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Theory of decoherence in a matter wave Talbot-Lau interferometer
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We present a theoretical framework to describe the effects of decoherence on matter waves in Talbot-Lau
interferometry. Using a Wigner description of the stationary beam the loss of interference contrast can be
calculated in closed form. The formulation includes both the decohering coupling to the environment and the
coherent interaction with the grating walls. It facilitates the quantitative distinction of genuine quantum inter-
ference from the expectations of classical mechanics. We provide realistic microscopic descriptions of the
experimentally relevant interactions in terms of the bulk properties of the particles and show that the treatment
is equivalent to solving the corresponding master equation in paraxial approximation.
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[. INTRODUCTION ence effects encountered in the interferometry of large, mas-
) ) sive objects. We focus on near-field Talbot-Lau interference,
The art of demonstrating the wave nature of material parwhich is the favored setup for short de Broglie wavelengths.
ticles experienced considerable advances in recent years; spe take care to describe the effects of diffraction and deco-
[1-3] and references therein. The interfering species evolveflerence with realistic parameters, to permit a direct quanti-
from the elementary particles of the early experimgdt§]  tative comparison with the experimental signal. The interac-
to composite objects with an internal structure. In particulartions are treated on a microscopic level using the bulk
the experiments in atom interferometry have left the stage oproperties of materials and particles. We note that the recent
proof-of-principle demonstrations, and provide substantiainterference experiments with fullerenes and biomolecules
applications in metrology[6—9]. Objects with even larger [12-13 were analyzed using the theory presented in this
complexity, such as molecules or clusters, exhibit a rich inarticle.
ternal structure that can interact in various ways with exter- Before going into calculations we start with an informal
nal fields. Their interference is highly sensitive to the corre-discussion of Talbot-Lau interferen¢#6-19. In this setup
sponding phase shifts, thus offering the potential to measur@" essentially uncollimated particle beam passes three paral-

molecular properties with unprecedented precision. At thd®! gratings. Effectively, the first grating acts as an array of

same time any coupling to uncontrollable fields and environ<ollimation slits which illuminate the second grating. Di-

mental degrees of freedom severely limits the ability of |argefrac_tion at the sepond grating then leads, for particul.ar
objects to show interference. These effects are bound to bg_hmces of the grating periods and the wavelength, to a high

) ) ; L ntrast near-field interference pattern at the position of the
ggmglgﬁgmam as the chosen objects increase in size arﬁrd grating. This density pattern is observed with the help

: . . of the third grating by recording the transmitted flux as a
The influence of environmental coupling on a quantum g gy 9

. function of the lateral grating position.
system may be des.cnbed by deco_herence thELDyLY). It An important advantage of the Talbot-Lau effect is the
considers both the influence of noise due to uncontrollablqea

| field d the eff fth | ith b vorable scaling behavior with respect to larger masses of
external fields and the effect of the entanglement with Unoby, ¢ interfering objecq19]. Unlike in far-field diffraction,
served dynamic degrees of freedom. This latter,

h he d i delocalizati f h where the required grating period falls linearly with the de
phenomenon—the dynamic delocalization of quantum Cohelg . qjie wavelength, it decreases merely like the square root

ence into many environmental dggrees of freedom—largelyn the Talbot-Lau setup. In addition, the collimation require-
expla!ns the emergence of .cIaSS|ca.I behavior in a quantu%ents are much weaker than for far-field diffraction, and the
description. In particular, it describes the Wave'part'desg)atially resolving detector is already built into the device.
complemen'garlty encountered if one seeks to determlne_ by However, for a fixed particle velocity it is not immedi-
Pately evident whether the observed signal proves genuine
uantum interference, since a certain fringe pattern could

so be expected from a classical moiré effect. This classical

matter wave interferometers establish quantum coherence
a macroscopic scale they are sensitive tools to probe th

quantum-to-classical transition of complex objects. __pattern can be suppressed by an appropriate choice of the
The purpose of this article is to provide the theoreticalynon fraction of the grating and, unlike the strong wave-
framework needed to describe the diffraction and decohein i gependence found in the interference effect, the ideal
classical shadow fringes do not depend on the velocity.

Nonetheless, in order to distinguish clearly the quantum phe-

*Present address: Department fiir Physik, Ludwig-Maximilians-nomenon from a classical expectation it is necessary to de-

Universitat, TheresienstraBe 37, 80333 Muinchen, Germany. scribe the quantum and the classical evolution in the same
TPermanent address: Department of Physics, University of Tortheoretical framework, thus ensuring that all interactions and
onto, 60 St. George Street, Toronto, ON, Canada M5S 1A7. approximations are treated equally.
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A first aim of this article is to provide such a description Un Pz| -
that draws the demarcation line between the predictions of  #.(r) = 2ﬂ'ﬁ ] e fdroe I 2L ol
quantum and classical mechanics concisely and quantita-

tively. The second aim is then to account for the relevant r?

environmental interactions, thus providing a quantitative de- * O<_) (1)
scription of the transition from the quantum to the classical

behavior. For both goals it will be helpful to describe the a5 follows from an asymptotic expansion of the free Green
state in the interferometer in terms of a stationary, unnormalfynction, e.g.[24]. An important feature of this paraxial ap-
ized Wigner function. Due to the stationary formulation theprommaﬂon is the fact that it reflects the composition prop-
effect of decoherence will not be given by a master equationerty of the exact propagation without any loss of accuracy.
Therefore, it is shown in the final part of the paper that ourThat is, propagating the wave function first by a distange

treatment is equivalent to the conventional dynamic formuand subsequently by the distariceyields exactly the same
lation of decoherence in terms of a normalized Wigner funcresult as a single propagation hy+L,,

tion.

The structure of the article is as follows: In Sec. Il we p2
review the coherent Talbot-Lau effect and give a formulation  ¢3(r3) = - —é
in terms of the Wigner function. The corresponding classical @mh)™LaL,
shadow effect is calculated on an equal footing in the phase I0z| rg—ryl? Dz|f2— r?
space representation. The influence of the interaction with Xex ()

ei(pZLl+pZL2)/h f dr ldr2

O ; o . o ﬁ 2L, ho 2L,
realistic gratings, which is very important for a quantitative
description, is accounted for in Sec. lll. Those effects are _ P, PALyHLol f dr
also treated on an equal degree of approximation in the quan- " 2mhi(Ly +Ly)
tum and the classical description. In Sec. IV we include the
possibility of decoherence and show how it can be accounted ><exp< Pz Ir ri—rgf )l// (ry) )
for analytically. The specific predictions for decoherence due fi2(l,+Ly)) 1t

to collisions and due to heat radiation are then obtained in
Sec. V. In Sec. VI we relate the description of decoherence invhich follows from Gaussian integration. Hence, within the
terms of a stationary beam to the solution of the correspondsaraxial approximation no loss of accuracy is introduced by
ing time-dependent master equation. Concluding remarks awmividing the propagation into a sequence of intervals and
given in Sec. VILI. integrating over the interjacent planes. This freedom will be
used below as a crucial ingredient when we describe the
Il. THE TALBOT-LAU EFFECT IN THE WIGNER effects of decoherence.
REPRESENTATION Note that the composition propertg) does not require a
Since the coherent theory of the Talbot-Lau effect can bdarge separation between the planes. Even for infinitesimally
found in the literatur20—23 we shall present no detailed close planes one obtains the correct expresgipnThis can
derivations, but discuss the approximations involved andbe seen immediately in E@2) by noting a particular repre-
state the results in terms of the Wigner function as far asentation of the two-dimensional function [Ref. [25], Eq.
needed for the later inclusion of decoherence effects. CorA.33)],
sider the usual interferometric situation where a flux of par-
ticles enters ar=0 with a longitudinal momentur, that is D, p,|r =12\ /PO
much greater than its transverse components. Ideally, the par- 2 il % oL
ticle is in a momentum eigenstate, or in an incoherent mix-
ture thereof, before passing a number of collimation slits and The first equality in(2) also shows how the existence of
gratings. The vector =(x,y) describes the distance of the an ideal grating az=L, would affect the propagated state. In
particles from the interferometer axis. In the usual paraxiathe case of a binary grating te integration would be sim-
approximation this separation, as well as the structures in thely restricted to the transparent parts of the grating plane. In
grating and in the collimation planes, are assumed to bgeneral, an ideal grating causes an amplitude and phase
small compared to the distancesbetween the optical ele- modulation
ments,|r|<L;. In this case one may evaluate the transmis-
sion to leading order inr|/L;. This approximation implies W(ro) =t(ro)ya(ry) with |t(ry)] <1, (4)
that the longitudinal and the transverse parts of the state re-
main separable throughout the interferometer. It follows thatvhich is accounted for by the additional appearance of a
the discussion may be confined to the transverse degrees gfating functiont(r,) under the integral.

