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The fragmentation of the ground state of a repulsive condensate immersed into a double-trap potential is
found to be a general and critical phenomenon. It takes place for a given number of bosons if their scattering
length is larger than some critical value or for a given value of the scattering length if the number of bosons
is above some critical number. We demonstrate that the geometry of the inner trap determines these critical
parameters while the number of the fragments and the fraction of bosons in the various fragments can be
manipulated by the outer trap. There is also a maximal number of bosons for which the ground state is
fragmented. If this number is exceeded, the fragmented state becomes a very low-lying excited state of the
condensate. This maximal number of bosons can be substantially manipulated by varying the inner and outer
traps. To study threefold fragmentation we have chosen a potential well with two barriers as the inner trap and
embedded in two types of outer ones. A manifold fragmentation is also addressed.
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I. INTRODUCTION perfect ring is found to be fragmentgd6]. The rotational

The general mathematical formulation of the condensaSymmetry of the corresponding Hamiltonian permits as natu-
tion phenomenon for an ideal gas in equilibrium was giverf@! Orbitals only plane wavegl7]. The many-body wave
by Penrose and Onsagiéi in 1956. They considered a sys- function of this system starts to differ from a fu_nct!on com-
tem of N interacting bosons and its reduced one-particle denP©S€d by plane waves for any nonzero attractive interaction
sity matrix. The eigenvalues of this matrix are callectu- and the respective one-particle density matrix having plane

pation numbersand the eigenvectors are referred to asaves as natural orbitals must exhibit several nonzero eigen-

natural orbitals If an ideal gas of free bosons forms a Bose_yalues. This eventually leads to fragmentation and its origin

Einstein condensat@EC), then only a single natural orbital is spatial(rotationa) symmetry. Another example is an at-

, ) . . . ractive BEC in a symmetric double-well potential where the
is macroscopically OCQUP'ed' The_ extens_lon Qf this CoONCePeal symmetry of the potentidll8] causes the fragmenta-
to several macroscopically occupied orbitals is the basis

) _ ion of the ground state. The stability of all these fragmented
the fragmentation phenomenon. The BEC is caffea-  giates withgrespect to a small asym?/netric perturbati%n is still
mentedif several natural orbitals have macroscopic occupazp gpen question. There are indications that these symmetry
tion numbers[2]. Although these original definitions have [g|ated fragmentations disappear upon symmetry breaking.
been formulated in the thermodynamic linNt—, the re-  Fragmentation can also take place if bosons have additional
duced one-particle density matrix can also be applied tenternal degrees of freedom. An example of such a system is
study condensatiof3] and fragmentation4] in finite-N  a system made of Bose particles with nonzero spin, a so-
bosonic systems. called spinor condensate. In spinor condensates different spin

The first measurements of an interference between twaomponents may have different spatial extensions in the
expanding and overlapping condensdtgishave stimulated presence of an external magnetic field. Indeed, the ground
a great interest in theoretical studies of fragmentation. Arstate of a spin-1 Bose gas in a uniform magnetic field was
initial quantum state of such a system is supposed to bproved to be fragmentefd.9].
twofold fragmented, i.e., two spatially separated orbitals are The single-condensate picture and its mean-field descrip-
macroscopically occupied. Theoretical studies on the relativéion via the Gross-PitaevskiiGP) equation has been a very
phase[6—8] between the fragments, its dynamical stability successful approximation and can explain many experi-
[9,10], and related questions on the evolution of this statements; see, e.g., Ref20,27 and references therein. How-
[11,12 have been a subject of numerous discussions. A natwever, this mean field is incapable by definition of describing
ral extension of these effects to an array of multiple wellsfragmentation, since only one orbital is involved. Recently, a
with a manifold fragmented initial stafd 3] has been initi- more flexible mean-field approach allowing for bosons to
ated by the recent experiments in opti¢a#] and hybrid reside in different orthonormal one-particle functions has
traps[15]. been formulated18]. This intrinsic ability to describe frag-

In contrast, the fragmentation of the ground state of amentation makes it very attractive for theoretical investiga-
BEC has been predicted only for a few systems where it isions and predictions. In the framework of this best mean
enforced by the spatial or spin symmetry of the system. Irfield (BMF) it is possible to answer the question whether
particular, the ground state of an attractive condensate in flagmentation is energetically favorable or not. In particular,
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a repulsive BEC in an asymmetric double-well potential cametic operatoiT and the external potential(f). The mean-

be in a stable twofold fragmented stq&2], but the energy  fie|d equation for bosons residing in a single orbital obtained
of this state is higher than the energy of the correspondingy minimizing this energy is the well-known Gross-
nonfragmented ground state of the condensate, i.e., it is afitaeyskii equatiori23,24

excited state of the BEC. This result is in agreement with

general predictions derived by Nozier that interaction {h(F) + Xo(N = D] @(F)[*}(F) = pgpep(F) . 2
prevents fragmentation in repulsive condensates. We sh
demonstrate below, however, that in appropriate traps, repjé

