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Nonadiabatic effects in the dynamics of atoms confined in a cylindric time-orbiting-potential
magnetic trap
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In a time-orbiting-potential magnetic trap the neutral atoms are confined by means of an inhomogeneous
magnetic field superimposed onto an uniform rotating one. We perform an analytic study of the atomic motion
by taking into account the nonadiabatic effects arising from the spin dynamics about the local magnetic field.
Geometric like magnetic fields determined by Berry's phase appear within the quantum description. Applica-
tion of the time-dependent variational principle on the original quantum equation leads to a set of dynamical
evolution equations for the quantum average value of the position operator and spin variables. Within this
approximation we derive the quantum-mechanical ground-state configuration matching the classical adiabatic
solution and perform some numerical simulations.
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I. INTRODUCTION tive Hamiltonian governing the dynamics of the slow exter-
nal variables contains an induced gauge potential, the so-
called geometric potential. It also depends on the component

i ) ) ) €6t the magnetic moment in the direction of the magnetic field
of different time scales present in the system dynamical ev

lution. Th . ¢ o icall which is an adiabatic invariant approximatively conserved.
ution. Thus, a series of approximations, generically rmeqy, yhe ¢lassical limit the gauge geometric fields acting on the

heutral particle with a magnetic moment have been studied

by Aharonov and SterfB]; they found that the atom experi-
nces geometric Lorentz-type and electric-type forggs

SThe magnitudes of these forces do not depend on the ampli-

Th diabatic th 4 th | Itude of the magnetic field, but only on its local orientation.
nates. The quantum adiabatic theorem and the molecular |, . qer 1o treat the nonadiabatic corrections improved

Born-Oppenheimer approximation are well-known eXamplesBorn-Oppenheimer methods were introduced for the case of

of this a%pro_ach,T\r/]vnh Its or|g|nsd_|nbth_e eﬁrly dayz_of q”anr;arbitrary spin value$5]. Later the nonadiabatic terms modi-
tum mechanics. The quantum-adiabatic theorem dictates thali, o \he atomic motion were studied by several authors in

a system prepared in an eigenstate of its Ham|lto.n|an. W'l. he context of magnetic structures guiding or confining very
remain in the corresponding eigenstate as the Hamiltonian Sold atoms [6-9. The nonadiabatic corrections produce
varied slowly enough. If the Hamiltonian returns to its origi- '

- . spin-flip transitions, leading to atomic loss from the magnetic
nal form, the system assumes the original eigenstate multg,qorations, and also they modify the atomic motion.
plled by an appropriate dynamical ph{:lse _factor related to the, 5|6y [10] considered nonadiabatic dynamics of trapped
Instantaneous e|genyalue of the Haml!toman. Berry madc_a tetoms by applying an accurate method for solving nonlinear
mrt‘eres?ng obse(rjvatlodnbtha; |n.add|t|c|)n to the d?/n.am'c?llsystems of differential equations. High-order post-adiabatic
P asef actor produced by t gdt?l_gen\lla Ee time ev%utlon,t Eorrections, leading to geometric electromagnetism poten-
wave-function acquires an additional phase contribufldn a1 ‘haye been investigated for the elegant configuration of
This additional contribution, the geometric phase, depend

. an atom orbiting around a straight current-carrying Wirg.
only on the path traveled by the system in the space of exeq yerification of Berry's phase and its consequences a
ternal parameters.

: . ._hatural question is whether one can observe the direct modi-
A canonical example for a system where this behavio

i< that of | i ; X fication of the atomic motion in the classical limit for the
oceurs s that ora neut_ra particle carrying a m_ag_netlc MO%nduced gauge potentials. Measurements of the motion of a
ment and moving in an inhomogeneous magnetic field. Her

erhp?.lobidium Bose-Einstein condensate in a time-orbiting-
X : ) " tential(TOP) magnetic trap represent quite a strong indi-
slow variable is the atomic position and moment{@p If (TOP) mag b Tep d 9

g ) . cation for the existence of these geometric forfEz-14.
the magnetic field varies slowly enough in space, the effeCyypse gpservations were analyzed through a classical de-

scription for the condensate center-of-mass motion and for
the atomic magnetic moment.
*Electronic address: Roberto.Franzosi@df.unipi.it In the present paper we perform an analytic study of the
"Electronic address: Bruno.Zambon@df.unipi.it atomic quantum dynamics within TOP magnetic traps. We

The difficulty of analyzing a complex physical system is
greatly reduced when one is able to identify a certain numb

The very simple basic idea is that of dealing first with the
motion of the fast variables, keeping the slow ones fixed bu
arbitrary, and then to complete the analysis of the entire sy
tem by allowing a variation of the previously fixed coordi-
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take into account the nonadiabatic effects arising from the z

dynamics of the spin orientation around the local magnetic - Anti‘-ﬁlmholtz coil
field. Within a pure quantum description, the geometric mag- T i,

netic fields appear as a consequence of the presence of inho- ”///{%7////4%
mogeneous magnetic fields. In this context spinors quantities micromotion orbit

can be introduced to describe the atomic spin states, as done \

by Ho and Shenoy6] for Berry’s phase in atomic conden- [

sates in magnetic traps. By means of the time-dependent B,

variation principle(TDVP) [15] and by taking advantage of - Y
the time scale separation between slow and fast variables, we L

