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In a time-orbiting-potential magnetic trap the neutral atoms are confined by means of an inhomogeneous
magnetic field superimposed onto an uniform rotating one. We perform an analytic study of the atomic motion
by taking into account the nonadiabatic effects arising from the spin dynamics about the local magnetic field.
Geometric like magnetic fields determined by Berry’s phase appear within the quantum description. Applica-
tion of the time-dependent variational principle on the original quantum equation leads to a set of dynamical
evolution equations for the quantum average value of the position operator and spin variables. Within this
approximation we derive the quantum-mechanical ground-state configuration matching the classical adiabatic
solution and perform some numerical simulations.
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I. INTRODUCTION

The difficulty of analyzing a complex physical system is
greatly reduced when one is able to identify a certain number
of different time scales present in the system dynamical evo-
lution. Thus, a series of approximations, generically termed
adiabatic approximations, can successfully be carried out.
The very simple basic idea is that of dealing first with the
motion of the fast variables, keeping the slow ones fixed but
arbitrary, and then to complete the analysis of the entire sys-
tem by allowing a variation of the previously fixed coordi-
nates. The quantum adiabatic theorem and the molecular
Born-Oppenheimer approximation are well-known examples
of this approach, with its origins in the early days of quan-
tum mechanics. The quantum-adiabatic theorem dictates that
a system prepared in an eigenstate of its Hamiltonian will
remain in the corresponding eigenstate as the Hamiltonian is
varied slowly enough. If the Hamiltonian returns to its origi-
nal form, the system assumes the original eigenstate multi-
plied by an appropriate dynamical phase factor related to the
instantaneous eigenvalue of the Hamiltonian. Berry made the
interesting observation that in addition to the dynamical
phase factor produced by the eigenvalue time evolution, the
wave-function acquires an additional phase contribution[1].
This additional contribution, the geometric phase, depends
only on the path traveled by the system in the space of ex-
ternal parameters.

A canonical example for a system where this behavior
occurs is that of a neutral particle carrying a magnetic mo-
ment and moving in an inhomogeneous magnetic field. Here,
the fast variable is the transverse magnetic moment and the
slow variable is the atomic position and momentum[2]. If
the magnetic field varies slowly enough in space, the effec-

tive Hamiltonian governing the dynamics of the slow exter-
nal variables contains an induced gauge potential, the so-
called geometric potential. It also depends on the component
of the magnetic moment in the direction of the magnetic field
which is an adiabatic invariant approximatively conserved.
In the classical limit the gauge geometric fields acting on the
neutral particle with a magnetic moment have been studied
by Aharonov and Stern[3]; they found that the atom experi-
ences geometric Lorentz-type and electric-type forces[4].
The magnitudes of these forces do not depend on the ampli-
tude of the magnetic field, but only on its local orientation.

In order to treat the nonadiabatic corrections improved
Born-Oppenheimer methods were introduced for the case of
arbitrary spin values[5]. Later the nonadiabatic terms modi-
fying the atomic motion were studied by several authors in
the context of magnetic structures guiding or confining very
cold atoms [6–9]. The nonadiabatic corrections produce
spin-flip transitions, leading to atomic loss from the magnetic
configurations, and also they modify the atomic motion.
Yukalov [10] considered nonadiabatic dynamics of trapped
atoms by applying an accurate method for solving nonlinear
systems of differential equations. High-order post-adiabatic
corrections, leading to geometric electromagnetism poten-
tials, have been investigated for the elegant configuration of
an atom orbiting around a straight current-carrying wire[11].
For verification of Berry’s phase and its consequences a
natural question is whether one can observe the direct modi-
fication of the atomic motion in the classical limit for the
induced gauge potentials. Measurements of the motion of a
rubidium Bose-Einstein condensate in a time-orbiting-
potential(TOP) magnetic trap represent quite a strong indi-
cation for the existence of these geometric forces[12–14].
Those observations were analyzed through a classical de-
scription for the condensate center-of-mass motion and for
the atomic magnetic moment.

In the present paper we perform an analytic study of the
atomic quantum dynamics within TOP magnetic traps. We
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take into account the nonadiabatic effects arising from the
dynamics of the spin orientation around the local magnetic
field. Within a pure quantum description, the geometric mag-
netic fields appear as a consequence of the presence of inho-
mogeneous magnetic fields. In this context spinors quantities
can be introduced to describe the atomic spin states, as done
by Ho and Shenoy[6] for Berry’s phase in atomic conden-
sates in magnetic traps. By means of the time-dependent
variation principle(TDVP) [15] and by taking advantage of
the time scale separation between slow and fast variables, we
derive an effective atomic dynamics making the quantum
description analytically tractable. Thus, the atomic motion
results in the coupling of a quantum harmonic motion, gov-
erning the atomic scalar wave function, and an effective non-
linear spin dynamics. The harmonic Hamiltonian depends on
time-varying parameters that, in turn, are linked to the spin
state. Also the spin Hamiltonian parameters are time depen-
dent, as they result from the atomic wave-function expecta-
tion values of the above geometric operators. Within this
nonadiabatic approximation the ground-state configuration
matches well the adiabatic solution. We also performed nu-
merical simulations with these new equations. For the pa-
rameters suggested by the standard experimental setup we
found that the adiabatic approximation is well suited. Never-
theless, by reducing the intensity of the bias field, nonadia-
batic effects show up, because under these conditions the
influence of the geometric fields is more relevant. A recent
work [16] has examined theoretically the condensate micro-
motion, applying the adiabatic approximation and partially
lifting the time-average approximation by a unitary transfor-
mation to a frame circularly translating at the frequency of
the TOP magnetic field. That approach, neglecting spin pre-
cession effects leading to the breakdown of the adiabatic
approximation, cannot be directly applied to the analysis of
geometric forces.

