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The fragmentation of the ground state of a repulsive condensate immersed into a double-trap potential is
found to be a general and critical phenomenon. It takes place for a given number of bosons if their scattering
length is larger than some critical value or for a given value of the scattering length if the number of bosons
is above some critical number. We demonstrate that the geometry of the inner trap determines these critical
parameters while the number of the fragments and the fraction of bosons in the various fragments can be
manipulated by the outer trap. There is also a maximal number of bosons for which the ground state is
fragmented. If this number is exceeded, the fragmented state becomes a very low-lying excited state of the
condensate. This maximal number of bosons can be substantially manipulated by varying the inner and outer
traps. To study threefold fragmentation we have chosen a potential well with two barriers as the inner trap and
embedded in two types of outer ones. A manifold fragmentation is also addressed.
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I. INTRODUCTION

The general mathematical formulation of the condensa-
tion phenomenon for an ideal gas in equilibrium was given
by Penrose and Onsager[1] in 1956. They considered a sys-
tem ofN interacting bosons and its reduced one-particle den-
sity matrix. The eigenvalues of this matrix are calledoccu-
pation numbersand the eigenvectors are referred to as
natural orbitals. If an ideal gas of free bosons forms a Bose-
Einstein condensate(BEC), then only a single natural orbital
is macroscopically occupied. The extension of this concept
to several macroscopically occupied orbitals is the basis of
the fragmentation phenomenon. The BEC is calledfrag-
mentedif several natural orbitals have macroscopic occupa-
tion numbers[2]. Although these original definitions have
been formulated in the thermodynamic limitN→`, the re-
duced one-particle density matrix can also be applied to
study condensation[3] and fragmentation[4] in finite-N
bosonic systems.

The first measurements of an interference between two
expanding and overlapping condensates[5] have stimulated
a great interest in theoretical studies of fragmentation. An
initial quantum state of such a system is supposed to be
twofold fragmented, i.e., two spatially separated orbitals are
macroscopically occupied. Theoretical studies on the relative
phase[6–8] between the fragments, its dynamical stability
[9,10], and related questions on the evolution of this state
[11,12] have been a subject of numerous discussions. A natu-
ral extension of these effects to an array of multiple wells
with a manifold fragmented initial state[13] has been initi-
ated by the recent experiments in optical[14] and hybrid
traps[15].

In contrast, the fragmentation of the ground state of a
BEC has been predicted only for a few systems where it is
enforced by the spatial or spin symmetry of the system. In
particular, the ground state of an attractive condensate in a

perfect ring is found to be fragmented[16]. The rotational
symmetry of the corresponding Hamiltonian permits as natu-
ral orbitals only plane waves[17]. The many-body wave
function of this system starts to differ from a function com-
posed by plane waves for any nonzero attractive interaction
and the respective one-particle density matrix having plane
waves as natural orbitals must exhibit several nonzero eigen-
values. This eventually leads to fragmentation and its origin
is spatial(rotational) symmetry. Another example is an at-
tractive BEC in a symmetric double-well potential where the
ideal symmetry of the potential[18] causes the fragmenta-
tion of the ground state. The stability of all these fragmented
states with respect to a small asymmetric perturbation is still
an open question. There are indications that these symmetry
related fragmentations disappear upon symmetry breaking.
Fragmentation can also take place if bosons have additional
internal degrees of freedom. An example of such a system is
a system made of Bose particles with nonzero spin, a so-
called spinor condensate. In spinor condensates different spin
components may have different spatial extensions in the
presence of an external magnetic field. Indeed, the ground
state of a spin-1 Bose gas in a uniform magnetic field was
proved to be fragmented[19].

The single-condensate picture and its mean-field descrip-
tion via the Gross-Pitaevskii(GP) equation has been a very
successful approximation and can explain many experi-
ments; see, e.g., Refs.[20,21] and references therein. How-
ever, this mean field is incapable by definition of describing
fragmentation, since only one orbital is involved. Recently, a
more flexible mean-field approach allowing for bosons to
reside in different orthonormal one-particle functions has
been formulated[18]. This intrinsic ability to describe frag-
mentation makes it very attractive for theoretical investiga-
tions and predictions. In the framework of this best mean
field (BMF) it is possible to answer the question whether
fragmentation is energetically favorable or not. In particular,
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a repulsive BEC in an asymmetric double-well potential can
be in a stable twofold fragmented state[22], but the energy
of this state is higher than the energy of the corresponding
nonfragmented ground state of the condensate, i.e., it is an
excited state of the BEC. This result is in agreement with
general predictions derived by Nozieres[2] that interaction
prevents fragmentation in repulsive condensates. We shall
demonstrate below, however, that in appropriate traps, repul-
sive BECs can exhibit fragmentation in the ground state.