derive an effective atomic dynamics making the quantum

X (//////////i//i//////////‘

description analytically tractable. Thus, the atomic motion \
results in the coupling of a quantum harmonic motion, gov- Anti-Helmholiz coil
erning the atomic scalar wave function, and an effective non-
linear spin dynamics. The harmonic Hamiltonian depends on FIG. 1. Schematic representation of a cylindric TOP trap with
time-varying parameters that, in turn, are linked to the spirthe anti-Helmholtz coils producing a quadrupole field with vertical
state. Also the spin Hamiltonian parameters are time depersymmetry, theB, bias field rotating at angular frequenay in the
dent, as they result from the atomic wave-function expectaborizontal plane, and the atomic clodalack sphergfollowing the
tion values of the above geometric operators. Within thigmicromotion orbit.
nonadiabatic approximation the ground-state configuration
matches well the adiabatic solution. We also performed nu- The single-particle Hamiltonian for the atoms inside a
merical simulations with these new equations. For the pamagnetic field configuration which characterizes the trap ge-
rameters suggested by the standard experimental setup wenetry is given by
found that the adiabatic approximation is well suited. Never- 2
theless, by reducing the intensity of the bias field, nonadia- H(t) = LA mgz- K. B(x,1), (1)
batic effects show up, because under these conditions the 2m S
influence of the geqmetric field; is more relevant. A regen(/vheres are the spin operators of the/ij representation,
worl_< [16] hals.exanr:me((:;_thbeolretlcally the C(_)ndens(;ite m.'clrloénd the last term takes into account the magnetic interaction
rolr, SRRy he adabatc sphroxmLon a1 Pl energy of an atom wih magnetc moms/= and prjec:

. ; . tion u=—|u| along the magnetic fiel8. We also adopt the
mation to a frame circularly translating at the frequency of

o : . representatiork=xX+yy+zz for the position vector. For a
the TOP magnetic field. That approach, neglecting spin Prerop trap the magnetic field is the superposition of a static

cession effects leading to the breakdown of the adiabati . . :
approximation, cannot be directly applied to the analysis O&ugdrupole field and one rotating at the radio frequemiy
T.

geometric forces.
Section I summarizes the classical analysis based on the B(x,t) =b(x) + By(t). (2)

adiabatic approximation and leading to the atomic micromo-

tion. Section Il reports a quantum analysis of the atomic/lS components are

motion within the adiabatic approximation by taking into

) b(x) = bk + byyy +b,22 (3)
account the lowest-frequency terms of the time-dependent
potential. Within this approximation we recover the quantumand
counterpart of the classical micromotion. Section IV studies - . -
b B:(t) = Bocoq wt)X + Bysin(wrt)y. (4)

the quantum dynamics of atoms into TOP traps. In Sec. V, by
means of the TDVP, we derive an effective dynamics for theThe magnetic field parameters define the specific type of
atomic motion. Section VI reports numerical simulations forTOP trap we are analyzinfP4]. By supposing the rf field
the dynamical regime of the atomic motion. rotating in the horizontak,y plane we define the TOP ge-
ometry of the traps operating at Bouldgk7] and at Pisa
[25]. In this work we analyze the dynamics of a cylindric
TOP trap with
Bose-Einstein condensation in dilute atomic gas is created be=b,=-bJ2=b (5)
by trapping cold atoms in a magnetic trap of which the loffe- oy '
Pritchard(IP) and time-orbiting potentials are the most com- For the usual TOP trap three different time scales exists: the
mon ones. In a TOP trap the magnetic field, schematicallyastest motion, given by the Larmor frequenayand related
represented in the inset of Fig. 1, is composed of a quadrue the spin precession around the local magnetic field; the
pole (inhomogeneousfield and a rotatingtime-dependent  magnetic bias field rotating frequeney giving rise to time-
bias field,B,. The TOP trap, introduced ifiL7] for the very  dependent forces at the frequenegs2wr, ..., and aslower
first experiments on Bose-Einstein condensafij, is em-  motion associated with the atom spatial motion given by the
ployed by a number of research groups producing Bosetrap harmonic frequencyy,. These time scales are in order
Einstein condensatg49,21,20—-23 of magnitude,—i.e.w, < w1 << w,—thus making possible the

II. TOP TRAP
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adiabatic approximation. In the first place the fast spin pre- Bixnstz br and Bizﬂst: - 2bz+ wru, (8)

cession around the local magnetic field allows us to consider ] ) ] o i

atoms spin locked to the local magnetic field throughout théh€ Z component including the uniform fictious magnetic

whole spatial motion. This leads to an adiabatic-time depenfiéld which appears in the rotating frame. In order to have a

dent potentialU=—(u/s)s-B(x,t)=|u|-|B(x,t)|. Second by stable motion, as produc_ed by a conflr_ung potential energy,

averaging in tim@over a period #/w-) this potential and by e component of the spin along tieaxis should be posi-

keeping only the slowest component gives rise to a harmoniiVe: In fact the stability along the axis, requiring a zero

potential spatially confining the condensate. The next ordeferce along this direction, leads to

of approximation examines the fast variab{ésst with re- S, mg

spect to the harmonic dynamics at frequengy related to —=—"=¢ (9

the time-dependent potenti@t frequencywy). An exhaus- s 2bjy

tive computation of this approximation is found [iR6]. The centrifugal force balancing the gradient force yields the
Gov and Shtrikmari27] have used the standard classical radius of the micromotion:

equations of the atomic motion of a magnetic moment within

a TOP in which all the different time scales are present. In r= @a o= JW (10)

this context a steady periodic orbit can be found exactly mw% ’ v '

without resorting to any approximation. This periodic solu- , ) )

tion corresponds to what it is known as tamic micromo- Where¢ anda are, respectively, the cosinus and sinus of the

tion [28] (see Fig. 1 As the atoms trace out the atomic angle that the effectlve flel_ﬂi'nSt forms W|t_h thez axis. In

micromotion orbit, the magnitude and direction of the localOrder to determine the.q height of the periodic orbit under

magnetic field change in space and time, with the magnetigxammatlon, thg following parameters also useful in the sub-

moment of the atom precessing around the direction of th&eduent analysis are required:

field. In fact, given the Hamiltonian of Eql) a dynamical

state| V) satisfies the following center-of-mass equations of s= w—TS, p= i), (11
motion: mb b
R p being the radius of the circle of death7] ands is twice
m—:EV[S-b(R)]—mgi the amount the zero point of the quadrupole field shifts
da? s downwards for the effect of the uniform fictitious magnetic

field which appears in the rotating frame. In terms of these

dS u parameters the equilibrium heighi, can be expressed as
— = —(¥|s X B(x,1)|¥), (6)
dt s S £ Bo+br\ s £&(p |ulb
== =S 52D (19
whereR=XX+Y{+Z2=(P|x|¥) is the expectation value of 2 N1-¢\ 2 2 2\a Moy
the center-of-mass position, aBFSX+SJ+S,2=(¥[sV¥) The above analysis suggests that the adiabatic approxima-
is the expectation value of the atomic spin. tion is more rigorous if we refer t8""! instead of the real

Thus we are led to a set of equations which are not closednagnetic field. Indeed, in the motion described above the
However, if the quantum mechanical wave function can beadiabatic approximation is completely fulfilled with respect
factorized, as to the lowest-order approximation, we mayo this field. However, for more general solutions of EG8.
write (sX B(X,1))=(s) X(B(x,1)) [29]. Within this approxi-  the behavior is different and we must also account for a spin
mation the above system of equations becomes closed amdmponent orthogonal to the local magnetic field. In any
assumes the form case, as will be shown in the numerical simulations, the pro-

) jection of the magnetic moment along this field is a much
md_R -ty [S-b(R)] - mg better conserved quantity with respect to that along the real

a2 s field. In Refs.[3,30 the effect of the components perpen-

dicular to the real magnetic field have been examined and it
ds u was found that a small misalignment with respect to this field

— ==SX B(R,1). (7 gives rise to a Lorentz-type force. An additional electric-type

dt s force is originated by the time average of the fast oscillatory
force induced by the spin precession. Both kind of forces,

ffecting the center-of mass dynamics, are geometric forces
ecause they do not depend on the magnitude of the mag-
netic field but only on its orientation.

The simplest periodic solutions generated by E@sgive a
good estimate of the fast center-of-mass condensa
dynamics,—i.e., the atomic micromotion. This motion was
experimentally observed in a triaxial TOP trap in R@f2].
This periodic solution is best viewed in a frame rotating with
the bias magnetic field. In this frame the magnetic moment
results in being aligned to the effective magnetic field and
the atomic center of mass is at rest. The not-null components
of the effective field in the rotating frame, with horizontal ~ The gross features of the atomic confinement in a mag-
component along the axis, are netic trap are explained in terms of the adiabatic approxima-

Ill. FROM A CLASSICAL TO QUANTUM ADIABATIC
APPROXIMATION
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tion. If this is fulfiled—that is, when either strong magnetic consider®(x,t) as a slowly varying function of tim¢31].
fields or slowly varying in space fields are involved—the Notice the explicit dependence on the parameteBubsti-
projectionso of the magnetic moment along the direction of tuting Eq.(19) into the Schrédinger equation with the poten-
the magnetic field is an adiabatic invariant approximativelytja| Uf), we get

conserved. The analysis of the previous section points out
that an improvement over the standard adiabatic approxim
tion is obtained by replacing the field with B™S'. Thus,

from Eq. (1) we obtain the adiabatic Hamiltonian to be
2
[0 2— p
ad~ ?ﬂ +Uqq, (13

where

Uaq=mgz+ 0'|,u|[(bx+ Bocos wrt)? + (by + Bysin wrt)?

211/2
+<— bz+ “’—Ts) } . (14)
)%

2 1
Fhad(x,t,0) = [;—m +Ug+ (mg+ %)ﬁ Em[wﬁyr(x2 +y?)

+ wé,zéz]}fb(x,t,cr) + {% Vw-V

1
+—|Vw?
2m

+ i—ﬁvzw}tb(x,t,a). (21)
2m

The above assumptions on the different time scales allow us
to consider the coefficients of the oscillating terms at fre-
quencieswt and 2wt as slowly varying ones. Indeed a time

For small displacements of the atoms from the equilibrium(.;weragle over the short timer2w; leads to

position(0, 0 ,h), the adiabatic potentidl,4 can be expanded
in a power series of the displacement coordindiey, =z

—Zyy), and up to the second order we have

o 1
U2 =+ m9<1 + —7’)z+ “mlwd, 08 +y?) + wh %]

B 2
+Ug+ U(1). (15
Here the time-independent component is
Uo=mgzq+ oB|u|By (16)
and the time-dependent component is
0|M|b< 2775) . alub_
U(t,o0) = ———| 1 -—~ | (X coswt + y Sinwyt) — [(x
B :82 p T T 4PB3
- y?)coq2w1t) + 2xy sin(2w+t)]. (17)
The new adimensional constants here introduced are
2700~ —
n:iz_' B=N1+17,

while the oscillation frequencies are

_ [olulb2y” + 1) _ |4alulb
wor = 2mpﬂ3 v Woz= mp,BS . (18

2 0—2
o= {s_m ’ mg<1 e 2pﬂ‘7‘7§2%>§
T

+ %m[w?(xz +y?) + wizz]}cm,t), (22

where the irrelevant constant terms have been dropped. This
equation displays a three-dimensional harmonic oscillator
structure whose frequences are

o g (327+1 ¥
wr=wor 1+ 3 2 2 ;
16£B° pwt (2777 + 1)
1/2
o g
=wo| Lt —=5—57| 23
Wz wO,z|: 2,83pw-2|-7]2:| ( )

in the xy plane and along the direction, respectively. The
equilibrium position along the axis is obtained by setting to
zero the term multiplying in Eqg. (22) . Neglecting smaller
contributions, the equilibrium atomic position is given by

