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Solitary-wave description of condensate micromotion in a time-averaged orbiting potential trap
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We present a detailed theoretical analysis of micromotion in a time-averaged orbiting potential trap. Our
treatment is based on the Gross-Pitaevskii equation, with the full time-dependent behavior of the trap system-
atically approximated to reduce the trapping potential to its dominant terms. We show that within some well
specified approximations, the dynamic trap has solitary-wave solutions, and we identify a moving frame of
reference which provides the most natural description of the system. In that frame eigenstates of the time-
averaged orbiting potential trap can be found, all of which must be solitary-wave solutions with identical,
circular center of mass motion in the laboratory frame. The validity regime for our treatment is carefully
defined, and is shown to be satisfied by existing experimental systems.
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I. INTRODUCTION is essential for an understanding of condensate growth and is
] N ) also required for a description of velocity sensitive phenom-
The time-averaged orbiting potenti@fOP) trap [1] was  ena occurring in TOP traps, such as observed in Bragg scat-
an important tool in the realization of Bose-Einstein Condentering experiment$s,d].
sates, and it remains a common method for magnetically |n this paper we calculate dynamical eigenstates of the
trapping atoms. Early theoretical descriptions of the TOProp trap potential in theuadratic average approximation
trap used two approximations: the adiabatic approximationwjithin that approximation, the solutions are exact in both the
which assumes that the magnetic dipoles of the atoms aligfhear andthe nonlinear case. We begin, in Sec. Il, by intro-
instantaneously to the magnetic field, and tiee-average qucing the TOP trap potential, and various approximate
approximation where the time dynamics of the trapping forms of that potential. In Sec. Il we derive the transforma-
fields are neglected on the time scale.of the motion of th‘%ion to thecircularly translating framewhich we find to be
trapped atoms. Under these assumptions, the TOP trap ifie most natural frame in which to investigate the system. In
represented by a static, harmonic potential and the conde’sec. |V we calculate solitary-wave solutions in the quadratic
sate eigenstates are relatively easily calculdtesbially by  ayerage approximation and show that dynamical eigenstates
numerical meansand are stationary in space. However, con-ca|culated using the circularly translating frame are a particu-
densates formed in a TOP trap undergo a spatial micromotiopy class of solitary-wave solutions in the laboratory frame.
[2,3] due to the underlying dynamic nature of the TOP trap.|gentifying the dynamical eigenstates of the TOP trap allows
This phenomenon has been studied theoretically under varjjs 1o characterize micromotion and specify the ground state
ous levels of approximation, by partially lifting the time- of the system. In Sec. V, we assess the validity of the qua-
average approximatiof#,5] or by not applying the adiabatic qratic average approximation and demonstrate that for the
approximation6,7]. _ _ __ typical parameter regime of the TOP trap, solitary-wave dy-
In this work we provide a detailed theoretical descriptionpnamical eigenstates provide accurate approximations to the
of condensate micromotion in terms of TOP trap eigenstategjynamical eigenstates of the full TOP trap potential. In Sec.
including condensate nonlinearity. Our approach applies thg| e discuss laboratory frame solitary-wave solutions
adiabatic approximation, but partially lifts the time-average\hich are eigenstates of the TOP trap potential in the more
approximation. Under these conditions, the TOP trap potensommonly used rotating frame, and show that these are only

tial retains some time dependence and eigenstates of thatsypset of the dynamical eigenstates found using the circu-
potential cannot be found in the laboratory frame. However|gyjy translating frame. We conclude in Sec. VII.

system eigenstates do exist because a frame can be found in

which the Hamiltonian for the system becomes time-

independent. We have termed eigenstates of the system Il. APPROXIMATE FORMS OF THE TOP

found in such a framalynamical eigenstatesince these TRAP POTENTIAL

states are not stationary states in the laboratory frame. By the TOP trap consists of a magnetic quadrupole trap
calculating the dynamical eigenstates of the TOP trap, full1( 17 translated by a uniform bias field, whose direction
characterization of condensate micromotion is possible. ThiS,iatas at frequencg) [1]. For simplicity our discussion is

presented in a set of dimensionless units defined by the po-
sition scalex,=1%/2mw, (a characteristic harmonic oscilla-
*Electronic address: kchallis@physics.otago.ac.nz tor length, wherem is the mass of an atgmand the time
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scale of the inverse of the time-averaged trap frequengy
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tion, the potential in the time evolution operator of E4), is

defined below. A key feature of the TOP trap is that the zeraeplaced by the time-independent tidg(r), of Eq.(6). This
of the magnetic field follows a circular trajectory of radius allows energy eigenstates of the system to be readily calcu-
ro, and trapped atoms are confined well within that trajectorylated.

(the so-called “circle of death,”thereby reducing atom loss

due to spin flips. Typicallyro~1000-1300 and()~70
-150[1,2,9.

A. The adiabatic approximation

The time-average approximation is normally assumed to
be valid when the bias field rotation frequency is much larger
than the frequency of the time-averaged harmonic trap, i.e.,
in our dimensionless unit€l>1. The time-averaged treat-
ment neglects system dynamics occurring on the fast time

The TOP trap potential in the adiabatic approximation isscale of the bias field rotation, and it is this nonstationary

given by

. 2(x cosQt +y sin Qt) . X2 +y? + 472 |12

Vrop(r,t) =r3| 1 5
fo ra

1

behavior of a condensate in a TOP trap that we describe in
this work.