G(r —ro). 3

freedom as described bj(r) if the evolution is completely The passage of a particle stream through a general inter-
coherent—or, in the general case, by the density matriferometer may now be described as a sequence of transmis-
p(r,r’). sions through gratings or collimation slits as described by

Given the wave function)y(r) on thez=0 plane the free Eq.(4) each followed by a free evolutigii). This holds also
unitary evolution up to the plane=L yields, to leading or- for general, mixed states since any density operator can be
der, the transverse state, represented as a convex sum of projectors to pure states.
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A. Wigner function state and take care of the normalization only in the end.

We proceed to formulate the propagation in the Wigner With the transformationg8) and (9) we can proceed to
representation, which has several advantages. First, tf#scribe the Talbot-Lau effect in a general framework.
ngne.r function permits a direct comparison of the quantum B. The Talbot-Lau setup
evolution to the classical dynamics in terms of phase space )
distributions. Second, and more importantly, it is the most In the Talbot-Lau setup a monochromatic beam passes
convenient starting point to include effects of decoherence ihree vertical gratings that are separated by the distances
Sec. IV. Finally, the free evolutioril) has a particularly @ndL,. Since the particle stream is effectively uncollimated
simple form in the Wigner representation. in front of the first grating its Wigner function for the trans-

The Wigner function is the Fourier transformation of the verse degrees of freedom is uniform. If we start with the

position density matrisp(r,r’) with respect to the two-point (imprope) normalizationwo(r ,p)=1 then Eq(10) yields the
separatiom=r —r’ [26], Wigner function after the first grating

1 . A A wi(r,p) = [ty(r)[?. (17)
W(r,p)=—zfdA e'pmp(r——,r+—). 5 a1 P) = falr)
(2mh) 2 2 The free unitary evolution by a distantg, followed by a

It may be viewed as a quantum analog to the classical pha§@55€gef throughl a graglr(gllah conl;/oltjtlodn kerr;}el'l’) and |
space distributiorf(r,p), with p the transverse momentum 2nOther free evolution by a distants, leads to the genera

vector. expression
In order to obtain the free unitary evolution of the Wigner 2 0
T(r - —L2,q> .
Pz
(12)

function we note that the density matrix in position represen-w(r,p)= | dq
tation has the general form

p(r,r’)= f du 9(p) u(r) ¢, (r') (6) " The particle density at positior=L,+L, is obtained by in-
tegrating the momentum variable. It can be written as

p q
t(r——(L +L)+—L>
1 P, 1 2 pZ1

with fdu g(u)=1. According to Eq(1) a free unitary evo-

lution by the dlzstancd'; yields i , w(r) Efw(r'p)dp:fdr1|t1(r1)|2h(r;r1) (13)
"N — Pz ’ -pz|r_r0| —|r’—r(’,|
p(r,r )—mfdrodroexy{l% oL with
X po(Fo,ry). 7 2 Ly+L, r-r
poloro) @) h(r;r1)=<ﬁpTz) fdp T<r—EL2,—1L 2|0——|_ 1pz>-
From Eqgs(5) and(7) it follows that a free unitary evolution 1 Pz 1 1
by the distancé. changes the Wigner function according to (19

L As mentioned above the Talbot-Lau effect operates in the

w(r,p) :W0<r —;Zp,p>. ®) near-field regime, where the fact that the gratings have a

) o ) ) finite lateral extension does not play a role; it only affects the
This transformation is particularly simple and, as one exXgyerall count rate. It is therefore permissible to describe the
pects, is identical to the free movement of a classical probyratings by idealized functions that are periodic on an infinite
ability density in the phase space of the transverse degree gfane. Moreover, since the setup is invariant with respect to
freedom. The decisive difference between the classical anghanges in the vertical position, it is sufficient to consider the
the quantum phase space dynamics is found in the transfofyigner function and the grating transmissions only as a

mation for passing through a grating. Equatieh implies  function of the “horizontal” coordinate&,, p,) = (x,p) (see
that by going through a grating the Wigner function under-,:ig_ 1).

goes a convolution We take the first grating to have a peridg and its trans-
mission function to be given by (x)=>aexp2#imx/d;).
w'(r,p) :f dg T(r,q)w(r,p-q), (9)  Likewise, the second grating has the Fourier coefficiépts
and the periodl,=d. Therefore,
which in general builds up quantum coherences that show up
as oscillations in the momentum direction. Here we define  |t,(x)|2=> A, eX,{gﬂgi) with A=, ajalf_(
the convolution kernel analogously ¢6) as (e 1 jeZ
1 . A A (15
- - pA/h _ = =
T(r,p) 2 f dA € t(r z)t (r + 2). (10 and
Note that by stating9) we do not keep the normalization of . X 2j-¢
the Wigner function. Indeed, a finite fraction of the particles ~ T(xp) = > bjbj_, eXP<27T'€a)5(D— ﬁWT)-
may hit the grating and may be removed from the flux. tie?
Therefore it is convenient to work with an unnormalized (16)

053608-3



HORNBERGER, SIPE, AND ARNDT PHYSICAL REVIEW A0, 053608(2004)

X .
i i BN=3 bjb;_mexp(iwwﬁ) . (0
> b jez A

I;L d’=d‘I! Equation(19) predicts a density pattern which has the same
de ! periodd, as the first grating. Often the spatial resolution of
Idl=% d2=dII detectors is too poor to detect these density oscillations di-
"SIH rectly in an experiment. However, an indirect observation is

I R possible with the help of a third grating with peridg If put
"0 'L 2 2 at the position of the density pattern it modulates the total

transmission as a function of its lateral positignThe inte-

FIG. 1. The symmetric Talbot-Lau setup consists of three para"grated transmission, which is much easier to detect, is then
lel gratings separated by equal distantedNear-field interference given by

of an uncollimated beam from the left may lead to a density pattern

at the position of the third grating that can be observed by modu-
lation with the lateral grating positior,. S(xg = | dp dg dx vix,p - ) T(X — X,q)

In order to simplify the discussion and to avoid an overly :f dx WO lta(x = x)|2 21
complicated notation we focus on tegmmetricTalbot-Lau WOOltsx =% (21)

setup, which is the most important one in practice; for the,

. : : If we choose the first and third gratings to be identical,
asymmetric setup 36{23].1 In this case the gratings are set at _ TR oo
an equal distance; =L, =L and the periods, andd of the t3(X)=t1(x), the expected periodic signal is given by the ex-

first and second gratings are related dy=2d/r, with r pression
e N. (The case of equal grating periods; 2, is most com- . X
mon [12-15.) The state(12) now reads S(xg) = (A{)ZB(gr)exp(wa—). (22)
el 1
1 " T X .
wx,p)=> > A€bjbj—mex4:27ﬂ(_€ + m)— = 2mi(r¢ For symmetric gratings this modulation signal has a
€,j,me’Z 2 d .3
o visibility
L p} p( _ rL -
+m)—— [exp i7€(2] - m)——). (17
dp, 2L, . > Ao 1Bonr
-g. )
Here we introduced th&albot length V= = ! — . (23
d2p P Shaxt Smin }A(Z)B()\) + 2 A2 BW
L)\ ——rz_ - (18) 2 0 = 2n=2nr

2@h A
which serves as the prime characterization of the interference
pattern.

It is clear from the definition of the coefﬁcienfﬁﬂ” that
the interference patter(l9) and the visibility (23) depend

trongly on both the wavelength and the separatioh be-
yeen the gratings. As evident from EQO) it is indeed the
product of the two quantities which determines the pattern,
sinceL/L,=L\/d?

However, the detection of a periodic signal alone does not
prove necessarily that quantum interference occurred in the
experiment because a certain density pattern may also be
p< . x) expected from a generalized Moiré effect. To establish the

2@id— | (19

1

in terms of the grating period and the de Broglie wave-
lengthA=h/p,. The Talbot length is the proper scale to dis-
tinguish near-fieldFresnel diffraction from far-field(Fraun-
hofer) diffraction for a given wavelength. It gives the
distance behind a grating where the diffraction peaks of
collimated, passing beam have a lateral separation equal
the grating period.

To get the particle density in the beam fradi7) we in-
tegrate over the momentum which picks up them=-r¢
components,

observation of quantum interference one must show that the
observed visibility differs significantly from the classical ex-
with Fourier componentf23] pectation. It is therefore important to have a reliable quanti-
tative prediction for the classical expectation as well.

w(x) = f dp wix,p) « >, A;BMex

e’

To observe theasymmetricTalbot-Lau effect, atL,=«L; with _ _
k>0, a period ofd;=(x+1)/ kX d/r is needed in the first grating. C. The classical expectation
Analogously to the symmetric cagg9) a density pattern emerges With the results for the Wigner function at hand it is

atz=L,+L, which has now a period ofd;. The casec<1lis called  gyraightforward to repeat the calculation using classical phase
the fractional Talbot-Lau effect, and it is easily incorporated into

the present framework.