Zef(0) =52 = p&l(2\0” = £). (24)

In the limit o=1 the classical solution of Eq12) up to a
small term containing;o}2 is matched. The expectation value
of the particle momentump on the stat€19) is

Two time scales are involved iU(Zd), the slower one being 5 =

. . . ad’ I |,u|b\0'2 - ¢ )
associated with the harmonic motion at the oscillation fre- (p) = ————(- sin wyt,coswrt,0). (25)
quencieswy, and wg,, Whereas the faster one is associated ot

with the bias frequencyr. The oscillating forces have van- s result is only in part equivalent to the classical one of

ishing time averages over a perioér/2oy. This can be sub-

stantiated by the wave function factorization
P(x,t,0) =d(x,t,0)E(X,t,0), (19
where
E=exd-iw/h] (20

andw= [{dtU(t, o) describes the dominant effects of the os-

Eg. (12) because here the instantaneous position vadyés
always zero.

IV. QUANTUM DYNAMICS
A. Effective Hamiltonian

The quantum dynamics is more properly addressed by

cillating potential. The time-scale separation allows us totransforming the original equations into a spin reference
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frame rotating at the bias field frequency. Thus the waveEgs. (28). Berry’s geometric terms appear in the quantum

function |[WR) in the rotating frame is written ag¥R) Hamiltonian through these angles. By direct computation the
=R,(—wt)|¥)=exd (i/#)s,wt]|¥), whereR,(9) is the rota-  following relations are derived:

tion around the axis by an angle} and| W) is the laboratory R R R R R

frame wave function. Then the Schrddinger equation for 9= [B"x(B" X VB )]Z, (P:[BX—VBRL,
|WR) becomes (B®)2\(BR)2 - (BR)? (BR)? - (B)?

iR = iBAR(- wrt) ) = [H' (1) - hors, ][ TR)

_[BRx (BRx 9BP)], _ [BRx gBR],
=Hw, (26) W - Ee T B B

whereH’ (t) =R,(-w1t)H(1)R,(w1t) is time dependent and (33)

2

HR = H'(t) - fiwrs, = ;_m+mgz_ ,L_SLS_ BR(x.1), (27) These terms, invariant with the modulus of the magnetic

field, are geometric fields depending only on the force lines
) ) . of the magnetic field—i.e., the field geometry. Their explicit
with BR(x,t)=[By+b(x coswrt+y sinwrt) IX+b(y cosott  form is given in Appendix B.

X Sinwrt)y+(-2bz+ wrs/ 1) 2. HereBR is the magnetic field Notice that, starting from the Hamiltoniatl), which is

in the spin-rotating frame, a constant bias field, and a rotatiinear in the spin operators, the nonadiabatic terms give rise
ing inhomogeneous field. This effective magnetic fieldto a dynamics with a quadratic dependence in the spins. We
BR(x,t) =B{X+B[y+B}z identifies the position-dependent may write HR in a form that puts this in more evidence,

anglesd and ¢ as )

V(B2 + (BE)? B He= om T mozr 2 s+ 2 gfss, (39
9= arctanX—BRL, ¢= arctarE’F%, (28 i Ik
z X where the indicesi, j,k) run on(x,y,z), and the spin coef-
and BR=/(BY)?+(BR)2+(BY)2. ficients are
. 1
B. Local basis h*= orlPSin? V ¢+ sin 9V gp] + sin dyg,

It is useful to introduce a coordinate-dependent spin basis
{lxm(x, 1))} such that L
Y=——[pVI+VIp]- O
s-BR(x,1) , _ h [p p]l - a9,
g ) =mxn(x0) for—j<=m=j. am
(29
The local basis vectors in which tlzeaxis coincides with the
magnetic field in the same point can be given in terms of the
anglesd and ¢ through the rotation operatdi(¢,) as g*= isinz 9|V g2

X)) = M, ).k = e s sy 1 (30) am

1
hz=- %BR - ;n[p cosdV e + cosiVep] - cosdde,

With the total wave function expanded as¥R) wy_ L v 92
:E{n:_j PN, 1) xm(X,1)), the Hamiltonian of Eq.(27) be- 97 = 2m| %
comes
HR= 2 4 gz LBRGs, + {2 - + p(A) + A%} +V G7= ~cof 0]V of
= om g S S om p+p , om
(31) 1
with g=g7*= - _sind cosh|V gl (39)
A=-(s,co8d-ssinh)Vp -5V, and g*=0 otherwise. Let us recall that all the operators
hi,gjc are Hermitian ones.
V= -(s,cosd - s, sind) drp — 5,0 (32

Appendix A contains details useful to derive the functions in V. BEYOND THE ADIABATIC APPROXIMATION
Eqg. (32 . A andV represent pseudopotentials connected to
the Lorentz-like and electriclike kinds of forces introduced in
Ref. [3]. Similar pseudopotentials were derived [i5] as Since the exact solution of the Schrodinger equatizB)
nonadiabatic corrections. The functiogsx,t) and J(x,t) is an impracticable task, the dynamics will be taken into
depend on the effective magnetic field geometry as stated iaccount in an effective way by resorting to the TDYE]