D. The quadratic average approximation

Muller et al. [2] experimentally observed the dynamic

wherer=(X,y,z). That approximation is valid when the bias effects of the TOP trap on condensate evolution, i.e., micro-
field rotation frequency) is much smaller than the Lamor motion in a TOP trap. Their approach for calculating the

precession frequendyl].

B. The truncated TOP trap potential
Expanding the square root of E¢L) in a Taylor series,

condensate micromotion amplitude involved balancing the
restoring force of the time-dependent terms of E2).that
are linear in co)t or sinQt, with the centrifugal force. In
line with that treatment, our work invokes what we shall

and neglecting terms above second order in the small paramefer to as the quadratic average approximation, where only

eterx,/ro, wherex, is one ofx, y, or z, leads to the trun-

cated TOP trap potential

1
V(r,t) = r5+ro(x cosQt +y sin Qt) + E(x2 +y2+ 47

1
- E(X cosOt +y sin Q)2 (2)
The evolution of the condensate wave functigfr,t) is

governed by the Gross-Pitaevskii equation

iaap(r,t)

ot = L(r,Y)r,t), 3

where, for a TOP trap, the time evolution operator
L(r,t) ==V2+V(r,t) + C|yr,1)|? (4)
is time-dependent. The truncated TOP trap potemia]t) is

given by Eq.(2), and C is the dimensionless nonlinearity

coefficient defined in terms of the number of atofMsand
the sswave scattering length, i.e.,

4mhaN
C= . (5)

MWy X3

C. The time-average approximation

The most common treatment of condensate evolution in a

the terms of Eq(2) that are quadratic in cd3t or sinQ)t are
time averaged. In that approximation the TOP trap potential
is given by

Vad(r,t) = Vi(r) + ro(x cosQt +y sinQt). (7)

In the present paper, we calculate dynamical eigenstates
of the TOP trap potential in the quadratic average approxi-
mation, where the trapping potential is given by Eg). The
accuracy of the quadratic average approximation is ad-
dressed in Sec. V.

Ill. THE CIRCULARLY TRANSLATING FRAME

In the laboratory frame, the TOP trap potential in the qua-
dratic average approximation, given by E{), is time-
dependent and eigenstates of the Gross-Pitaevskii equation
cannot be found. By transforming to a frame that translates
in a circular trajectory with radiug (whose value is to be
determinegl and with angular frequenc about the origin
of the laboratory frame, we can remove this time depen-
dence. We refer to that frame as the “circularly translating
frame” and we shall see that it is the natural frame in which
to describe the TOP trap system.

The translation in coordinate space is defined by

R =r - y(cost,sinOt,0), (8)

TOP trap has also invoked the time-average approximationys jllustrated in Fig. 1. The momentum in the circularly

whereby the potential of Eq2) is averaged over a period of trans|ating frame is derived by differentiating E8), yield-
the bias field rotation. This leads to the time-averaged, trunpg

cated form of the TOP trap potential
1
Vi(r) =rg+ Z(x2 +y2+82%), (6)

which is a static, harmonic potential, with frequeney in

1
P=p+ EyQ(sin Ot,— cosOt,0), (9

where we have used the fact that in our dimensionless units

the x-y plane(in Sl unit9. In the time-average approxima- p=v/2.
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t
A 19
where
AL, = Up(b(®) U, (a(®) Ha0 (at) Ul (b(t)
~[p+b] B B (19

The Schrodinger equation in the coordinate representation

FIG. 1. The circularly translating frame, defined by coordinatescan be determined by projecting Ed8) onto statgR). Us-

R=(X,Y,2) and Eq.(8).

A. Unitary transformation to the circularly translating frame

ing the identities

We now derive the quantum mechanical transformation ténd
the circularly translating frame. For clarity, we shall denote

quantum mechanical operators 6yand begin with the lin-
ear case.

The Schrédinger equation for a single particle state in the

TOP trap, in the quadratic average approximation, is given in

the laboratory frame by

A

o = Hadi), (10

where

Hap= P2+ VadF 1). (12)

The transformation to the circularly translating frame is

achieved by the unitary transformation

U(t) = Up(b(®)Uy(at)), (12)
where
U,(a(t)) = a0 (13)
translates position bg(t), U,(a(t))|r)=|r-a(t)), and
Up(b(t)) =00 (14)
translates momentum bp(t), U (b(t))|p)=|p—b(t)). In a
comparison with Eqs(8) and (9) we find that
a(t) = y(cosQt,sinQt,0) (15)
and
b(t) = - iyﬂ(sin Ot,— cost,0). (16)

In the transformation to the circularly translating frame

U,(a(t)) andUp(b(t)) commute, since(t) -b(t)=0. Defining

the transformed state vector to be
=00, (17)

Eqg. (10) becomes

(Rl = 4(R,1) (20)
where we have denoted
Jd d d
Vr= <_x ¥ _z) (22
yields
Y (R,Y)
== =Hg(RODHRY), (23)
where
HLy(R,D) = [~ iV + b()]* + VR + a(t))
+ive-bin]- B0 R B (29

The wave functions in the laboratory frame and the circularly
translating frame are related by

PR, = e RPOyR+a(t),1). (25)

B. Application to the Gross-Pitaevskii equation

The above derivation, for the Schroédinger equation, may
also be adapted to the Gross-Pitaevskii equation, since the
nonlinear term transforms simply under substitution of Eq.
(25). Thus, by substituting(t) andb(t) from Egs.(15) and
(16) into the Hamiltonian of Eq(24), and including the non-
linear term(which is described in terms of the new density
|#A(R,1)|?), the Gross-Pitaevskii equation in the circularly
translating frame is

aw‘(Rt

= Lo ROPRY), (26)

where

LR =HRD

(27)

and
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t 2 1 2
Hap(R,t) =-Vg+Vu(R) + §(y+ 2ry — vQ°)(X cost
(28)

1
+YsinQt) + yrg— Z)/Z(Qz— 1).