2In order to specify the proportionally factor {19) a normaliz- ®Equations(23) and (31) assume that the transmission signal is
able momentum distribution would be needed in the initial Wignerextremal atxs=0 andxs=d;/2 which is the case for realistic trans-
function. mission functions witht(x) =t(—x).
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space dynamics. The classical phase space defisitp) 0.8
transforms under free evolution like the Wigner functi@n
according to 071\ @
L 0.6
fL(r.p)=folr ——p.p|. (24) ®
P 0.5f
In contrast to(10), the convolution kernel for passing &
through an ideal amplitude grating is now given by EOA- -
>
: 0.3}
Ta(rP)= 5= J dA ePAt(r) 2= [t(r)[?8(p), (25)
(277%) oal
which leads to
01f
f'(r,p) = [t(r)[*f(r,p). (26)
At a distancel, after the second grating this yields a phase 93 085 04 045 05 055 06 065 07
space distribution Open fraction f

2
FIG. 2. Talbot-Lau visibilities for ideal binary gratings as a

2
p
t2<r _EZL2> (27) function of the open fraction(a) L=L,; (b) L=0.9,; (¢) L
=0.8.,. The corresponding classical visibilities are all identical
which can also be obtained from the quantum result by rewith curve(a).
placing T by T, in Eqg. (12). It follows that the classical
density pattern in front of the third grating is given by

f(r,p) =

t1<r - pEZ(Ll+ Lz)) ‘

Bow =B if LIL, € N, (32
f(x) = J dp f(x,p) < >, A‘eB{r exp<2wi€i> (28)  that is, the quantum and the classical evolution yidkhti-
teZ d; cal predictions for the density pattern and the observed vis-
with ibility. This shows clearly that the observation of the integer
Talbot-Lau effect alone does not prove the wave nature of
BY =2 bb;_,. (29)  the beam particles.
jez However, unlike their classical counterparts, the quantum

Fourier components display a strong wavelength depen-
the classical results have the same form, but differ in thé dence. Therefore, distinctively different results are obtained
in the classical and the quantum calculation for separations

Fourier component8,,,. Of course, the classical Fourier
components do not depend on the de Broglie wavelengthWhICh differ from the integer Talbot criterion,/L, ¢ N, or

Nonetheless, thB(O) may be viewed as the short-wave limit equivalently for detuned particle wavelengthsnd?/L,n

N e N. This can be seen in Fig. 2 where we show the quantum
L/L,—0 of the quantum Fourier coefficienBy,’, which is 4 classical visibilities for identical, ideal binary gratings as
already indicated by the notation.

X : . . a function of their open fractiom (the ratio of slit width to
It follows immediately that the classical prediction for the

. X : . grating periogl.
signal is obtained from Eq.22) by replacing the As predicted by Eq(32) the quantum and classical results

wavelength-dependent Fourier componeBffs by theB[Y,  4re igentical forL/L,=1 and given by Fig. @). For L/L,
X =0.9[Fig. 2b)] andL/L,=0.8[Fig. Zc)], on the other hand,
Su(xe) = 2 (A)?BYY) eXP<27T i ) (30)  the Talbot-Lau visibilities differ markedly while the classical
tel predictions remain on Fig.(8). The distinction between the
Likewise one can show that the visibility of the classical classical and the quantum predictions is most pronounced for
signal is given, for symmetric gratings, by an opening fraction of 0.5, where the classical contrast van-
ishes. The quantum calculation yields significant visibilities
for these gratings, of 14.7% dt/L,=0.9 and 25.4% at
L/L,=0.8, respectively.

The comparison with Eq19) shows that the quantum and

Z A 2n— 1Ban r
Vcl = . (31)
AOB 3 + 2 A 2nr

D. Finite longitudinal coherence

Let us focus on the important case of equal grating peri- In the above calculations the particle beam that enters the
ods for a moment, i.er,=2. In this case only the even Fou- interferometer was assumed to have a fixed velocity irnzthe
rier component®,,,, are needed. If the separatiarbetween direction and to be completely uncollimated in the transverse
the gratings is set to an integer multiple of the Talbot lengthdirection. Of course this is an idealization that is in many
then it is easy to convince oneself that for any ideal gratingespects as unrealistic as the familiar assumption of a per-
tH(X) fectly coherent plane wave. Realistic particle beams are char-
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acterized by a finite longitudinal coherence and show somé&udinal velocity distribution. In particular, the modulation

correlations in the transverse direction. signals(22) and(30) are given by

The particle beams used in matter wave interferometry are .
usually generated by an effusive or supersonic expansion X :f d x). 37
into a vacuum chambd®7]. By means of additional skim- (S0 0 PA(P:)SXy) 37

mers or collimators the beam is restricted to a well-defined ) ) ) )
“longitudinal” direction. The beam is stationary, and as alf the detection signal is proportional to the flux the average

consequence the longitudinal momenta show no off-diagondlvolves the longitudinal velocity component,

elements in their density matrij28]. They are completely £
characterized by the longitudinal momentum distribution f dpg(p)pS(Xs)
a(p,) [29]. _7Jo
The transverse momenta are much smaller than the longi- (S0 = * ' (38)
tudinal ones and can be taken to be uncorrelated with the . dp.p.9(p,)

longitudinal velocity. The transverse coherence is determined
by the source aperturf80], and it could be calculated with Note that in either case the visibilities are not obtained by a
the van Cittert-Zernike theoref80] if the aperture size were simple average of Eq$23) and(31), but have to be calcu-
small compared to the length scale in question. However, ifated from the averaged signal.

the Talbot-Lau setup the source aperture is much larger than

the spacing between the grating slits. As a consequence, dif-

fraction at the first grating cannot be observed and it is per- || THE INFLUENCE OF REALISTIC GRATINGS

missible to approximate the transverse degrees of freedom as

completely uncollimated. In front of the first grating the bulk ~ So far it has been assumed that the gratings are ideal in

of the beam is therefore appropriately characterized by théhe sense that their thickness could be neglected. However,
Wigner function real gratings have a finite thickness and the time of interac-

tion between the particle and the grating depends on the
WheanfR,P) =9g(P - &) (33 velocity v,=p,/m, of the beam particles. This introduces a

for R=r +ze, with z<0. This description does not account vglocity dependence of the grating function both in the clas-

for the edges of the beam and the cutoff at larger transversyical and in the quantum treatments. Generally speaking, the
momenta, which is why it cannot be properly normalized.-I-"J‘lbot'l-alu effect is affected more strongly by the grating

Fortunately, it is not necessary to include the full beam proforces than far-field diffractiofi31], since the near-field in-
file in the treatment of the Talbot-Lau effect. As shown be-terference is characterized by smaller phase shifts. This was

low only the interference of paths through a few neighboring>€€Nn in recent experiments with beams of large molecules

slits is relevant for the effect, so that the transverse variatioh-2~13-
of the total current can be neglected.

Formally, the beani33) can be written as a convex sum
of statesw(r,p)=1 that are uniform in the transverse coor-
dinatesr andp, and that have a fixed longitudinal momen-  In order to account for the effect of a finite grating thick-

A. The grating interaction

tum p,: nessb we consider an additional interaction potentiégk)
w0 that acts while the particle is traversing the grating. In order
Wiean(r + ze.,p + p.e;) = f 8(p. - pHyw(r,p)g(pl)dp!. to avoid a more detailed dependence in the potential we
0 —_— average over the the surface roughness and assume that the
=1 (34) grating walls are parallel to the optical axis and that edge

Those are the states(r,p)=1 that we started out with in ©ffects can be neglected. In the case of tilted walls one can
Sec. Il B. Since a sequence of grating transmissi@snd introduce an effective slit width, as discussed32]. More-

free evolutiong8) does not affect the dependencemrthe  OVer it is known[33,34 that grating interaction effects are
general stationary state #t>0 is given by usually well described by theikonal approximationThere,

the additional quantum phase due to the interaction potential
Whearf! +Z'€,p + p,£) =W(Z';r,p)g(p,) (35 V(x) is obtained by integrating the action along a straight
path. Accordingly, if we take the binary functidfx) to de-
scribe the material grating the complete grating function is
given by

and the transverse position density reads

W(I’) = J dp dpszearr(r + Z,ezrp + pzez)

myb V(x) )
. (39
p, h

Tx) = t(x)exp(— i
= J dp dpw(z';r,p)g(p,)- (36)
Here and below the tilde is used to indicate quantities which
It follows that the finite longitudinal coherence in the beamhave an additional velocity dependence due to the grating
is completely accounted for by averaging the results for dnteraction. Accordingly, for nonideal gratings the convolu-
fixed velocity derived in Secs. Il B and Il C over the longi- tion kernel(10) is replaced by

053608-6



THEORY OF DECOHERENCE IN A MATTER WAVE. PHYSICAL REVIEW A 70, 053608(2004)

d/2
T(x,p) = f dg T(x,p— ) Ty(x,q) (40) cm== f e‘ZWimX’dexp<— im%%)dx. (47)
-d/i2 z

with We note that the modifications of the Fourier components
given by EQs.(42) and (46) describe the quantum and the

1 A myb A classical interactions on the same degree of approximation.

Tu(x,q) = Py J dA €% exp) — s V| x- P Clearly, the fact that the interaction with the grating is treated

Pz equally in the quantum and in the classical descriptions is an

A important requirement for identifying quantum interference

—V(x+ —) (41) in an experimental observation.

