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Adiabatic path to fractional quantum Hall states of a few bosonic atoms
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We propose a realistic scheme to create motionally entangled states of a few bosonic atoms. It can experi-
mentally be realized with a gas of ultracold bosonic atoms trapped in a deep optical lattice potential. By
simultaneously deforming and rotating the trapping potential on each lattice site it is feasible to adiabatically
create a variety of entangled states on each lattice well. We fully address the &&s2 ahd 4 atoms per well
and identify a sequence of fractional quantum Hall states: the Pfaffian state, the 1/2-Laughlin quasiparticle,
and the 1/2-Laughlin state. Exact knowledge of the spectrum has allowed us to design adiabatic paths to these
states, with all times and parameters well within the reach of current experimental setups. We further discuss
the detection of these states by measuring different properties as their density profile, angular momentum, or
correlation functions.
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[. INTRODUCTION loaded in a deep optical lattice. When the lattice depth is
very large tunneling between different sites is strongly sup-

The creation of highly entangled multiparticle states is . .
one of the most challenging goals of modern experimenta'?ressed and the system can be treated as a lattice of indepen-
ent wells, each of them with a small number of particles. By

quantum mechanics. In this respect atomic systems offer X : .
very promising arena in which entangled states can be crdidependently rotating each of these three-dimensi3iJ
ated and manipulated with a high degree of control. TheVells [9] the lowest Landau leve(LLL) regime can be
experimental difficulty increases, however, with the numbe@chieved for each copy. We have studied the problem exactly
of particles that are to be entangled, since the system bavithin the LLL for N=2 and 4 particles per well. We have
comes then more sensitive to decoherence. Starting with iflentified a sequence of highly entangled stable ground
small number of particles as a first step, important achievestates, which are the Pfaffian stdte0], the 1/2-Laughlin
ments have been already obtained in the creation of atomiguasiparticle[11], and the 1/2-Laughlin stat¢12]. The
entangled states. For example, in recent experiments with/2-Laughlin quasiparticle stateshich had never been iden-
trapped ions, entangled states of up to four ions have bedified before in an atomic systens particularly interesting.
demonstrated1]. Moreover, in experiments with neutral It is the counterpart of the 1/2-Laughlin quasihole found in
bosonic atoms in optical lattices Bell-type states have beefB] and contains a 1/2-anyon. Driving the system into these
created by accurately controlling the interactions betweerstrongly correlated states is, however, not trivial. By simply
neighboring atomg2]. As a typical feature of most of the increasing the frequency of rotation the system will stay in a
experimentally realized entangled states, atoms get entanglédvial nonentangled state with angular momentum zero. Ex-
through their internal degrees of freedom, keeping separablect knowledge of the spectrum of the system has allowed us
their motional part. to design adiabiatic paths to these states by simultaneously
In this article we develop a scheme to createtional rotating and deforming each of the wells. All parameters and
entangled states of a small number of atoms in an actuavolution times lie well within the reach of present experi-
experimental setup with an optical lattifg-5]. These states mental setups. We further discuss how to detect these en-
are a sequence of fractional quantum H@QH) states, tangled states by measuring different properties as their den-
analogous to the ones that appear in the context of the frasity profile, angular momentum, or correlation functions. In
tional quantum Hall effecf6]. In contrast to typical atomic particular, we propose a technique to measure the density-
entangled states, the particles are here entangled in redénsity correlation function of these strongly correlated
space, and not in internal space. This peculiarity makes themstates. Even though the number of atoms per well is small,
specially interesting, for it represents an unusual nature afhe lattice setup allows one to have multiple copies of the
atomic entanglement. system, so that the experimental signal is highly enhanced.
The possibility of creating FQH atomic states like the We point out that our findings also show that adiabatically
Laughlin state by rapidly rotating the trap confining the at-achieving FQH states for rapidly rotating traps with a large
oms has been discussed in several theoretical wiat}g. number of particles turns out to be very challenging, since
However, experiments dealing with typically large number ofthe relevant experimental parameters scale linearly with the
particles have not yet succeeded in reaching these statasumber of particles. Nevertheless, we hope that our results
Here, we fully address the case of a small humber of parean shed some light on the problems that these current ex-
ticles and design a realistic way of entangling them into FQHperiments are dealing with, and even may pave the way to
states. The experimental setup that we have in mind correadditional methods of achieving FQH multiparticle en-
sponds to a situation in which a Bose-Einstein condensate tsingled states.
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II. IDENTIFICATION OF ENTANGLED STATES