The single particle Hamiltonian of E(R8) is identical to the

Hamiltonian derived using a classical frame transformatio

to a noninertial frame of refereng&5], applied to the circu-
larly translating frame. Choosing=1;, where

"= Qir_o 1 (29
the evolution operator of Eq27) simplifies to
LLR==-VE+ V(R +ClRDP+e,  (30)
where
1
s=Zyt2(Qz—l). (31)

The energy offset can be interpreted by expressing E8{l)
in the form

& =Vagl[1,0,0],t=0) - Vi4(0) - Eq. (32)

The first two terms represent the additional potential energy
due to the displacement of a point body from the trap center

PHYSICAL REVIEW A 70, 053605(2004)

i IV(R,1) _ [

L= VE e viR + CH ROV RY re] TR Y.

(35

Since this represents the full quantum field theory, the mo-
tion of uncondensed particles is also correctly treated in the
ncircularly translating frame.

IV. SOLITARY-WAVE SOLUTIONS

Solitary-wave solutions, where the wave function evolves
without changing shape, can be found for the TOP trap in the
quadratic average approximation. Morgahal. [12] have
shown that the Gross-Pitaevskii equation, with particular
forms of potential, has solitary-wave solutions which propa-
gate in one dimension of a multidimensional space. That
work was extended by Margetid3] where solitary-wave
solutions may have center of mass motion in any of the space
dimensions. Also, Japha and Bafidl] have shown that in a
moving harmonic trap the motion of the condensate center of
mass can be entirely decoupled from the evolution of the
condensate shape. We have extended the derivation by Mor-
ganet al.[12] to include the case where solitary-wave solu-
tions can propagate in three dimensions, as was indicated to
be possible by Margetigl3]. In the following we present a
brief summary of the results of our derivation.

We begin by postulating that solitary-wave solutions to
the TOP trap will have the form

Pswlr 1) = Yy (r = T(t)) e #HtHisrD. 36)

to radiusy. The remaining terntE=1()/4 represents the where the envelope wave functian(r) is an eigenstate of
energy of a point body rotating about the origin of the labo-the time-independent Gross-Pitaevskii equation for the TOP

ratory frame, at a radiug; with frequency(}, which is sim-

trap potential in the time-average approximation with chemi-

ply the expected energy shift associated with the transformasg) potentialuy, i.e., defined by Eq:34). The position offset

tion to the circularly translating framj.5].

in the envelope wave function is

The time evolution operator in the circularly translating
frame, as given by Eq30), substituted into Eq(26) yields
the Gross-Pitaevskii equation for a time-independent har-
monic trap, with an energy offset @f Thus, eigenstates of
the TOP trap in the circularly translating frame exist in theWhich can be interpreted as the time-dependent position of

quadratic average approximation. For clarity we write thesdhe center of mass of the solitary wave since the second
as integral is zero due to the particular form\gf(r). The phase

S(r,t) is determined by substituting the solitary-wave solu-
tion (36) into the time-dependent Gross-Pitaevskii equation
(3), whereL(r,t) is replaced byC,4r,t), in which the qua-
where yy(R) are the well-known solutions to the time- dratic average approximation is used, i.e.,

independent Gross-Pitaevskii  equation for a time- _ w2 5

independent harmonic trap, i.e., Lagr ) ==V +Vap(r,t)+C|¢(r,t)| '

r(t)= f Yau(I, DT Psndr, H)dr = J Puy(Drgp(ndr, (37)

P(R,1) = gy(R)e™mrtolt, (33

(38)

whereV,r,t) is given by Eq(7). Taking a similar approach

to that of Morganet al. [12] the Gross-Pitaevskii equation
can be separated into real and imaginary parts yielding two
equations. The equation derived from the imaginary part can
be simplified by writing

pra(R) =[= VA + Vu(R) + Clyn(RIyn(R).  (34)

C. Generalization to quantum field theory

The transformation given by E@25) can be applied to 1
the operator Heisenberg equations of motion for the full S(r,t) = —r - —— +K(r,1).
. - 2 dt

quantum field operato¥ (r,t). In much the same way as our
discussion above, this yields the equation of motion in the/Ve choose the trivial solutioK(r,t)=K(t) which is the only
circularly translating frame possible solution in the one-dimensional c§%2] and has

dr(t) (39
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also been suggested as the unique solution in the general
case[13]. Substituting the trivial solution into the equation
derived from the real part of the Gross-Pitaevskii equation

we find that oo2y
Fo\? WuE |
1 dr(t) :
K== [ [Tt —(—) }dt. 40 oot
®) 2 f [ ®) at (40)
By equating mixed differentials d(r,t), the center of mass °
motion of the solitary-wave solutions can be found to obey
1(92Rt) FIG. 2. A particular eigenstate of the two-dimensional equiva-
> == VF(r,t), (41 lent of Eq.(34), calculated numerically. The two-dimensional non-
J linear strength isC,,=600 and the chemical potential igy
which is a form of Ehrenfest’s theorem, where =10.56.
F(r,t) = Valr,t) = Vi (r = r(t)). (42) _ 1
2 . p(t) =- Eytﬂ(sin Ot,— cost,0). (47

