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We present a detailed theoretical analysis of micromotion in a time-averaged orbiting potential trap. Our
treatment is based on the Gross-Pitaevskii equation, with the full time-dependent behavior of the trap system-
atically approximated to reduce the trapping potential to its dominant terms. We show that within some well
specified approximations, the dynamic trap has solitary-wave solutions, and we identify a moving frame of
reference which provides the most natural description of the system. In that frame eigenstates of the time-
averaged orbiting potential trap can be found, all of which must be solitary-wave solutions with identical,
circular center of mass motion in the laboratory frame. The validity regime for our treatment is carefully
defined, and is shown to be satisfied by existing experimental systems.

DOI: 10.1103/PhysRevA.70.053605 PACS number(s): 03.75.Kk, 32.80.Pj

I. INTRODUCTION

The time-averaged orbiting potential(TOP) trap [1] was
an important tool in the realization of Bose-Einstein conden-
sates, and it remains a common method for magnetically
trapping atoms. Early theoretical descriptions of the TOP
trap used two approximations: the adiabatic approximation,
which assumes that the magnetic dipoles of the atoms align
instantaneously to the magnetic field, and thetime-average
approximation, where the time dynamics of the trapping
fields are neglected on the time scale of the motion of the
trapped atoms. Under these assumptions, the TOP trap is
represented by a static, harmonic potential and the conden-
sate eigenstates are relatively easily calculated(usually by
numerical means) and are stationary in space. However, con-
densates formed in a TOP trap undergo a spatial micromotion
[2,3] due to the underlying dynamic nature of the TOP trap.
This phenomenon has been studied theoretically under vari-
ous levels of approximation, by partially lifting the time-
average approximation[4,5] or by not applying the adiabatic
approximation[6,7].

In this work we provide a detailed theoretical description
of condensate micromotion in terms of TOP trap eigenstates,
including condensate nonlinearity. Our approach applies the
adiabatic approximation, but partially lifts the time-average
approximation. Under these conditions, the TOP trap poten-
tial retains some time dependence and eigenstates of that
potential cannot be found in the laboratory frame. However,
system eigenstates do exist because a frame can be found in
which the Hamiltonian for the system becomes time-
independent. We have termed eigenstates of the system
found in such a framedynamical eigenstates, since these
states are not stationary states in the laboratory frame. By
calculating the dynamical eigenstates of the TOP trap, full
characterization of condensate micromotion is possible. This

is essential for an understanding of condensate growth and is
also required for a description of velocity sensitive phenom-
ena occurring in TOP traps, such as observed in Bragg scat-
tering experiments[8,9].

In this paper we calculate dynamical eigenstates of the
TOP trap potential in thequadratic average approximation.
Within that approximation, the solutions are exact in both the
linear and the nonlinear case. We begin, in Sec. II, by intro-
ducing the TOP trap potential, and various approximate
forms of that potential. In Sec. III we derive the transforma-
tion to thecircularly translating framewhich we find to be
the most natural frame in which to investigate the system. In
Sec. IV we calculate solitary-wave solutions in the quadratic
average approximation and show that dynamical eigenstates
calculated using the circularly translating frame are a particu-
lar class of solitary-wave solutions in the laboratory frame.
Identifying the dynamical eigenstates of the TOP trap allows
us to characterize micromotion and specify the ground state
of the system. In Sec. V, we assess the validity of the qua-
dratic average approximation and demonstrate that for the
typical parameter regime of the TOP trap, solitary-wave dy-
namical eigenstates provide accurate approximations to the
dynamical eigenstates of the full TOP trap potential. In Sec.
VI, we discuss laboratory frame solitary-wave solutions
which are eigenstates of the TOP trap potential in the more
commonly used rotating frame, and show that these are only
a subset of the dynamical eigenstates found using the circu-
larly translating frame. We conclude in Sec. VII.

II. APPROXIMATE FORMS OF THE TOP
TRAP POTENTIAL

The TOP trap consists of a magnetic quadrupole trap
[10,11] translated by a uniform bias field, whose direction
rotates at frequencyV [1]. For simplicity our discussion is
presented in a set of dimensionless units defined by the po-
sition scalex0=Î" /2mvx (a characteristic harmonic oscilla-
tor length, wherem is the mass of an atom), and the time*Electronic address: kchallis@physics.otago.ac.nz
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scale of the inverse of the time-averaged trap frequencyvx,
defined below. A key feature of the TOP trap is that the zero
of the magnetic field follows a circular trajectory of radius
r0, and trapped atoms are confined well within that trajectory
(the so-called “circle of death”), thereby reducing atom loss
due to spin flips. Typicallyr0,1000−1300 andV,70
−150 [1,2,9].

A. The adiabatic approximation

The TOP trap potential in the adiabatic approximation is
given by

VTOPsr,td = r0
2F1 +

2sx cosVt + y sinVtd
r0

+
x2 + y2 + 4z2

r0
2 G1/2

,

s1d

wherer =sx,y,zd. That approximation is valid when the bias
field rotation frequencyV is much smaller than the Lamor
precession frequency[1].

B. The truncated TOP trap potential

Expanding the square root of Eq.(1) in a Taylor series,
and neglecting terms above second order in the small param-
eter xa / r0, wherexa is one ofx, y, or z, leads to the trun-
cated TOP trap potential

Vsr,td = r0
2 + r0sx cosVt + y sinVtd +

1

2
sx2 + y2 + 4z2d

−
1

2
sx cosVt + y sinVtd2. s2d

The evolution of the condensate wave functioncsr ,td is
governed by the Gross-Pitaevskii equation

i
] csr,td

] t
= Lsr,tdcsr,td, s3d

where, for a TOP trap, the time evolution operator

Lsr,td = − ¹2 + Vsr,td + Cucsr,tdu2 s4d

is time-dependent. The truncated TOP trap potentialVsr ,td is
given by Eq.(2), and C is the dimensionless nonlinearity
coefficient defined in terms of the number of atomsN, and
the s-wave scattering lengtha, i.e.,

C =
4p"aN

mvxx0
3 . s5d

C. The time-average approximation

The most common treatment of condensate evolution in a
TOP trap has also invoked the time-average approximation,
whereby the potential of Eq.(2) is averaged over a period of
the bias field rotation. This leads to the time-averaged, trun-
cated form of the TOP trap potential

VHsrd = r0
2 +

1

4
sx2 + y2 + 8z2d, s6d

which is a static, harmonic potential, with frequencyvx in
the x-y plane (in SI units). In the time-average approxima-

tion, the potential in the time evolution operator of Eq.(4), is
replaced by the time-independent trapVHsrd, of Eq. (6). This
allows energy eigenstates of the system to be readily calcu-
lated.