S|v|en ?Eecsrgggnixph;g'é:ﬁgngtﬁg%gtﬂ:ﬁeﬂfz2%S;Z:)er'oa ne-particle density operator and the corresponding spatial
A nsity are given bypep(f,")=¢* (F)e(F) and per(F)
to study the ground state of a systemMidentical bosons =|¢(N]?, respectively.

with positive scattering length immersed into a double-trap In order to describe the fragmentation on a mean-field
external potential. A double-trap potential consists of an in- 9 .
ner trap embedded in a wider outer trap. The paper is orge{?vel’ a more general ansatz for the wave function must be
nized as follows. In Sec. Il we briefly discuss the three-useC.j' In the present study three orbitgis ¢, and?s with
orbital best mean-field formalism. We also provide a verypartICIe occupationsy, N, and iy and ny+n,+ng=N are

transparent example which illustrates that a finite number o g|\I/ZeetC(1). blé mlé dbienc?hrge rz\ggr?pitn\?(i?iwarivgg tST\?:(Z t?lfléaelfails
particles and well-separated multiple potential wells are fa- P 9 :

vorable conditions for fragmentation. In Sec. Ill, we proposeOf the general derivation have already been published else-

specific shapes of trap potentials and discuss why fragmeﬁ"—'here[l&za’ we 0““"’?9 here only the main steps. With this

tation is expected. We demonstrate in Sec. IV that indeed iqnsatz the wave function now reads

the _ground s_tate_macrosco_pic occupation of three single- W(Fy, ... ) =3¢1(F1)--- D1 ) bo(Fr 1) -+ Doy )

particle functions is energetically more favorable than accu- ! ! 12

mulation of all particles in a single orbital. We also show that X (M snprn) ¢3(Fn1+n2+n3)v (3)

fragmentation is a general phenomenon which, depending on R

the trap potentials, may take place for any number of parwhereS is the symmetrizing operator. The energy expression

ticles. In Sec. V we demonstrate that the number of fragtakes the form

ments, the shapes of the corresponding one-particle orbitals,

and their qccupation numbers can be manipulated. by the E=n,h;;+nohyy+ Nshas+ )\OMIMHMF

proper choice of the outer trap. Here, we also verify that 2

fragmentation of the ground state is a critical phenomenon, n,(n,— 1) Na(ng = 1)

because it occurs when the number of bosons exceeds some  + )\OLJ | bl *dF + N f |l *dF

critical number at a fixed scattering length, or at some critical 2 2

scattering length if the number of bosons is fixed. The inter-

play between critical parameters of the fragmentation and the +2hon1, f | 1% b2l *dF + 22Xy f | pa[’| pf?dF

geometry of the inner trap forms the content of Sec. VI. A

discussion of the factors suppressing fragmentation in the o ) (2an

ground state is given in Sec. VII. Next, we briefly address +2)\on2n3f | ]2 ps|°dF. (4)

manifold fragmentation in multiple wells in Sec. VIII. Fi-

nally, Sec. IX summarizes our results and conclusions. By minimizing this energy with respect to the orbitals under

the constraints that they are orthogonal and normalized, i.e.,

Il. MEAN-FIELD THEORIES (¢ ¢))=6;, we get the following three coupled equations

) ) ) ] ) for the optimal orbitals:
We consider a system df identical bosons interacting

via a éfunction contact potentiaM(f;~r;)=\od(F;—F)), {h(F) + No(ny = )] (N[> + 2\oN| (1) [?

y definition, this equation cannot describe fragmentation
ecause all bosons reside in a single orbital. The reduced

wheref; is the position of thdéth boson and the nonlinear + 2\ o3| p3(N)| 2} 1(F) = pa1pr (V) + g oho(F) + pq3ehs(),
parametei is related to thes-wave scattering length of the
bosons[21]. {h(F) + \o(np = D] ()2 + 2xgny| s (1) 2

The standard mean-field description of the interacting sys-
tem is obtained by assuming the ground state wave function  + 2\oN| 3(MN[3 a1 = 12111 + 12oa(1) + p2aps(F),
¥ to be a product of identical spatial orbitalg:

‘I’(Flvriz, M=) e(f) - e(fy).  The energy E  {h(F) +No(ng = 1) h3()|* + 2\ona| o (N[
=(V|H|P), defined as the expectation value of tiereads + 20gNy| ol 1) 2L bs(F) = gy by (F) + spchol 7) + paaacba(F).