For solitary-wave solutions to exist, in the form that we have

discussed, both sides of E@i1) must be independent of  These equations represent circular motion at the TOP trap
and therefore the fun.cthﬁ(r,t) must bg at most linear in ~ frequencyQ, with radiusy. Previously[2,9] the micromo-
The TOP trap potential in the quadratic average approximation position amplitude has been determined to bg/ Q2

tion obeys that criterion and thus solitary-wave solutions eXwhich is in agreement with our resysee Eq.(29)] in the

ist. It is possible to solve for(t) which has six constants of |imit O>1.

integration, given by the initial values of the center of mass With the center of mass motion for solitary-wave dynami-
position and momentum of the particular solitary-wave solual eigenstates of the TOP trap given by E@s6) and(47),

tion [see Eq(Al1)]. we find thatR=r-r(t) and the phas&(r,t) becomes

A. Solitary-wave solutions which are eigenstates S(rt)=- }%Qr - (sinQt, - cosOt,0) — «t. (48
in the circularly translating frame 2

The dynamical eigenstates calculated using the circulariMaking these substitutions, E@4) simplifies to Eq(33) so
translating frame, given by E@33), are a particular class of that all dynamical eigenstates of the TOP trap, calculated
solitary-wave solutions in the laboratory frame. This can beusing the circularly translating frame, are a particular class of
confirmed by transforming the solitary-wave solutions, assolitary-wave solutions in the laboratory frame with center of
given by Eq.(36), into the circularly translating frame, and mass motion given by Eqé46) and(47). This shows that the
requiring that these solutions satisfy the time-independer@rigin of the circularly translating framgrefer to Egs.(8)

Gross-Pitaevskii equation in that frame, i.e., and(9) with y=y] moves with the center of mass motion of
the solitary-wave dynamical eigenstates of the TOP trap,
pswlsw(R.1) = LofRD YR, 1), (43)  therefore justifying our choice of the circularly translating

frame for describing the TOP trap.
where

B. Dynamical eigenstates

— — + + . -
Yow(R1) = ghy(r = T(D) e inr(an Gt meosit 072 All the dynamical eigenstates of the TOP trap follow the
(44)  same circular trajectory in the laboratory frame, as given by
Egs. (46) and (47). This motion is independent of both the
chemical potential of the state and the nonlinear strength of
the system. Furthermore, the solitary-wave dynamical eigen-
states retain their orientation with the laboratory frame

In order to satisfy Eq43), the solitary-wave solutions of Eq. throughout their trajectory. _ _

(44) have a restriction om(t), as derived in Appendix A. As an example, a two-d|men_5|0nal ex0|t_ed state of the
Solitary-wave solutions of the laboratory frame are eigennvelope wave functiogy(x,y), with a nodal line along the
states of the TOP trap in the circularly translating frame ifY @Xis, is presented in Fig. 2. In the laboratory frame, the
and only if the initial conditions of the center of mass motion SClitary-wave dynamical eigenstate of the TOP trap, corre-
of the solitary-wave solutions have particular values suci$Ponding to the envelope wave function in Fig. 2, consists of

and

Hsw= pn 6. (45)

that the envelope wave function moving in a circular trajectory,
while maintaining its orientation with the laboratory frame,
T(t) = n(cosOt,sinQt, 0) (46)  and the orientation of the nodal line along thexis.
In the linear casgC=0) the solitary-wave dynamical
and, therefore, eigenstates form a complete basis for the TOP trap in the
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circularly translating frame. This is because these states, in 1~ =

the circularly translating frame, are eigenstates of the har- ay = §X+ iPy, (52
monic oscillator equation with an additional energy offset
[see Eqgs(30) and(33)]. 1~ .
ay = EY + ipy, (53)
C. Condensation and the ground state of the TOP trap

The groun_d state of the TQP trap system is th_e solitary- a,= V27 + “52, (54)
wave dynamical eigenstate with the lowest chemical poten-
tial in the circularly translating frame. This occurs when,  where [aJ,a’&]:&JK, andJ and K are one ofX, Y, or Z.
the chemical potential of the envelope wave function, takedaking these substitutions we find that
its lowest possible valugsee Eq.(45)]. Since, as noted in . —
Sec. Il C, the uncondensed atoms experience the same po- ng= alay+alay+aba  +e+ri+1+12 (59)
tential as the condensate, in the circularly translating framea

X - L nd

these thermalize during evaporation into the usual Bose-
Einstein distribution, and hence condensation from the vapor ~ . 1l + . 1 5
will be into the TOP trap ground state, as determined using (R) =~ Z(ax +aly + 2ayay) (Cos Ot - sir? Q1) + Z(av
the circularly translating frame. Therefore, the state into
which bosons condense, in the quadratic average approxima-
tion is the solitary-wave dynamical eigenstate given by Eq.
(44) with the envelope wave function being the ground state

; 1
of Eq (34) andﬁt) given by Eq(46) + ax)cosﬂt — Eyt(a$ + aY)Sin Ot - (a;r( + ax)(a$

1
+a2 + 2alay)(cog Ot - sir? Ot) - Eyt(a;r(

. 1
V. VALIDITY OF APPROXIMATIONS +ay)sin Ot cost - Z%Z (56)

A. Corrections to the quadratic average approximation

Throughout this work we have used the quadratic average, Ut|||z|_ng the number operator kets, which satisfy
approximation without assessing its validity. Here we give 2253yNy) =ny[ny), thet eigenket of the single particle Hamil-
systematic assessment of the validity regime of the quadrati©nian is|ny,ny,np)', i.e.,

average approximation for the linear cagéere the mean-

it t— et t
field interaction is neglected This allows simple analytic HadnxNv.n2)" = Elng nving)'. (57)
results to be obtained. The energy spectrum is given by
The single particle Hamiltonian, with the truncated time . 5 =
dependent TOP trap potential of E®), takes the form(in E=ng+tnytnz+e+rg+1l+y2, (58)

the circularly translating frame in agreement with Eqi45). The energy spectrum of the har-

monic oscillator terminates at _the ground stae0,0,
which has energyEy=s+rg+1+y2.