In the present paper we use the best mean-field approach
to study the ground state of a system ofN identical bosons
with positive scattering length immersed into a double-trap
external potential. A double-trap potential consists of an in-
ner trap embedded in a wider outer trap. The paper is orga-
nized as follows. In Sec. II we briefly discuss the three-
orbital best mean-field formalism. We also provide a very
transparent example which illustrates that a finite number of
particles and well-separated multiple potential wells are fa-
vorable conditions for fragmentation. In Sec. III, we propose
specific shapes of trap potentials and discuss why fragmen-
tation is expected. We demonstrate in Sec. IV that indeed in
the ground state macroscopic occupation of three single-
particle functions is energetically more favorable than accu-
mulation of all particles in a single orbital. We also show that
fragmentation is a general phenomenon which, depending on
the trap potentials, may take place for any number of par-
ticles. In Sec. V we demonstrate that the number of frag-
ments, the shapes of the corresponding one-particle orbitals,
and their occupation numbers can be manipulated by the
proper choice of the outer trap. Here, we also verify that
fragmentation of the ground state is a critical phenomenon,
because it occurs when the number of bosons exceeds some
critical number at a fixed scattering length, or at some critical
scattering length if the number of bosons is fixed. The inter-
play between critical parameters of the fragmentation and the
geometry of the inner trap forms the content of Sec. VI. A
discussion of the factors suppressing fragmentation in the
ground state is given in Sec. VII. Next, we briefly address
manifold fragmentation in multiple wells in Sec. VIII. Fi-
nally, Sec. IX summarizes our results and conclusions.

II. MEAN-FIELD THEORIES

We consider a system ofN identical bosons interacting
via a d-function contact potentialWsrWi −rW jd=l0dsrWi −rW jd,
where rWi is the position of theith boson and the nonlinear
parameterl0 is related to thes-wave scattering length of the
bosons[21].

The standard mean-field description of the interacting sys-
tem is obtained by assuming the ground state wave function
C to be a product of identical spatial orbitalsw:
CsrW1,rW2, . . . ,rWNd=wsrW1dwsrW2d¯wsrWNd. The energy E

;kCuĤuCl, defined as the expectation value of theĤ, reads

EGP = NHE w * hw drW +
l

2
E uwu4drWJ , s1d

wherel=l0sN−1d is the interaction parameter andhsrWd=T̂

+V̂srWd is the one-particle Hamiltonian consisting of the ki-

netic operatorT̂ and the external potentialV̂srWd. The mean-
field equation for bosons residing in a single orbital obtained
by minimizing this energy is the well-known Gross-
Pitaevskii equation[23,24]

hhsrWd + l0sN − 1duwsrWdu2jwsrWd = mGPwsrWd. s2d

By definition, this equation cannot describe fragmentation
because all bosons reside in a single orbital. The reduced
one-particle density operator and the corresponding spatial
density are given byrGPsrW ,rW8d=w* srW8dwsrWd and rGPsrWd
= uwsrWdu2, respectively.

In order to describe the fragmentation on a mean-field
level, a more general ansatz for the wave function must be
used. In the present study three orbitalsf1, f2, andf3 with
particle occupationsn1, n2, and n3 and n1+n2+n3=N are
utilized. It will become evident below why three orbitals
have to be used in the present investigation. Since the details
of the general derivation have already been published else-
where[18,22], we outline here only the main steps. With this
ansatz the wave function now reads

CsrW1, . . . ,rWNd = Ŝf1srW1d ¯ f1srWn1
df2srWn1+1d ¯ f2srWn1+n2

d

3f3srWn1+n2+1d ¯ f3srWn1+n2+n3
d, s3d

whereŜ is the symmetrizing operator. The energy expression
takes the form

E = n1h11 + n2h22 + n3h33 + l0
n1sn1 − 1d

2
E uf1u4drW

+ l0
n2sn2 − 1d

2
E uf2u4drW + l0

n3sn3 − 1d
2

E uf3u4drW

+ 2l0n1n2E uf1u2uf2u2drW + 2l0n1n3E uf1u2uf3u2drW

+ 2l0n2n3E uf2u2uf3u2drW. s4d

By minimizing this energy with respect to the orbitals under
the constraints that they are orthogonal and normalized, i.e.,
kfi uf jl=di j , we get the following three coupled equations
for the optimal orbitals:

hhsrWd + l0sn1 − 1duf1srWdu2 + 2l0n2uf2srWdu2

+ 2l0n3uf3srWdu2jf1srWd = m11f1srWd + m12f2srWd + m13f3srWd,

hhsrWd + l0sn2 − 1duf2srWdu2 + 2l0n1uf1srWdu2

+ 2l0n3uf3srWdu2jf2srWd = m21f1srWd + m22f2srWd + m23f3srWd,

hhsrWd + l0sn3 − 1duf3srWdu2 + 2l0n1uf1srWdu2

+ 2l0n2uf2srWdu2jf3srWd = m31f1srWd + m32f2srWd + m33f3srWd.