DY R (5)
EGP:N{I¢*h¢dr+—f|¢|4dr}, (1) ]
2 Several key features of this approach should be men-

_ . . . = tioned. First, this mean-field includes the GP equation as a
whereX=\o(N-1) is the interaction parameter aid’)=T g, ial case: when the occupation of two of the three orbitals
+V(r) is the one-particle Hamiltonian consisting of the ki- vanishes, i.e.n,=n;=0, the system of equation®) is re-
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duced to the single equatiq®) and the corresponding en- ality, we can assume that the lowest total energy is obtained
ergy in Eq.(4) coincides with the GP ongompare Eq(4) if each well contains only one particle, i.e,=n.=n,=1.

and Eq.(1)]. Second, by construction, this method can de-Since the wells are equivalent and infinitely separated, the
scribe fragmentation for a finite number of fragments. In-wave functions(orbitalg of each bosony, ., ¢, are the
deed, in this three-orbital case the reduced one-particle desame but localized at the different wells. This implies also
sity operator can be written gsye(F,7) =234 (F")g(F)n;  zero overlap between each pair of orbitals. In other words,
and the corresponding spatial density becomggs(f) we have a system of three noninteracting bosons. The GP
=Nny| (1) 2+ny ho(F)[2+13| ()2 Third, the occupation orbital now readsp= (¢ + i+ )/ 13 while the BMF orbit-
numbersn; of all fragments are variational parameters, mini-als are the three orbitats, =i, ¢,= i, and ¢s= ;. Substi-
mizing the full energy. In order to find this optimal value of tution of these functions into Eql) and Eq.(4) gives

the energy, Eqs(5) are solved for all possible occupation

numbers, and the corresponding energies(Ey.are evalu- 3(3- 1)),

ated and compared. As we discussed before, the results ob- Ei oo =hy+heethy + ————

tained for the specific occupation numbeig=n;=0 are

identical to the standard GP ones. Therefore, within this 1,1 01
computational scheme we automatically clarify the question X §|¢l| + §|‘/’C‘ + §|¢r| dr,

on the favorability of fragmentation. Fourth=Ay(N-1) is

the only parameter involved in the GP energy per particle

expression[see Eq.(1)]. Therefore, the one-orbital mean Ejz op=hy + hee + Dy

field cannot distinguish energetically between two systems

{223% o{hcgﬁse;;r;[ TETgr?trrsaStf tgoti(;rt‘St#;tg?\zllzatré;zatrha;stgrfnspection of these energies clearly shows that for repulsive
y : X interaction \y>0 the three-orbital description is energeti-

systems differently. For example, at the GP mean-field leve ally more favorable than the one-orbit@P) approach. The

two systems made of 11 bosons witty=0.1 and of . . . )
o . total energy of three equivalent noninteracting bosons is ex-
1000 001 bosons witi,=0.000 001 are characterized by pected to be a sum of the energies of each particle. There-

the same energy per particle. At the BMF level of deSCrIIO'fore, only the BMF describes the physics correctly, while the

tion, it one Qf the systems IS fragmenteq, the respective ep energy contains an artificial term which can be consid-
ergies are different due to different relative occupation num-

ered as an interaction between the actually noninteracting
. ubsystems. For this example of three infinitely separated
of the parameters to study fragmentation at the gener ells, the energy provided by the many-orbital mean field

T e D e 1 enENF) i lwer than the GP one ot any e number cf
P P : articles. At the limit of very largeN the energy difference

It?ogs,oaos v(\:/(()an;%aurgt tShyeS}ie;nﬁ] Q:Jiiea %ad'g]earf?; tﬂg”;gﬁ:: %between the GP and BMF approaches vanishes while the
J 0 y thysics in the GP case still remains wrong. For this trivial

for each system. Then, for a given trap potential the G case the three-orbital ansatz is evident. However, the ques-

ansatz gives the same energy per particle for all these SY%on whether the number of the fragments is always equal to

tems. the number of wells deserves a more detailed investigation
Large numbers of bosons and well-separated quanturgnd will be reported elsewhef@s]

Ifgvi!s 0]; th(tahsmgle—lwellt:i[aﬁ) poten'?_allg)LOV|d§Zi:tL_] a ]ufStBI_EC We close this section with a general remark concerning
cation for the sihgie-orbital mean-lie'd cescription o ‘the BMF. For a given number of orbitals,, three in the

However, recent experiments on optical trapping of BECSpresent case, the BMF approach determines their optimal

hﬁ\éztig‘r']tgg?ﬁe'czirg;t g} fgg%ﬁz_grbgilﬂ]v‘g:] ?i)ésktje(rjnessfr?d_occupation numbers by minimizing the energy functional in
4 y qu. (4). We call the result BMEn,). As mentioned above,

tion. The ground and lowest excited states of a multiwell trap{he calculation may provide the result that some of these

potential can be almost degenerate and this opens a compe-_. . . . X ;
" ; 4 . orbitals are not occupied, i.e., their occupation number is
tition among the involved single-particle levels and the de- : o