Section II summarizes the classical analysis based on the
adiabatic approximation and leading to the atomic micromo-
tion. Section III reports a quantum analysis of the atomic
motion within the adiabatic approximation by taking into
account the lowest-frequency terms of the time-dependent
potential. Within this approximation we recover the quantum
counterpart of the classical micromotion. Section IV studies
the quantum dynamics of atoms into TOP traps. In Sec. V, by
means of the TDVP, we derive an effective dynamics for the
atomic motion. Section VI reports numerical simulations for
the dynamical regime of the atomic motion.

II. TOP TRAP

Bose-Einstein condensation in dilute atomic gas is created
by trapping cold atoms in a magnetic trap of which the Ioffe-
Pritchard(IP) and time-orbiting potentials are the most com-
mon ones. In a TOP trap the magnetic field, schematically
represented in the inset of Fig. 1, is composed of a quadru-
pole (inhomogeneous) field and a rotating(time-dependent)
bias field,B0. The TOP trap, introduced in[17] for the very
first experiments on Bose-Einstein condensation[18], is em-
ployed by a number of research groups producing Bose-
Einstein condensates[19,21,20–23].

The single-particle Hamiltonian for the atoms inside a
magnetic field configuration which characterizes the trap ge-
ometry is given by

Hstd =
p2

2m
+ mgz−

m

s
s ·Bsx,td, s1d

where s are the spin operators of thes=" j representation,
and the last term takes into account the magnetic interaction
energy of an atom with magnetic momentms/s and projec-
tion m=−umu along the magnetic fieldB. We also adopt the
representationx=xx̂+yŷ+zẑ for the position vector. For a
TOP trap the magnetic field is the superposition of a static
quadrupole field and one rotating at the radio frequency(rf)
vT:

Bsx,td = bsxd + Btstd. s2d

Its components are

bsxd = bxxx̂ + byyŷ + bzzẑ s3d

and

Btstd = B0cossvTtdx̂ + B0sinsvTtdŷ. s4d

The magnetic field parameters define the specific type of
TOP trap we are analyzing[24]. By supposing the rf field
rotating in the horizontalx,y plane we define the TOP ge-
ometry of the traps operating at Boulder[17] and at Pisa
[25]. In this work we analyze the dynamics of a cylindric
TOP trap with

bx = by = − bz/2 = b. s5d

For the usual TOP trap three different time scales exists: the
fastest motion, given by the Larmor frequencyvL and related
to the spin precession around the local magnetic field; the
magnetic bias field rotating frequencyvT giving rise to time-
dependent forces at the frequencesvT,2vT, . . ., and aslower
motion associated with the atom spatial motion given by the
trap harmonic frequencyvh. These time scales are in order
of magnitude,—i.e.,vh!vT!vL—thus making possible the

FIG. 1. Schematic representation of a cylindric TOP trap with
the anti-Helmholtz coils producing a quadrupole field with vertical
symmetry, theB0 bias field rotating at angular frequencyvT in the
horizontal plane, and the atomic cloud(black sphere) following the
micromotion orbit.
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adiabatic approximation. In the first place the fast spin pre-
cession around the local magnetic field allows us to consider
atoms spin locked to the local magnetic field throughout the
whole spatial motion. This leads to an adiabatic-time depen-
dent potentialU=−sm /sds·Bsx ,td= umu ·uBsx ,tdu. Second by
averaging in time(over a period 2p /vT) this potential and by
keeping only the slowest component gives rise to a harmonic
potential spatially confining the condensate. The next order
of approximation examines the fast variables(fast with re-
spect to the harmonic dynamics at frequencyvh) related to
the time-dependent potential(at frequencyvT). An exhaus-
tive computation of this approximation is found in[26].