Wherel:lgp is the single particle Hamiltonian in the quadratic ~ USing time-dependent perturbation theory, the evolution
average approximation, i.e., of the ground state to first order in the perturbatw(R) is
given by

H =+ W(R), (49)

Hyp=Px+ P+ P2+ Vy(R) +e. (50) ot it

) t_ —i(EL—y2iat t, N
In Egs. (49) and (50) we have used an operator formalism ) = A)e™ {'0’0’9 ’ 4 (QZ_ 1 " O+1
where the position and momentum component operators are

. - -i0 - i i -i0
denoted byR andP;, respectively. The perturbative potential _e™ >|1,O'Qt+ 'ﬁ( de S )
W(R) accounts for the remaining terms of the TOP trap po- Q-1 4\0°-1 0+1 Q-1
tential of Eq.(2) that are not retained in the quadratic aver- L 2072t 20t 5720t .
age approximation. In the circularly translated frame, these ~ %[0,1,0 "5\ 0221 a0+l 0-1 11,1,0

terms are given by

1 ( 2e—2it eZiQt e—ZiQt

+— + -
0°-1 0+1 Q-1

t_ t
W(Ii):—%(f(z—\?z)(co§ Ot - sir? Qt)—%yt(f( cosOt 82 )(|2’O'O> |O’2’0>)}’

(59

+Y sin(Qt) - XY sint cosOt - %1%2 (51)  whereA(t) is a constant of normalization. From this expres-
sion we can deduce that the quadratic average approximation
The harmonic oscillator creation and annihilation opera-is valid in the linear case, within the parameter regime where
tors in the circularly translating frame are defined, in oury,<Q and 1<().
dimensionless units, as Nonlinear caselt is clear that a perturbative two time
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scale asymptotic expansion in powers ofll¢ould be made dynamical eigenstates of the full TOP trap system within the
for the nonlinear case. Thus, we expect that for the nonlinegparameter regime where
case, the quadratic average approximation is also valid
within the regime derived above for the linear case.

We have carried out two-dimensional numerial calcula-

2ro< Q3 <,

tions for the nonlinear case which verify this. For example, 1<, (62)
for a typical TOP trap system wherg=1241 and()=153, B
we have propagated the Gross-Pitaevskii equation using both 30C < \x’zmg.

the truncated TOP trap potential of &) and the potential ] ) o )
in the quadratic average approximation, given by &gy.An Typlcal experimental parameters are well within thg7s,e crite-
appropriate value for the two-dimensional nonlinear strengtfia. As an example, the Otago TOP trap system™ b,

is C,p=600 which corresponds t~2x 10* in the Otago ~ Wherea=55x10"1"m andw,=18 Hz[9], leads to the third
TOP trap[9]. The initial state was chosen to be the groundvalidity condition from Eq/(61) becomingN<rg so all three
state of the TOP trap in the quadratic average approximatiorgonditions are easily satisfied.

i.e., the ground state of E¢B4) calculated numerically using

optimization methods and shifted in position and momentum VI. THE ROTATING FRAME

according to Eqs(46) and (47) (at t=0). That state was

propagated by the Gross-Pitaevskii equation for one periO(ljjségI ?gezgigjlé?ee%rietéﬁﬂt:{ggkgp ﬁftrggrﬁgezaztgﬁeﬂn der
of the bias field rotation for two cases) with the truncated 9 P sy

TOP trap potential, giving/™"x, y, t=27/) and i) with various levels of approximatiof4,5]. However, it can be

the potential in the quadratic average approximation, yield_shown that using the rotating frame to describe the TOP trap

. allows only a limited set of dynamical eigenstates to be
ing y23{x,y,t=2x/€). The method used was an accuratef : S

. . . . ound. For completeness, we present this calculation in Ap-
fourth order algorithm, with a grid of 512512 points P b p

. . . pendix B where, using the same methods as in Secs. Ill and
over a GQK.GO range in position, and 20. 000 tme SteDS'IV, we show that a particular class of solitary-wave solutions
The deviation between the two solutions was found

- - o > in the laboratory frame are eigenstates of the time-
t_04 42; 1(§|§#runc(x’y’t_27ﬂm YAEx,y, t=2m/ Q) Fdxdy independent Gross-Pitaevskii equation in the rotating frame