: . . equal to zero. This, of course, implies that the overall best
gree of their occupations. Therefore, the one-orbital mean

field description may be insufficient. Another difficulty for mean field s achieved with fewer than, prblt_alg. Ger_1er
X . ! .ally, we arrive at the overall best mean field if inclusion of
the one-orbital mean field arises when the number of wells is . : -
. . more orbitals does not improve the description. In the
comparable to the number of particles. In this case the aver-

age occupation number of each wedb-called filling factor present studyn,=3 and we have arguments that this choice

per lattice sit¢ can be of the order of several atoms. It is leads to the overall best mean field.
worthwhile to demonstrate that for such a situation a many-

bers. This observation definas N as a very natural choice

orbital mean field is the best mean field, since it is energeti- IIl. PROPOSED DOUBLE-TRAP POTENTIAL
cally and physically more favorable than the one-orbital an-
satz. Our proposed one-dimensional double-trap potential is

Let us consider a system of three repulsive bosons trappeshown in Fig. 1. Effectively such a trap may be obtained as a
in three equivalent, infinitely separated wells which we de-superposition of two potentialgnner and outer We model
note left(l), central(c) and right(r). Without loss of gener- the inner potential as
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FIG. 1. (Color On”ne Proposed double_trap potentia| made of FIG. 2. (Color Online The orbitals and densities for the double-
an inner trap of the form given in E¢6) and an outer trap. As outer trap potential with infinite wallgsee Fig. J. The orbitalse:(x),
traps we use either infinite walls aCHblack) or a smooth power ~ ¢2(x), and ¢s(x) and the corresponding density per partiplgr
potential(red). Potential energy is given in units af x is a dimen- = (N1 ¢1|>+ N3 $o|*+ng|h3f?)IN of the threefold fragmented ground
sionless coordinate. state[for convenience thén;/N)2¢,(x) are showi are depicted in

comparison with the GP orbitap and its densitypgp=|¢|? for N
5 =25 andN=6000 and\=1.3. The energy per particle is indicated.
VinedX) = w<x_ _A>e(—Bx2) (6) For convenience, the baseline of the orbitélgx) and ¢;(x) has
2 been moved upward artificially from zero. All orbitals and densities
are dimensionless and plotted as functions of the dimensionless

whereA andB are parameters of the inner trap. As an Outercoordmatex; C=Co=9.5m

trap embedding the inner one we used either an infinitely . ) ]
deep square potential welinfinite square we)l with half-  should have a width capable of accumulating partlclgs. The
width equal toC or a smooth power potentiaV,,(x)  Simplestchoice is to place two infinite walls at some distance
=(0.03%)2°. The infinite square well is obtained by placing from the origin. The fixed infinite walls can be replaced by

the infinite walls at[-(C+6): +(C—-6)]. We introduced a SOMe external embedding potentials with a smooth profile.
small asymmetry parametai=0.01r to destroy the exact From an experimental point of view this means that the frag-
symmetry of the trap potential in order to get rid of the mentation phenomenon may be observed in outer ordinary
effects of symmetry. In the following, as a default outer trapt@PS:
we use a square well with walls &,=9.57 and A;=0.8,

By=0.1 as reference parameters of the inner trap. The corre-

sponding kinetic energy reads=—(w/2)(¢?/dx?) implying The combined potentia(Vi,nert Voure) has three well-
that coordinatex and all the parameter, B, C of the separated well§see Fig. 1 Therefore, if fragmentation
double-trap potential are dimensionless while all energiesakes place, bosons will be accumulated in each of these
and\ are now in units of the frequenay. three wells. More precisely, the reduced one-particle density
An inner trap potential of the form given in E¢) was  of the system oN identical bosons in this double-trap po-
originally proposed to study BEC tunnelig6,27. For the  tential will have threamacroscopidwith respect td\) eigen-
above reference parameters and one particle this potentighlues. The condition that all three wells are well separated
has only a single bound state and a set of metastable statesfiadm each other implies that the respective eigenvectors
positive energiegso-called resonancedn the limit of non-  (natural orbital will be predominantly localized in each of
interacting particles, all bosons will occupy this bound or-these wells.
bital, while for a nonzero repulsive interaction the bosons Indeed, within the framework of BMB) the ground state
trapped inside the well may “flow out.” In this case, a com-of the system of\ bosons becomes threefold fragmented. In
petition between the bound state localized inside the well an&ig. 2 we present two sets of the orthonormal BMF orbitals
the continuum states outside the barriers has been predictaaid the respective densities corresponding to the system of
[27]. The experimental observation of the continuum outgoN=25 andN=6000 bosons and compare them with the GP
ing waves is a delicate problem. By placing a secondary trapesults. The interaction strengths of these systems have been
potential beyond the barriers the continuum outgoing wavehosen to keep the quantity=\y(N-1)=1.3 fixed for both
functions are discretized and “transformed” to real functionssystems as explained above. B{8Fpredicts fragmentation
which can be occupied by bosons and observed experimenf the ground state as it provides a lower energy than the GP
tally. We shall demonstrate later that the specific shape of thequation does.
secondary trap potential is of rather minor importance, while  From Fig. 2 one can see that the spatial densiiies to
its width is a major factor. The secondary trap potentialbe confused with the reduced one-particle densifthe GP

IV. FRAGMENTATION
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method, pgp=|¢|?, and of the three-orbital BMF approach,  ®
peme=N1|d12+n,| o2+ N5 )%, are rather similar. At the
same time the energy per particle provided by the BMFg S
method is lower than the corresponding GP one. Despite the ) A=0.85
fact that the spatial densities provided by the GP and BMF§ A=0.9
approaches are similar, there is a substantial physical differg |
ence between the methods. At the one-orbital level of de-£
scription the systems are unfragmented, while at the threez so
orbital one they are threefold fragmented.