s5d

Several key features of this approach should be men-
tioned. First, this mean-field includes the GP equation as a
special case: when the occupation of two of the three orbitals
vanishes, i.e.,n2=n3=0, the system of equations(5) is re-
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duced to the single equation(2) and the corresponding en-
ergy in Eq.(4) coincides with the GP one[compare Eq.(4)
and Eq.(1)]. Second, by construction, this method can de-
scribe fragmentation for a finite number of fragments. In-
deed, in this three-orbital case the reduced one-particle den-
sity operator can be written asrBMFsrW ,rW8d=oi

3fi
*srW8dfisrWdni

and the corresponding spatial density becomesrBMFsrWd
=n1uf1srWdu2+n2uf2srWdu2+n3uf3srWdu2. Third, the occupation
numbersni of all fragments are variational parameters, mini-
mizing the full energy. In order to find this optimal value of
the energy, Eqs.(5) are solved for all possible occupation
numbers, and the corresponding energies Eq.(4), are evalu-
ated and compared. As we discussed before, the results ob-
tained for the specific occupation numbersn2=n3=0 are
identical to the standard GP ones. Therefore, within this
computational scheme we automatically clarify the question
on the favorability of fragmentation. Fourth,l=l0sN−1d is
the only parameter involved in the GP energy per particle
expression[see Eq.(1)]. Therefore, the one-orbital mean
field cannot distinguish energetically between two systems
made of different numbers of bosons if they are character-
ized by the samel. In contrast to that, the BMF treats these
systems differently. For example, at the GP mean-field level
two systems made of 11 bosons withl0=0.1 and of
1 000 001 bosons withl0=0.000 001 are characterized by
the same energy per particle. At the BMF level of descrip-
tion, if one of the systems is fragmented, the respective en-
ergies are different due to different relative occupation num-
bers. This observation definesl, N as a very natural choice
of the parameters to study fragmentation at the general
mean-field level. If fragmentation takes place, then the num-
ber of particles becomes a relevant parameter. In the follow-
ing, to compare systems made of different numbers of
bosons we adjust theirl0’s in such a way thatl is the same
for each system. Then, for a given trap potential the GP
ansatz gives the same energy per particle for all these sys-
tems.

Large numbers of bosons and well-separated quantum
levels of the single-well trap potential provided[21] a justi-
fication for the single-orbital mean-field description of BEC.
However, recent experiments on optical trapping of BECs
have initiated interest in studies of multiwell systems and
questioned the validity of the one-orbital mean field descrip-
tion. The ground and lowest excited states of a multiwell trap
potential can be almost degenerate and this opens a compe-
tition among the involved single-particle levels and the de-
gree of their occupations. Therefore, the one-orbital mean
field description may be insufficient. Another difficulty for
the one-orbital mean field arises when the number of wells is
comparable to the number of particles. In this case the aver-
age occupation number of each well(so-called filling factor
per lattice site) can be of the order of several atoms. It is
worthwhile to demonstrate that for such a situation a many-
orbital mean field is the best mean field, since it is energeti-
cally and physically more favorable than the one-orbital an-
satz.

Let us consider a system of three repulsive bosons trapped
in three equivalent, infinitely separated wells which we de-
note leftsld, centralscd and rightsrd. Without loss of gener-

ality, we can assume that the lowest total energy is obtained
if each well contains only one particle, i.e.,nl =nc=nr =1.
Since the wells are equivalent and infinitely separated, the
wave functions(orbitals) of each bosoncl, cc, cr are the
same but localized at the different wells. This implies also
zero overlap between each pair of orbitals. In other words,
we have a system of three noninteracting bosons. The GP
orbital now readsw=scl +cc+crd /Î3 while the BMF orbit-
als are the three orbitalsf1=cl, f2=cc, andf3=cr. Substi-
tution of these functions into Eq.(1) and Eq.(4) gives

E1 orb = hll + hcc + hrr +
3s3 − 1dl0

2

3E S1

9
uclu4 +

1

9
uccu4 +

1

9
ucru4DdrW,

E3 orb = hll + hcc + hrr .

Inspection of these energies clearly shows that for repulsive
interaction l0.0 the three-orbital description is energeti-
cally more favorable than the one-orbital(GP) approach. The
total energy of three equivalent noninteracting bosons is ex-
pected to be a sum of the energies of each particle. There-
fore, only the BMF describes the physics correctly, while the
GP energy contains an artificial term which can be consid-
ered as an interaction between the actually noninteracting
subsystems. For this example of three infinitely separated
wells, the energy provided by the many-orbital mean field
(BMF) is lower than the GP one for any finite number of
particles. At the limit of very largeN the energy difference
between the GP and BMF approaches vanishes while the
physics in the GP case still remains wrong. For this trivial
case the three-orbital ansatz is evident. However, the ques-
tion whether the number of the fragments is always equal to
the number of wells deserves a more detailed investigation
and will be reported elsewhere[25].