A. Effective spin dynamics

053603-5
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and by exploiting the time-scale separation between fast ancenter-of-mass dynamics, which will depend on the longitu-
slow degrees of freedom. The TDVP procedure allows us tainal spin component, has the slowest time scale in the
reduce the system quantum dynamics to a semiclassicaystem,—i.e.t,~ 27/ w,—whereas the fastest time scale
Hamiltonian form. This procedure was introduced for study-corresponds to the transverse spin dynamics driven at the
ing the low-lying collective states in nuclei, but was later Larmor frequencyw,. Indeed S(t)—i.e., the longitudinal
shown to provide a valid approximation also for the onespin component—is an approximatively conserved adiabatic
particle Schrodinger equation. Within this procedure, whosénvariant. For this reason we can assume the center-of-mass
details are shown in Appendix C, we choose a suitable triainotion to be sensitive not just to the instantaneous value of

state of the form S,(t) but rather to its time average on a tihéntermediate

Hx,0) = exd— ISOMTT D), D), (36) betweert, andt, =27/ w_ which we names ¢. Thus we have
which will be subjected to the weaker form of the o(t) = <SZ>, (39
Schrédinger equation embodied into TDVP—i.e., EGQ1) S

in Appendix C. Here(x,t) and|j, (1)) take in account for  \here(s,) stands for the above time average. This coincides

the center-of-mass motion and spin dynamics, respectivelyy;ih the definition previously introduced within the adiabatic
S(t) is an effective action for the spin variables. By carrying o oximation assumption. Since the evolution of this quan-

out the variational procedure on the trial wave function Wetity is much slower than the bias frequeney(w,< 1), its
derive the class!cal equations of motion for the expectationjme dependence is maintained in the ruling equations even
values of the spin operatoss on the spin component of the  4ier averaging over the short time scale of the bias-field
dynamical trial statéj, (t)). A key point in this variational time-dependent terms as done in order to arrive to(E2)..

procedure is the parar_netrization of the spin variables ”As a consequence the wave function solution of @8) can
terms of coherent atomic states. These latter have the physis \yritten as

cal significance of angular momentum states produced by a
classical sourcg32]. They depend on a complex parameter d(x,t,0) =, ChEn ()DL (X,0), (40)
and are defined as {n}

1 i 2] 12 where the vector index means=(n;,n,,n3) along the three
lj, 7= o > {( ) )} A™Mj,m), (37)  orthogonal directions and the constagtsare determined by
[1+]7] me-j LAG+ M) the atomic initial conditions. The functionb, (x, o) are the

where |j,n) are the spin basis with the quantization axis eigenfunctions of the three-dimensional harmonic oscillator

taken along the direction of the local field. These statesWith eigenvalues
analogous to the coherent states of the electromagnetic field, 1 (oub
are defined within a subspace determined by the angular mo-E,(o) = Uy + —(—
mentumj. Within this subspace each state, completely de- 2m\ Bor
fined by the complex numbet is mapped onto the direction 1

of a vector on a sphere by a projective transformafiti). X(“s*‘ 5)

In our case this vector identifies the orientation of a classical

spin with respect to a local frame having thaxis along the — and &,(t)=exdiy,(t)/%—i[} dtE,(o(t))/%] embodies also a
local magnetic fieldBR(x,t). This property can be under- geometric phase

stood by computing the expectation values of the spin com-

2
) +hao(o)(ng+ Ny + 1) +fiw(0)

(41)

) SR S a(t) _
pone_n'fs orlj, 7. By keeping in mind the parametrizatian (D) = ihf dUU qu)n(X,cr)i(I)n(X,O') . (42
=—e7¢ tan?¥'/2) we find o(0) do
Sy={(j,7sj,7 = jh sin®’ cosp’, The parametews(t) entering into the equations of motion for
the atomic center of mass is actually a dynamical degree of
S, =, s, 7 = j# sind’ sing’ freedom whose evolution is generated by the classical spin

dynamics. Thus, the center-of-mass motion and the spin dy-
i N , namics interact the one with the other and they must be si-
S, =(j 78 lj, 7) = j# cosd”. (38) multaneously integrated. Let us stress that the dynamics we

where 9’ and ¢’ are the angles between the classical Spinhave just found is the classical canonical counterpart of that
and the local magnetic field. The details of the spin dynamic®ne generated by the full quantum Hamiltonian written in
derivation are contained in Appendix C. Their ruling equa-Ed. (34).
tions are generated by the classical Hamiltonian of(Ed).

Let us focus on the center-of-mass motion described by
the wave function¥’(x,t) as in Eq.(19) . The trapping po-
tential obtained by the application of TDVP procedure as In order to find the nonadiabatic corrections to the
from Eq. (C2) can be expanded in a power series of theground-state solutiofl), we assume that this solution is well
displacement coordinates around the trap center by keepingpresented also if we keep the lowest order in the expression
only the harmonic terms. In this respect we recall that theof the Hamiltonian of Eq.(C4)—i.e., the first order in

B. Ground-state configuration
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(x/p,ylp,Zlp) appearing itHR. This means that the Hamil-

tonian parameters of E¢C4) , the classical form of Eq34),

can be computed as an average on the adiabaticlike ground-
state solution of Eq(19) of the approximated operators
h',gik. Therefore at the lowest order of approximation the

terms in Eq.(35) result:

hX = m—,ljﬂ[— sin(wrt)py + cogwrt)py ],

1 .
h = - mpﬂz{n[cos(th)pX +sin(wrt)py] + 20},
ubp 7 :
hZ= - Tﬁ - m_pﬁ[_ Slr(w-rt)px + Coint) py]!
1
XX~ &
g 2mp2B2'
Yy ~ 3+p°
2mp?B*’
gzz2 772
ZmPZBZ’
XZ _ _
g omp232

Recalling the expectation value of the momentumgiven by
Eg. (25) and neglecting the terms containingp?/we have

(2B _ao
0P =1 2P wr

KBy _ 2B o,

Moy ==F~5 " @+ 217) wr

and O otherwise. The corresponding classical spin Hamil-

tonian is, apart from a constant,
H(Swsy:SZ) = <hz(0)>8x + <h(ZO)>821
whose equations of motion result:

SX == <h(ZO)>S ’
Sy == <h)((0)>82 + <h(ZO)>SX1

S,= (NS, 43

By settingSizo with (i=x,y,z) we determine the ground-

state configuration

PHYSICAL REVIEW A 70, 053603(2004)

(hop A
(89,82,89) = (t - ,
Y (hioy) 1 + (R hEy )2

(44)

e P )
T LHNGKNG? )

It is worth remarking on the fact thahjg) and (hf,) still

depend onozﬁ/s, and thus Eq.(44) determines such a
quantity only in a self-consistent way. We point out that in
the above equations the plus sign corresponds to the stable
solution for the atomic motion in a similar fashion as in the
classical description corresponding to Eg). The S° solu-

tion, with the spin aligned to the local magnetic field, pro-
vides a correction to the adiabatic approximation discussed
before. We notice that a componesi different from zero
appears because in the rotating frame the rf field acts along
the x axis.