By solving Egs.(5) for different occupation patterns we

//

f

5

ccupation of

obtained the optimal relative occupation numbers for the sys- A=13
tems ofN=6000 andN=25 bosons. For the sake of conve- © 7

nience we will from now on also use the term relative occu- c R
pation number forn,/N and express this quantity in % ot - " > 03'0 o

[(n;/N) X 100%]. These are found to be similar for both sys-
tems:n;/N=68.58% for the orbital localized in the central
well and n,/N=n3/N=17.71% for the orbitals localized in FIG. 3. (Color online Manipulating the fragmentation by vary-
the outer wells forN=6000 andn;/N=67.5% andn,/N  ing the outer trap. Shown is the relative occupation of the orbital
~n3/N=16.25% for N=25. The fact that the occupation localized in the inner well as a function @& (half-width of the
numbers of the orbitals localized in the left and right wellsouter trap. All other parameters are kept at their reference values
are approximately the same is explained by the slight asymfo and Bo. All parameters of the double-trap potential are
metry of the double-trap potential. This observation alloweddimensioniess.

us to simplify the numerical search for the optimal values ofnumber of bosongand possibly also their scattering length

the occupation numbers. Instead of searching for the minig, gych 4 way that all fragments acquire the desired occupa-

mum of a functionalE(ny,ny,nz) of two independent vari-  tion numbers.

ables(n;=N-n;-n,), we can start the search using=n; As we briefly mentioned above, the bosons trapped by the

and then relax this condition. inner potential alone in the absence of the outer trap occupy
It is convenient to use the relative occupatimiN of the  the bound statglocalized in the central wellas long as

orbital localized in the central well as a characteristic parama < \.,. Any change in the number of particles or in the

eter of fragmentation. If the relative occupatiam/N scattering length such that=\,(N—1) becomes larger than

=100% then there is no fragmentation at all, while for any)  immediately initiates tunneling—the flow of bosons out

other values oh,/N the fraction of bosons accumulating in of the central well[27]. If infinite walls are placed beyond

the outer wells is defined as 100%#N. In the following  the barriers, the system becomes closed and bosons are col-

we call the latter quantity théragmentedfraction in the |ected in the outer wells. If all three wells are macroscopi-
outer wells or briefly the fragmented fraction. For the spe-cally occupied the system is fragmented.

Half-width of the outer trap (C parameter)

cific examples depicted in Fig. @=1.3), the fragmented Several questions arise in the presence of the outer trap.
fractions of the systems witN=25 andN=6000 bosons are Does the fragmentation phenomenon exist for anyr is it
32.5% and 31.42%, respectively. characterized by some critical parameters, similarly to tun-

This observation allows us to conclude that if the groundneling in the open system? The second question may be for-
state of a system made of a large number of bosons is fragnulated as follows: Do the relative occupation numbers de-
mented, then any other system of bosons characterized yend upon the positionsCGrof the walls of the outer trap and
the same\ and made of a smaller number of particies on the particular shape of this trap?
courseN>1) is also fragmented. The opposite does not ap- Figure 3 shows the relative occupation of the orbital lo-
ply, however. For a given value of there is a maximal calized in the central well as a function of the positior® +
number of bosons for which the ground state is fragmentedsf the outer wallgsee Fig. ] for several values ok. From
This number depends on the trap potentials used and can lisis figure it is clear that the fragmentation starts to take
manipulated by changing these potentials. For a discussioplace when\ exceeds some threshdfibr the example of 25
of this issue, see Sec. VIL. bosons andC=11m \,=0.8249. It is interesting to notice

In the following study we confine ourselves to the systemthat the exact value of this threshold for a system with a
of N=25 particles, keeping in mind that for a larger numberfinite number of bosons is slightly smaller than that for the
of particles the occupation numbers may differ within lessopen system, i.eG— . As N grows, the critical value ok
than 5% as long as the condensate is fragme(ttéd has obtained for the closed system approaches the numerical re-

been verified numerically sult \,,=0.8279 for the open one where tunneling through
the barriers beging27].
V. MANIPULATING FRAGMENTATION BY VARYING Further increasing the boson interaction strenyttoe-
THE OUTER TRAP yond A, (at least up ton=3.0) leads to a more pronounced