2 Before turning to realistic descriptions for the grating in-

it foll hat th . for the densi teraction we note that it is in general not necessary to include
t follows that the quantum expressio() for the density o oraing interaction at the first and third gratings. This is

pattern and(23) for the signal visibility still hold after the oo from the fact that the Talbot-Lau setup is sensitive to
replacement diffraction only at the second grating, while the others
B o MR- 2jm L merely serve to modulate the flux. Formally, it can be seen
Bﬁf;) - B%) => bjb}_mexp<i7r——) (42)  from the expression for the observed signal, E@4) and
jez 2 L (13). It depends only on the squared modith(x)|> and
5 |ts(x)|? of the first and third grating functions, which are not
with the modified Fourier componenig,==b;C,,_; and affected by the phase shift in E€39). Only for very strong
potentials, where Eq.39) is no longer valid, may the inter-
action effectively reduce the slit width and thus become rel-

Y ~2mimx/d Mpb Vi(x)
Cm= 1 f € expl —i————Jdx. (43 gyant to the first and third gratings.
dJ g2 p, #

As mentioned above the presence/¢k) introduces a veloc- B. Material gratings

ity dependence also on the classical level. This can be seen A neytral particle will in general experience an attractive
by considering thﬁeg Iocalsapproxmatmn of E@L) where | an der Waals force if placed in the vicinity of a surface. A
terms of the order,V(x)A” are neglected in the exponent, gjmpje, but quite realistic description for nonpolar quantum

objects is given by the staticondon dispersion forcevhich
Ty(x )~i dA exnl | +m_DbiV(X) é acts between a quantum object and a flat wall. AIf
v = 27h JRE p, dx fi is the distance to the wall it gives rise to the potential

U(A)=-C4/ A8, with C;3>0 [35].
_ p For simple wall materials the interaction const&atcan
- 5(q+ Ed_xv(x))' (44 be found in the literature for many atoms and a number of
small moleculeg36]. In general it is obtained from the Lif-
According to Eq(40) this yields a classical convolution ker- Shitz formula[35,37,38
nel % .
h iw)—1
Cy=— oz(iw)e(,L 10} (48)
mgb d 4 ), eliw)+1
+ ——

= 2 -
o dXV(X)) = [t,(x)]?8(p ~ QX))

Ta(x,p) = [to(x)[26
el P) = [t (p by using either experimental datag., absorption specirar

appropriate models for the dynamic polarizabiliyof the
particle4 and for the bulk dielectric functios of the grating
gnaterial, respectively. Often Drude-type models doand e
are considered sufficient. 133,34 the interaction with ma-
terial gratings was studied in an interference experiment and
found to be in good agreement with the assumption of a
London dispersion force.

However, at large distances retardation effects may be-

(45)

which indicates that the eikonal approximation correspond
on the classical level to the momentum kiQkx) =—ad,V(x)

X b/v, obtained by multiplying the constant classical force at
a fixed positionx with the interaction time. Accordingly, the
classical phase space distribution changes fax,p)

=|t(x)|2f(x,p—Q(x)) when PaS_S‘T‘g a gratin_g. Using this come important. They show up if the separatibrbetween
transformanon and the perlod|C|ty @ one finds that the_,\ the particle and the grating wall is comparable to the wave-
c!a_sy_cal expressions for the density pattern anq for the S'gn?éngth corresponding to those virtual transitions in the par-
\33|b|llty aslsuhme ;he forlm(SZ&:)hangBl_) as in the |de?l %ase. ticle that contribute with a large oscillator strength. In the

ne merely has 1o replace the Founer components by case of an ideal metal the potential is described by the
~ ~ Casimir-Polder formulg39]. For large distances it has the
BY — By =X BRChp, (46)

meZ JE—

“We follow common practice and take the polarizabilities through-

with out in units of volume rather than Sl units.
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FIG. 3. Reduction facto€;/C, [see Eq(50)], of the long-range
interaction for dielectric gratings as compared to ideal mgsami-
logarithmic scalg For typical grating materials the static dielectric
constants(0) is less than 4, leading to a reduction below one-half.

FIG. 4. Talbot-Lau visibilities for gratings with a van der Waals
interaction as a function of the open fractio@ L=L,; (b) L
=0.9.,; (c) L=0.8.,. The corresponding classical visibilities are
given by the curvegd),(e),(f), respectively.

. _ 4.
asymptotic formU(a)=-C,/A" with the constant Figure 4 shows the typical effect of a finite grating inter-

3% action, and should be compared to the results for the ideal

c R . .

C,=—a(0) (49 grating in Fig. 2. Here we assume a particle with mass
8 1000 amu, a van der Waals interaction witlC,

=10 meV ni, and we take gratings with a period of

=1 um and a thickness df=0.2 um separated by a distance

‘of L=0.2 m. One observes that the expected quantum vis-

ibilities deviate noticeably from the ideal case. Moreover, the

classical expectationgiven by the dashed lingsliffer com-

given by the static polarizabilityx(0) of the particle. The
case of more realistic grating materials and arbitrary dis
tances is covered by the theory of Wylie and Sig@e,41]. It
shows that in the case ofal metals the asymptotic form of

the interaction potential does not depend on the metal and Betew from the ideal expectation and display now a weak
identical to the ideal case. For dielectrics the limiting formvelocity dependence. At an open fraction of 0.5 they now
depends also on the fourth power of the distance, but with g;o|q 5 finite contrast amounting to 12.4% —12.9% for the
reduced interaction constant, three settings. The respective quantum expectations are also
= (1+ 2031 () = r(u) larger than the in the force-free calculatigmhey increased
ci=C, J p s (50) from 14.7% to 32.9% alt /L, =0.9 and from 25.4% to 35%

—du. o - .
0 (1+u?)>? 2 atL/L,=0.8) This is a typical phenomenon. The attractive

force tends to act as if the open fraction of the grating was
The reduction depends on the static dielectric conséé)t  decreased.
via the Fresnel coefficients

N Ve(0) + u2 C. Gratings of light
rp(u) = I+ + Ve(0) + 12 (52) .It is clfear f(om Eqs(13) and (21) that the first and the
third gratings in the Talbot-Lau setup must be absorptive to
and generate an observable contrast pattern. However, as dis-
cussed in23] the second grating may be a pure phase grat-
E(O)\s"l +u? - Ve(0) + u? ing as well. Such anixedinterferometer can be realized by

rs(u) =

(52)  the off-resonant interaction with a standing light wave].
See[43] for the laser diffraction of large molecules.

Figure 3 gives the value of the dielectric reduction factor for If we take a TEM, mode of wavelengti, =2m/k_and

1= €(0) < 100. waist w produced by a laser of powd?_ then the dipole

Whether the exact position dependence of the retardeﬁ)rce leads to the phase shift

force must be used depends on the physical situation in the _ . —8P_a,

particular interferometric setup. In most experiments realized t(x) = ex;<| V2w Py WCO§(|<LX)> : (53

so far it was sufficient to use either the static van der Waals vz

interaction(48) [31] or the long range limit of the Casimir- as follows from an integration over the Gaussian beam at
Polder force, Eq(49). central passage. Here, is the scalar polarizability of the

e(0)V1 +u?+\e(0) +u?
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particle at laser frequency, =ck , where we assume that derive the form of realistic decoherence functions for the
Im(a,)=0 so that photon absorption can be negledwgk  most important decoherence mechanisms. For the time being
footnote 4. The classical momentum kick in E¢45) that it is sufficient to note that the conservation of the trace in

corresponds to the dipole force reads (55) ensures that
—8PLa k. . : _ _
Q(X)=\r“27'r$sm(2k,_x). (54) R“LnR 7(R1—Ry) =1, (56)
Co W 17R2

Using these expressions in E¢39) and(47) one obtains the SO that the diagonal elements of the st:’;lte are unchanged by
predictions for the quantum and classical density pattern&d. (55). Moreover, the Hermiticity ofo implies 7(-R)
produced by a standing light wave in the same way as witl¥ 7 (R), and from the fact that the purity cannot be increased
material gratings. by a partial trace it follows thatp(R;—R,)|<1.

