
the L=4 andL=8 states forN=4 are of the order of 10 ms.
In contrast, the evolution time for theN=4 Laughlin state is
one order of magnitude larger. We can understand this result
in the following way. For the case ofN=2 direct coupling of
the L=0 state to theL=2 Laughlin state is mediated by(8).
For the case ofN=4 there is no direct coupling between the
ground states, since their angular momenta differ by 4. But,
as one can see from the spectrum in the vicinity of the cross-
ing to the stateL=4 (Fig. 3), there is a state withL=2 near
the crossing that mediates the coupling between theL=0 and
the L=4 states. A similar situation occurs for the crossing to
the L=8 state. However, there is no such intermediate state
in direct proximity of the crossing to theN=4 Laughlin state,

which leads to a decrease of the energy gap by one order of
magnitude.

Let us also comment on the situationN=3. Here a ground
state with odd angular momentumsL=3d arises. From the
nature of the perturbation(8) it is clear that ground state
evolution is not possible. However, we have shown[14] that
the 1/2-Laughlin state can be reached by designing appro-
priate adiabatic paths via excited levels.

IV. FEASIBILITY

Let us now discuss the experimental feasibility of our
proposal for a small number of particlesN. The crucial as-
sumption in our scheme is the absence of tunneling between
wells, resulting in independent 3D harmonic wells. This re-
quires the overlap between Wannier functions on neighbor-
ing sites to be small, which can be achieved by increasing
the laser intensity. For a single occupied band(small rotation
frequency) the assumption of independent wells(Mott re-
gime) is well justified for a laser intensity ofV0<20Er [3].
With increasing rotation frequency higher angular momen-
tum states of the LLL manifold can be occupied. In the labo-
ratory frame of the lattice this corresponds to the occupation
of higher bands. In order to obtain a bound on the required
laser intensity for the setup[3] we consider the limiting case
of the Laughlin statesV<vd. As a rough estimate we re-
quire for a givenN that the radius of the highest occupied
angular momentum single-particle states<Î2N−1,d is
much smaller than the separation between lattice sites
sa=p /kd. In terms of the laser intensity this translates to the
the condition

sV0/ERd1/4 @ Î2N − 1/p. s9d

Numerical calculations of hopping and on-site interaction
matrix elements have confirmed that indeed forN=2 s4d and
V0/ER*30 s50d hopping becomes negligible and wells can
be treated independently. We further note that these lower
bounds for the laser intensity, which can very well be
achieved experimentally, also guarantee the validity of the
harmonic approximation.

A second important assumption of our proposal is the pro-
jection to the LLL manifold. This implies that the typical
energies per particle have to be much smaller than the energy
gap to the next Landau level"v. For the limiting cases of the
L=0 state and the Laughlin state, this leads to the conditions
sN−1dh /2, sN−1ds1−V /vd!1, which are easily satisfied
for typical interaction strengthssh,0.1d and smallN.

Finally, in order to adiabatically achieve the entangled
states identified above further conditions are required. We
analyze the most restrictive case, which corresponds to the
Laughlin state. First of all the frequency of rotation has to be
very close to the centrifugal limit. Let us find a lower bound
to the critical rotation frequency at which the crossing to the
Laughlin state appears. This can be done by calculating the
rotation frequency at which the Laughlin quasiparticle state,
cQPsfzgd=s] /]z1. . .] /]zNdcL, becomes equal in energy to the
Laughlin state. Since the quasiparticle state hasN units of
angular momentum less than the Laughlin state and an inter-

FIG. 3. (Color online) Left side: energy spectrum(in units "v)
for N=4 andh=0.1 in the vicinity of the first level crossing from
theL=0 to theL=4 state(see Fig. 1, left circle). Using quadrupole
excitationssuDLu=2d coupling between these states is provided by
the intermediate stateL=2. Right side: emergence of an avoided
level crossing for a trap deformatione=0.06.
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action energy&h, it follows that Vc/vù1−h /N. For the
cases ofN=2 s4d this condition is in agreement with the
exact values found above. Second, the evolution time re-
quired for the adiabatic path has to be much smaller than the
typical decoherence time. We can estimate this time in the
following way. Given the critical frequency above and that
the position of the avoided crossing is displaced to larger
rotation frequencies an amount proportional toe, it follows
that the maximume we can have is,h /N, corresponding to
a rotation frequencyV /v=1. Assuming an energy gap<e it
follows that the typical evolution time scales asNh. For the
case ofN=2 s4d and typicalh andv these times are of the
order of tens of milliseconds as exactly found above, which
is much smaller than the typical lifetime of the lattice states.
Finally, a high degree of control of the parametersV /v and
e is required to perform the appropriate adiabatic paths. The
required precision scales again ash /N, which for the case of
N=4 means a control of the parameter space up to the second
digit.