Gov and Shtrikman[27] have used the standard classical
equations of the atomic motion of a magnetic moment within
a TOP in which all the different time scales are present. In
this context a steady periodic orbit can be found exactly
without resorting to any approximation. This periodic solu-
tion corresponds to what it is known as theatomic micromo-
tion [28] (see Fig. 1). As the atoms trace out the atomic
micromotion orbit, the magnitude and direction of the local
magnetic field change in space and time, with the magnetic
moment of the atom precessing around the direction of the
field. In fact, given the Hamiltonian of Eq.(1) a dynamical
stateuCl satisfies the following center-of-mass equations of
motion:

m
d2R

dt2
=

m

s
= fS ·bsRdg − mgẑ,

dS

dt
=

m

s
kCus3 Bsx,tduCl, s6d

whereR=Xx̂+Yŷ+Zẑ=kCuxuCl is the expectation value of
the center-of-mass position, andS=Sxx̂+Syŷ+Szẑ=kCusuCl
is the expectation value of the atomic spin.

Thus we are led to a set of equations which are not closed.
However, if the quantum mechanical wave function can be
factorized, as to the lowest-order approximation, we may
write ks3Bsx ,tdl=ksl3 kBsx ,tdl [29]. Within this approxi-
mation the above system of equations becomes closed and
assumes the form

m
d2R

dt2
=

m

s
= fS ·bsRdg − mgẑ,

dS

dt
=

m

s
S3 BsR,td. s7d

The simplest periodic solutions generated by Eqs.(7) give a
good estimate of the fast center-of-mass condensate
dynamics,—i.e., the atomic micromotion. This motion was
experimentally observed in a triaxial TOP trap in Ref.[12].
This periodic solution is best viewed in a frame rotating with
the bias magnetic field. In this frame the magnetic moment
results in being aligned to the effective magnetic field and
the atomic center of mass is at rest. The not-null components
of the effective field in the rotating frame, with horizontal
component along thex axis, are

Bx
inst = br and Bz

inst = − 2bz+ vTs/m, s8d

the z component including the uniform fictious magnetic
field which appears in the rotating frame. In order to have a
stable motion, as produced by a confining potential energy,
the component of the spin along thez axis should be posi-
tive. In fact the stability along thez axis, requiring a zero
force along this direction, leads to

Sz

s
=

mg

2bumu
= j. s9d

The centrifugal force balancing the gradient force yields the
radius of the micromotion:

r =
umub
mvT

2a, a = Î1 − j2, s10d

wherej anda are, respectively, the cosinus and sinus of the
angle that the effective fieldBinst forms with thez axis. In
order to determine thezeq height of the periodic orbit under
examination, the following parameters also useful in the sub-
sequent analysis are required:

§ =
vTs

mb
, r =

B0

b
, s11d

r being the radius of the circle of death[17] and§ is twice
the amount the zero point of the quadrupole field shifts
downwards for the effect of the uniform fictitious magnetic
field which appears in the rotating frame. In terms of these
parameters the equilibrium heightzeq can be expressed as

zeq=
§

2
−

j

Î1 − j2SB0 + br

2b
D =

§

2
−

j

2
S r

a
+

umub
mvT

2D . s12d

The above analysis suggests that the adiabatic approxima-
tion is more rigorous if we refer toBinst instead of the real
magnetic field. Indeed, in the motion described above the
adiabatic approximation is completely fulfilled with respect
to this field. However, for more general solutions of Eqs.(7)
the behavior is different and we must also account for a spin
component orthogonal to the local magnetic field. In any
case, as will be shown in the numerical simulations, the pro-
jection of the magnetic moment along this field is a much
better conserved quantity with respect to that along the real
field. In Refs.[3,30] the effect of the components perpen-
dicular to the real magnetic field have been examined and it
was found that a small misalignment with respect to this field
gives rise to a Lorentz-type force. An additional electric-type
force is originated by the time average of the fast oscillatory
force induced by the spin precession. Both kind of forces,
affecting the center-of mass dynamics, are geometric forces
because they do not depend on the magnitude of the mag-
netic field but only on its orientation.

III. FROM A CLASSICAL TO QUANTUM ADIABATIC
APPROXIMATION

The gross features of the atomic confinement in a mag-
netic trap are explained in terms of the adiabatic approxima-
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tion. If this is fulfilled—that is, when either strong magnetic
fields or slowly varying in space fields are involved—the
projectionss of the magnetic moment along the direction of
the magnetic field is an adiabatic invariant approximatively
conserved. The analysis of the previous section points out
that an improvement over the standard adiabatic approxima-
tion is obtained by replacing the fieldB with Binst. Thus,
from Eq. (1) we obtain the adiabatic Hamiltonian to be

Had
s =

p2

2m
+ Uad, s13d

where

Uad = mgz+ sumuFsbx+ B0cosvTtd2 + sby+ B0sin vTtd2

+ S− 2bz+
vTs

m
D2G1/2

. s14d

For small displacements of the atoms from the equilibrium
positions0,0,hd, the adiabatic potentialUad can be expanded
in a power series of the displacement coordinatessx,y,z=z
−zeqd, and up to the second order we have