The time-average approximation is normally assumed to
be valid when the bias field rotation frequency is much larger
than the frequency of the time-averaged harmonic trap, i.e.,
in our dimensionless unitsV@1. The time-averaged treat-
ment neglects system dynamics occurring on the fast time
scale of the bias field rotation, and it is this nonstationary
behavior of a condensate in a TOP trap that we describe in
this work.

D. The quadratic average approximation

Müller et al. [2] experimentally observed the dynamic
effects of the TOP trap on condensate evolution, i.e., micro-
motion in a TOP trap. Their approach for calculating the
condensate micromotion amplitude involved balancing the
restoring force of the time-dependent terms of Eq.(2) that
are linear in cosVt or sinVt, with the centrifugal force. In
line with that treatment, our work invokes what we shall
refer to as the quadratic average approximation, where only
the terms of Eq.(2) that are quadratic in cosVt or sinVt are
time averaged. In that approximation the TOP trap potential
is given by

Vapsr,td = VHsrd + r0sx cosVt + y sinVtd. s7d

In the present paper, we calculate dynamical eigenstates
of the TOP trap potential in the quadratic average approxi-
mation, where the trapping potential is given by Eq.(7). The
accuracy of the quadratic average approximation is ad-
dressed in Sec. V.

III. THE CIRCULARLY TRANSLATING FRAME

In the laboratory frame, the TOP trap potential in the qua-
dratic average approximation, given by Eq.(7), is time-
dependent and eigenstates of the Gross-Pitaevskii equation
cannot be found. By transforming to a frame that translates
in a circular trajectory with radiusg (whose value is to be
determined) and with angular frequencyV about the origin
of the laboratory frame, we can remove this time depen-
dence. We refer to that frame as the “circularly translating
frame” and we shall see that it is the natural frame in which
to describe the TOP trap system.

The translation in coordinate space is defined by

R = r − gscosVt,sinVt,0d, s8d

as illustrated in Fig. 1. The momentum in the circularly
translating frame is derived by differentiating Eq.(8), yield-
ing

P = p +
1

2
gVssinVt,− cosVt,0d, s9d

where we have used the fact that in our dimensionless units
p=v /2.
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A. Unitary transformation to the circularly translating frame

We now derive the quantum mechanical transformation to
the circularly translating frame. For clarity, we shall denote

quantum mechanical operators byÔ, and begin with the lin-
ear case.

The Schrödinger equation for a single particle state in the
TOP trap, in the quadratic average approximation, is given in
the laboratory frame by

i
ducl
dt

= Ĥapucl, s10d

where

Ĥap= p̂2 + V̂apsr̂,td. s11d

The transformation to the circularly translating frame is
achieved by the unitary transformation

Ûstd ; Ûp„bstd…Ûr„astd…, s12d

where

Ûr„astd… = eip̂·astd s13d

translates position byastd ,Ûr(astd)url= ur −astdl, and

Ûp„bstd… = e−i r̂·bstd s14d

translates momentum bybstd ,Ûp(bstd)upl= up−bstdl. In a
comparison with Eqs.(8) and (9) we find that

astd = gscosVt,sinVt,0d s15d

and

bstd = −
1

2
gVssinVt,− cosVt,0d. s16d

In the transformation to the circularly translating frame

Ûr(astd) and Ûp(bstd) commute, sinceastd ·bstd=0. Defining
the transformed state vector to be

uclt ; Ûstducl, s17d

Eq. (10) becomes

i
duclt

dt
= Ĥap

t uclt , s18d

where

Ĥap
t = Ûp„bstd…Ûr„astd…ĤapÛr

†
„astd…Ûp

†
„bstd…

− fp̂ + bstdg ·
dastd

dt
+ r̂ ·

dbstd
dt

. s19d

The Schrödinger equation in the coordinate representation
can be determined by projecting Eq.(18) onto stateuRl. Us-
ing the identities

kRucl = csR,td s20d

and

kRup̂ucl = − i¹RcsR,td, s21d

where we have denoted

¹R = S ]

] X
,

]

] Y
,

]

] Z
D , s22d

yields

i
] ctsR,td

] t
= Hap

t sR,tdctsR,td, s23d

where

Hap
t sR,td = f− i¹R + bstdg2 + Vap„R + astd…

+ fi¹R − bstdg ·
dastd

dt
+ R ·

dbstd
dt

. s24d

The wave functions in the laboratory frame and the circularly
translating frame are related by

ctsR,td = e−iR·bstdc„R + astd,t…. s25d

B. Application to the Gross-Pitaevskii equation

The above derivation, for the Schrödinger equation, may
also be adapted to the Gross-Pitaevskii equation, since the
nonlinear term transforms simply under substitution of Eq.
(25). Thus, by substitutingastd andbstd from Eqs.(15) and
(16) into the Hamiltonian of Eq.(24), and including the non-
linear term(which is described in terms of the new density
uctsR,tdu2), the Gross-Pitaevskii equation in the circularly
translating frame is

i
] ctsR,td

] t
= Lap

t sR,tdctsR,td, s26d

where

Lap
t sR,td = Hap

t sR,td + CuctsR,tdu2 s27d

and

FIG. 1. The circularly translating frame, defined by coordinates
R=sX,Y,Zd and Eq.(8).
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Hap
t sR,td = − ¹R