[Eq. (B6)]. As before, these solitary-wave dynamical eigen-
states follow a circular trajectory in the laboratory frame,
described by Eqs(46) and (47), but unlike solitary-wave
dynamical eigenstates calculated using the circularly trans-
The validity of our solitary-wave dynamical eigenstates agating frame, the solitary-wave solutions which are eigen-
dynamical eigenstates of the full TOP trap depends on thregtates of Eq(B6) must also obey an additional symmetry,
validity conditions:(i) the adiabatic approximatiortii) the  \hich is that the envelope wave function must be an eigen-
truncation of the TOP trap potential from E@) to Eq.(2),  state of thez component of angular momentufsee Eq.
and(iii) the quadratic average approximation. The quadrati¢ggg)]. This condition requires solitary-wave dynamical
average approximation was found above to be valid in thgjgenstates calculated using the rotating frame to be cylindri-
regime wherey,<() and 1<(). We note that the condition ¢ajly symmetric about their center of mass. Figure 2 shows
% <Q can be rewritten asrg<Q?® The truncation of the an example of a dynamical eigenstate envelope wave func-
TOP trap potential to yiel®(r,t) of Eq.(2) is valid provided  tion with a corresponding solitary-wave dynamical eigen-
X, <ro Wherex, is one ofx, y, orz. A useful estimate ok,  state which does not satisfy the time-independent Gross-
is given by the sum of the Thomas-Fermi radius of thepitaevskii equation in the rotating frame. Physically we can
solitary-wave dynamical eigenstate envelope wave functiodee why: the nodal line of that solitary-wave dynamical
with the lowest chemical potential, and the radius of theeigenstate, which remains oriented a|0ng s,haxis in the

B. Validity of solitary-wave dynamical eigenstates

dynamical eigenstates trajectoty, This yields laboratory frame, will appear to rotate in the rotating frame
30C \ 15 so that the dynamical eigenstate is not stationary in that
N2 Solitary-wave dynamical eigenstates of the TOP trap re-

L ) ) ... . tain their orientation with respect to the laboratory frame as
whereC is given by Eq/(5). The adiabatic approximation is  hey move. Consequently, the rotating frame is not an appro-
valid when the bias field rotation frequendy is much  hiate choice for describing dynamical eigenstates of the
smaller than the Larmor precession frequency, given in OUrop trap system, because the eigenvalue equation in the ro
dimensionless units by the potential. As an estimate of th?ating frame incorporates the angular momentum operator,
Larmor precession frequency we use the magnitude ofnq pjaces additional symmetry constraints on dynamical

. . . 2
Vrop(r,t) which, assuming that, <ry, is of the order ofg.  gjgenstates of the system that are not in general necessary.
Thus, the adiabatic approximation is valid provided that

<r3.

Finally, collating the validity regimes we find that our
solitary-wave dynamical eigenstates, calculated using the cir- We have carried out a detailed characterization of conden-
cularly translating frame, are an accurate description of theate micromotion in a TOP trap, under some well-defined

VIl. DISCUSSION
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approximations. Those approximations, which are well justi-mass motiorr(t) for which such solutions exist. The center
fied for typical TOP traps ar@) the adiabatic approximation of mass motion can be solved in general using &d),
(which neglects spin precession effgctd) the assumption  which gives

that the condensate is located well within the circle of death,

and (i) the quadratic average approximati¢mhich time X(t) = (X, — wcost + vy sint + y cosOt,
averages quadratically oscillating terms in the potent@ur
treatment allows for condensate nonlinearity and we have y(t) =X, cost + (v, — Q)sint+ % sinQt, (A1)

shown that within these approximations, solitary-wave solu-

tions of the nonlinear Gross-Pitaevskii equation exist. We . _
have identified the circularly translating frame as the most Z(t) = X5 cOS 22t + —2.sin 22t
appropriate frame for describing the system, and have shown 22

that eigenstates can be found in that frame, and that the\x
must all be solitary-wave solutions of a certain type. In par-
ticular, all of the solitary-wave dynamical eigenstates have (vl_'UZ'US)' ) ) )
identical center of mass motion, which in the laboratory Eigenstates calculated using the circularly translating
frame is a circular trajectory with radiug and momentum ~ frame must satisfy both E¢43) and

here we have defined =g =(X;,X,X3) and dr(t)/dt|=q

magnitudey, /2. IR
Previous theoretical discussions of dynamical eigenstates oW IutSWlptSW(RVt)' (A2)
of the TOP trap have been given within similar approxima- dt

tions, but with the additional restriction that the nonlinearity I — . .
due to the atomic interactions is either approximated or ne—SlJbStItUtIng the solitary-wave solution of E@4) into Egs.

glected. Kuklovet al. [4] have obtained exact eigenstates for(43) an_d (A2), and T“a"'”g the change of variablesr

the linear Schrodinger equation within the adiabatic approxi-_ﬁt)' yields, respectively,

mation using the truncated TOP trap potential of &).and 1 1, 7 1/ dri)\2

those authors have also presented an approximate manyéSW:MH+—yt202+—r (1) + =2t +—<—>

body treatment. Their exact single particle solutions are ob- 2 4 4 4\ dt

tained using numerous transformations and the form of 1 1

eigenstate micromotion is not readily evident. Their method - E%Wt) - (cost,sin(t,0) + ES'W'E)

also employs the rotating frame which, as we have shown

within the quadratic average approximation, limits the pos- 1 dr(t) _ 7

sible dynamical eigenstates that can be found. Minegial. + 5%9 T -(sinQt, - cos()t,0) + 55'(0.0Zt))

[5] have used an approximate interaction picture method

which provides information about the atomic momentum 1 ,

modulation in a TOP trap, but does not describe the micro- Tons (cost,sin(1t,0)

motion in the position coordinates. -
Our choice of the circularly translating frame allows | dr(t) ,

solitary-wave dynamical eigenstates, which retain their ori- _'{T + nsinQt, - COSQLO)} -9(9) (A3)

entation relative to the laboratory frame, to be readily iden-

tified for the TOP trap system. These dynamical eigenstateand

have no restriction on the component of angular momen- 2

tum of the envelope wave function. By contrast, we have L=+ 27292_ }Fz(t) - }m) @ + %@)

shown that the dynamical eigenstates calculated using the 2" 4 2 a4\ dt

rotating frame constitute only a subset of the dynamical

eigenstates calculated using the circularly translating frame, - E%QZm) - (cosQt,sinOt,0)
and are required to be cylindrically symmetric about their 2
center of mass.
1 dr(t 1 dor(t