Uad
s2d = + mgS1 +

sh

bj
Dz +

1

2
mfv0,r

2 sx2 + y2d + v0,z
2 z2g

+ U0 + Ustd. s15d

Here the time-independent component is

U0 = mgzeq+ sbumuB0 s16d

and the time-dependent component is

Ust,sd =
sumub

b
S1 −

2h

b2

z

r
Dsx cosvTt + y sinvTtd −

sumub
4rb3 fsx2

− y2dcoss2vTtd + 2xy sins2vTtdg. s17d

The new adimensional constants here introduced are

h =
2zeq− §

r
, b = Î1 + h2,

while the oscillation frequencies are

v0,r =Îsumubs2h2 + 1d
2mrb3 , v0,z =Î4sumub

mrb3 . s18d

Two time scales are involved inUad
s2d, the slower one being

associated with the harmonic motion at the oscillation fre-
quenciesv0,r and v0,z, whereas the faster one is associated
with the bias frequencyvT. The oscillating forces have van-
ishing time averages over a period 2p /vT. This can be sub-
stantiated by the wave function factorization

Csx,t,sd = Fsx,t,sdEsx,t,sd, s19d

where

E = expf− iw/"g s20d

andw=e0
t dtUst ,sd describes the dominant effects of the os-

cillating potential. The time-scale separation allows us to

considerFsx ,td as a slowly varying function of time[31].
Notice the explicit dependence on the parameters. Substi-
tuting Eq.(19) into the Schrödinger equation with the poten-
tial Uad

s2d, we get

i"]tFsx,t,sd = F p2

2m
+ U0 + Smg+

sh

bj
Dz +

1

2
mfv0,r

2 sx2 + y2d

+ v0,z
2 z2gGFsx,t,sd + F i"

m
= w · =

+
1

2m
u=wu2

+
i"

2m
¹2wGFsx,t,sd. s21d

The above assumptions on the different time scales allow us
to consider the coefficients of the oscillating terms at fre-
quenciesvT and 2vT as slowly varying ones. Indeed a time
average over the short time 2p /vT leads to

i"]tFsx,t,sd = H p2

2m
+ mgS1 +

sh

bj
−

s2h

2rb4j2

g

vT
2Dz

+
1

2
mfvr

2sx2 + y2d + vz
2z2gJFsx,td, s22d

where the irrelevant constant terms have been dropped. This
equation displays a three-dimensional harmonic oscillator
structure whose frequences are

vr = v0,rF1 +
s

16jb3

g

rvT
2

s32h2 + 1d
s2h2 + 1d G1/2

,

vz = v0,zF1 +
s

2b3

g

rvT
2h2G1/2

, s23d

in the xy plane and along thez direction, respectively. The
equilibrium position along thez axis is obtained by setting to
zero the term multiplyingz in Eq. (22) . Neglecting smaller
contributions, the equilibrium atomic position is given by

zeqssd = §/2 − rj/s2Îs2 − j2d. s24d

In the limit s=1 the classical solution of Eq.(12) up to a
small term containingvT

−2 is matched. The expectation value
of the particle momentump on the state(19) is

kpl =
umubÎs2 − j2

vT
s− sin vTt,cosvTt,0d. s25d

This result is only in part equivalent to the classical one of
Eq. (12) because here the instantaneous position valuekxl is
always zero.

IV. QUANTUM DYNAMICS

A. Effective Hamiltonian

The quantum dynamics is more properly addressed by
transforming the original equations into a spin reference
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frame rotating at the bias field frequency. Thus the wave
function uCRl in the rotating frame is written asuCRl
=Rzs−vTtduCl=expfsi /"dszvTtguCl, whereRzsqd is the rota-
tion around thez axis by an angleq anduCl is the laboratory
frame wave function. Then the Schrödinger equation for
uCRl becomes

i"]tuCRl = i"]tRzs− vTtduCl = fH8std − "vTszguCRl

= HRuCRl, s26d

whereH8std=Rzs−vTtdHstdRzsvTtd is time dependent and

HR = H8std − "vTsz =
p2

2m
+ mgz−

m

s
s ·BRsx,td, s27d

with BRsx ,td=fB0+bsx cosvTt+y sinvTtdgx̂+bsy cosvTt
−x sinvTtdŷ+s−2bz+vTs/mdẑ. HereBR is the magnetic field
in the spin-rotating frame, a constant bias field, and a rotat-
ing inhomogeneous field. This effective magnetic field
BRsx ,td=Bx

Rx̂+By
Rŷ+Bz

Rẑ identifies the position-dependent
anglesq andw as

q = arctan
ÎsBx

Rd2 + sBy
Rd2

Bz
R , w = arctan

By
R

Bx
R , s28d

andBR=ÎsBx
Rd2+sBy

Rd2+sBz
Rd2.