2 + VHsRd +
1

2
sg + 2r0 − gV2dsX cosVt

+ Y sinVtd + gr0 −
1

4
g2sV2 − 1d. s28d

The single particle Hamiltonian of Eq.(28) is identical to the
Hamiltonian derived using a classical frame transformation
to a noninertial frame of reference[15], applied to the circu-
larly translating frame. Choosingg=gt, where

gt =
2r0

V2 − 1
, s29d

the evolution operator of Eq.(27) simplifies to

Lap
t sR,td = − ¹R

2 + VHsRd + CuctsR,tdu2 + «, s30d

where

« =
1

4
gt

2sV2 − 1d. s31d

The energy offset« can be interpreted by expressing Eq.(31)
in the form

« = Vapsfgt,0,0g,t = 0d − VHs0d − EV. s32d

The first two terms represent the additional potential energy
due to the displacement of a point body from the trap center
to radiusgt. The remaining termEV=gt

2V2/4 represents the
energy of a point body rotating about the origin of the labo-
ratory frame, at a radiusgt with frequencyV, which is sim-
ply the expected energy shift associated with the transforma-
tion to the circularly translating frame[15].

The time evolution operator in the circularly translating
frame, as given by Eq.(30), substituted into Eq.(26) yields
the Gross-Pitaevskii equation for a time-independent har-
monic trap, with an energy offset of«. Thus, eigenstates of
the TOP trap in the circularly translating frame exist in the
quadratic average approximation. For clarity we write these
as

ctsR,td = cHsRde−ismH+«dt, s33d

where cHsRd are the well-known solutions to the time-
independent Gross-Pitaevskii equation for a time-
independent harmonic trap, i.e.,

mHcHsRd = f− ¹R
2 + VHsRd + CucHsRdu2gcHsRd. s34d

C. Generalization to quantum field theory

The transformation given by Eq.(25) can be applied to
the operator Heisenberg equations of motion for the full

quantum field operatorĈsr ,td. In much the same way as our
discussion above, this yields the equation of motion in the
circularly translating frame

i
] ĈtsR,td

] t
= f− ¹R

2 + VHsRd + CĈt
†sR,tdĈtsR,td + «gĈtsR,td.

s35d

Since this represents the full quantum field theory, the mo-
tion of uncondensed particles is also correctly treated in the
circularly translating frame.

IV. SOLITARY-WAVE SOLUTIONS

Solitary-wave solutions, where the wave function evolves
without changing shape, can be found for the TOP trap in the
quadratic average approximation. Morganet al. [12] have
shown that the Gross-Pitaevskii equation, with particular
forms of potential, has solitary-wave solutions which propa-
gate in one dimension of a multidimensional space. That
work was extended by Margetis[13] where solitary-wave
solutions may have center of mass motion in any of the space
dimensions. Also, Japha and Band[14] have shown that in a
moving harmonic trap the motion of the condensate center of
mass can be entirely decoupled from the evolution of the
condensate shape. We have extended the derivation by Mor-
ganet al. [12] to include the case where solitary-wave solu-
tions can propagate in three dimensions, as was indicated to
be possible by Margetis[13]. In the following we present a
brief summary of the results of our derivation.

We begin by postulating that solitary-wave solutions to
the TOP trap will have the form

cSWsr,td = cH„r − r̄std…e−imHt+iSsr,td, s36d

where the envelope wave functioncHsrd is an eigenstate of
the time-independent Gross-Pitaevskii equation for the TOP
trap potential in the time-average approximation with chemi-
cal potentialmH, i.e., defined by Eq.(34). The position offset
in the envelope wave function is

r̄std =E cSW
* sr,tdrcSWsr,tddr −E cH

* srdrcHsrddr , s37d

which can be interpreted as the time-dependent position of
the center of mass of the solitary wave since the second
integral is zero due to the particular form ofVHsrd. The phase
Ssr ,td is determined by substituting the solitary-wave solu-
tion (36) into the time-dependent Gross-Pitaevskii equation
(3), whereLsr ,td is replaced byLapsr ,td, in which the qua-
dratic average approximation is used, i.e.,

Lapsr,td = − ¹2 + Vapsr,td + Cucsr,tdu2, s38d

whereVapsr ,td is given by Eq.(7). Taking a similar approach
to that of Morganet al. [12] the Gross-Pitaevskii equation
can be separated into real and imaginary parts yielding two
equations. The equation derived from the imaginary part can
be simplified by writing

Ssr,td =
1

2
r ·

dr̄std
dt

+ Ksr,td. s39d

We choose the trivial solutionKsr ,td=Kstd which is the only
possible solution in the one-dimensional case[12] and has
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also been suggested as the unique solution in the general
case[13]. Substituting the trivial solution into the equation
derived from the real part of the Gross-Pitaevskii equation
we find that

Kstd =
1

4
E Fr̄2std − Sdr̄std

dt
D2Gdt. s40d

By equating mixed differentials ofSsr ,td, the center of mass
motion of the solitary-wave solutions can be found to obey

1

2

]2r̄std
] t2

= − ¹ Fsr,td, s41d

which is a form of Ehrenfest’s theorem, where

Fsr,td = Vapsr,td − VH„r − r̄std…. s42d

For solitary-wave solutions to exist, in the form that we have
discussed, both sides of Eq.(41) must be independent ofr
and therefore the functionFsr ,td must be at most linear inr.
The TOP trap potential in the quadratic average approxima-
tion obeys that criterion and thus solitary-wave solutions ex-
ist. It is possible to solve forr̄std which has six constants of
integration, given by the initial values of the center of mass
position and momentum of the particular solitary-wave solu-
tion [see Eq.(A1)].