We consider a system of bosonic atoms loaded in a 3

optical lattice. We assume a commensurate filling@toms

per lattice site[13], and a large value of the lattice depth,

Vo/Eg>1, whereEg=7%2k?/2M is the recoil energyk is the
wave vector of the laser light, and is the atomic mass. |
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zero relative angular momentum feel the interaction energy.

6t follows that for Q/w<1-7/2 the ground state of the

System is|0,0) (with total angular momenturh=0), which
is not entangled, whereas 6/ w>1-7/2 the statg2,0)
(with L=2) becomes energetically favorable. This state,

2 2 .
n (71.2]2,00%(2-2,)% 4727272 is clearly entangled

this limit the lattice can be treated as a system of independefince it cannot be written as a product of two single-particle
3D harmonic wells, each of them havirg atoms and a Wave functions. Itis the Laughlin staltgy ) for two particles
ACh €

trapping frequencys = \VEg.

Let us rotate each of these 3D harmonic wells around th
direction x3 with frequency(). We will identify a sequence

of motional entangled ground states of theatoms that ap-

at filling factor v=1/2 [11]. In order to quantify the en-
nglement of this state we write it in the basis of states

m;m,) with well defined single-particle angular momentum.

Then the Laughlin state takes the form of a pure two-qutrit

pear as the frequenc is increased. We will assume the State: [#)=3(02+|20)~(1/y2)[11). This is already the

limit of rapid rotation[8]. In this case the motion in the;
direction is frozen, and the motion in the plane of rotatign

Schmidt decomposition of the state, and the entropy of en-
tanglement [16] can immediately be calculated to be

X, is restricted to the LLL. Note that in order to project the E(|))=1.5. This value is close to |98, corresponding to a
system onto the LLL we do not need to start with a 2D maximally entangled pure two qutrit state.

configuration(as is the case in previous propos@p, since

the fast rotation itself restricts the motion in the direction of

B.N=3

the rotation to zero-point oscillations. The system is then The case of three particles per lattice well is very similiar
governed by a two-dimensional effective Hamiltonian, whichto the situation forN=2. The 1/2-Laughlin statéL=6)

written in units ofAw has the form

H=(1-Qlw)L + 27 nV, (1)

whereLzzrrFOmafnam is the angular momentum operator in

the x, direction, and/:Emlymz,mz,m4vmi%a;la;2am3am4 is the
interaction operator. Here the bosonic operaihl(am) cre-
ate (anihilate an atom in the statgn) of the LLL with well
defined x3 component of the angular momentum The
wave functions of the LLL in complex coordinates read
|2/2’

2

el

1
em(2) ={dm) = —
Vami€

where, z=(x;+ix,) /€, £=\VA/Mw, and m=0,1, ... . As-

emerges as the ground state after an intermediate state with
odd angular momentum=3. As we will explain in the next
section, ground states with odd angular momentum cannot be
reached using our proposal. Hence we now focus on a setup
with four particles per lattice well, for which an interesting
sequence of prominent FQH states arises.

C.N=4

In order to obtain the multiparticle energy spectrum, we
have exactly diagonalized the Hamiltonigh) numerically.
As the frequency of rotatiof) increases the ground state of
the system passes through a sequence of states with increas-
ing and well defined total angular momenturs0,4,8,12
(see Fig. 1

suming contact interactions between the atoms the interac- These states can be identified as follows. The state with

tion coefficients are

Ve — (my +my)!
my,m, -

3

2M* M2 my I mp !t mg! my,!