We close this section with a general remark concerning
the BMF. For a given number of orbitalsm0, three in the
present case, the BMF approach determines their optimal
occupation numbers by minimizing the energy functional in
Eq. (4). We call the result BMFsm0d. As mentioned above,
the calculation may provide the result that some of these
orbitals are not occupied, i.e., their occupation number is
equal to zero. This, of course, implies that the overall best
mean field is achieved with fewer thanm0 orbitals. Gener-
ally, we arrive at the overall best mean field if inclusion of
more orbitals does not improve the description. In the
present studym0=3 and we have arguments that this choice
leads to the overall best mean field.

III. PROPOSED DOUBLE-TRAP POTENTIAL

Our proposed one-dimensional double-trap potential is
shown in Fig. 1. Effectively such a trap may be obtained as a
superposition of two potentials(inner and outer). We model
the inner potential as
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Vinnersxd = vSx2

2
− ADes−Bx2d s6d

whereA andB are parameters of the inner trap. As an outer
trap embedding the inner one we used either an infinitely
deep square potential well(infinite square well) with half-
width equal to C or a smooth power potentialVoutersxd
=s0.035xd10. The infinite square well is obtained by placing
the infinite walls atf−sC+dd : +sC−ddg. We introduced a
small asymmetry parameterd=0.01p to destroy the exact
symmetry of the trap potential in order to get rid of the
effects of symmetry. In the following, as a default outer trap
we use a square well with walls atC0=9.5p and A0=0.8,
B0=0.1 as reference parameters of the inner trap. The corre-

sponding kinetic energy readsT̂=−sv /2ds]2/]x2d implying
that coordinatex and all the parametersA, B, C of the
double-trap potential are dimensionless while all energies
andl0 are now in units of the frequencyv.

An inner trap potential of the form given in Eq.(6) was
originally proposed to study BEC tunneling[26,27]. For the
above reference parameters and one particle this potential
has only a single bound state and a set of metastable states at
positive energies(so-called resonances). In the limit of non-
interacting particles, all bosons will occupy this bound or-
bital, while for a nonzero repulsive interaction the bosons
trapped inside the well may “flow out.” In this case, a com-
petition between the bound state localized inside the well and
the continuum states outside the barriers has been predicted
[27]. The experimental observation of the continuum outgo-
ing waves is a delicate problem. By placing a secondary trap
potential beyond the barriers the continuum outgoing wave
functions are discretized and “transformed” to real functions
which can be occupied by bosons and observed experimen-
tally. We shall demonstrate later that the specific shape of the
secondary trap potential is of rather minor importance, while
its width is a major factor. The secondary trap potential

should have a width capable of accumulating particles. The
simplest choice is to place two infinite walls at some distance
from the origin. The fixed infinite walls can be replaced by
some external embedding potentials with a smooth profile.
From an experimental point of view this means that the frag-
mentation phenomenon may be observed in outer ordinary
traps.

IV. FRAGMENTATION

The combined potentialsVinner+Vouterd has three well-
separated wells(see Fig. 1). Therefore, if fragmentation
takes place, bosons will be accumulated in each of these
three wells. More precisely, the reduced one-particle density
of the system ofN identical bosons in this double-trap po-
tential will have threemacroscopic(with respect toN) eigen-
values. The condition that all three wells are well separated
from each other implies that the respective eigenvectors
(natural orbital) will be predominantly localized in each of
these wells.

Indeed, within the framework of BMF(3) the ground state
of the system ofN bosons becomes threefold fragmented. In
Fig. 2 we present two sets of the orthonormal BMF orbitals
and the respective densities corresponding to the system of
N=25 andN=6000 bosons and compare them with the GP
results. The interaction strengths of these systems have been
chosen to keep the quantityl=l0sN−1d=1.3 fixed for both
systems as explained above. BMF(3) predicts fragmentation
of the ground state as it provides a lower energy than the GP
equation does.

From Fig. 2 one can see that the spatial densities(not to
be confused with the reduced one-particle density) of the GP

FIG. 1. (Color online) Proposed double-trap potential made of
an inner trap of the form given in Eq.(6) and an outer trap. As outer
traps we use either infinite walls at ±C (black) or a smooth power
potential(red). Potential energy is given in units ofv; x is a dimen-
sionless coordinate.

FIG. 2. (Color online) The orbitals and densities for the double-
trap potential with infinite walls(see Fig. 1). The orbitalsf1sxd,
f2sxd, and f3sxd and the corresponding density per particlerBMF

=sn1uf1u2+n2uf2u2+n3uf3u2d /N of the threefold fragmented ground
state[for convenience thesni /Nd1/2fisxd are shown] are depicted in
comparison with the GP orbitalw and its densityrGP= uwu2 for N
=25 andN=6000 andl=1.3. The energy per particle is indicated.
For convenience, the baseline of the orbitalsf2sxd and f3sxd has
been moved upward artificially from zero. All orbitals and densities
are dimensionless and plotted as functions of the dimensionless
coordinatex; C=C0=9.5p.