A. Solitary-wave solutions which are eigenstates
in the circularly translating frame

The dynamical eigenstates calculated using the circularly
translating frame, given by Eq.(33), are a particular class of
solitary-wave solutions in the laboratory frame. This can be
confirmed by transforming the solitary-wave solutions, as
given by Eq.(36), into the circularly translating frame, and
requiring that these solutions satisfy the time-independent
Gross-Pitaevskii equation in that frame, i.e.,

mSW
t cSW

t sR,td = Lap
t sR,tdcSW

t sR,td, s43d

where

cSW
t sR,td = cH„r − r̄std…e−imHt+iSsr,td+igtVr·ssin Vt,−cosVt,0d/2

s44d

and

mSW
t = mH + «. s45d

In order to satisfy Eq.(43), the solitary-wave solutions of Eq.
(44) have a restriction onr̄std, as derived in Appendix A.
Solitary-wave solutions of the laboratory frame are eigen-
states of the TOP trap in the circularly translating frame if
and only if the initial conditions of the center of mass motion
of the solitary-wave solutions have particular values such
that

r̄std = gtscosVt,sinVt,0d s46d

and, therefore,

p̄std = −
1

2
gtVssinVt,− cosVt,0d. s47d

These equations represent circular motion at the TOP trap
frequencyV, with radiusgt. Previously[2,9] the micromo-
tion position amplitude has been determined to be 2r0/V2,
which is in agreement with our result[see Eq.(29)] in the
limit V@1.

With the center of mass motion for solitary-wave dynami-
cal eigenstates of the TOP trap given by Eqs.(46) and (47),
we find thatR=r − r̄std and the phaseSsr ,td becomes

Ssr,td = −
1

2
gtVr · ssinVt,− cosVt,0d − «t. s48d

Making these substitutions, Eq.(44) simplifies to Eq.(33) so
that all dynamical eigenstates of the TOP trap, calculated
using the circularly translating frame, are a particular class of
solitary-wave solutions in the laboratory frame with center of
mass motion given by Eqs.(46) and(47). This shows that the
origin of the circularly translating frame[refer to Eqs.(8)
and(9) with g=gt] moves with the center of mass motion of
the solitary-wave dynamical eigenstates of the TOP trap,
therefore justifying our choice of the circularly translating
frame for describing the TOP trap.

B. Dynamical eigenstates

All the dynamical eigenstates of the TOP trap follow the
same circular trajectory in the laboratory frame, as given by
Eqs. (46) and (47). This motion is independent of both the
chemical potential of the state and the nonlinear strength of
the system. Furthermore, the solitary-wave dynamical eigen-
states retain their orientation with the laboratory frame
throughout their trajectory.

As an example, a two-dimensional excited state of the
envelope wave functioncHsx,yd, with a nodal line along the
y axis, is presented in Fig. 2. In the laboratory frame, the
solitary-wave dynamical eigenstate of the TOP trap, corre-
sponding to the envelope wave function in Fig. 2, consists of
the envelope wave function moving in a circular trajectory,
while maintaining its orientation with the laboratory frame,
and the orientation of the nodal line along they axis.

In the linear casesC=0d the solitary-wave dynamical
eigenstates form a complete basis for the TOP trap in the

FIG. 2. A particular eigenstate of the two-dimensional equiva-
lent of Eq.(34), calculated numerically. The two-dimensional non-
linear strength isC2D=600 and the chemical potential ismH

=10.56.
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circularly translating frame. This is because these states, in
the circularly translating frame, are eigenstates of the har-
monic oscillator equation with an additional energy offset
[see Eqs.(30) and (33)].

C. Condensation and the ground state of the TOP trap

The ground state of the TOP trap system is the solitary-
wave dynamical eigenstate with the lowest chemical poten-
tial in the circularly translating frame. This occurs whenmH,
the chemical potential of the envelope wave function, takes
its lowest possible value[see Eq.(45)]. Since, as noted in
Sec. III C, the uncondensed atoms experience the same po-
tential as the condensate, in the circularly translating frame,
these thermalize during evaporation into the usual Bose-
Einstein distribution, and hence condensation from the vapor
will be into the TOP trap ground state, as determined using
the circularly translating frame. Therefore, the state into
which bosons condense, in the quadratic average approxima-
tion is the solitary-wave dynamical eigenstate given by Eq.
(44) with the envelope wave function being the ground state
of Eq (34) and r̄std given by Eq.(46).

V. VALIDITY OF APPROXIMATIONS

A. Corrections to the quadratic average approximation

Throughout this work we have used the quadratic average
approximation without assessing its validity. Here we give a
systematic assessment of the validity regime of the quadratic
average approximation for the linear case(where the mean-
field interaction is neglected). This allows simple analytic
results to be obtained.

The single particle Hamiltonian, with the truncated time
dependent TOP trap potential of Eq.(2), takes the form(in
the circularly translating frame)

Ĥt = Ĥap
t + ŴsR̂d, s49d

whereĤap
t is the single particle Hamiltonian in the quadratic

average approximation, i.e.,

Ĥap
t = P̂X

2 + P̂Y
2 + P̂Z

2 + V̂HsR̂d + «. s50d

In Eqs. (49) and (50) we have used an operator formalism
where the position and momentum component operators are

denoted byR̂ andP̂J, respectively. The perturbative potential

ŴsR̂d accounts for the remaining terms of the TOP trap po-
tential of Eq.(2) that are not retained in the quadratic aver-
age approximation. In the circularly translated frame, these
terms are given by

ŴsR̂d = −
1

4
sX̂2 − Ŷ2dscos2 Vt − sin2 Vtd −

1

2
gtsX̂ cosVt

+ Ŷ sinVtd − X̂Ŷ sinVt cosVt −
1

4
gt

2. s51d

The harmonic oscillator creation and annihilation opera-
tors in the circularly translating frame are defined, in our
dimensionless units, as

aX =
1

2
X̂ + iP̂X, s52d

aY =
1

2
Ŷ + iP̂Y, s53d

aZ = Î2Ẑ + iP̂Z, s54d

where faJ,aK
†g=dJK, and J and K are one ofX, Y, or Z.