C. Effective classical dynamics

The center-of-mass motion is described by the wave func-
tion W(x,t)=d(x,t,0)E(X,t,0) introduced in Eq(36) . The
exponential facto€(x,t, o) has been defined in ER0) and
d(x,t,0) satisfies the time-dependent Schrédinger equation
(22) for the three-dimensional harmonic oscillator the Hamil-
tonian of which isH=p?/(2m)+U(x, o(t)). In terms of the
frequencieg23) and of the equilibrium atomic positiai24),
the time-dependent harmonic potential has the form
Un(x, o(t) =m{w?(o (1) (< +y?) + wX(o(t))[2- Zegl (1) 12}/ 2.

Upon introducing the center-of-mass positioRR
=(¥|x|¥) and momentunP=(W¥|p|¥), the following classi-
cal equations of motion are easily derived:

drR

dt

P
m

dP dAP
== VRUy(R,a(t) - ——
at rRUn(R, (1)) ar

(45)
whereAP=[dx|®(x,t)|>Vw(x,t) ando(t) is defined by Eq.
(39) . Now we introduce a further factorization of the kind
(PT|O(x,t)p| )= O(R,t)P, where O(x,t)p stands for the
first three among the operators appearing into [E8fs). ex-
panded in a power series fandp up to second ord€i33].
Then by considering only the linear terms in spin variables
appearing into the classical spin Hamiltonié@®4) we can
write

H(S06S,S) = 2 ()S;, (46)

where the time-dependent coefficients are implicit in the
center-of-mass wave functioff(x,t) as given in Eq(C5).
Thus in Appendix C we derive the following equation of
motion for the classical spin:
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ds
—=B() X S. (47)
dt
-602.56
where the magnetic field is the sum of the real one plus
some fictitious terms having originated from the geometric

forces with components -602.64
P -602.68
BRx||—=-V +4]BR
Bi(t) = m 2 -602.72
X - [ ’
BRV(BY)? + (BJ)?
-0.0
P
ot e[ (5 v e}
B,(t)=- z
y i )
(BY)ZV(BY)? + (BF)?
FIG. 2. Plot of a three-dimensional trajectory originated by ini-
R R =] R tial conditions close to those corresponding to the micromotion. The
B/\B™ X || -V +4|B numbers on the axes express the coordinatgsin This trajectory
B,(t) = - EBR - z corresponds to 5 times ther2wy period. It is not closed, while a
A0 R (BR\Z 1 (BR)2
S B"L(By)" + (By)“] stable micromotion orbit corresponds to a closed motion. The num-

(48) ber on the axes express the coordinategrim

Thus, the two equation syster(#5) and(47) form a closed  ffilled when wy~ w,, our working assumptions, based on

system to be simultaneously integrated. w,,w, <o, still hold. A further source of failure for the adia-
batic approximation comes for an intensity of the geometric
V1. NUMERICAL SIMULATIONS magnetic fields of Eqg48) being of the same order of mag-

nitude of the applied real ones. This occurs, for example, at

We have numerically integrated the set of equatigts bias field intensities of the order &,=2x 10" T. Notice
and (47) by means of a Runge-Kutta algorithm. The set ofthat for this weak rotating rf field, the trap oscillation fre-
parameters chosen—i.é8y=4x10° T, b=0.18 T/m, and quencies of Eq(18) are large enough to sustain the atoms
wr=2mXx 10* s1—correspond to those used in TOP experi-against gravity. However the radipsf the circle of death of
ments exploring the rubidium micromotidi2,13, but we  Eg. (11) becomes comparable to the radiusf the micro-
supposed=1/24. The simulations allowed us to recover the motion orbit. Figures @)—3(c) show the components & as
atomic micromotion, representing periodic closed orbits. The function of time obtained with initial conditions very close
micromotion was investigated through the classical equato those of a micromotion orbit. For this set of parameters it
tions of motion(7) and also through the improved system of is interesting to make a comparison between the atom dy-
equationg45) and(47). Similar results were obtained for the namics generated by the classical equation of motion and the
center-of-mass motion. In both approaches we observed effective improved equations of motion. The latter give rise
strong dependence on the initial conditions, which for theto a stable motion, shown in Fig(® traced by integrating
classical center-of-mass variables are given by Etfy.and  the effective equationgl5) and(47). Under the same initial
(25). For the spin variable the classical condition corre-conditions the classical equations of motion generate an un-
sponds to the spin aligned along the lo&i'' magnetic ~ stable trajectory with the atoms conserving initially a con-
field, while the quantum-mechanical solution requires thestant heightz=0.73 um and then after several milliseconds
atom to be in an eigenstate of the spin operator along thescaping from the trap. The more stable character of the
local magnetic field. A modification of the initial conditions effective equations solution in respect to the classical ones is
from those required for the atomic micromotion—for in- made evident by comparing the spin projection al&ftin
stance, a shift of 10@m along thez axis—produced the both cases. By numerically integrating the effective equa-
open trajectories shown in Fig. 2. We noticed also a strongions (45) and(47), we found oscillations of -B™"SY/ |S||B™*Y
dependence on the initial condition for the atomic spin. Wenear the stable value 1. On the contrary, by integrating the
also verified that within the parameters used here the corre@lassical equationé7), we found a spin flip that causes the
tion to the adiabatic approximation expressed by @4) is  condensate escape from the trap. The important role played
not quite relevant. We verified numerically that the spin pro-by the terms originated by the nonadiabatic approximation
jection along the effective magnetic fieRI"s' given by Eq.  appears very clearly when we compared the atomic equilib-
(8) is well conserved while the spin projection along the realrium within the TOPz, as derived by the classical solution
magnetic fieldB evidences time-dependent oscillations, asto that predicted by the effective equatio@b) and (47).
already stated by Refl11]. That comparison is shown in Fig. 4 for a fixed quadrupole