STRELTSOV, CEDERBAUM, AND MOISEYEV PHYSICAL REVIEW A70, 053607(2004)

053607-4



method,rGP= uwu2, and of the three-orbital BMF approach,
rBMF=n1uf1u2+n2uf2u2+n3uf3u2, are rather similar. At the
same time the energy per particle provided by the BMF
method is lower than the corresponding GP one. Despite the
fact that the spatial densities provided by the GP and BMF
approaches are similar, there is a substantial physical differ-
ence between the methods. At the one-orbital level of de-
scription the systems are unfragmented, while at the three-
orbital one they are threefold fragmented.

By solving Eqs.(5) for different occupation patterns we
obtained the optimal relative occupation numbers for the sys-
tems ofN=6000 andN=25 bosons. For the sake of conve-
nience we will from now on also use the term relative occu-
pation number forni /N and express this quantity in %
fsni /Nd3100%g. These are found to be similar for both sys-
tems:n1/N<68.58% for the orbital localized in the central
well and n2/N<n3/N=17.71% for the orbitals localized in
the outer wells forN=6000 andn1/N<67.5% andn2/N
<n3/N=16.25% for N=25. The fact that the occupation
numbers of the orbitals localized in the left and right wells
are approximately the same is explained by the slight asym-
metry of the double-trap potential. This observation allowed
us to simplify the numerical search for the optimal values of
the occupation numbers. Instead of searching for the mini-
mum of a functionalEsn1,n2,n3d of two independent vari-
ablessn3;N−n1−n2d, we can start the search usingn2=n3

and then relax this condition.
It is convenient to use the relative occupationn1/N of the

orbital localized in the central well as a characteristic param-
eter of fragmentation. If the relative occupationn1/N
=100% then there is no fragmentation at all, while for any
other values ofn1/N the fraction of bosons accumulating in
the outer wells is defined as 100%−n1/N. In the following
we call the latter quantity thefragmentedfraction in the
outer wells or briefly the fragmented fraction. For the spe-
cific examples depicted in Fig. 2sl=1.3d, the fragmented
fractions of the systems withN=25 andN=6000 bosons are
32.5% and 31.42%, respectively.

This observation allows us to conclude that if the ground
state of a system made of a large number of bosons is frag-
mented, then any other system of bosons characterized by
the samel and made of a smaller number of particles(of
course,N.1) is also fragmented. The opposite does not ap-
ply, however. For a given value ofl there is a maximal
number of bosons for which the ground state is fragmented.
This number depends on the trap potentials used and can be
manipulated by changing these potentials. For a discussion
of this issue, see Sec. VII.

In the following study we confine ourselves to the system
of N=25 particles, keeping in mind that for a larger number
of particles the occupation numbers may differ within less
than 5% as long as the condensate is fragmented(this has
been verified numerically).

V. MANIPULATING FRAGMENTATION BY VARYING
THE OUTER TRAP

By “manipulation of the fragmentation” we mean the pos-
sibility to choose the shape of the trap potential as well as the

number of bosons(and possibly also their scattering length)
in such a way that all fragments acquire the desired occupa-
tion numbers.

As we briefly mentioned above, the bosons trapped by the
inner potential alone in the absence of the outer trap occupy
the bound state(localized in the central well) as long as
l,lcr. Any change in the number of particles or in the
scattering length such thatl=l0sN−1d becomes larger than
lcr immediately initiates tunneling—the flow of bosons out
of the central well[27]. If infinite walls are placed beyond
the barriers, the system becomes closed and bosons are col-
lected in the outer wells. If all three wells are macroscopi-
cally occupied the system is fragmented.

Several questions arise in the presence of the outer trap.
Does the fragmentation phenomenon exist for anyl or is it
characterized by some critical parameters, similarly to tun-
neling in the open system? The second question may be for-
mulated as follows: Do the relative occupation numbers de-
pend upon the positions ±C of the walls of the outer trap and
on the particular shape of this trap?

Figure 3 shows the relative occupation of the orbital lo-
calized in the central well as a function of the positions ±C
of the outer walls(see Fig. 1) for several values ofl. From
this figure it is clear that the fragmentation starts to take
place whenl exceeds some threshold(for the example of 25
bosons andC=11p lcr=0.8249). It is interesting to notice
that the exact value of this threshold for a system with a
finite number of bosons is slightly smaller than that for the
open system, i.e.,C→`. As N grows, the critical value ofl
obtained for the closed system approaches the numerical re-
sult lcr=0.8279 for the open one where tunneling through
the barriers begins[27].