Making these substitutions we find that

Ĥap
t = aX

†aX + aY
†aY + aZ

†aZ + « + r0
2 + 1 +Î2 s55d

and

ŴsR̂d = −
1

4
saX

†2 + aX
2 + 2aX

†aXdscos2 Vt − sin2 Vtd +
1

4
saY

†2

+ aY
2 + 2aY

†aYdscos2 Vt − sin2 Vtd −
1

2
gtsaX

†

+ aXdcosVt −
1

2
gtsaY

† + aYdsinVt − saX
† + aXdsaY

†

+ aYdsinVt cosVt −
1

4
gt

2. s56d

Utilizing the number operator kets, which satisfy
aJ

†aJunJl=nJunJl, the eigenket of the single particle Hamil-
tonian isunX,nY,nZlt, i.e.,

Ĥap
t unX,nY,nZlt = EtunX,nY,nZlt . s57d

The energy spectrum is given by

Et = nX + nY + nZ + « + r0
2 + 1 +Î2, s58d

in agreement with Eq.(45). The energy spectrum of the har-
monic oscillator terminates at the ground stateu0,0,0lt,
which has energyEg

t =«+r0
2+1+Î2.

Using time-dependent perturbation theory, the evolution

of the ground state to first order in the perturbationŴsR̂d is
given by

uclt = Astde−isEg
t −gt

2/4dtFu0,0,0lt +
gt

4
S 2e−it

V2 − 1
+

eiVt

V + 1

−
e−iVt

V − 1
Du1,0,0lt +

igt

4
S2Ve−it

V2 − 1
−

eiVt

V + 1
−

e−iVt

V − 1
D

3u0,1,0lt +
i

8
S2Ve−2it

V2 − 1
−

e2iVt

V + 1
−

e−2iVt

V − 1
Du1,1,0lt

+
1

8Î2
S 2e−2it

V2 − 1
+

e2iVt

V + 1
−

e−2iVt

V − 1
Dsu2,0,0lt − u0,2,0ltdG ,

s59d

whereAstd is a constant of normalization. From this expres-
sion we can deduce that the quadratic average approximation
is valid in the linear case, within the parameter regime where
gt!V and 1!V.

Nonlinear case. It is clear that a perturbative two time
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scale asymptotic expansion in powers of 1/V could be made
for the nonlinear case. Thus, we expect that for the nonlinear
case, the quadratic average approximation is also valid
within the regime derived above for the linear case.

We have carried out two-dimensional numerial calcula-
tions for the nonlinear case which verify this. For example,
for a typical TOP trap system wherer0=1241 andV=153,
we have propagated the Gross-Pitaevskii equation using both
the truncated TOP trap potential of Eq.(2) and the potential
in the quadratic average approximation, given by Eq.(7). An
appropriate value for the two-dimensional nonlinear strength
is C2D=600 which corresponds toN,23104 in the Otago
TOP trap[9]. The initial state was chosen to be the ground
state of the TOP trap in the quadratic average approximation,
i.e., the ground state of Eq.(34) calculated numerically using
optimization methods and shifted in position and momentum
according to Eqs.(46) and (47) (at t=0). That state was
propagated by the Gross-Pitaevskii equation for one period
of the bias field rotation for two cases:(i) with the truncated
TOP trap potential, givingctruncsx,y,t=2p /Vd and (ii ) with
the potential in the quadratic average approximation, yield-
ing cquadsx,y,t=2p /Vd. The method used was an accurate
fourth order algorithm, with a grid of 5123512 points
over a 60360 range in position, and 20 000 time steps.
The deviation between the two solutions was found
to be euctruncsx,y,t=2p /Vd−cquadsx,y,t=2p /Vdu2dxdy
=4.44310−8.

B. Validity of solitary-wave dynamical eigenstates

The validity of our solitary-wave dynamical eigenstates as
dynamical eigenstates of the full TOP trap depends on three
validity conditions:(i) the adiabatic approximation,(ii ) the
truncation of the TOP trap potential from Eq.(1) to Eq. (2),
and(iii ) the quadratic average approximation. The quadratic
average approximation was found above to be valid in the
regime wheregt!V and 1!V. We note that the condition
gt!V can be rewritten as 2r0!V3. The truncation of the
TOP trap potential to yieldVsr ,td of Eq. (2) is valid provided
xa! r0 wherexa is one ofx, y, or z. A useful estimate ofxa

is given by the sum of the Thomas-Fermi radius of the
solitary-wave dynamical eigenstate envelope wave function
with the lowest chemical potential, and the radius of the
dynamical eigenstates trajectory,gt. This yields

xa < S 30C
Î2p

D1/5

+ gt , s60d

whereC is given by Eq.(5). The adiabatic approximation is
valid when the bias field rotation frequencyV is much
smaller than the Larmor precession frequency, given in our
dimensionless units by the potential. As an estimate of the
Larmor precession frequency we use the magnitude of
VTOPsr ,td which, assuming thatxa! r0, is of the order ofr0

2.
Thus, the adiabatic approximation is valid provided thatV
! r0

2.
Finally, collating the validity regimes we find that our

solitary-wave dynamical eigenstates, calculated using the cir-
cularly translating frame, are an accurate description of the

dynamical eigenstates of the full TOP trap system within the
parameter regime where

2r0 ! V3 ! r0
6,

1 ! V, s61d

30C ! Î2pr0
5.

Typical experimental parameters are well within these crite-
ria. As an example, the Otago TOP trap system of87Rb,
wherea=55310−10 m andvx=18 Hz [9], leads to the third
validity condition from Eq.(61) becomingN! r0

5 so all three
conditions are easily satisfied.