L=0 is a trivial nonentangled state in which all the atoms are
condensed in the single-particle Gaussian state with angular
momentumm=0. The first nontrivial ground state is the
L=4 state. This state is not, as one might expect, a single-

In Hamiltonian (1) we have introduced the important inter- vortex state, in which all the particles would be condensed in

action parametem=+\2/mag/¢, with ag the 3D scattering

the single-particle state=1. In contrast, this state is highly

length. Analytical calculations for scattering potentials of fi- €ntangled and is very clogédelity 0.9 to the well-known

nite sizeay have confirmed that the pseudopotential approxi

mation is also valid for tight traps witla,<¢ as long as
ap<<( is satisfied 14].

A. N=2

_Pfaffian state

‘ 1
ver(2) =11 (z - Zj)'”(ﬁ) : 5)

i<j

This state is especially interesting, also in the context of

First we consider the case of two particles per lattice wellquantum information theory, because its elementary excita-

which can be solved analytically. The Hamiltonigh) is
diagonal in the statesn,,m; ,,) of well defined relativem,)
and center of mas@n.,,,) angular momentum:

H= E Em.m |mr-mc.m><mrvmc.m.|- (4)

rec.m.
M Mg m,

with Eq =0 o7t (1-Q/w)(m+me ). We note that

tions are known to exhibit non-Abelian statistifks]. The
next stable state in ro@=8) can be very well characterized
(fidelity 0.98 by a Laughlin quasiparticle state

Yopl[2]) = -

iz

" (6)

724
This state is the counterpart of the quasihole excitation,

due to the restriction te-wave scattering, only particles with which has previously been studied in the context of
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FIG. 1. (Color online Lowest two eigenenergie@n units of
hw) of the Hamiltonian(1) for four particles andy=0.1 as a func-
tion of the trap rotation frequend)/w. The circles mark the level
crossings andl denotes the total angular momentum of the ground
state. The ground state sequence can be identified as folleitvs
fidelity given in brackets L=0 Gaussian ground statexac), L 0.08 0.04
=4 Pfaffian state(0.95, L=8 quasiparticle stat¢0.98, L=12
Laughlin state (exac).The change of angular momentum can 0.08
readily be obtained from the increasing width of the density distri- 0.06 0.08
bution depicted below. &

0.02

0.1

0.12
0.14
0.16
0.18

1/2-anyons in rotating Bose-Einstein condensdfis Fi- 0.04

nally, the last stable state is identical to thg2tLaughlin
state, which we have already encountered in the case of tw g o
particles per well:

4 4
2
w2 =11~ 21)21;[ ez, (7 085 0.9 0.95
= Q/w

This state is an exact eigenstate(df with zero interaction _ S
energy. In Fig. 1 we have plotted the density distribution in  FIG. 2. (Color onling Energy gap in units ofiw between the
the x,, X, plane of the different stable ground states. As thedround and first excited states as a functhn of the rotation fre-
frequency of rotationQ/w increases the wave function quency{)/ w and the trap deformatioa for an interaction strength

spreads, and the interaction between the atoms decreases’~0-1: The black lines mark appropriate paths in parameter space
for adiabatic ground state evolution starting from the0 state.