B. Local basis

It is useful to introduce a coordinate-dependent spin basis
huxmsx ,tdlj such that

s ·BRsx,td
BR uxmsx,tdl = muxmsx,tdl for − j ø mø j .

s29d

The local basis vectors in which thez axis coincides with the
magnetic field in the same point can be given in terms of the
anglesq andw through the rotation operatorMsw ,qd as

uxmsq,wdl = Msw,qdu j ,kl = e−si/"dwsze−si/"dqsyu j ,kl. s30d

With the total wave function expanded asuCRl
=om=−j

j cmsx ,tduxmsx ,tdl, the Hamiltonian of Eq.(27) be-
comes

HR =
p2

2m
+ mgz−

m

s
BRsxdsz +

1

2m
h2A ·p + psAd + A2j + V,

s31d

with

A = − ssz cosq − sx sinqd=w − sy=q,

V = − ssz cosq − sx sinqd]tw − sy]tq. s32d

Appendix A contains details useful to derive the functions in
Eq. (32) . A andV represent pseudopotentials connected to
the Lorentz-like and electriclike kinds of forces introduced in
Ref. [3]. Similar pseudopotentials were derived in[5] as
nonadiabatic corrections. The functionswsx ,td and qsx ,td
depend on the effective magnetic field geometry as stated in

Eqs. (28). Berry’s geometric terms appear in the quantum
Hamiltonian through these angles. By direct computation the
following relations are derived:

=q =
fBR 3 sBR 3 = BRdgz

sBRd2ÎsBRd2 − sBz
Rd2

, = w =
fBR 3 = BRgz

sBRd2 − sBz
Rd2 ,

]tq =
fBR 3 sBR 3 ]tB

Rdgz

sBRd2ÎsBRd2 − sBz
Rd2

, ]tw =
fBR 3 ]tB

Rgz

sBRd2 − sBz
Rd2 .

s33d

These terms, invariant with the modulus of the magnetic
field, are geometric fields depending only on the force lines
of the magnetic field—i.e., the field geometry. Their explicit
form is given in Appendix B.

Notice that, starting from the Hamiltonian(1), which is
linear in the spin operators, the nonadiabatic terms give rise
to a dynamics with a quadratic dependence in the spins. We
may writeHR in a form that puts this in more evidence,

HR =
p2

2m
+ mgz+ o

i

hisi + o
jk

gjksjsk, s34d

where the indicessi , j ,kd run on sx,y,zd, and the spin coef-
ficients are

hx =
1

2m
fp sinq = w + sinq=wpg + sinq]tw,

hy = −
1

2m
fp=q + =qpg − ]tq,

hz = −
m

s
BR −

1

2m
fp cosq=w + cosq=wpg − cosq]tw,

gxx =
1

2m
sin2 qu=wu2,

gyy =
1

2m
u=qu2,

gzz=
1

2m
cos2 qu=wu2,

gxz= gzx= −
1

2m
sinq cosqu=wu2, s35d

and gjk=0 otherwise. Let us recall that all the operators
hi ,gjk are Hermitian ones.

V. BEYOND THE ADIABATIC APPROXIMATION

A. Effective spin dynamics

Since the exact solution of the Schrödinger equation(26)
is an impracticable task, the dynamics will be taken into
account in an effective way by resorting to the TDVP[15]
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and by exploiting the time-scale separation between fast and
slow degrees of freedom. The TDVP procedure allows us to
reduce the system quantum dynamics to a semiclassical
Hamiltonian form. This procedure was introduced for study-
ing the low-lying collective states in nuclei, but was later
shown to provide a valid approximation also for the one
particle Schrödinger equation. Within this procedure, whose
details are shown in Appendix C, we choose a suitable trial
state of the form

csx,td = expf− iSstd/"gCsx,tdu j ,tstdl, s36d

which will be subjected to the weaker form of the
Schrödinger equation embodied into TDVP—i.e., Eq.(C1)
in Appendix C. HereCsx ,td and u j ,tstdl take in account for
the center-of-mass motion and spin dynamics, respectively.
Sstd is an effective action for the spin variables. By carrying
out the variational procedure on the trial wave function we
derive the classical equations of motion for the expectation
values of the spin operatorssj on the spin component of the
dynamical trial stateu j ,tstdl. A key point in this variational
procedure is the parametrization of the spin variables in
terms of coherent atomic states. These latter have the physi-
cal significance of angular momentum states produced by a
classical source[32]. They depend on a complex parametert
and are defined as

u j ,tl =
1

f1 + utu2g j o
m=−j

j FS 2j

s j + md
DG1/2

t j+mu j ,ml, s37d

where u j ,nl are the spin basis with the quantization axis
taken along the direction of the local field. These states,
analogous to the coherent states of the electromagnetic field,
are defined within a subspace determined by the angular mo-
mentum j . Within this subspace each state, completely de-
fined by the complex numbert, is mapped onto the direction
of a vector on a sphere by a projective transformation[15].
In our case this vector identifies the orientation of a classical
spin with respect to a local frame having thez axis along the
local magnetic fieldBRsx ,td. This property can be under-
stood by computing the expectation values of the spin com-
ponents onu j ,tl. By keeping in mind the parametrizationt
=−e−iw8 tansq8 /2d we find

Sx = k j ,tusxu j ,tl = j" sinq8 cosw8,

Sy = k j ,tusyu j ,tl = j" sinq8 sinw8,

Sz = k j ,tuszu j ,tl = j" cosq8. s38d

whereq8 and w8 are the angles between the classical spin
and the local magnetic field. The details of the spin dynamics
derivation are contained in Appendix C. Their ruling equa-
tions are generated by the classical Hamiltonian of Eq.(C4).