VI. THE ROTATING FRAME

In previous theoretical work therotating framehas been
used to calculate eigenstates of the TOP trap system under
various levels of approximation[4,5]. However, it can be
shown that using the rotating frame to describe the TOP trap
allows only a limited set of dynamical eigenstates to be
found. For completeness, we present this calculation in Ap-
pendix B where, using the same methods as in Secs. III and
IV, we show that a particular class of solitary-wave solutions
in the laboratory frame are eigenstates of the time-
independent Gross-Pitaevskii equation in the rotating frame
[Eq. (B6)]. As before, these solitary-wave dynamical eigen-
states follow a circular trajectory in the laboratory frame,
described by Eqs.(46) and (47), but unlike solitary-wave
dynamical eigenstates calculated using the circularly trans-
lating frame, the solitary-wave solutions which are eigen-
states of Eq.(B6) must also obey an additional symmetry,
which is that the envelope wave function must be an eigen-
state of thez component of angular momentum[see Eq.
(B8)]. This condition requires solitary-wave dynamical
eigenstates calculated using the rotating frame to be cylindri-
cally symmetric about their center of mass. Figure 2 shows
an example of a dynamical eigenstate envelope wave func-
tion with a corresponding solitary-wave dynamical eigen-
state which does not satisfy the time-independent Gross-
Pitaevskii equation in the rotating frame. Physically we can
see why: the nodal line of that solitary-wave dynamical
eigenstate, which remains oriented along they axis in the
laboratory frame, will appear to rotate in the rotating frame
so that the dynamical eigenstate is not stationary in that
frame.

Solitary-wave dynamical eigenstates of the TOP trap re-
tain their orientation with respect to the laboratory frame as
they move. Consequently, the rotating frame is not an appro-
priate choice for describing dynamical eigenstates of the
TOP trap system, because the eigenvalue equation in the ro-
tating frame incorporates the angular momentum operator,
and places additional symmetry constraints on dynamical
eigenstates of the system that are not in general necessary.

VII. DISCUSSION

We have carried out a detailed characterization of conden-
sate micromotion in a TOP trap, under some well-defined
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approximations. Those approximations, which are well justi-
fied for typical TOP traps are(i) the adiabatic approximation
(which neglects spin precession effects), (ii ) the assumption
that the condensate is located well within the circle of death,
and (iii ) the quadratic average approximation(which time
averages quadratically oscillating terms in the potential). Our
treatment allows for condensate nonlinearity and we have
shown that within these approximations, solitary-wave solu-
tions of the nonlinear Gross-Pitaevskii equation exist. We
have identified the circularly translating frame as the most
appropriate frame for describing the system, and have shown
that eigenstates can be found in that frame, and that they
must all be solitary-wave solutions of a certain type. In par-
ticular, all of the solitary-wave dynamical eigenstates have
identical center of mass motion, which in the laboratory
frame is a circular trajectory with radiusgt and momentum
magnitudegtV /2.

Previous theoretical discussions of dynamical eigenstates
of the TOP trap have been given within similar approxima-
tions, but with the additional restriction that the nonlinearity
due to the atomic interactions is either approximated or ne-
glected. Kuklovet al. [4] have obtained exact eigenstates for
the linear Schrödinger equation within the adiabatic approxi-
mation using the truncated TOP trap potential of Eq.(2) and
those authors have also presented an approximate many-
body treatment. Their exact single particle solutions are ob-
tained using numerous transformations and the form of
eigenstate micromotion is not readily evident. Their method
also employs the rotating frame which, as we have shown
within the quadratic average approximation, limits the pos-
sible dynamical eigenstates that can be found. Minoginet al.
[5] have used an approximate interaction picture method
which provides information about the atomic momentum
modulation in a TOP trap, but does not describe the micro-
motion in the position coordinates.

Our choice of the circularly translating frame allows
solitary-wave dynamical eigenstates, which retain their ori-
entation relative to the laboratory frame, to be readily iden-
tified for the TOP trap system. These dynamical eigenstates
have no restriction on thez component of angular momen-
tum of the envelope wave function. By contrast, we have
shown that the dynamical eigenstates calculated using the
rotating frame constitute only a subset of the dynamical
eigenstates calculated using the circularly translating frame,
and are required to be cylindrically symmetric about their
center of mass.

Finally, we have shown that the validity regime for the
quadratic average approximation is defined by the conditions
1!V and 2r0!V3. These criteria are well satisfied by ex-
isting TOP trap systems.
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APPENDIX A: RESTRICTIONS ON SOLITARY-WAVE
SOLUTIONS WHICH ARE EIGENSTATES

IN THE CIRCULARLY TRANSLATING FRAME

We seek solutions to Eq.(43) which have the form of Eq.
(44). We will derive the particular form for the center of

mass motionr̄std for which such solutions exist. The center
of mass motion can be solved in general using Eq.(41),
which gives

x̄std = sx1 − gtdcost + v1 sin t + gt cosVt,

ȳstd = x2 cost + sv2 − gtVdsin t + gt sinVt, sA1d

z̄std = x3 cos 2Î2t +
v3

2Î2
sin 2Î2t,

where we have definedr̄ ust=0d=sx1,x2,x3d and dr̄std /dtust=0d
=sv1,v2,v3d.