fragmentation of the ground state. Here, we have to mention
By “manipulation of the fragmentation” we mean the pos-that there is another limit where fragmentation must disap-
sibility to choose the shape of the trap potential as well as thgear, namely, whem. becomes so large that the chemical
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potential is larger than the barrier heights of the inner trap (GP) N=25 N=3000
and particles can flow freely into the outer trap.
These observations reveal that fragmentation of the m /\

ground state is a critical phenomenon initiated when the
number of bosons exceeds some critical number, for a fixec

scattering length, or at some critical scattering length if thez
number of bosons is fixed. 5 /\ /\
Figure 3 also illustrates that fragmentation can be ob- JAN J{

served if the width of the outer trap is quite large or more
specifically, if the infinite walls are placed at comparatively
large distances from the barriers. For example, for the chose!
shape of the inner tragAgy,By) with the barriers atx,
=+3.4, and\=1.3, about 30% of bosons are shared by the
outer wells if the walls are a€~25. By pushing the walls T T T T T . T T T
toward the barriers, the fragmentation gradually decreases €20 Cn €2 0 Cn €2 0 C2
for C= 16 the fragmentation is 20%, and for walls@ 10 x

the fragmentation totally disappears—all bosons are accumu- FIG. 4. (Color onling The orbitals and densities for the double-

lated in the inner trap. Thereforg, by pushing the walls to'trap potential with a smooth power outer trégee Fig. 1 The

. e&bitaJSd) (X), ¢o(x), and ¢3(x) and the corresponding density per
totally suppressed. These results show that fragmentation ‘E‘Erticle PElsMF:(nzl|¢1|2+n2|(3{{;2|2+n3|¢3|2)/N of the threefold frag-
e

the double-trap. potential may be manipulated by the out ented ground staféor convenience thén/N)¥2¢; () are showi
trap'fragmeﬂtatlor:jcsn .be suppre_ssed by squeezing the OUt%Fe depicted in comparison with the GP orbitaland its density
trap and enhanced by Its expansion ) cp=|¢|? for N=25 andN=3000 and\=1.3. The energy per par-
On the other hand, when the Walls'are. moving outwarcﬁcle is indicated. For convenience, the baseline of the orbia(ls)
from the barriers, the fragmented fraction in the outer wells, g #5(x) has been moved upward artificially from zero. All orbit-

becomes larger and converges to some constant value Whig and densities are dimensionless and plotted as functions of the
depends or\, of course. This value can be extracted from gimensionless coordinate C=Cy=9.57.

the results of Fig. 3 and also from the results obtained for the
open system; an open system may be thought of as a closé§o degrees of manipulation by varying the depth of the
one with walls placed at infinity. From this we conclude thatinner well and by varying the height of the barriers. The
for a given value of, the maximal fraction of the bosons in ParameteA of the inner potentialsee Eq(6) and Fig. $a)]
the outer wells is defined by the inner-trap potential only. 1S directly related to the depth of the inner well. This depth
The relevant factor for the fragmentation is the width of 9r0Ws asA is increased. In Fig.(§) we illustrate the poten-
the outer trap and we may suppose that the specific shape B#l dependence upds, a parameter which defines the height
the outer trap is of lesser importance. To support this expe@f the barriers, their widths, and the positions of their
tation, we study the fragmentation fa=1.3 in the systems Maxima. By decreasing the value Bf the height of the
of N=3000 andN=25 bosons trapped in the double trap, barrllers and thg|r widths grow while the positions of their
with the same inner potential as before and the smootfn@xima are shifted outward. o _
power (0.035)%° outer potentiafsolid (red) line in Fig. 1. In Fig. 6 we plot the relative occupation in the inner trap
As seen in Fig. 4, the threefold fragmentation of the ground®S @ function ofA for several values oh. It is seen that
state is again favorable energetically for these systems 2 5 6
Moreover, the optimal occupations of the inner orbital for A=,
N=3000 andN=25 aren;/N=72.2% andn;/N~=71%, re- 15 3 A=0.95 5 3
spectively, and hence similar to those discussed above for th E 3
infinite walls case. In Fig. 4 we plotted the orbitals and the E ME
spatial densities determined for the smooth power outer trap 3
By comparing these orbitals with those shown in Fig. 2 for &
the infinite square outer trap, we conclude that the shape o.*
the orbital localized in the inner trap does not depend upon E
the specific shape of the outer potential. The profiles of the 0 E L3
orbitals localized in the outer wells exhibit differences which ]
may be experimentally observed. In the case of the smoott 05 3 E
power outer trap the density profiles of the outer orbitals are 3
Gaussian-like, whereas those for the infinite square outer tra] -1 Sy -1 S ———
are of a sinusoidal type. 420 2 4 0505 10