We have explored also a different region of parametefield b=0.18 T/m and a rf rotating field3, between 1
values, where we expect the adiabatic approximation to< 10 T and 2< 107" T. At large B, the valuesz, predicted
break down. While the adiabaticity condition is certainly notby the classical solution and the improved one coincide. In-

053603-8



NONADIABATIC EFFECTS IN THE DYNAMICS OF..

B,(nT)

By (nT)

B,(nT)
g

-2104

z(t) (um)

°
1

(a)

(b)

@

timez(ms)

<

PHYSICAL REVIEW A 70, 053603(2004)

approximate classical equations of motion describing such
system and revisited the fast degrees of freedom motion at
the forcing frequencywt known as atomic micromotion. In
such a motion nonadiabatic effects and geometric fields are
absent. Within the scenario of adiabatic approximation, we
have analyzed the atomic quantum motion by taking into
account the lowest-frequencies terms embodied in the time-
dependent potential. Within this approximation, the center-
of-mass motion resulting harmonic, we have calculated the
harmonic trapping frequences and recovered the quantum
counterpart of the classical micromotion. We have addressed
the problem also within a pure quantum context, with a sepa-
ration of the atomic variables of the spin and of the external
degrees of freedom once again based on their different time
scales. Within this quantum context, as a consequence of the
presence of inhomogeneous magnetic fields geometric mag-
netic fields appear quite naturally. These geometric fields are
responsible for a misalignment of the atomic spin with re-
spect to the local magnetic field and then for nonadiabatic
effects. Within this framework, we have derived an effective
classical dynamics in which these geometric fields are ex-
plicitly embodied. The atomic motion results by the coupling

FIG. 3. In(a), (b), and(c) plots of theB,, B,, andB, geometric of a quantum harmpnlc motion, governing the center of
fields, in units of 1 X 10°° T, as a function of time in ms for atomic Mass, and an effective nonlinear spin dynamics driven by
motion within a TOP trap with a rf bias field of 200 nT. {d) the ~ both the local magnetic field and the geometric ones.

z position, inum, of the atomic center of mass traced by integrating ~ The numerical simulations performed for the parameters
the effective equationé45). Instead the integration of the classical of standard experimental setups have shown that the adia-
equations of motiori7) displays an unstable trajectory. batic approximation is well suited. On the other hand, by
reducing the intensity of the bias field, nonadiabatic effects
stead the two values are different at small valueBgpbe-  show up, because the geometric field becomes more relevant
cause the two solutions predict different equilibrium posi-and causes misalignment of the spins aroBfid. The range
tions. Finally, forB,=5x 107" T, classically the atoms, even of magnetic fields required for the observation of the nona-
if suspended against gravity, perform an unstable orbit, serdliabatic effects is experimentally accessible by applying a
sitive to a minimum spin misalignement from the effective compensation to the static and alternate spurious external
magnetic field. Instead the effective equations predict dields.
stable equilibrium position. Another relevant facet concerns the sensitivity to the ini-
tial condition of the trap equations. The projection of the
atomic magnetic moment of the local fieRi"s! is a con-
served quantity, an adiabatic integral. The initial condition of

. inst 7 1 1 1 11 1 _
In this paper we have analyzed the motion of neutral atS>'B chosen for a given simulation identifies a given dy

oms within TOP magnetic traps. We have considered thé]a'ﬁni(.:al e\{olution, its value remaining cq_nsc_arved QUriqg
atomic motion. On the other hand, the equilibrium height is

determined by the value of this quantityee Eq.(24) ], so

VIl. CONCLUSIONS

0- ) : .
0 that the projection of the atomic magnetic moment on the
7 local field determines the cloud equilibrium height. Now, it is
g —-- classical a fact that, for a given geometry of magnetic fields within a
3 604 effective Eqs trap, such a height results in being independent of the initial
Ng‘ -804 - preparation condition. Thus, since the dynamical equations
-100+ do not select by itself any special value of this quantity, one
120 By (T) could argue, in order to explain some experimental features

PR ', of the Bose-Einstein condensate cloiti3, 13, which a pos-
10 10 10 sible modification of the actual spin projection Bt might
FIG. 4. Comparison between the equilibrium positicgg of by involved in some steps of the preparation of the relative

rubidium atoms within the TOP trap versus tBgRF field as pre- ~Bose-Einstein condensate. _
dicted by the classical solution and by the effective equatidf Further attention should also be devoted to the nonlinear

and (47) at a given value of the quadrupole field gradidnt interaction within the condensate. In that respect a spinorial
=0.18 T/m. ForBy,<5.0x107° T, the classical model does not Gross-Pitaevskii equation should be solved, and then the
support micromotion like orbits. analysis applied in Re{16] could be used.
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APPENDIX A: ABOUT THE su (2) ALGEBRA