Eigenstates calculated using the circularly translating
frame must satisfy both Eq.(43) and

i
] cSW

t sR,td
] t

= mSW
t cSW

t sR,td. sA2d

Substituting the solitary-wave solution of Eq.(44) into Eqs.
(43) and (A2), and making the change of variabless=r
− r̄std, yields, respectively,

mSW
t = mH +

1

2
gt

2V2 +
1

4
r̄2std +

7

4
z̄2std +

1

4
Sdr̄std

dt
D2

−
1

2
gtr̄std · scosVt,sinVt,0d +

1

2
s · r̄std

+
1

2
gtVSdr̄std

dt
D · ssinVt,− cosVt,0d +

7

2
s · „0,0,z̄std…

−
1

2
gts · scosVt,sinVt,0d

− iFdr̄std
dt

+ gtVssinVt,− cosVt,0dG ·gssd sA3d

and

mSW
t = mH +

1

2
gt

2V2 −
1

4
r̄2std −

1

2
r̄std ·

d2r̄std
dt2

+
1

4
Sdr̄std

dt
D2

−
1

2
gtV

2r̄std · scosVt,sinVt,0d

+
1

2
gtVSdr̄std

dt
D · ssinVt,− cosVt,0d −

1

2
s ·

d2r̄std
dt2

−
1

2
gtV

2s · scosVt,sinVt,0d

− iFdr̄std
dt

+ gtVssinVt,− cosVt,0dG ·gssd, sA4d

where

gssd =
¹scHssd
cHssd

. sA5d

Equating Eqs.(A3) and(A4), and substituting the general
form of r̄std, given by Eq.(A1), we find that equality requires
x3=0 andv3=0 and thereforez̄std=0. Inserting this result,
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and the general expressions forx̄std and ȳstd from Eq. (A1),
Eqs.(A3) and (A4) both simplify to

mSW
t = mH +

1

2
gt

2V2 +
1

4
fx1

2 + x2
2 + v1

2 + v2
2 − 2gtsx1 + v2Vdg

+ igssd · fsx1 − gtdsin t − v1 cost,x2 sin t

− sv2 − gtVdcost,0g

+
1

2
s · fsx1 − gtdcost + v1 sin t,x2 cost

+ sv2 − gtVdsin t,0g. sA6d

For the solitary-wave solutions of Eq.(44) to be eigenstates
of the TOP trap in the circularly translating frame, the chemi-
cal potentialmSW

t must be independent ofs and t. Solving
Eq. (A6) for gssd, at t=0 andt=p /2, we find that

ln cHssd = −
1

2
is1s2

x2
2 + sv2 − gtVd2

v1x2 − sx1 − gtdsv2 − gtVd
+ C1ss3d

=
1

2
is1s2

sx1 − gtd2 + v1
2

v1x2 − sx1 − gtdsv2 − gtVd
+ C2ss3d,

sA7d

wheres=ss1,s2,s3d, andC1ss3d and C2ss3d are constants of
integration. The only possible solution is therefore
sx1,x2,v1,v2d=sgt ,0 ,0 ,gtVd, which eliminatesgssd and s
from Eq. (A6) yielding

mSW
t = mH +

1

4
gt

2sV2 − 1d, sA8d

which is in agreement with Eq.(45). Concluding then,
solitary-wave solutions described by Eq.(44) which are
eigenstates of the TOP trap in the circularly translating frame
exist if and only if r̄stdust=0d=sgt ,0 ,0d and dr̄std /dtust=0d
=s0,gtV ,0d, and therefore the center of mass motion of
these states in the laboratory frame, given in general by Eq.
(A1), simplifies to

r̄std = gtscosVt,sinVt,0d. sA9d

APPENDIX B: SOLITARY-WAVE DYNAMICAL
EIGENSTATES DERIVED USING THE ROTATING FRAME

In this appendix we calculate dynamical eigenstates of the
TOP trap potential in the quadratic average approximation

using the rotating frame. That frame, with coordinatesr8
=sx8 ,y8 ,z8d, rotates at the frequency of the bias field, and is
defined by the coordinate transformation

x8 = x cosVt + y sinVt,

y8 = − x sinVt + y cosVt, sB1d

z8 = z.

In the rotating frame the Gross-Pitaevskii equation becomes

i
] crsr8,td

] t
= Lap

r sr8,tdcrsr8,td, sB2d

where the evolution operator in the rotating frame is time-
independent and is given by

Lap
r sr8,td = Lapsr,td − VL̂zsr8d

= − ¹r8
2 + Vap

r sr8d − VL̂zsr8d + Cucrsr8,tdu2,

sB3d

and the wave function in the rotating frame iscrsr8 ,td
=csr ,td. The angular momentum in the rotating frame has a
component in thez direction given by

L̂zsr8d = iSy8
]

] x8
− x8

]

] y8
D , sB4d

and we note thatL̂zsr8d= L̂zsrd [15]. Finally, the TOP trap
potential of Eq.(7) becomes, in the rotating frame,

Vap
r sr8d =

1

4
sx8 + 2r0d2 +

1

4
sy82 + 8z82d, sB5d

which is a stationary harmonic potential shifted from the
origin.

Eigenstates of the TOP trap in the rotating frame obey the
time-independent Gross-Pitaevskii equation in that frame,
i.e.,

mrcrsr8,td = Lap
r sr8,tdcrsr8,td. sB6d

Here we show that a particular class of solitary-wave solu-
tions obey Eq.(B6). We denote solitary-wave solutions
which are TOP trap eigenstates in the rotating frame by
cSW

r sr8 ,td, with chemical potentialmSW
r . Transforming the

solitary-wave solution of Eq.(36) into the rotating frame
yields

cSW
r sr8,td = cH„r − r̄std…e−imHt+iKstd+ix8hfdx̄std/dtgcosVt+fdȳstd/dtgsin Vtj/2+iy8hfdȳstd/dtgcosVt−fdx̄std/dtgsin Vtj/2+iz8fdz̄std/dtg/2. sB7d

The detail of substituting Eq.(B7) into Eq. (B6) and enforc-
ing mr to be independent of spatial and temporal coordinates
is given later in this appendix. The results are discussed here.

Solitary-wave dynamical eigenstates of the TOP trap po-
tential, in the quadratic average approximation, as calculated
in the rotating frame, have two restrictions. The first is that
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the center of mass motion of the dynamical eigenstates must
be given by Eqs.(46) and(47). This is not suprising since we
also found this restriction on solitary-wave dynamical eigen-
states calculated using the circularly translating frame. The
second restriction is that

L̂zsrdcHsrd = lzcHsrd, sB8d

enforcing the envelope wave function to be an eigenstate of
thez component of angular momentum. This means that dy-
namical eigenstates, as calculated using the rotating frame,
must have a cylindrically symmetric density about their cen-
ter of mass. We found in our discussion of dynamical eigen-
states in Sec. IV B, that nonsymmetric dynamical eigenstates
do exist for the TOP trap and that they are solitary-wave
solutions in the laboratory frame retaining their orientation to
that frame. Solitary-wave dynamical eigenstates which also
satisfy Eq.(B8) are only a subset of the dynamical eigen-
states found using the circularly translating frame.