IIl. ADIABATIC PATHS TO ENTANGLED STATES The gdiabatic evolution times have been calculatgd for a .typical
trapping frequencyn = (271)30 kHz. Top(N=2): For a final fidelity
The sequence of entangled states we have describeB=|(¥(T)|¢1)[?=0.99 the Laughlin statéL=2) can be reached
above cannot be obtained by simply adiabatically increasing/ithin T=6.5 ms. Bottom(N=4): Adiabatic path, evolution tim&
the frequency of rotatiof). The reason is that the rotational and fidelity 7 for the following final stategsee Fig. J: (a) Pfaffian
symmetry leads to level crossings between different angulattate,T=8 ms, 7=0.99;(b) quasiparticle state[=12 ms,7=0.99;
momentum state@ig. 1). In order to pass adiabatically from (¢) Laughlin stateT=215 ms,7=0.97.
the zero angular momentum ground state to higher angular
momentum states the spherical symmetry of the trapping pdhat states whose total angular momenta differ by two are
tential has to be broken. For our optical lattice setup this cagoupled.
be achieved, for example, by deforming the formerly isotro- In order to design appropriate adiabatic paths to the en-
pic trapping potential on each well and letting the deformatangled states described above, we have computed numeri-
tion rotate with frequency [9]. In the rotating frame the cally the energy gap between the ground and first excited
new trapping potential has the forif = (w+ Aw)2l+w®d, ~ States as a function of the paramet&sw and e for N=2
and the new Hamiltonian isl+H_, with andN=4 (Fig. 2. o
We first note that the isolines of constant energy gap show
_€ + + an approximately linear behavior. This feature can be easily
He= Z% Bromi28m+ (M+ Lagan + H.C., ®) understood from a perturbative treatment of the Hamiltonian
(8). To first order, the energy of states with angular momen-
where B,=+/(m+2)(m+1) and e=Aw/w is a small param- tum L is shifted by an amourgL/4. Therefore the gap pro-
eter. The perturbatio(B) leads to quadrupole excitations, so file for a given e is very similar to the one foe=0 but
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0.64 which leads to a decrease of the energy gap by one order of
magnitude.
0.62 Let us also comment on the situatibiF 3. Here a ground
’ Lo state with odd angular momentuth=3) arises. From the
2 a nature of the perturbatio@) it is clear that ground state
0 0.6 evolution is not possible. However, we have shqd#] that
L=0 the 1/2-Laughlin state can be reached by designing appro-
0.58 priate adiabatic paths via excited levels.
L=4

IV. FEASIBILITY
089 0895 09 0.905

Q/om Let us now discuss the experimental feasibility of our
proposal for a small number of particlés The crucial as-
0.8 sumption in our scheme is the absence of tunneling between
wells, resulting in independent 3D harmonic wells. This re-
0.75 quires the overlap between Wannier functions on neighbor-
ing sites to be small, which can be achieved by increasing
0.7 the laser intensity. For a single occupied b#sihall rotation
frequency the assumption of independent we(l§lott re-
gime) is well justified for a laser intensity of,=~ 20E, [3].
With increasing rotation frequency higher angular momen-
0.6 tum states of the LLL manifold can be occupied. In the labo-
. . ratory frame of the lattice this corresponds to the occupation
0.9 0.92 0.94 of higher bands. In order to obtain a bound on the required
Q/w laser intensity for the setuj8] we consider the limiting case
of the Laughlin statd(Q)=w). As a rough estimate we re-
FIG. 3. (Color onling Left side: energy spectruiiin unitszw)  quire for a givenN that the radius of the highest occupied
for N=4 and7=0.1 in the vicinity of the first level crossing from angular momentum single-particle stafe=y2N-1¢) is
theL=0 to theL=4 state(see Fig. 1, left circle Using quadrupole  mych smaller than the separation between lattice sites

excitations(|AL|=2) coupling between these states is provided by (3= 7/k). In terms of the laser intensity this translates to the
the intermediate state=2. Right side: emergence of an avoided the condition

level crossing for a trap deformatias+0.06.