Further increasing the boson interaction strengthl be-
yond lcr (at least up tol=3.0) leads to a more pronounced
fragmentation of the ground state. Here, we have to mention
that there is another limit where fragmentation must disap-
pear, namely, whenl becomes so large that the chemical

FIG. 3. (Color online) Manipulating the fragmentation by vary-
ing the outer trap. Shown is the relative occupation of the orbital
localized in the inner well as a function ofC (half-width of the
outer trap). All other parameters are kept at their reference values
A0 and B0. All parameters of the double-trap potential are
dimensionless.
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potential is larger than the barrier heights of the inner trap
and particles can flow freely into the outer trap.

These observations reveal that fragmentation of the
ground state is a critical phenomenon initiated when the
number of bosons exceeds some critical number, for a fixed
scattering length, or at some critical scattering length if the
number of bosons is fixed.

Figure 3 also illustrates that fragmentation can be ob-
served if the width of the outer trap is quite large or more
specifically, if the infinite walls are placed at comparatively
large distances from the barriers. For example, for the chosen
shape of the inner trapsA0,B0d with the barriers atxb
. ±3.4, andl=1.3, about 30% of bosons are shared by the
outer wells if the walls are atC<25. By pushing the walls
toward the barriers, the fragmentation gradually decreases:
for C<16 the fragmentation is 20%, and for walls atC,10
the fragmentation totally disappears—all bosons are accumu-
lated in the inner trap. Therefore, by pushing the walls to-
ward the barriers the fragmentation can be reduced or even
totally suppressed. These results show that fragmentation in
the double-trap potential may be manipulated by the outer
trap: fragmentation can be suppressed by squeezing the outer
trap and enhanced by its expansion.

On the other hand, when the walls are moving outward
from the barriers, the fragmented fraction in the outer wells
becomes larger and converges to some constant value which
depends onl, of course. This value can be extracted from
the results of Fig. 3 and also from the results obtained for the
open system; an open system may be thought of as a closed
one with walls placed at infinity. From this we conclude that
for a given value ofl, the maximal fraction of the bosons in
the outer wells is defined by the inner-trap potential only.

The relevant factor for the fragmentation is the width of
the outer trap and we may suppose that the specific shape of
the outer trap is of lesser importance. To support this expec-
tation, we study the fragmentation forl=1.3 in the systems
of N=3000 andN=25 bosons trapped in the double trap,
with the same inner potential as before and the smooth
power s0.035xd10 outer potential[solid (red) line in Fig. 1].
As seen in Fig. 4, the threefold fragmentation of the ground
state is again favorable energetically for these systems.
Moreover, the optimal occupations of the inner orbital for
N=3000 andN=25 aren1/N<72.2% andn1/N<71%, re-
spectively, and hence similar to those discussed above for the
infinite walls case. In Fig. 4 we plotted the orbitals and the
spatial densities determined for the smooth power outer trap.
By comparing these orbitals with those shown in Fig. 2 for
the infinite square outer trap, we conclude that the shape of
the orbital localized in the inner trap does not depend upon
the specific shape of the outer potential. The profiles of the
orbitals localized in the outer wells exhibit differences which
may be experimentally observed. In the case of the smooth
power outer trap the density profiles of the outer orbitals are
Gaussian-like, whereas those for the infinite square outer trap
are of a sinusoidal type.

VI. MANIPULATING FRAGMENTATION BY VARYING
THE INNER TRAP

Here, we investigate how fragmentation of BEC depends
upon the shape of the inner potential. This potential permits

two degrees of manipulation by varying the depth of the
inner well and by varying the height of the barriers. The
parameterA of the inner potential[see Eq.(6) and Fig. 5(a)]
is directly related to the depth of the inner well. This depth
grows asA is increased. In Fig. 5(b) we illustrate the poten-
tial dependence uponB, a parameter which defines the height
of the barriers, their widths, and the positions of their
maxima. By decreasing the value ofB, the height of the
barriers and their widths grow while the positions of their
maxima are shifted outward.

In Fig. 6 we plot the relative occupation in the inner trap
as a function ofA for several values ofl. It is seen that

FIG. 4. (Color online) The orbitals and densities for the double-
trap potential with a smooth power outer trap(see Fig. 1). The
orbitalsf1sxd, f2sxd, andf3sxd and the corresponding density per
particle rBMF=sn1uf1u2+n2uf2u2+n3uf3u2d /N of the threefold frag-
mented ground state[for convenience thesni /Nd1/2fisxd are shown]
are depicted in comparison with the GP orbitalw and its density
rGP= uwu2 for N=25 andN=3000 andl=1.3. The energy per par-
ticle is indicated. For convenience, the baseline of the orbitalsf2sxd
andf3sxd has been moved upward artificially from zero. All orbit-
als and densities are dimensionless and plotted as functions of the
dimensionless coordinatex; C=C0=9.5p.