Substituting Eqs.(46) and(B8) into the solitary-wave so-
lution in the rotating frame, Eq.(B7), the solitary-wave dy-
namical eigenstates calculated using the rotating frame, i.e.,
satisfying Eq.(B6), have the form

cSW
r sr8,td = fsr8deigtVy8/2−imSW

r t, sB9d

where we have explicitly extracted the time dependence in
the envelope wave function by writing

cH„r − r̄std… = fsr8deiVlzt. sB10d

The chemical potential spectrum in the rotating frame is

mSW
r = mH + « − Vlz, sB11d

where lz is defined by Eq.(B8). The wave function phase
gtVy8 /2, in Eq.(B9), is derived from the coordinate depen-
dent phase of Eq.(B7) and accounts for the center of mass
momentum of the eigenstates, given in the laboratory frame
by Eq. (47). The chemical potential spectrum of the rotating
frame, given by Eq.(B11), can be decomposed into three
parts: the energy of the state that forms the envelope, the
additional energy offset«, and an angular momentum term
arising from the rotating frame, as expected[15].

Restrictions on solitary-wave solutions which are eigen-
states in the rotating frame. We seek solutions to Eq.(B6)
which have the form of Eq.(B7). The conditions required for
such solitary-wave solutions to be eigenstates of the TOP
trap in the rotating frame can be found following a similar
structure to that used in Appendix A for the circularly trans-
lating frame.

Solitary-wave solutions which are to be TOP trap eigen-
states in the rotating frame must satisfy both Eq.(B6) and

i
] cSW

r sr8,td
] t

= mSW
r cSW

r sr8,td. sB12d

Substituting the solitary wave solution of Eq.(B7) into Eqs.
(B6) and (B12), and making the change of variabless=r
− r̄std, yields, respectively,

mSW
r = mH −

1

2
r̄std ·

d2r̄std
dt2

+
1

4
r̄2std +

7

4
z̄2std

+ r̄std · r0scosVt,sinVt,0d +
7

2
s · „0,0,z̄std…

+
1

2
s · fr̄std + 2r0scosVt,sinVt,0dg

+
1

2
VSdr̄std

dt
D · „ȳstd,− x̄std,0… +

1

4
Sdr̄std

dt
D2

−
1

2
Vs ·Sdȳstd

dt
,−

dx̄std
dt

,0D − Vlzssd

− iFdr̄std
dt

+ V„ȳstd,− x̄std,0…G ·gssd sB13d

and

mSW
r = mH −

1

2
r̄std ·

d2r̄std
dt2

−
1

4
r̄2std −

1

2
s ·

d2r̄std
dt2

+
1

2
VSdr̄std

dt
D · „ȳstd,− x̄std,0… +

1

4
Sdr̄std

dt
D2

−
1

2
Vs ·Sdȳstd

dt
,−

dx̄std
dt

,0D − Vlzssd

− iFdr̄std
dt

+ V„ȳstd,− x̄std,0…G ·gssd, sB14d

wheregssd is given by Eq.(A5) and

lzssd =
L̂zssdcHssd

cHssd
. sB15d

Equating Eqs.(B13) and(B14), and substituting the gen-
eral form of r̄std, given by Eq.(A1), we find that equality
requiresx3=0 andv3=0 and thereforez̄std=0. Inserting this
result, and the general expressions forx̄std and ȳstd from Eq.
(A1), Eqs.(B13) and (B14) both simplify to

mSW
r = mH − Vlzssd +

1

4
sx1

2 + x2
2 + v1

2 + v2
2d

+
1

2
fVsv1x2 − v2x1d + gtx1sV2 − 1dg

− igssd · sc1 cost + c2 sin t,c3 cost − c4 sin t,0d

−
1

2
s · sc2 cost − c1 sin t,− c4 cost − c3 sin t,0d,

sB16d

where c1=v1+Vx2, c2=v2V−x1−gtsV2−1d , c3=v2−Vx1,
andc4=v1V+x2. For the solitary-wave solutions in the labo-
ratory frame to be eigenstates of the TOP trap in the rotating
frame, the chemical potentialmSW

r must be independent ofs
and t. Solving for gssd, at t=0 andt=p /2, we find that the
only possible solution occurs whenc1=c2 andc3=−c4. Sub-
stituting back into Eq.(B16) we find that sc1,c2,c3,c4d
=s0,0,0,0d, or rathersx1,x2,v1,v2d=sgt ,0 ,0 ,gtVd. Further-
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more, we find thatlzssd must be independent ofs, and the
chemical potential in the rotating frame is

mSW
r = mH +

1

4
gt

2sV2 − 1d − Vlz, sB17d

which is in agreement with Eq.(B11). Concluding then,
solitary-wave solutions which are eigenstates of the TOP trap
potential in the rotating frame exist if and only ifr̄stdust=0d
=sgt ,0 ,0d , dr̄std /dtust=0d=s0,gtV ,0d, and

L̂zssdcHssd = lzcHssd. sB18d

The center of mass motion in the laboratory frame of
solitary-wave dynamical eigenstates calculated using the ro-
tating frame is identical to that of solitary-wave dynamcial
eigenstates found using the circularly translating frame.
Equation(B7) can now be written as

cSW
r sr8,td = cH„r − r̄std…eigtVy8/2−ismH+«dt, sB19d

and using Eqs.(B12) and (B18) it can be shown that

cH„r − r̄std… = fsr8deiVlzt. sB20d
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