Let us focus on the center-of-mass motion described by
the wave functionCsx ,td as in Eq.(19) . The trapping po-
tential obtained by the application of TDVP procedure as
from Eq. (C2) can be expanded in a power series of the
displacement coordinates around the trap center by keeping
only the harmonic terms. In this respect we recall that the

center-of-mass dynamics, which will depend on the longitu-
dinal spin component, has the slowest time scale in the
system,—i.e.,th<2p /vz,r—whereas the fastest time scale
corresponds to the transverse spin dynamics driven at the
Larmor frequencyvL. Indeed Szstd—i.e., the longitudinal
spin component—is an approximatively conserved adiabatic
invariant. For this reason we can assume the center-of-mass
motion to be sensitive not just to the instantaneous value of
Szstd but rather to its time average on a timet intermediate
betweenth andtL=2p /vL which we names s. Thus we have

sstd =
kSzl

s
, s39d

wherekSzl stands for the above time average. This coincides
with the definition previously introduced within the adiabatic
approximation assumption. Since the evolution of this quan-
tity is much slower than the bias frequencyvTsvz!vTd, its
time dependence is maintained in the ruling equations even
after averaging over the short time scale of the bias-field
time-dependent terms as done in order to arrive to Eq.(22) .
As a consequence the wave function solution of Eq.(22) can
be written as

Fsx,t,sd = o
hnj

cnEnstdFnsx,sd, s40d

where the vector index meansn=sn1,n2,n3d along the three
orthogonal directions and the constantscn are determined by
the atomic initial conditions. The functionsFnsx ,sd are the
eigenfunctions of the three-dimensional harmonic oscillator
with eigenvalues

Enssd = U0 +
1

2m
Ssmb

bvT
D2

+ "vrssdsn1 + n2 + 1d + "vzssd

3Sn3 +
1

2
D , s41d

and Enstd=expfignstd /"− ie0
t dtEn(sstd) /"g embodies also a

geometric phase

gnstd = i"E
ss0d

sstd

dsFE dxF̄nsx,sd
]

] s
Fnsx,sdG . s42d

The parametersstd entering into the equations of motion for
the atomic center of mass is actually a dynamical degree of
freedom whose evolution is generated by the classical spin
dynamics. Thus, the center-of-mass motion and the spin dy-
namics interact the one with the other and they must be si-
multaneously integrated. Let us stress that the dynamics we
have just found is the classical canonical counterpart of that
one generated by the full quantum Hamiltonian written in
Eq. (34).

B. Ground-state configuration

In order to find the nonadiabatic corrections to the
ground-state solution(1), we assume that this solution is well
represented also if we keep the lowest order in the expression
of the Hamiltonian of Eq.(C4)—i.e., the first order in
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sx/r ,y/r ,z /rd appearing inHR. This means that the Hamil-
tonian parameters of Eq.(C4) , the classical form of Eq.(34),
can be computed as an average on the adiabaticlike ground-
state solution of Eq.(19) of the approximated operators
hi ,gjk. Therefore at the lowest order of approximation the
terms in Eq.(35) result:

hx .
1

mrb
f− sinsvTtdpx + cossvTtdpyg,

hy . −
1

mrb2hhfcossvTtdpx + sinsvTtdpyg + 2pzj,

hz . −
mbr

s
b −

h

mrb
f− sinsvTtdpx + cossvTtdpyg,

gxx .
1

2mr2b2 ,

gyy .
3 + b2

2mr2b4 ,

gzz.
h2

2mr2b2 ,

gxz. −
h

2mr2b2 .

Recalling the expectation value of the momentump given by
Eq. (25) and neglecting the terms containing 1/r2, we have

khs0d
x l .