In the present section we showed that the Wigner descrip- If the state is expressed in terms of the Wigner function its
tion of the Talbot-Lau effect permits the effects of the gratingchange(55) reads
interaction to be incorporated easily, in terms of a simple
modification of the Fourier coefficients. As discussed in the
next section the effect of decoherence can be similarly incor-
porated into the formalism.

W/(R,P) = f dQ 7nQWR,P-Q) (57)

with 7(Q) the Fourier transform of the decoherence function,
IV. ACCOUNTING FOR DECOHERENCE 1
. L —~0) = -iQR/
Having formulated the Talbot-Lau dynamics in the 7(Q) = 2mh)3 f dR e QR p(R). (59)
Wigner representation it is now easy to include the effects of
decoherence. More specifically, we consider the MarkoviarClearly, the effect of a decoherence event on the Wigner
interaction of the interfering particle with other, unobservedfunction is to smear it out in the momentum direction.
degrees of freedortthe environment[10,11. The resulting As discussed in Sec. Il D the coherently evolving, station-

formation of quantum correlationgor entanglementbe-  ary state of the beam in a Talbot-Lau interferometer is de-
tween the particle and the environment leads to a loss ofcribed by the function
coherence in the particle state that may be understood from

the fact that a measurement of the environmental degree of Whearf! +2€,p + P,£) =W(Z;r,p)g(p,). (59
freedom could revedpartial) which-way information on the ) ] )
particle’s whereabouts. In a typical setup the grating constant and the grating sepa-

We note that a number of studies have been undertakei@tion differ by six orders of magnitude so thmvaries on a
recently that describe a loss of visibility in matter wave in- scale in Eq(59) that is much smaller than the magnitude of
terferencel44—46. Here we focus on the Talbot-Lau effect P-- Our basic approximation is now to assume that the width
and on a formulation that is sufficiently realistic to permit of 77 is small compared to the scale over whlle,m varies
quantitative predictions about experiments with mesoscopi#l Pz This assumption is particularly unproblematic in the
bodies[13,15. Talbot-Lau setup, where the sensitivity to changes in the lon-

Two important decoherence mechanisms for large, interditudinal momentum is rather weak. It follows that the new
fering particles are collisions with background gas particlestate of the transverse coordinates is approximately given by
and the thermal emission of electromagnetic radiation. Botfntegrating the full state with respect to the longitudinal mo-
effects may be treated in the Markov approximation, whichmentum,
implies that the effect of the environmental coupling can be
described by independent, separate evésush as the emis- ' - AS ,
sion of a photon or the collision with a gas partjcle wi@r.p) f AP Woean( +28,P +Pz8).  (60)

Inserting Eqs(57) and(59) yields the change in the state of
the transverse coordinates:

The change in the state of the interfering particle due to a
single event can be obtained by performing a partial trace _
over the entangled state with respect to the unobserved de- w'(z;r,p) :J dq 7g(Q)wW(z;r,p—q) (61)
grees of freedom. For particles with a large mass and for the
decoherence mechanisms considered in this article the deg;ith
sity matrix in position representation changes just by a mul-
tiplication,

A. The effect of a single decoherence event

704(Q) = f do,7(q+09e). (62
0'(Ri,Ry) =2(R1,R) 7R —Ry). (55)

The factorp(R,—R,), which may be called the decoherence It follows from Eq.(62) that in the position representation of
function, describes the decay of the off-diagonal elementthe transverse state(r,,r,), the decoherence function en-
(the coherencg®f ¢ due to a single event. In Sec. V we will ters without modification,
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- tion z is completely described by a modification of the co-
p'(ry,ra) =P(F1,fz)que'q 12 ,4(q) herent Fourier componen(42)
=p(ryr)n(ry—ry), (63) =0 =0 dL-|z-L]
but restricted to thety plane, 7(r) = 7(r +0e,). B — B ’7(_ m5 L, ex) (68)

Using the Wigner function it is now possible to evaluate

the effect of asingledecoherence event that takes place at a
distancez behind the first grating. One merely propagates the B. An alternative to the master equation
state to the longitudinal positionusing the coherent trans-
formations(8) and(9), then applieg61), and propagates the One can now account for probabalistically occurring de-
state over the remaining distance to the third grating. Withircoherence events by considering the change in the final in-
the paraxial approximation no additional error is introducedterference pattern due to events that occur with R{& in
by this procedure since the composition property of the evothe interval(z;z+dz). It follows from Eq. (68) that the cor-
lution holds exactly. The result takes a simple faimoth for ~ responding Fourier coefficients satisfy the differential equa-
z<L and forz>L) once the momentum is integrated to yield tion
the position densityv(r) in front of the third grating. It is

iven by an integral of the forni3), R N _ly— N
g y g a3 EB%) - R(Z)[Br(nx) 7]<_ mguex) _ Bg;):| )
dz 2 Ly

w(r) = f drJty(r )| hy(r;ry), (64) 69)

where the coherent kernbl(r,r;) from Eq.(14) is replaced ) ) )
by It describes the change of the interference pattern with an

increasing size of the interval where decoherence events may
occur. The integration of Eq69) over the whole range
€(0;2L) of admitted decoherence then yields the coeffi-

. i . cients characterizing the modified pattern. They are given by
This shows clearly that close to the first and to the third

gratings, atz=0 andz=2L, a decoherence event will not oL
affect the interference pattern while, for monotonically de- |§(”—~B(”exp{—f R(z)[l— <_ gﬂ )} }
= : . m = Bm nl—-m e (dz¢,
creasingn,q(q), the interference is most strongly affected by 0 2 L,
decoherence events that take place in the vicinity of the sec-
ond grating, az=L. This is consistent with the notion that in
the Talbot-Lau setup diffraction takes place only at the sec-
ond grating, while the first grating acts as an array of coherwith B>’ the coefficients of the coherent evolution. This is
ence slits. the central result of this section. It shows that the effects of
We take the grating function again to be periodicxin Markovian decoherence of the for(85) can be calculated
(with periodd) and uniform iny. This means that the discus- analytically if the setup is insensitive to longitudinal correla-
sion can be confined to the coordinate as in Sec. Il B. tions as in the Talbot-Lau interferometer. It follows immedi-
Using the Fourier decompositiqii6) one finds that the co- ately that the position density and the visibility of the modu-

L-|z-L]

ﬁz(r;rl):qu sz(Q)h<rar1‘ CI>- (65)

A

(70)

herent kerne(14) reads in the one-dimensional case lation signal are given by the formulagl9) and (23),
respectively, if the coherent coefficierﬁg;) are replaced by
h(x;x,) = f dy dyh(xe, +ye,; x;€,+y:€)) those of the incoherent evolutigid0).
The result(70) can be easily generalized to the asymmet-
P, D L XX\~ ric Talbot-Lau interferometer. The case of several indepen-
- ZLﬁmezeX 27im 2d B - (66) dent decoherence mechanisms is also easily incorporated.

The resulting interference pattern is then characterized by a
It follows with Eq. (65) that in the presence of a decoherenceproduct of the corresponding exponentials in E£).

event the kernel takes the form It is important to note that the basic Fourier components
i b\ m=0 are not affected by decoherence, singé)=1. This
h,(x; %) = ﬁz ex 27rim—1>BET§) shows that the mean count rate does not change due to the
2Ly 2d presence of decoherence, as is to be expected from the con-
dL-|z-L| servation of the norm in Eq55). The reduction of the ob-
X 77<_ m-—ex), (67) served visibility assumes a compact form if the modulation
2 L signal (22) is (approximately sinusoidal, as is typically the