From our analysis it follows that the adiabatic creation of
the Laughlin state by means of low angular momentum ex-
citations, as quadrupole excitations, becomes very difficult in
samples with large number of particles[17,18]. Even if the
centrifugal limit is possible to achieve, as it happens when
including an additionalr4 trapping potential[17], the adia-
batic creation of the Laughlin state is still very demanding.
One reason is that the rotation frequency and the trap defor-
mation have to be controlled within a precision that also
scales linearly withN. Furthermore, we point out that only
the exact knowledge of the multi-particle energy spectrum
allows one to design adiabatic paths that minimize the evo-
lution time.

V. DETECTION

In this section we consider the important issue of experi-
mental detection by measuring different characteristic prop-
erties of the entangled states identified above. As an impor-
tant feature of our lattice setup of independent wells, we note
that any signal will be highly enhanced by a factor equal to
the number of occupied lattice sites(,150 000[3]).

(i) Density profiles. A very characteristic feature of our
entangled states is that due to their large angular momentum
they exhibit a strongly extended spatial density distribution
compared to the nonentangledL=0 state. For the
1/2-Laughlin state the typical radius is given byr̄
<Î2N−1,. In the case ofN=2 s4d this results in a radius
that is,2 s3d times larger than in the case of the condensate.
As proposed in[19] the density profile of states within the
LLL can be measured in a time of flight(TOF) image of the
atomic system, since the momentum distribution coincides
with the density profile for LLL states. In our case of inde-
pendent 3D wells, a TOF absorption picture after expansion
time t will exhibit a broad central peak of the form

rsr ,td <
Ns

svtd3ur0„− iz/svtd,x3/svtd…u2. s10d

Here, r0sz,x3d is the initial density distribution on a single
well. In the TOF image it is enhanced by a factor propor-

tional to the number of lattice sitesNs and rescaled by a
factor vt@1. The p /2 rotation z→−iz leaves isotropic
states, like the FQH states described above, unaffected. The
underlying assumption of free(interactionless) expansion is
justified, since the interaction energy is small compared to
the kinetic energy(in the stationary frame).

(ii ) Angular momentum. For any state within the LLL
integration over the density distribution givesedr r2rsr d=L
+N. Thus in the limit of weak interaction the total angular
momentum can be extracted directly from the TOF picture.

(iii ) Correlation functions. Here we propose a technique
that makes directly use of the rich possibilities offered by the
optical lattice setup and which allows us to measure both the
g1=kc†sr dcsr 8dl and g2=kc†sr dc†sr 8dcsr dcsr 8dl correlation
functions. Theg2 correlation function is, for instance, very
characteristic for a Laughlin state. Since particles can only be
at least in relative angular momentummr =2 it follows that
g2~ ur −r8u4. This behavior reveals the 1/2 fractional nature
of this Laughlin state.

We consider two speciesa and b (hyperfine levels) of
bosonic atoms, which can be coupled via Raman transitions.
We start with atoms in levela and create the entangled state
of interestuCil with the method described above. Next we
apply ap /2 pulse with the laser and create an equal super-
position ofa andb states. Finally, we shift the lattice poten-
tial trapping atoms of typeb (as proposed in[20] and real-
ized in [2]) by a distancer 0 small compared to the lattice
spacing and perform anotherp /2 pulse. In the Heisenberg
picture this procedure corresponds to the following transfor-
mation of the field operator for speciesa:

casr d → casr d + casr + r 0d. s11d

Thus the density distribution of atoms of typea in this new
stateuC fl contains information about theg1 correlation func-
tion of the original state:

kC fuca
†sr dcasr duC fl = kCiufca

†sr d

+ ca
†sr + r 0dgfcasr d + casr + r 0dguCil.

s12d

Using this procedure we can also measure higher order cor-
relation functions likeg2. In this case measuring the interac-
tion energy of the final state will allow us to calculate theg2
of the initial state. For instance, for the Laughlin state we
have

Eintsr 0d =
ph

4
E dr kCiuca

†sr dca
†sr + r 0dcasr dcasr + r 0duCil.

s13d

The interaction energy is, unfortunately, not directly acces-
sible experimentally. Instead, one can obtain the total energy
of the final state from integrating over the TOF absorption
picture, since energy is conserved during the time of flight.
For small couplingh, however, the measurable effect due to
interactions will be small compared to the kinetic part of the
energy. In addition, the kinetic energy itself shows a signifi-
cant dependence on the shiftingr0, which has to be distin-
guished from the interaction. Hence, we propose to tune the
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scattering lengthas (e.g., via a photoassociation-induced Fes-
hbach resonance[21]) and to measure the interaction energy
in both the weak and strong scattering limits. The difference
would then reveal the characteristic behavior of theg2 cor-
relation function.

We finally note that, as a further way of detection for the
N=4 Laughlin state, a strong reduction of the three-body
losses should be observed.

VI. CONCLUSION

In conclusion, we have shown how to motionally entangle
a small number of particles into a sequence of interesting

FQH states. We have fully addressed the adiabatic creation
of these states and proposed techniques for their experimen-
tal detection.
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