The si2) algebra is defined starting from the angular mo- APPENDIX C: TDVP APPROACH

mentum generators,, s, s, and their commutation relations.  In our contest the TDVP method structures the dynamical
Using the standard definitions for the raising and loweringquantum state describing the atomic motion, in terms of a
operators, we derive the following relations for the deriva-trial state written, as in Eq36) , as the product of a time-

tives of the operatoM(¢, 6) defined in Eq(30): dependent phase facter'S"” times a spatial- and time-
. dependent scalar wave functiow(x,t) times a time-
MT(e NI M(p,0) =~ I_(Sz cos ¥ —s, sin ) dependent spinotj,r(t)). The time-dependent trial state
1 1 ﬁ 1

#(x,t) has to be found in a self-consisting way. By imposing
the weaker form of the Schrédinger equation

M (e, 9);M(p,9) = - s,

f dx " (x,O[i%d, — HR]yh(x,t) = 0, (C1)
1 . .
2 _ . .
MT(<P,19)<9WM(<P,19) =_ ﬁ(sz cos 9 - s, sin 92, we get the effective actioB(t):

t

1 S(t)=f dtfdX(J',T(t)I‘I’T(X,t)[th-HR]‘I’(X.t)IJ'.T(t»-
M (¢, 9)75,M (@, ) = = ﬁ% 0
By splitting the Hamiltonian a$iR=HZ+AH?, whereHZ,
1 has been introduced in E¢L3) , we get

M(p, D) M (e, D) :_?(Sz cos 9 - s, sin 9)s,, .
Sit) = f dt f dxWT(x,)[ifd, — HIJW(x,1)
M (@, 9)sM(p,9) =5, cOS ¥ cos¢ -, sin ¢ °

t
+5s,Sin 9 cos g, +J dtf dx(j, fv)|[ik| ¥ (x,1)|%5,
0
MT(p,9)s,M(p,¥) =, cOs Y Sin g +5, COS =W (x, ) AHOW(x,1)]|j, 7(1)). (C2)
+5s, sin 9 sin ¢. (A1)

Here o(t) is the slow time-dependent quantity introduced in
Eq. (39) , which varies on times of the order &f=27/ o, ,
>t =27/ w . By expanding the HamiltoniaHZ, in a power
APPENDIX B: GEOMETRIC TERMS series of the displacement coordinatesy, {=z—h), we get

N , . i . the harmonic Hamiltonian with the time-dependent potential
For a cylindric TQP t.rap with magnetic field as defined in ¢ Eq.(15) . Thus, by introducing the structur(x, t) of Eq.

Eq. (5), the geometric fields result: (19) for the atomic wave function we find the Schrodinger

BX b(x + p cos wrt) equation(21). After taking the time average of the latter

b equation on a short time7® wy, we get the harmonic prob-

— R H
o= (BR)ZV’(BR)Z_'_(BR)Z B; by +p sinerd) |, lem (22) of which the general solutiod(x,t) is known.
X y 2[(BR)?+(BR)?] Thus, the first term on the right-hand side in EG2) van-
y
ishes, and we obtain
b —y-psin ot t
Vo=—-——+5| Xtpcosart |, St :f dt(j, (0)|[i70, — (AHG ], (1)),
(Bx) +(By) 0 0

- Where(AH;’ZQ:fdx[\IfT(x,t)AHf’z)\If(x,t)] and AHp, is ob-
_ wthB; v el tained by expandindH’ in a power series ixx andp up to
- (BR2V(BR)2+ (B)Ff)zp(y coswrt =X sin wrt), the second order. Explicitly we have

2
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o\ — [ ik _ R by writing them in terms of the classical spin components
(AHG) _Ei: (haps+ 2,;‘ (Gzpssc (ouBe). SZ,Sy,SZgilntroduced in the text. The dynamigs of thepse spin
) ) ) } components, apart terms irrelevant for the equations of mo-
with the obvious meaning of inde(). tion, is generated by the following Hamiltonian:
The Hamiltonian{AH{,)) is built of su2) algebra genera-
tors acting on the time-dependent spin vedigr(t)). We 1 1
choose forlj, (1)) the components of the &) atomic co-  H(S,,S,.S) = 2, (hp)S; + (1 - _>2 (gl S? + 2(1 - —_)
herent statér(t)) of j representation. As a support for this i 2]/ 2
choice let us remember that, if the Hamiltoni(akH;’z)) was X(g(xzz))Ssz, (C4)
a closed dynamical algebra—i.e., a linear combination of the
ZiL\(/?ngs; etLae;cg;s C;Egrzz![uggzs()fv\tzﬁlds cgzog;ag;.r :%L;atlor\}vhere the time—dependen.t coefficients are derived by the
equation of motion for the label(t) (and its complex conju- center-of-mass wave functioff(x,t) as
gate, which involves the dynamical evolution of the state

X, 1), is obtained by stationarizing the effective actis(h): : .
WX y g 50 <h'(2)>:fdx[‘l’T(x,t)h'@)lIf(x,t)] for i=xy,z,

t .d -d
6S:5<J dt{iﬁ(j,a(t)|{ " +rd—_]lj,r(t)>—<j,7(t)
0 T T

XAHG) | j,7(t) ) =0. (€3 (ol = f [V (x,0gh V(D] for ij=xy.z
: : : (CH
After boring algebra we get the equations of motion
dr _ (1+[79)? and the operatork’ and g have been given in Eq35) .
dt 2iti] (7,7, Therefore we obtain a canonical system for the classical spin

. _ components whose dynamics is generated by the effective
whereH(7,7)=(7AH{,|7) and7is the complex conjugate of Hamiltonian 7, endowed with the Poisson brackets

7. These tricky equations can be cast in more familiar form{Sy,S,}=S, and cyclic permutations.
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