where the three-dimensional decoherence function from E¢ase for gratings with an open fraction ot 0.5. Then only
(55) enters with its dependence along thexis. The com- the coefficientng” and B(z”contribute to the visibility if the
parison with Eq.(66) shows that the modified interference grating periods are equal=2. With »(0)=1 it follows that
pattern corresponding to a single decoherence event at poshe reduced visibility is given by
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L, see that the above derivation of the modified pattern holds in
the classical formulation as well if one replaces the quantum
(71) coefficients'éfﬁ) in Eq. (70) by their classical counterparts
whereV, indicates the visibility in the absence of decoher- Bfﬁ).
ence. This formula is particularly intuitive if the Talbot cri- ~ From this one might be led to conclude that the decoher-
terion is met,L=L,. Then the argument ofy contains the ence described in Eq55) was a “classical effect.” In our
separation of two paths that start and end at common pointgew this would be a misinterpretation, since a probabilistic
and pass the second grating through neighboring slitz At formulation is possible only if the Wigner function is non-
=L it is equal to the grating constadt which shows that the negative everywhere, that is, if it cannot be distinguished
Talbot-Lau interference with equal gratings is based on thérom a classical probability distribution. If the Wigner func-
interference through neighboring slits. Also at other positiongdion is negative in some parts, as is the case for an interfering
z a reduced magnitude of suppresses the visibility when- state, any stochastic interpretation is invalidated by the oc-
ever the change in the environmental state is able to resolveurring flux of a “negative probability.” Notwithstanding
the corresponding path separation. Higher orders of the Takhis, once the motional state has turned into a classical state
bot effect,L=mL, with me N, correspond to multiple slit without negativities in the Wigner function the additional
separationsnd. For longitudinal velocities that deviate from loss of visibility in the quantum description is indeed indis-
the Talbot criterion witi # mL, the argument is replaced by tinguishable from a corresponding classical stochastic pro-
an “effective” path separation. cess.
It should be emphasized that our derivation of Eq%)
and(71) is rather different from solving the Markovian mas-
ter equation corresponding to the decoherence mechanism.
In Sec. VI we obtain a solution of the master equation cor-
responding to decoherence of the ty(ib) for a general
interfering state in the paraxial approximation. An expression In the following we discuss the form of realistic decoher-
analogous td71) is found there, albeit in a time-dependent ence functions that can be used to obtain quantitative predic-
formulation; see Eq(120). This vindicates our approxima- tions on the effects of decoherence in matter wave experi-
tion (60). ments. We focus on the most important mechanisms for
The present formulation has the particular advantage thdarge, massive objects, namely, collisions with particles from
the rate R of decoherence events and theffect » appear the background gas and the emission of heat radiation. We
separately in the equation. This might seem to be a complinote that simple estimates of these effects on material par-
cation, since these two quantities must be calculated inddicles can be found if47-49.
pendently by quantum mechanical means. However, they are
often needed with different degrees of sophistication. For
example, often one must take into account the position de-
pendence of the rate. This is easily incorporated in the
present framework, while solving a corresponding master
equation would be incomparably more complicated.

2 |z |_| free evolution and the passage through a grating it is easy to
V=Y, ex R(z) 1-n - dzg,

V. REALISTIC DECOHERENCE FUNCTIONS

A. Decoherence by collisions with gas particles

A very important source of decoherence is the unavoid-
able presence of a background gas in the experimental appa-
ratus. Typically, the mass of the interfering particles is much
C. Quantum decoherence vs a classical stochastic process  larger than the mass of the gas particleg>my, and the
interaction is of the monopole type. In this case the decoher-

Having treated the effect of environmental coupling on, -« fnction readg47,50,51

the quantum evolution, we can now turn to its effects in the
classical description. In Sec. Il C the classical expectation
was calculated in terms of the phase space derigityp).
The close analogy between the quantum problem and the - R\~ . R,-R;\-
classical calculation allows us to map the Wigner represen- 7(R1,R) =trg, eXp( [ )SoeXP<inasT>50
tation of a decoherence eve(til) to the classical descrip-

tion. It follows from Eq.(61) that the effect of a decoherence -~ Rp\.
event can be interpreted on the classical level as a probabi- ><exp< gas >Q }
listic momentum kick,

(73

f’(r,p):qu 724 @f(r.p—a). (72) .

wherePysis the momentum operator of the gas particles and
Indeed, the properties(0)=1 andzn(-r)=17 (r) of the deco-  §; the center-of-mass scattering operator. The trace over the
herence function imply tha,q has the features of a prob- scattered gas particle in E(7.3) can be evaluated if it is in a
ability density,7,4(q) =0 andfdq 7,4(q)=1. From the close (therma) state that is diagonal in momentum and character-
analogy of the classical and the quantum expressions for thized by the distributionuy,{P). One obtaing50,51]
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o stant density, and agam,>m,, the effective cross section
7(R,R,) = f dP pre(P)| 1- f dP’'(1 - &®-POR-RI)  genends only on the velocity of the interfering particle. It is
given by

(27h)’
Q

X

. |P/my —v,e)
|<P'|75|P>|2] oarlvp) = J 0P tgudP)or(P — myppel) 2
p

*Q (74) (79

with %Ozi(l_éo)_ Awkwardly, the last two expressions in Eq. as follows from the derivation of the Boltzmann equation.
(74), which are indicated by, involve two quantities that The_most prominent interaction encountered in moIepuIar
are arbitrarily large. One is the “quantization volum@;  Scattering is the van der Waals force between polarizable
which originates from the normalization of the thermal stateMolecules. At the typical velocities in matter wave interfer-
0gas and the other is thequareof the & function appearing ometry the scattering depends only on the long-range part of

~ i i i =— 6 i i -
in the matrix elementP’|To[P)=(P" ,P) &P’ - P)/(27hP). the interaction potentiallJ(r)=-Cg/r°, which is character

, . _ . . ized by a single interaction consta@. The total cross sec-
Heref(P’,P) is the scattering amplitud@vhich must not be tion is then independent of mass and given[6g]

confused with the classical phase space density from Sec.

[l C). Since the decoherence function is well defined by Eq. _ ? 3mCq\%®
(73) these two infinite quantities must cancel if the lirfilt a(mg) = r'(2/5)sin(w/5)\ 8 #iv (80)
—oo is taken properly. As argued ifb1] physical consis-
tency requirements lead to The integration in Eq(79) can be done assuming a thermal
distribution of the gas particles. The exact expression is
. B [f(P",P)]28(P" - P) given by a confluent hypergeometric function, as shown re-
SL'L"OOXQ T o(P) p2 (75) cently by Vacchini53]. Here we note the asymptotic form of
the effective cross sectiov9) for small velocities of the
where o(P) is the total scattering cross section, interfering particle. It reads
47T(9/10) [ 3mCq \ %5 1/vp\?
U(P):J dnlf(Pn,P)[%. (76) o) = S \ 25 ) vy | 5\,
4
| v
With the replacemend75) one gets N O<~—p> 81)
Ug

Mga&P) o _ :
P) dnlf(cog 0))|?€P-PMRaRII, with 54=(2kgT/mg)*2 the most probable velocity in the gas.
In principle, the interaction constant is given by the

(77)  Casimir-Polder expression

77(R1:R2) = f dP

g

As already anticipated in E@55) this function depends only _3h ) ,

on the position differenc®;-R,. For an isotropic distribu- Ce= o J do ag(iw)ay(io) (82
tion of the gas momentayg,{P) =v4ad P)/ (47P?), the ex- _ o

pression can be further simplified noting that it depends onlynvolving the frequency-dependent polarizabilities of the two

on the distanc&R=|R;—R,|. One obtains particles(see footnote ¥ However, often only the static po-
larizabilities are available for larger molecules. In this case a
* vgadP fairly accurate estimate can be obtained from the Slater-
r;(AR)=f dP P dQ|f(cog6))[? Kirkwood expressiofj54]
0
[ [6\2PaR cﬁzg il 2600 . (83
Xsinc| sin S (78) 2\/47780me \/ag(O)/Ng+\/ap(O)/Np

- . _ ~ . whereNy andN,, are the numbers of valence electrons of the
with sinax)=sin(x)/x. The argument of the sinc function is gas molecules and the interfering particle, respectively.
equal to the momentum transfer during the collision times et us stress again that in the present treatment the effect
the distanceAR in units of 4. This indicates that whenever of a single collision(78) and the rateg(81) are calculated
the change in the state of the gas particle suffices to resolvgeparately, which is particularly useful if the two are needed
the distanceAR the corresponding coherences in the mo-at different degrees of accuracy. This was the case in the
tional state will be suppressed. recent experiments on collisional decoherefk®55 where

Let us turn to the second ingredient to the decoherencghe localization took place on a scale that is by orders of
formula(71), the scattering rat®(2). It is usually expressed magnitude smaller than the path separation. Consequently,
in terms of an effective cross sectioR(z)=n(z)oes, With  could be replaced by a simple Kronnecker-like function in
n(z) the number density of the background gas. For a conkg. (70), while the finite velocity of the interfering particle
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within the thermal gas had to be taken into account properly. *
Corresponding master equations, based on the microscopic Riot= Ry(N)d\. (88)
description of the scattering process, are a subject of current

researct{47,50,51,56—5P Although some of those are suf- |n the expression for the Fourier compone(§) the total

ficiently detailed to describe the emergence of an effectiveate of decoherence everis, cancels because it gets mul-
scattering raté81), their application to a description of the tiplied by 7. One obtains