X X

E/N=-0.0827411 E/N=-0.0852082 | E/N=-0.0827444

ty

Densi

B=0.03
By=0.1
B=0.16

VI. MANIPULATING FRAGMENTATION BY VARYING

THE INNER TRAP FIG. 5. (Color onling Parametrization of the inner trap. Left

figure: Dependence on the parameterRight figure: Dependence
Here, we investigate how fragmentation of BEC depend®n the parameteB. Potential energy is given in units of; x is a
upon the shape of the inner potential. This potential permitslimensionless coordinate.
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0.7 0.75 0.8 0.85 0.9 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Depth of Inner trap (A parameter) Barrier of Inner trap (B parameter)
FIG. 6. (Color onling Manipulating the fragmentation by vary- FIG. 7. (Color onling Manipulating the fragmentation by vary-

ing the inner trap. Shown is the relative occupation of the orbitaling the inner trap. Shown is the relative occupation of the orbital
localized in the inner well as a function &f All other parameters localized in the inner well as a function & All other parameters
are kept at their reference valuBg and C,. All parameters of the are kept at their reference valudg and C,. All parameters of the
double-trap potential are dimensionless. double-trap potential are dimensionless.

fragmentation decreases monotonically withQualitatively . .

speaking, this finding implies that by increasing the depth of®MPensated by moving the position of the walls of the outer
the inner potential more “room” becomes available forrap- We expect, however, that for time-dependent studies
bosons in the inner well. Conversely, by decreasinghe  this situation will be changed drastically, because the tunnel-
capacity of the inner well becomes smaller and more parind time(i.e., the time which is needed to tunnel through the
ticles “flow” out into the outer wells. This picture serves also barrierg is determined by the height and width of the barri-
as a verification and extension of the conclusions drawr®rs.

above. We have established that at fixed trap geometries

fragmentation takes place at=\., and becomes more pro- oF\glc.)gﬂgslsplﬁill?;ll’z\lICZERT,A':IC;EMI\I/;J?'!SI(_;gg'\L/JIEERSTATE
nounced as\ is increased. We may now add that there is a

critical depth of the inner potential initiating fragmentation.  There are several factors limiting the number of bosons in
For example, foh=0.8 andA=0.8(By=0.1,C,=9.57) frag-  a fragmented ground state. The most transparent factor is the
mentation does not exist, while f&x=0.72 the system be- height of the barriers of the inner trap. Increasing the particle
comes 20% fragmented. numberN obviously enlargea =\q(N-1) for a given scat-
Finally, we investigated the dependence of the fragmentatering length. We have already pointed out that wiebe-
tion on the height of the barrie(8 parametex. In Fig. 7, we  comes so large that the chemical potential is larger than the
plot the relative occupation of the inner well as a function ofbarrier heights, particles can flow freely out of the inner trap
B (Ap=0.8,Cy=9.57) for several\>\... From this figure it and the fragmentation disappears. Consequently, there is a
is clear that as long aB is not too small or too large the maximal numberN,,, of bosons in a fragmented ground
fragmentation is not particularly sensitive to variationsBof state and this number depends on the double-trap potential
DecreasingB from 0.16 to 0.02 corresponds to a substantialand on the scattering length.
change of the barriers heights from 0.8 to 5.8 units. At the For the open system we have seen that—at a fixed value
same time the respective relative occupation of the bosons iof A—once fragmentation in the ground state takes place,
the central well varies by several percents only for any fixed.e., A >\, this fragmentation persists for any number of
value of . A further decrease oB causes, however, the bosons(N larger than 1, of courgeThis finding does not
disappearance of the fragmentation. Such a behavior is to Held for closed systems. For these systems there is again an
expected in this case, since a very small valuBaforre-  Nja€ven if A is kept fixed at a value where the chemical
sponds to very broad barriersee Fig. $ diminishing  potential is smaller than the barriers heights. As seen in the
thereby the size of the outer wells and hence their capacity tpreceding sections, there is an enormous range of double-
hold bosons at favorable energy c¢ste Sec. Y. trap potentials giving rise to fragmented ground states as
On the other hand, at large valuesB®the height of the long as\ > \.,. The degree of fragmentation can be widely
barriers becomes very small and the fragmentation of thenanipulated by varying the parameters of the trap potentials.
ground state is expected to be unfavorable energetically. Thiswo major questions arise now: what is the originNy,y
issue is further discussed in the subsequent section. and can this value be manipulated by varying the parameters
It is very important to note that the presence of barriers iof the trap potentials? The answer to the latter question is
an essential factor for the ground state fragmentation of thpositive and we shall present numerical calculations below.
repulsive BEC. The specific shape of the barriers is of lesser To facilitate the origin of the existence df,,,, we recall
relevance and its impact on fragmentation can be largelyhat \=\y(N-1) where), is the interaction strength of two
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FIG. 8. (Color online Manipulating the maximal number of
bosonsN,,.in the fragmented ground state by varying the double-  FIG. 9. (Color onling Proposed multiwell double-trap potential.
trap potential. Left figure: Dependence on the param&eAll Poten_tial energy is given in units ab; x is a dimensionless
other parameters are kept at their reference vatyemndB,. Right ~ coordinate.
figure: Dependence on the parameddinote the logarithmic scale
All other parameters are kept at their reference valigandC,.  tained for these potentials can naturally be extended to an
All parameters of the double-trap potential are dimensionless. array of multiple wells. This extension is particularly rel-
evant due to the recent experimental efforts to investigate
one-dimensional optical lattic§44]. For example, a multi-
well potential may be formed if the inner-well trap given by