f:,E/h(x)
&

.
(V/Ep) 4> V2N - 1/7. (9)
shifted an amount-e€ to larger rotation frequencies. As ex- . ) i o ]
pected, we find that foe+ 0 avoided crossings emergeee Num_erlcal calculations of_hopplng e_md on-site interaction
Fig. 3. The energy gap of the avoided crossings does, howMatrix elements have confirmed that indeedMor2 (4) and
ever, not in general increase monotonically with the defor-Vo/ Er=30 (50) hopping becomes negligible and wells can
mation e. Due to the interplay with other excited states,be treated independently. We further note that these lower
“saddle points” appear in the gap profile, which makes théoounds for the laser intensity, which can very well be
design of appropriate adiabatic paths a nontrivial task. Fogchieved experimentally, also guarantee the validity of the
the stable entangled states £ 2,4 identified above these harmonic approximation.
paths are depicted in Fig. 2. The actual time needed for the A second important assumption of our proposal is the pro-
adiabatic path depends on the number of particles as well dgction to the LLL manifold. This implies that the typical
on the state we want to achieve. For a typical trapping freenergies per particle have to be much smaller than the energy
quencyw=(2)30 kHz and an interaction coupling=0.1, 9apto the next Landau lev&l. For the limiting cases of the
the evolution times for th&l=2 Laughlin state as well as for L=0 state and the Laughlin state, this leads to the conditions
the L=4 andL=8 states foN=4 are of the order of 10 ms. (N=1)7/2, (N-1)(1-Q/w)<1, which are easily satisfied
In contrast, the evolution time for tHé=4 Laughlin state is for typical interaction strength&;~0.1) and smallN.
one order of magnitude larger. We can understand this result Finally, in order to adiabatically achieve the entangled
in the following way. For the case ®f=2 direct coupling of states identified above further conditions are required. We
the L=0 state to the.=2 Laughlin state is mediated l§§).  analyze the most restrictive case, which corresponds to the
For the case oN=4 there is no direct coupling between the Laughlin state. First of all the frequency of rotation has to be
ground states, since their angular momenta differ by 4. Butyery close to the centrifugal limit. Let us find a lower bound
as one can see from the spectrum in the vicinity of the crosgo the critical rotation frequency at which the crossing to the
ing to the statd_=4 (Fig. 3), there is a state with=2 near  Laughlin state appears. This can be done by calculating the
the crossing that mediates the coupling betweerithé and ~ rotation frequency at which the Laughlin quasiparticle state,
the L=4 states. A similar situation occurs for the crossing tovop([2])=(d/dz, .. .9 dzy) ¢, becomes equal in energy to the
the L=8 state. However, there is no such intermediate stateaughlin state. Since the quasiparticle state Nasnits of
in direct proximity of the crossing to tié=4 Laughlin state, angular momentum less than the Laughlin state and an inter-
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action energy=<7, it follows that Q./w=1-7/N. For the tional to the number of lattice siteldg and rescaled by a
cases ofN=2 (4) this condition is in agreement with the factor wt>1. The #/2 rotation z— —iz leaves isotropic
exact values found above. Second, the evolution time restates, like the FQH states described above, unaffected. The
quired for the adiabatic path has to be much smaller than thenderlying assumption of fre@nteractionlesgexpansion is
typical decoherence time. We can estimate this time in thgustified, since the interaction energy is small compared to
following way. Given the critical frequency above and thatthe kinetic energyin the stationary frampe
the position of the avoided crossing is displaced to larger (i) Angular momentumFor any state within the LLL
rotation frequencies an amount proportionalefdt follows  integration over the density distribution givéer r?p(r)=L
that the maximune we can have is- »/N, corresponding to  +N. Thus in the limit of weak interaction the total angular
a rotation frequency)/ w=1. Assuming an energy gape it momentum can be extracted directly from the TOF picture.
follows that the typical evolution time scales Idg. For the (iii) Correlation functions Here we propose a technique
case ofN=2 (4) and typicaln and w these times are of the that makes directly use of the rich possibilities offered by the
order of tens of milliseconds as exactly found above, whichoptical lattice setup and which allows us to measure both the
is much smaller than the typical lifetime of the lattice statesg;=((r)y(r’)) and g,=("(r) ¢ (r")y(r)¥(r')) correlation
Finally, a high degree of control of the paramet&rsw and  functions. Theg, correlation function is, for instance, very
€ is required to perform the appropriate adiabatic paths. Theharacteristic for a Laughlin state. Since particles can only be
required precision scales again&N, which for the case of at least in relative angular momentum=2 it follows that
N=4 means a control of the parameter space up to the secomge |r—r’|* This behavior reveals the/2 fractional nature
digit. of this Laughlin state.
From our analysis it follows that the adiabatic creation of We consider two speciea and b (hyperfine levels of
the Laughlin state by means of low angular momentum exbosonic atoms, which can be coupled via Raman transitions.
citations, as quadrupole excitations, becomes very difficult inVe start with atoms in leved and create the entangled state
samples with large number of particlgs7,18. Even if the  of interest|¥;) with the method described above. Next we
centrifugal limit is possible to achieve, as it happens wherapply a=/2 pulse with the laser and create an equal super-
including an additional* trapping potentia[17], the adia- position ofa andb states. Finally, we shift the lattice poten-
batic creation of the Laughlin state is still very demanding.tial trapping atoms of typé (as proposed ifi20] and real-
One reason is that the rotation frequency and the trap defoized in [2]) by a distance , small compared to the lattice
mation have to be controlled within a precision that alsospacing and perform anothet/2 pulse. In the Heisenberg
scales linearly withN. Furthermore, we point out that only picture this procedure corresponds to the following transfor-
the exact knowledge of the multi-particle energy spectrunmmation of the field operator for specias
allows one to design adiabatic paths that minimize the evo-
|lution time. llfa(r) - llfa(r) + ‘/fa(r + ro)- (11
Thus the density distribution of atoms of typen this new
V. DETECTION state|W;) contains information about thg correlation func-