0

experiment would have been considerably more complicated oL .
than in the present treatment. ém :NBﬁT’;)exp{— if dzf d\ R,(\)
UzJo 0
B. Decoherence by thermal emission of radiation _ dL- |Z_ |_|
A second decoherence mechanism that is common to all X{l N smc(mwx Ly )]}

macroscopic objects is the emission of heat radiation. It
starts to play a role in matter wave interference if one con-This shows clearly how the fringe pattern gets blurred by
siders macromolecules or mesoscopic particles. Due to theeat radiation if it contains photons that have a sufficiently
large number of internal degrees of freedom, a thermodysmall wavelength to resolve the path separation. The proper-
namic description of the distribution of the internal energy isties of the interfering particle enter only through the spectral
unavoidable. Moreover, their coupling to the electromagneti@mission rateR, =R,, X [dw/d\|.
field is quasicontinuous. In general, the thermally emitted For mesoscopic particles the spectral emission rate devi-
photons will reveal(partial) which-way information on the ates from the Planck law of a macroscopic blackbody for a
whereabouts of the interfering particle and thus lead to depumber of reasons. First, the photon wavelengths are typi-
coherence. cally much larger than the radiating particle, which turns it
We assume that the emission is isotropic, and that théto a colored emitter. The density of available transition
walls of the apparatus, which absorb an emitted photon, ar@atrix elements can be related to the absorption cross section
located in the far field where the photon’s spatial detectior{60]. Second, at internal energies where thermal emission is
probability is given by its momentum distribution. The con- relevant the particle is usually not in thermal equilibrium
servation of the total momentum then suffices to determinavith the radiation field, so that there is no induced emission.
the transformation of the particle’s density operator thatThird, the particle is not in contact with a heat bath, but the
would be obtained from a partial trace over the entanglegmission takes place at a fixed internal endggimilarly to
state between photon and particle. It follows that the changE&instein’s derivation of the Planck law, these points lead to
of the particle center-of-mass coordinate due to a singléhe expressiofi61]

emissions given by I d(E - o)
oK) - R, (w)dw = ﬁo'abs(E -ho; w)wdw. (89)
o— 0 :fdkmukéu*, (84) _ _ _ _
a The first term is proportional to the mode density. The mean

where p,(K) is the probability distribution for photons with Oscillator strength is described by the absorption cross sec-
tion at frequencyw and internal energi—7%w, and the ratio

;Navel r;umberkz|i<| anlﬂ Ltj"jhextqt'Rk) ?re the mon:entum.d of the densities of statd(E) yields the statistical factor under
tLaencs:'haalr?neogfetLaeoif{érnc:ale de arelesgfc}rggggfnsi;ythz C%rr]tsi'cl%lrstrong mixing assumption. The mean densities of states can
9 9 P gge related to the thermodynamic properties of the particle by

ig:-?ﬁg;:ﬁg ?eoseusl’t T)chwtl giff[heentea:gi%l;gnw'trggggilﬁez\tgre stationary phase evaluation of the inverse Laplace trans-
’ y P y form of its partition function[62,63. This yields d(E)

position dependent. N
In position representationg(R;,R,)=(R,|¢|R,), the exfS(E)/ks] and therefore

transformation84) reduces the off-diagonal elements of the d(E - o) hw 1 [ ho \?
center-of-mass state, —d(E) = - E - a KT (90)
0'(Ry,Ry) = 0(Ry,R2) n(R1—Ry). (85  Here, the internal energy is conveniently expressed in terms
The corresponding decoherence function reads of the microcanonical temperature
-1
1 (" AR em = | 9SE)
PAR) =— | d\ R}\(A)sinc<27r—), (86) T™B) = [ JE | (91
Rtot 0 A

with S(E) the entropy. The value 6F is equal, up to small
corrections, to that canonical temperature where the mean
energy equals the internal energy. The second terig®n

where the probability distributiop, was expressed in terms
of the spectral photon emission rate,

2mRy (27 contains the heat capaci@y, of the particle. It is the leading
R\\) = T2 P\ (87) correction due to the finite size of the internal heat bath. This
term decreases with increasing size of the particle and Eq.
and the total photon emission rate (90) assumes the canonical form in the lingl{— o°.
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With Egs. (89) and (90) one is able to calculate the _ 1 )
temperature-dependent spectral emission R, T) and Y(P):Wde e RPhy(R). (95)
the corresponding decoherence effect. At very small heat ca-
pacities the effect of cooling may have to be taken into acUnlike in the previous sections, we describe the motion of
count. It can be easily incorporated in the present frameworkhe particle by a Wigner function that is propergrmalized
through a position-dependent temperatiikg) determined

by the cooling formula JdR dP W(R,P;t) =1. (96)

iT(Z) = - f ﬁwa(w,T)dw. (92)
dz

v,Cy

We note that also scattering of photons may lead to deco- A. Decoherence of an interfering state

herence, although room temperature photons will not limit Now consider the usual scattering situation where the par-
matter wave interference in the foreseeable future. The ddicle enters and leaves the grating region of an interferometer
liberate scattering of a laser beam at interfering atoms at & a finite period of time, so thaM(R,P;t— +)=0 for all
resonant cross section was studied64—69. positionsR of interest. It follows that

Finally, we emphasize that all the calculations in this pa- -
per have been within the framework of conventional quan- J dt GWIR,P;t) = W(R,P; + ) - W(R,P;-x) = 0.
tum mechanics. However, proposed extensions of that J_.
theory, which produce spontaneous localization of massive 97)
particles due to postulated “collapse” terms added to the
Schrodinger equation, lead to an evolution of the densityAs above, we take the axis as the longitudinal direction of
operator which mimics decoherence effd@8]. Hence both  the interferometer,
the establishment of the framework we develop here, and

accurate models for decoherence mechanisms, are essential R=r+ze,
to ascertain whether or not any particular proposed modifi-
cation of conventional quantum mechanics can be ruled out P=p+pe, (98)

by experimental data. We defer such applications to future .
articles with a focus on laboratory results. and denote the transverse positions and momenta by

=(x,y) andp=(py,py), respectively.
VI. EQUIVALENCE WITH THE MASTER EQUATION At t=0 the particle is localized in the regian<0 and
_heading for the regioz>0 where decoherence may occur,

porate decoherence that was used in Sec. IV is equivalent &;ay,_because t_herg Is a gas present. Moreover, we assume that
solving the corresponding master equation in paraxial apgtt—Othe particle is already in a nonclassical motional state,
proximation. This is done by identifying the systematic cor—for example because it has just passed a grating. The ex-

rections to the paraxial approximation in terms of the ratiopected mterferenpe pattern Is given by the position-
between transverse and longitudinal momenta. dependent detection probability in tlzeplane which is ob-

Our starting point is the master equation for a free partalned by integrating the longitudinal current density over

In this final section we show that the procedure to incor

ticle, time.
g, 1| P . : : : : Q(Z'f):JdtJdp AP, 2WIr +26,p + p,g). (99)
Py ihme’Q} de dR'Y(R-R"e(R,R")RXR’| My ~

(93)  In order to compare with the results from Sec. IV we are
ultimately interested in the effect of decoherence on the Fou-

with localization ratey. It is valid in situations where the jor transform of the interference pattern with respect to the
mass of the particlen, is sufficiently large so that the effect (,sverse coordinates

of the environmental coupling does nget) lead to thermal-

ization. This equation is usually applicable in interferometric — 1 -
situations where one is interested in time scales that aré?(ZJQ):(Z—Wh)zfdf e'Q(z;r)
much shorter than those of dissipation. In particular, it de-

scribes the effects of scattering of particles with a much _ P, iar/h
smaller mass or the emission of photons. B f dp dpz(zwﬁ)2m Jdr e dt Wr +ze,,p
It follows from (93) that the corresponding Wigner func- ?
tion satisfies +pet) = J dp dp,Sy(z,p,:q.p). (100)
J . __£ o) D!
atW(R’P’t)_ m VRWR,P:D fdP 1P’ Here we introduced the auxiliary functio®,. In order to

p

XW(R,P - P’ ) (94) obtain a differential equation fo8, apply [dr exp(-igr/

) [dif-] to Eq.(94). Using Eq.(97) and integrating by parts
with y the Fourier transform of the localization rate, one finds
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[

J p X
T (Z! d, ) == (Z: 1q, ) [ —y\n
aZSa Pz d,p ZﬁSa Pz d,p D(X): Tox E( x)". (107)
-m f dpédprw Formally, Eqg.(103) allows us to introduce a differential op-
° .= P, erator forS,,

XSy(z,p,~p;ap-p). (10 d
c Z3@5ap)
In the absence of decoherence this differential equation is con