Finally, we have shown that the validity regime for the + —y@(l) - (sinQt,— cosOt,0) — =s- 272)
quadratic average approximation is defined by the conditions 2 dt 2 dt
1< and 2,<Q8. These criteria are well satisfied by ex- 1

2 .
isting TOP trap systems. —onlds (coslt,sin()t,0)
ACKNOWLEDGMENTS | dr(t) _
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APPENDIX A: RESTRICTIONS ON SOLITARY-WAVE (s) = VLH(S) (A5)

SOLUTIONS WHICH ARE EIGENSTATES (9

IN THE CIRCULARLY TRANSLATING FRAME Equating Eqs(A3) and(A4), and substituting the general
We seek solutions to E@43) which have the form of Eq. form ofr(t), given by Eq(A1l), we find that equality requires
(44). We will derive the particular form for the center of x;=0 andv;=0 and thereforez(t)=0. Inserting this result,
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and the general expressions #gt) andy(t) from Eq.(Al), using the rotating frame. That frame, with coordinatés

Egs.(A3) and(A4) both simplify to =(x',y’,Z'), rotates at the frequency of the bias field, and is
defined by the coordinate transformation
L= +}y292+E 2432+ 02+ 02— 29X + v ;
How= 1+ % 2G0T+ v~ 2n(x + v))] X' =x cosQt +y sinQt,
+ig(s) - [(x, = y)sint — vy cOSt, X, Sint y' = —xsinQt+y cosQt, (B1)

= (v = v))cost, 0]

1 ) zZ' =z
* ES [0 = wcost +uy sint,x, cost In the rotating frame the Gross-Pitaevskii equation becomes
+ (v2 = nYsint, 0]. (AB) iawazo

T S LTV, (82)

For the solitary-wave solutions of E¢44) to be eigenstates
of the TOP trap in the circularly translating frame, the chemi-where the evolution operator in the rotating frame is time-
cal potential,u‘SW must be independent af andt. Solving  independent and is given by

Eq. (A6) for g(s), att=0 andt=7/2, we find that R

Erap(r,lt) = Eap(rat) - QLZ(r’)

1 X+ (05 = %)
I =3 +C ’ O (et ’
M S = G otz v T ) == VE Viglr) - QL) + Ol
X1~ W2+ ] (B3)
= is, BZWE L sy, - . .
2 7 "o = (X = (2= %) and the wave function in the rotating frame &(r',t)
(A7) =yAr,t). The angular momentum in the rotating frame has a

component in the direction given by
wheres=(s;,s,,53), and Cy(s;) and Cx(s;) are constants of

integration. The only possible solution is therefore L) =i ’i—x’i (B4)
(X1,X%2,01,02)=(%,0,0,%1), which eliminatesg(s) and s AP =1y ax' ay')’
from Eq. (A6) yielding N -
N and we note that,(r')=L,(r) [15]. Finally, the TOP trap
= s+ Z%Z(Qz‘ 1), (A8) potential of Eq.(7) becomes, in the rotating frame,
N — 1 ’ 2 1 12 12
which is in agreement with Eq(45). Concluding then, Vaglr )‘Z(X +2r) +Z(y +829), (BS)

solitary-wave solutions described by E@4) which are

eigenstates of the TOP trap in the circularly translating framevhich is a stationary harmonic potential shifted from the
exist if and only if r(t)[4=0=(7%,0,0 and dr(t)/dt|,-  ONgIN. _ _

=(0,%4Q,0), and therefore the center of mass motion of Eigenstates of the TOP trap in the rotating frame obey the

these states in the laboratory frame, given in general by EC}i_me—independent Gross-Pitaevskii equation in that frame,
(A1), simplifies to 1€,

T(t) = %(cost,sint,0). (A9) m (0 = Lofr' Dy, p). (B6)

Here we show that a particular class of solitary-wave solu-
tions obey Eq.(B6). We denote solitary-wave solutions
which are TOP trap eigenstates in the rotating frame by
Pow(r’,t), with chemical potentialus,,. Transforming the

In this appendix we calculate dynamical eigenstates of theolitary-wave solution of Eq(36) into the rotating frame
TOP trap potential in the quadratic average approximatioryields

APPENDIX B: SOLITARY-WAVE DYNAMICAL
EIGENSTATES DERIVED USING THE ROTATING FRAME

lﬂrs W(r’,t) - ¢H(r _ﬁt))e—ith+iK(t)+ix’{[d?(t)/dt]cosQt+[th)/dt]sin Qt}/2+y’ {[dy(t)/dt]cos Qt-[dx(t)/dt]sin Qt}/2+iz'[d7(t)/dt]/2_ (57)

The detail of substituting EqB7) into Eq.(B6) and enforc- Solitary-wave dynamical eigenstates of the TOP trap po-
ing u" to be independent of spatial and temporal coordinatetential, in the quadratic average approximation, as calculated
is given later in this appendix. The results are discussed her@ the rotating frame, have two restrictions. The first is that
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the center of mass motion of the dynamical eigenstates must . 17 d’r(t) 1, 7

be given by Eqs(46) and(47). This is not suprising since we Msw= M = T t)- TR v+ Z?(t)
also found this restriction on solitary-wave dynamical eigen-
states calculated using the circularly translating frame. The

. 7
second restriction is that +1(t) - ro(cost,sinQt,0) + ES'(O,Oﬂt))