2b

hs1 + 2h2d
v0,r

2

vT
,

khs0d
z l . − b

mB0

s
−

2b

s1 + 2h2d
v0,r

2

vT
,

and 0 otherwise. The corresponding classical spin Hamil-
tonian is, apart from a constant,

HsSx,Sy,Szd = khs0d
x lSx + khs0d

z lSz,

whose equations of motion result:

Ṡx = − khs0d
z lSy,

Ṡy = − khs0d
x lSz + khs0d

z lSx,

Ṡz = khs0d
x lSy. s43d

By setting Ṡi =0 with si =x,y,zd we determine the ground-
state configuration

sSx
0,Sy

0,Sz
0d = S±

khs0d
x l

khs0d
z l

" j

Î1 + khs0d
x l2/khs0d

z l2
,0,

±
" j

Î1 + khs0d
x l2/khs0d

z l2D . s44d

It is worth remarking on the fact thatkhs0d
x l and khs0d

z l still
depend ons=Sz

0/s, and thus Eq.(44) determines such a
quantity only in a self-consistent way. We point out that in
the above equations the plus sign corresponds to the stable
solution for the atomic motion in a similar fashion as in the
classical description corresponding to Eq.(9). The S0 solu-
tion, with the spin aligned to the local magnetic field, pro-
vides a correction to the adiabatic approximation discussed
before. We notice that a componentSx

0 different from zero
appears because in the rotating frame the rf field acts along
the x axis.

C. Effective classical dynamics

The center-of-mass motion is described by the wave func-
tion Csx ,td=Fsx ,t ,sdEsx ,t ,sd introduced in Eq.(36) . The
exponential factorEsx ,t ,sd has been defined in Eq.(20) and
Fsx ,t ,sd satisfies the time-dependent Schrödinger equation
(22) for the three-dimensional harmonic oscillator the Hamil-
tonian of which isH=p2/ s2md+Uh(x ,sstd). In terms of the
frequencies(23) and of the equilibrium atomic position(24),
the time-dependent harmonic potential has the form
Uh(x ,sstd)=mhvr

2(sstd)sx2+y2d+vz
2(sstd)fz−zeq(sstd)g2j /2.

Upon introducing the center-of-mass positionR
=kCuxuCl and momentumP=kCupuCl, the following classi-
cal equations of motion are easily derived:

dR

dt
=

P

m
,

dP

dt
= − =RUh„R,sstd… −

dDP

dt
, s45d

whereDP=edxuFsx ,tdu2=wsx ,td andsstd is defined by Eq.
(39) . Now we introduce a further factorization of the kind
kCuOsx ,tdpuCl<OsR ,tdP, where Osx ,tdp stands for the
first three among the operators appearing into Eqs.(35) ex-
panded in a power series ofx andp up to second order[33].
Then by considering only the linear terms in spin variables
appearing into the classical spin Hamiltonian(C4) we can
write

HsSx,Sy,Szd = o
i

khilSi , s46d

where the time-dependent coefficients are implicit in the
center-of-mass wave functionCsx ,td as given in Eq.(C5).
Thus in Appendix C we derive the following equation of
motion for the classical spin:

NONADIABATIC EFFECTS IN THE DYNAMICS OF… PHYSICAL REVIEW A 70, 053603(2004)

053603-7



dS
dt

= Bstd 3 S. s47d

where the magnetic fieldB is the sum of the real one plus
some fictitious terms having originated from the geometric
forces with components

Bxstd =
HBR 3 FSP

m
· = + ]tDBRGJ

z

BRÎsBx
Rd2 + sBy

Rd2
,

Bystd = −
HBR 3 FBR 3 FSP

m
· = + ]tDBRGGJ

z

sBRd2ÎsBx
Rd2 + sBy

Rd2
,

Bzstd = −
m

s
BR −

Bz
RHBR 3 FSP

m
· = + ]tDBRGJ

z

BRfsBx
Rd2 + sBy

Rd2g
.

s48d

Thus, the two equation systems(45) and (47) form a closed
system to be simultaneously integrated.

VI. NUMERICAL SIMULATIONS

We have numerically integrated the set of equations(45)
and (47) by means of a Runge-Kutta algorithm. The set of
parameters chosen—i.e.,B0=4310−5 T, b=0.18 T/m, and
vT=2p3104 s−1—correspond to those used in TOP experi-
ments exploring the rubidium micromotion[12,13], but we
supposeds=1/2". The simulations allowed us to recover the
atomic micromotion, representing periodic closed orbits. The
micromotion was investigated through the classical equa-
tions of motion(7) and also through the improved system of
equations(45) and(47). Similar results were obtained for the
center-of-mass motion. In both approaches we observed a
strong dependence on the initial conditions, which for the
classical center-of-mass variables are given by Eqs.(24) and
(25). For the spin variable the classical condition corre-
sponds to the spin aligned along the localBinst magnetic
field, while the quantum-mechanical solution requires the
atom to be in an eigenstate of the spin operator along the
local magnetic field. A modification of the initial conditions
from those required for the atomic micromotion—for in-
stance, a shift of 100mm along thez axis—produced the
open trajectories shown in Fig. 2. We noticed also a strong
dependence on the initial condition for the atomic spin. We
also verified that within the parameters used here the correc-
tion to the adiabatic approximation expressed by Eq.(44) is
not quite relevant. We verified numerically that the spin pro-
jection along the effective magnetic fieldBinst given by Eq.
(8) is well conserved while the spin projection along the real
magnetic fieldB evidences time-dependent oscillations, as
already stated by Ref.[11].