In this section we consider the important issue of experifion of the original state:
mental detection by measuring different characteristic prop- T — (Tt
erties of the entangled states identified above. As an impor-ﬂrf'%(r)(ﬂa(r)N}f> (Hillyar)
tant feature of our lattice setup of independent wells, we note + YL+ 1) Ia(r) + da(r + 1)1 W)).
that any signal will be highly enhanced by a factor equal to (12)
the number of occupied lattice sités 150 000[3]). ) _

(i) Density profiles A very characteristic feature of our Using this procedure we can also measure higher order cor-
entangled states is that due to their large angular momentufglation functions likeg,. In this case measuring the interac-
they exhibit a strongly extended spatial density distributiontion energy of the final state will allow us to calculate e
compared to the nonentangletl=0 state. For the of the initial state. For instance, for the Laughlin state we
1/2-Laughlin state the typical radius is given by have
~2N-1¢. In the case oN=2 (4) this results in a radius -
that is~2 (3) times larger than in the case of the condensate. E(ro) = —
As proposed if19] the density profile of states within the 4
LLL can be measured in a time of fliglitOF) image of the (13

atomic system, since the momentum distribution COIr]C'deﬁ'he interaction energy is, unfortunately, not directly acces-

\ggg d?r?t g%n\?\;te}llls,rc;ﬁ'll?oflgralf)lélt_)ri)tﬁéisbilcr][uorgra(;ta:es;eegl;);]nds?o r§,ible ex_perimentally. In_stead, one can obtain the total energy
time t will exhibit a broad central peak of the form Of the fmgl state from. Integrating over.the TO'.: absorp_tlon
picture, since energy is conserved during the time of flight.
N ) 5 For small couplingn, however, the measurable effect due to
p(r,t) = mmo(‘ izl(wt), X/ (wt))|*. (10)  interactions will be small compared to the kinetic part of the
energy. In addition, the kinetic energy itself shows a signifi-

Here, po(z,x3) is the initial density distribution on a single cant dependence on the shifting which has to be distin-

well. In the TOF image it is enhanced by a factor propor-guished from the interaction. Hence, we propose to tune the

f df(‘I’iW;(r)lﬂ;(r +10)ha(1) a1 + 1) [ W)
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scattering lengtlag (e.g., via a photoassociation-induced Fes-FQH states. We have fully addressed the adiabatic creation
hbach resonand@1]) and to measure the interaction energy of these states and proposed techniques for their experimen-
in both the weak and strong scattering limits. The differenceal detection.
would then reveal the characteristic behavior of thecor-
relation function.
We finally note that, as a further way of detection for the ACKNOWLEDGMENTS
N=4 Laughlin state, a strong reduction of the three-body
losses should be observed. We acknowledge helpful discussions with I. Bloch, J.-J.
Garcia-Ripoll, and M. Greiner. This work was supported in
VI. CONCLUSION part by the EU IST projectsRESQ and QUPRODIS the
In conclusion, we have shown how to motionally entangleDFG (SFB 631, and the Kompetenznetzwerk “Quantenin-
a small number of particles into a sequence of interestindormationsverarbeitung” der Bayerischen Staatsregierung.
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