FIG. 5. (Color online) Parametrization of the inner trap. Left
figure: Dependence on the parameterA. Right figure: Dependence
on the parameterB. Potential energy is given in units ofv; x is a
dimensionless coordinate.
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fragmentation decreases monotonically withA. Qualitatively
speaking, this finding implies that by increasing the depth of
the inner potential more “room” becomes available for
bosons in the inner well. Conversely, by decreasingA the
capacity of the inner well becomes smaller and more par-
ticles “flow” out into the outer wells. This picture serves also
as a verification and extension of the conclusions drawn
above. We have established that at fixed trap geometries
fragmentation takes place atl<lcr and becomes more pro-
nounced asl is increased. We may now add that there is a
critical depth of the inner potential initiating fragmentation.
For example, forl=0.8 andA=0.8 sB0=0.1,C0=9.5pd frag-
mentation does not exist, while forA=0.72 the system be-
comes 20% fragmented.

Finally, we investigated the dependence of the fragmenta-
tion on the height of the barriers(B parameter). In Fig. 7, we
plot the relative occupation of the inner well as a function of
B sA0=0.8,C0=9.5pd for severall.lcr. From this figure it
is clear that as long asB is not too small or too large the
fragmentation is not particularly sensitive to variations ofB.
DecreasingB from 0.16 to 0.02 corresponds to a substantial
change of the barriers heights from 0.8 to 5.8 units. At the
same time the respective relative occupation of the bosons in
the central well varies by several percents only for any fixed
value of l. A further decrease ofB causes, however, the
disappearance of the fragmentation. Such a behavior is to be
expected in this case, since a very small value ofB corre-
sponds to very broad barriers(see Fig. 5) diminishing
thereby the size of the outer wells and hence their capacity to
hold bosons at favorable energy cost(see Sec. V).

On the other hand, at large values ofB the height of the
barriers becomes very small and the fragmentation of the
ground state is expected to be unfavorable energetically. This
issue is further discussed in the subsequent section.

It is very important to note that the presence of barriers is
an essential factor for the ground state fragmentation of the
repulsive BEC. The specific shape of the barriers is of lesser
relevance and its impact on fragmentation can be largely

compensated by moving the position of the walls of the outer
trap. We expect, however, that for time-dependent studies
this situation will be changed drastically, because the tunnel-
ing time (i.e., the time which is needed to tunnel through the
barriers) is determined by the height and width of the barri-
ers.

VII. MANIPULATING THE MAXIMAL NUMBER
OF BOSONS IN THE FRAGMENTED GROUND STATE

There are several factors limiting the number of bosons in
a fragmented ground state. The most transparent factor is the
height of the barriers of the inner trap. Increasing the particle
numberN obviously enlargesl=l0sN−1d for a given scat-
tering length. We have already pointed out that whenl be-
comes so large that the chemical potential is larger than the
barrier heights, particles can flow freely out of the inner trap
and the fragmentation disappears. Consequently, there is a
maximal numberNmax of bosons in a fragmented ground
state and this number depends on the double-trap potential
and on the scattering length.

For the open system we have seen that—at a fixed value
of l—once fragmentation in the ground state takes place,
i.e., l.lcr, this fragmentation persists for any number of
bosons(N larger than 1, of course). This finding does not
hold for closed systems. For these systems there is again an
Nmax even if l is kept fixed at a value where the chemical
potential is smaller than the barriers heights. As seen in the
preceding sections, there is an enormous range of double-
trap potentials giving rise to fragmented ground states as
long asl.lcr. The degree of fragmentation can be widely
manipulated by varying the parameters of the trap potentials.
Two major questions arise now: what is the origin ofNmax
and can this value be manipulated by varying the parameters
of the trap potentials? The answer to the latter question is
positive and we shall present numerical calculations below.

To facilitate the origin of the existence ofNmax we recall
that l=l0sN−1d wherel0 is the interaction strength of two

FIG. 6. (Color online) Manipulating the fragmentation by vary-
ing the inner trap. Shown is the relative occupation of the orbital
localized in the inner well as a function ofA. All other parameters
are kept at their reference valuesB0 andC0. All parameters of the
double-trap potential are dimensionless.

FIG. 7. (Color online) Manipulating the fragmentation by vary-
ing the inner trap. Shown is the relative occupation of the orbital
localized in the inner well as a function ofB. All other parameters
are kept at their reference valuesA0 andC0. All parameters of the
double-trap potential are dimensionless.
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interacting bosons. Increasing the numberN of bosons while
keeping the value ofl fixed obviously implies a weakening
of the interaction strength. AsN approaches infinity, the in-
teraction strengthl0 approaches zero and we may expect that
the ground state takes on the appearance of a noninteracting
system, i.e., that of the GP ansatz. Indeed, our numerical
calculations show that while forNøNmax the ground state is
fragmented, fragmentation still persists even forN.Nmax,
but the state in question is an excited state of the condensate.
This excited state is very low lying forall N.Nmax; its en-
ergy is extremely close to that of the now unfragmented
ground state(in the present examples the two energies per
particle differ just at the seventh digit). The existence of a
very low-lying fragmented excited state is of great interest
by itself and should play a role in particular in time-
dependent experiments.