teraction strength, approaches zero and we may expect that=d- (6) 1 translated se\_/er_al_ times and then embraced by an
the ground state takes on the appearance of a noninteracti§ter Smooth power or infinite square trap. In these cases we
system, i.e., that of the GP ansatz. Indeed, our numeric&Xpect manifold fragmentation and if the inner traps are well
calculations show that while fd¥< N, the ground state is Separated from each other and from the outer walls, then the
fragmented, fragmentation still persists even forN,,,, cfitical value ofx scales according to the number of inner
but the state in question is an excited state of the condensateotentials. In Fig. 9 we plotted an example of such a trap.
This excited state is very low lying fall N> N, its en-  The critical value of\ for this system is approximately five
ergy is extremely close to that of the now unfragmentedimes larger than the corresponding value obtained above for
ground statgin the present examples the two energies pethe single inner potential. This value as well as the extent of
particle differ just at the seventh digitThe existence of a the fragmentation can be sensitively manipulated by varying
very low-lying fragmented excited state is of great interestthe trap parameters. Of course, a many-orbital BMF must be
by itself and should play a role in particular in time- used in order to correctly describe the situation. For the mul-
dependent experiments. tiwell trap shown in Fig. 9 we expect that 11 orbitals should
In Fig. 8 we showN,,,, as a function of the outer trap be used and that should be possible to do in the future.
parameteiC for several values ok keeping the parameters
of t_he'inner trap at their refgrence values. Also shown are the IX. CONCLUSIONS
variations of Ny, With the inner trap parametdd. In the
range of parameters studied, the maximal number of bosons In this article we have investigated the fragmentation phe-
Nmax grows linearly with the size of the outer trap and expo-nomenon in the ground state of a repulsive condensate im-
nentially with the height and width of the barriers. mersed in a double-trap potential. We demonstrate that frag-
For a better understanding of the above findings we dravmentation can be successfully characterized by the best
attention to Fig. 2. To maintain orthogonality, the three or-mean-field approach. To be able to correctly desamnikfeld
bitals of the BMF exist in different regions of space. As long fragmentationm orbitals are needed and are available in the
as the size of the outer traps is large enough, this is favoreah-orbital mean-field BMF(m) method. In this method the
by the presence of broad and high barriers between the inneccupation number of each fragment as well as the optimal
and outer wells. Since the condensate is repulsive, a largshape of the respective orbitals are determined variationally
outer trap enables the wave function in this region of spac®y minimizing the total energy functional. If more orbitals
to delocalize without the necessity to penetrate the inneare included than needed, the occupation of the superfluous
well. orbitals becomes zero by minimizing the total energy.
The double-trap potential studied here has three wells,
VIl MANIPULATION OF FRAGMENTATION obtained as the superposition of an inner trap exhibiting one
BY SEVERAL INNER TRAPS well and two barriers and an outer trap embedding the inner
Threefold fragmentation of the ground state is found toone. For many choices of the potentials, the macroscopic
take place in suitable three-well potentials. The results obeccupation of the three orbitals may become energetically

interacting bosons. Increasing the numbesf bosons while
keeping the value ok fixed obviously implies a weakening
of the interaction strength. AN approaches infinity, the in-
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more favorable than accumulating all the particles in a singlénner and outer trap potentials provides a sensitive tool to
orbital. The fragmentation of the ground state is found tomanipulate fragmentation of repulsive condensates. Varying
occur when the number of bosons exceeds some criticahe number of bosons in the condensate and the scattering
value which depends on the scattering length and on thgngth are also instrumental in this respect.

shape of the inner trap potential. For the example studied we The results obtained for three-well potentials can natu-
found that if fragmentation is observed for a large number ofa|ly be extended to an array of multiple wells.

bosons, then it exists also for any smaller number of bosons Finally, we would like to mention that in all our previous
(of courseN>1) when\ is kept fixed. When\ is kept fixed,  \ork we did not find fragmentation in the ground state of

there exists, however, a maximal number of bosons fOfgnisive condensates. These previous studies have been per-

V‘f[hiCh Ithe grqurlldtsaatt)e is fragm?hnteéj. Lrllistnumbetr Ctanl bfrmed in the largeN limit. The present paper demonstrates
strongly manipufated by varying the double-trap potential. -y, 5 finjte particle number is needed to observe fragmenta-
We have demonstrated that the geometry of the inner P%on of the ground state
J .

tential determines the values of the critical parameters.
Moreover, for any given number of bosons this potential also

determlnes_ th(_a maxmally possible fragmented fraction of ACKNOWLEDGMENTS

bosons which is localized in the outer wells. The actual frag-
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