. \ . i
immediately integrated, __ q p {1 D( )}So(z cap). (109
) ) p, d¢
Si(z,p;9,p) = exp(‘ P >3.1(0,pz:q,p) (for y=0). SinceS, was constructed to have a weak dependencéwa
zZ

expect that the expansi@h07) can be relied on at least in an
(102 asymptotic sense. For the second term in @§5) one ob-

tains in a similar way
This decoherence-free solution is used below to obtain a sys-

tematic approximation in the presence of decoherence. But| * ] _ ﬂ Fa S,
first we introduce the Fourier transform 8f with respect to dZSO(z,g,q,p) T o, dp,dp’exp(iZp /%)
the longitudinal momentum referenced by a fixed character- incoh

istic momentunip,, = ol 1 D(— ii d )
Xy(p' +p, + ——
DAY S ¥ b, di

SO(Z.g:q,p):=Jdpa expli{ps/h)Sa(z,p, + Psi0.P) XSZLqp-p'). (109)

(103 This integro-differential equation can be further simplified
by separating off the solution of the coherent §a8) for a
vanishing dependence and by a Fourier transformation that
removes the convolution in Eq109). This is done by the
6(2;(1) - J dp S,(z,0:9,p). (104) introduction of a third and final auxiliary function,

so that

pP-p
z2,(:9,p): dp expl i— I— 2,(.9,p).
The motivation for this definition is that we will assume that 5= 40p) f P p< P h )SO( GeP)
Si(z,p;;q,p) is strongly peaked around the characteristic (110
momentump,=p, and therefores, should be a slowly vary- . i .
ing function of. This will form the basis of our approxima- !t réads in terms of the Wigner function

tions below. For the time being we keep the equations exact. 1 q+p-p
The dynamics foiS, follows from Eq.(102): S(z¢a,p) = 2mh)? f dr dp dp; ex T
ESc,(z,g“;q,p)=[Eso(z,g;q,p)] iRy P pz) P: fdt W(r + 76,
dZ dZ coh pzh h P
d +pe,;t). 111
+ [d—So(z,g“;q,p)] . (109 Pzt (11D
z incoh If one knows the functiorg; the interference pattern is im-

mediately obtained since
The coherent part reads y

— z
d q-p Q(z;q)=Sc<z,0;q%q), (112
[d—So(z,z:q,p)} =iy fdpa exp(llpa/ﬁ) ‘
z coh z pﬁ as follows from Eq.(104). The evolution equation o is
XS(z,p,+ Ps;q.P) obtained from Eq(105). It is now a differential equation,
d m, [ q
@ sap ==y =2-p+{&|SzL0.p)
z Pz \Pz
q-p f : Ps q [-itd m, [q
-i= dp, expﬂgpjh)D(:) _ _ . LY
pzﬁ s pz +HZD HZ dg Vpa:(zaglqlp) Ez’y EZZ
XSi(z.p;* P5id.P), (106 _ind
_ _ - —— .0:q,p). (113
where we useg,/ (p,+ps) =1+D(ps/p,) with P+ §ez> ( d{)SC(Z Lae). (113
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In order to find the initial functiors.(0,{;q,p) we take into — m z —z)q —0)
account that the initial state is localized in the left half space, Qpara ;) = ex f ng_ra (z;q)
W(r +ze,,p+p,e,;00=0 forz>0, (1149 t' =t
2P+ P,  ox f )q at |Qza)
and heading to the right,
(120

ImW(r +ze,p+p£;t) =0 forz<0. (119 iy ¢ =7m/p,. Using Eqs.(118 and (99) we obtain the

final pattern corresponding to a solution of the master equa-
With these conditions the initial function is obtained from tion (93) in paraxial approximation:
Eq. (111) by assuming that the Wigner function evolves 1 z \q
freely (without decoherengeuntil it reaches the boundary to Q(”ﬁo)(z r)= | dr'dp dq (zﬂrﬁ)ZeXp{«r —r' = —p) ]

the decoherence regionz0. It reads : ) I
1 q+p-p { m"JZ (Z_Z’ )d }
. - xXexpl -— | y| —q|dZ
Sc(O-qup) (27Tﬁ)2fdr dp de eX[{ ﬁ pZ 0 pZ

P~ Pz (° z ) z

+|§Z—Z)J dz \A(r +2ze,+ —p,p depzj dZW(r'+—p+Z'e,p

h —0 pZ —0 pZ
+ pzez;o) - (116 + pZeZ;O) . (121

After solving the differential equatioill3) the resulting, With this result it is easy to see that the stationary treatment
possibly blurred, interference patte@y(r) is obtained by of decoherence in Sec. IV is equivalent to the dynamic ap-
taking the inverse Fourier transform of Hd12): proach in the present section. To facilitate the comparison we

treat the present problem with the method of Sec. IV. Take
) the beam to be in a nontrivial stationary statea0,

0= | dg e (,o; Zql. @
Q@0 fqe |2 qpq (117 Wheanll P + P£,) = g(p)W(0;r,p). (122

z
In the case of coherent evoluti@8@) the interference pattern

The evolution equatio113) shows clearly the hierarchy of trseads then

decoherence terms involved in the dynamics. If one neglec
the right hand side of Eq.113) altogether one obtains the i
diffraction pattern in the paraxial approximation, Q(z;r) e | dq € dpz—g(pz)W(Z p;a) (123

with

_ 1
wW(z,p,;q): = W J dp dr exp[ (r + —p)q/ﬁ]
The first term in Eq(113) describes the effect of decoher- Pz

ence in the paraxial approximation, the second term gives the Xw(0;r,p). (1249
corrections to the propagation beyond the paraxial approxi
mation, and the third term describes the modification of th
decoherence due to those corrections.

Q5d(z;q) = &(0,0;q,éq). (119

Using the same procedure as in Sec. IV one finds how deco-
%herence events that take place at a constant Rézg in
(z;z+d2) will modify the pattern(123). The result is given

by the expression in123) if the w(z;q) are replaced by
In the simplest approximation we neglect the corrections ~ W(ZPzd) = exp{— fo R@Z)|1- ’7(

—z )]dz’}
in Eq. (113 due to theD terms. In this case E@113) can be B ‘
immediately integrated, XwW(z,p;q), (125

B. Decoherence in the paraxial approximation

m, (2 (74 wheren is_ the corresponding decqherence function. C_Iearly,
S(z2:0.p) = exp[— :Pf W =-p+ gez)dz’] Eq. (125 is _the analog of Eq120 in _the case of a station-

p p, ary description. The only difference is the appearance in Eq.

(120) of p, instead ofp,, which occurs because the additional

X&(0,4:9,p). (119 assumption of a strongly peaked longitudinal velocity distri-
bution was necessary in the time-dependent calculation. The

It follows from Eq. (112 that the resulting interference pat- strong similarity between the results25 and(120) shows

tern is characterized by that the treatment of decoherence in Sec. IV is indeed
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equivalent to solving the master equation in paraxial apbecome sources of decoherence. In these cases the observed
proximation. loss of visibility, which is inevitable if the detection is insen-
sitive to the relative coordinates, can be calculated with the
VIl. CONCLUSIONS same approach as discussed above.
. . ] The grating interaction will also require a more refined
In this article we presented an analysis of Talbot-Lau matyreatment at some point. The eikonal approximation ceases to
ter wave interference that provides a quantitative predictiole vajid for particles of increasing size, because they interact
of the effects encountered in the experimental realization. 'Etronger and at the same time they will have a longer inter-
was shown that by describing the stationary beam in terms ofction time. A more careful evaluation of the propagation
the Wigner function both the interaction with the grating through the grating will be needed in those cases.
forces and the effects of Markovian decoherence can be in- A final remark concerns the ease of incorporating deco-
corporated.ana_lytically. In addition, the formulation allows perence effects in the present formulation of matter wave
one to distinguish unambiguously the quantum phenomengyerference. It draws heavily on the fact that one is able to
from the effects of classical mechanics. _ _ separate the rate of decoherence events from their effect. It
Recently, our theory was successfully applied to describgeems that this approach, which avoids the solution of a mas-
experiments with large moleculgd2-15,53. Correspond-  ter equation in time, can be a transparent way of treating
ingly, the discussion of decoherence effects in the presenfjarkovian dynamics. It is vindicated by the comparison with
article was confined to those mechanisms most relevant ithe more conventional solution of a corresponding Markov-

interaction with gas molecules and the emission of heat ragis article.

diation are expected to be relevant sources of decoherence
for all large particles. Our formulation applies immediately
to those since the bulk properties of the particles, such as the
polarizability or the absorption cross section, were used to The authors acknowledge many helpful discussions with
describe the environmental coupling. Bjorn Brezger and Anton Zeilinger. K.H. thanks Bassano

Other decoherence effects might become relevant as théacchini for discussions on collisional decoherence. This
particles increase further in complexity. In particular, thosework was supported by the Austrian FWF in the programs
couplings that entangle the center-of-mass motion with th&TART Y177 and SFB 1505 and by the Emmy-Noether pro-
rotation of the particle or with its internal degrees of freedomgram of the Deutsche Forschungsgemeinschatt.
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