In Fig. 8 we showNmax as a function of the outer trap
parameterC for several values ofl keeping the parameters
of the inner trap at their reference values. Also shown are the
variations ofNmax with the inner trap parameterB. In the
range of parameters studied, the maximal number of bosons
Nmax grows linearly with the size of the outer trap and expo-
nentially with the height and width of the barriers.

For a better understanding of the above findings we draw
attention to Fig. 2. To maintain orthogonality, the three or-
bitals of the BMF exist in different regions of space. As long
as the size of the outer traps is large enough, this is favored
by the presence of broad and high barriers between the inner
and outer wells. Since the condensate is repulsive, a large
outer trap enables the wave function in this region of space
to delocalize without the necessity to penetrate the inner
well.

VIII. MANIPULATION OF FRAGMENTATION
BY SEVERAL INNER TRAPS

Threefold fragmentation of the ground state is found to
take place in suitable three-well potentials. The results ob-

tained for these potentials can naturally be extended to an
array of multiple wells. This extension is particularly rel-
evant due to the recent experimental efforts to investigate
one-dimensional optical lattices[14]. For example, a multi-
well potential may be formed if the inner-well trap given by
Eq. (6) is translated several times and then embraced by an
outer smooth power or infinite square trap. In these cases we
expect manifold fragmentation and if the inner traps are well
separated from each other and from the outer walls, then the
critical value ofl scales according to the number of inner
potentials. In Fig. 9 we plotted an example of such a trap.
The critical value ofl for this system is approximately five
times larger than the corresponding value obtained above for
the single inner potential. This value as well as the extent of
the fragmentation can be sensitively manipulated by varying
the trap parameters. Of course, a many-orbital BMF must be
used in order to correctly describe the situation. For the mul-
tiwell trap shown in Fig. 9 we expect that 11 orbitals should
be used and that should be possible to do in the future.

IX. CONCLUSIONS

In this article we have investigated the fragmentation phe-
nomenon in the ground state of a repulsive condensate im-
mersed in a double-trap potential. We demonstrate that frag-
mentation can be successfully characterized by the best
mean-field approach. To be able to correctly describem-fold
fragmentation,m orbitals are needed and are available in the
m-orbital mean-field BMFsmd method. In this method the
occupation number of each fragment as well as the optimal
shape of the respective orbitals are determined variationally
by minimizing the total energy functional. If more orbitals
are included than needed, the occupation of the superfluous
orbitals becomes zero by minimizing the total energy.

The double-trap potential studied here has three wells,
obtained as the superposition of an inner trap exhibiting one
well and two barriers and an outer trap embedding the inner
one. For many choices of the potentials, the macroscopic
occupation of the three orbitals may become energetically

FIG. 8. (Color online) Manipulating the maximal number of
bosonsNmax in the fragmented ground state by varying the double-
trap potential. Left figure: Dependence on the parameterC. All
other parameters are kept at their reference valuesA0 andB0. Right
figure: Dependence on the parameterB (note the logarithmic scale).
All other parameters are kept at their reference valuesA0 and C0.
All parameters of the double-trap potential are dimensionless.

FIG. 9. (Color online) Proposed multiwell double-trap potential.
Potential energy is given in units ofv; x is a dimensionless
coordinate.
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more favorable than accumulating all the particles in a single
orbital. The fragmentation of the ground state is found to
occur when the number of bosons exceeds some critical
value which depends on the scattering length and on the
shape of the inner trap potential. For the example studied we
found that if fragmentation is observed for a large number of
bosons, then it exists also for any smaller number of bosons
(of courseN.1) whenl is kept fixed. Whenl is kept fixed,
there exists, however, a maximal number of bosons for
which the ground state is fragmented. This number can be
strongly manipulated by varying the double-trap potential.

We have demonstrated that the geometry of the inner po-
tential determines the values of the critical parameters.
Moreover, for any given number of bosons this potential also
determines the maximally possible fragmented fraction of
bosons which is localized in the outer wells. The actual frag-
mented fraction of bosons may be effectively manipulated by
the proper choice of the outer trap. The interplay between the

inner and outer trap potentials provides a sensitive tool to
manipulate fragmentation of repulsive condensates. Varying
the number of bosons in the condensate and the scattering
length are also instrumental in this respect.

The results obtained for three-well potentials can natu-
rally be extended to an array of multiple wells.

Finally, we would like to mention that in all our previous
work we did not find fragmentation in the ground state of
repulsive condensates. These previous studies have been per-
formed in the largeN limit. The present paper demonstrates
that a finite particle number is needed to observe fragmenta-
tion of the ground state.
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