LD I = L), (88) #5710 + 2rg(cos Ot sin 2, 0]
enforcing the envelope wave function to be an eigenstate of 1 /d 1/4 2
the z component of angular momentum. This means that dy- _Q(@> - (y(t), = x(t),0) + _<@)
namical eigenstates, as calculated using the rotating frame, dt 4\ dt
must have a cylindrically symmetric density about their cen- 1 dylt)  dxit)
ter of mass. We found in our discussion of dynamical eigen- --0s- (—,— —,0) - Ql,(9)
states in Sec. IV B, that nonsymmetric dynamical eigenstates 2 dt dt
do exist for the TOP trap and that they are solitary-wave | driv) L
solutions in the laboratory frame retaining their orientation to gt Qy(t),=x(1),0) | -g(s) (B13)

that frame. Solitary-wave dynamical eigenstates which also
satisfy Eq.(B8) are only a subset of the dynamical eigen-and
states found using the circularly translating frame.

Substituting Eqs(46) and(B8) into the solitary-wave so- roo= lr_(t) . @ - 1?2(0 _1 . @

=puy— )
lution in the rotating frame, EqB7), the solitary-wave dy- How=Hn™ 3 ¢ 4 27 d?
namical eigenstates calculated using the rotating frame, i.e., 1 1 2
satisfying Eq.(B6), have the form + —Q(ﬂ) -(y(t),—x(t),0) + —(@>
2 dt 4\ dt
r r’,t - r’ eiytﬂy/IZ—i,urSV\/t’ B9 1 dwit d_t
Yolr' 0 = (1) (B9) _éﬂs( ?),_ 20'0)_9'2(5)
where we have explicitly extracted the time dependence in t t
the envelope wave function by writing | dr(t) o
| -i| T FO0W.-X0.0 | o, (B14)
a(r =T(1) = (r' ), (B10)
_ ) _ _ ) whereg(s) is given by Eq.(A5) and
The chemical potential spectrum in the rotating frame is R
LAS)¢hn(s)
/U“rSW: puyt+e—Ql,, (B11) IZ(S):Z'M-!—(:) (B1Y)

wherel, is defined by Eq(B8). The wave function phase = Equating Eqs(B13) and(B14), and substituting the gen-
%Qy'/2, in Eq.(B9), is derived from the coordinate depen- eral form ofr(t), given by Eq.(Al), we find that equality
dent phase of EqB7) and accounts for the center of mass requiresx;=0 andv;=0 and therefore(t)=0. Inserting this
momentum of the eigenstates, given in the laboratory framgagyt, and the general expressionsxt) andy(t) from Eq.

by Eq.(47). The chemical potential spectrum of the rotating(Al) Egs.(B13) and (B14) both simplify to
frame, given by Eq(B11), can be decomposed into three '

parts: the energy of the state that forms the envelope, the r _ —Qls +} 24352 + 2 + 2
additional energy offset, and an angular momentum term  *SW~ #H A9 4( 1+t vty
arising from the rotating frame, as expec{éd).

Restrictions on solitary-wave solutions which are eigen- + E[Q(lez_ voXy) + Y (Q2 = 1)]
states in the rotating frameNe seek solutions to E¢B6) 2
which have the form of EqB7). The conditions required for ~ig(s) - (c, cost + ¢, sint, c; cost — ¢, sint, 0)

such solitary-wave solutions to be eigenstates of the TOP
trap in the rotating frame can be found following a similar
structure to that used in Appendix A for the circularly trans-
lating frame. (B16)
Solitary-wave solutions which are to be TOP trap eigen-
states in the rotating frame must satisfy both B8f) and where ¢;=v;+ X%y, C=v,Q0—X;— %(Q%-1), C3=v,—OXy,
andc,=v,Q)+Xx,. For the solitary-wave solutions in the labo-
et ) ratory frame to be eigenstates of the TOP trap in the rotating
: at = uswibsw(r'.1). (B12) frame, the chemical potentials,, must be independent of
andt. Solving forg(s), att=0 andt=7/2, we find that the
Substituting the solitary wave solution of E@®7) into Eqs.  only possible solution occurs whep=c, andcs;=-c,. Sub-
(B6) and (B12), and making the change of variablesr  stituting back into Eq.(B16) we find that (c;,c,,C3,Cs)
—r(t), yields, respectively, =(0,0,0,0, or rather(xy,%s,v1,v2) =(%,0,0,%Q). Further-

1 . :
- ES - (c, cost - ¢, sint,— ¢, cost — ¢c3 sint, 0),
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more, we find thalz(s) must pe mdepen'dent af and the L9 (9 = (9. (B18)
chemical potential in the rotating frame is
The center of mass motion in the laboratory frame of
1 solitary-wave dynamical eigenstates calculated using the ro-
ro— < 2_1y_ tating frame is identical to that of solitary-wave dynamcial
How= Hn ¥ 4%2(Q V-l (B17) eigenstates found using the circularly translating frame.
Equation(B7) can now be written as

which is in agreement with Eqg(B11). Concluding then, zﬁs\,\,(r',t):wH(r—Wt))e‘Vto"z‘i(MH”)t, (B19)
solitary-wave solutions which are eigenstates of the TOP trap ) .
potential in the rotating frame exist if and onlyTitt)| ., ~ @"d using Eqs(B12) and(B18) it can be shown that

:(’Ytloio)! dﬂt)/dﬂ(tzo):(ol’ytﬂio)! and lr//H(r _ﬁt)) = d)(r,)eiﬂlzt' (BZO)
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