We have explored also a different region of parameter
values, where we expect the adiabatic approximation to
break down. While the adiabaticity condition is certainly not

fulfilled when vT,vL, our working assumptions, based on
vz,vr !vL, still hold. A further source of failure for the adia-
batic approximation comes for an intensity of the geometric
magnetic fields of Eqs.(48) being of the same order of mag-
nitude of the applied real ones. This occurs, for example, at
bias field intensities of the order ofB0=2310−7 T. Notice
that for this weak rotating rf field, the trap oscillation fre-
quencies of Eq.(18) are large enough to sustain the atoms
against gravity. However the radiusr of the circle of death of
Eq. (11) becomes comparable to the radiusr of the micro-
motion orbit. Figures 3(a)–3(c) show the components ofB as
a function of time obtained with initial conditions very close
to those of a micromotion orbit. For this set of parameters it
is interesting to make a comparison between the atom dy-
namics generated by the classical equation of motion and the
effective improved equations of motion. The latter give rise
to a stable motion, shown in Fig. 3(d) traced by integrating
the effective equations(45) and (47). Under the same initial
conditions the classical equations of motion generate an un-
stable trajectory with the atoms conserving initially a con-
stant heightz=0.73mm and then after several milliseconds
escaping from the trap. The more stable character of the
effective equations solution in respect to the classical ones is
made evident by comparing the spin projection alongBinst in
both cases. By numerically integrating the effective equa-
tions (45) and(47), we found oscillations ofS ·Binst/ uSuuBinstu
near the stable value 1. On the contrary, by integrating the
classical equations(7), we found a spin flip that causes the
condensate escape from the trap. The important role played
by the terms originated by the nonadiabatic approximation
appears very clearly when we compared the atomic equilib-
rium within the TOPzeq as derived by the classical solution
to that predicted by the effective equations(45) and (47).
That comparison is shown in Fig. 4 for a fixed quadrupole
field b=0.18 T/m and a rf rotating fieldB0 between 1
310−4 T and 2310−7 T. At largeB0 the valueszeq predicted
by the classical solution and the improved one coincide. In-

FIG. 2. Plot of a three-dimensional trajectory originated by ini-
tial conditions close to those corresponding to the micromotion. The
numbers on the axes express the coordinates inmm. This trajectory
corresponds to 5 times the 2p /vT period. It is not closed, while a
stable micromotion orbit corresponds to a closed motion. The num-
ber on the axes express the coordinates inmm.
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stead the two values are different at small values ofB0 be-
cause the two solutions predict different equilibrium posi-
tions. Finally, forB0<5310−7 T, classically the atoms, even
if suspended against gravity, perform an unstable orbit, sen-
sitive to a minimum spin misalignement from the effective
magnetic field. Instead the effective equations predict a
stable equilibrium position.

VII. CONCLUSIONS

In this paper we have analyzed the motion of neutral at-
oms within TOP magnetic traps. We have considered the

approximate classical equations of motion describing such
system and revisited the fast degrees of freedom motion at
the forcing frequencyvT known as atomic micromotion. In
such a motion nonadiabatic effects and geometric fields are
absent. Within the scenario of adiabatic approximation, we
have analyzed the atomic quantum motion by taking into
account the lowest-frequencies terms embodied in the time-
dependent potential. Within this approximation, the center-
of-mass motion resulting harmonic, we have calculated the
harmonic trapping frequences and recovered the quantum
counterpart of the classical micromotion. We have addressed
the problem also within a pure quantum context, with a sepa-
ration of the atomic variables of the spin and of the external
degrees of freedom once again based on their different time
scales. Within this quantum context, as a consequence of the
presence of inhomogeneous magnetic fields geometric mag-
netic fields appear quite naturally. These geometric fields are
responsible for a misalignment of the atomic spin with re-
spect to the local magnetic field and then for nonadiabatic
effects. Within this framework, we have derived an effective
classical dynamics in which these geometric fields are ex-
plicitly embodied. The atomic motion results by the coupling
of a quantum harmonic motion, governing the center of
mass, and an effective nonlinear spin dynamics driven by
both the local magnetic field and the geometric ones.

The numerical simulations performed for the parameters
of standard experimental setups have shown that the adia-
batic approximation is well suited. On the other hand, by
reducing the intensity of the bias field, nonadiabatic effects
show up, because the geometric field becomes more relevant
and causes misalignment of the spins aroundBinst. The range
of magnetic fields required for the observation of the nona-
diabatic effects is experimentally accessible by applying a
compensation to the static and alternate spurious external
fields.

Another relevant facet concerns the sensitivity to the ini-
tial condition of the trap equations. The projection of the
atomic magnetic moment of the local fieldBinst is a con-
served quantity, an adiabatic integral. The initial condition of
S·Binst chosen for a given simulation identifies a given dy-
namical evolution, its value remaining conserved during
atomic motion. On the other hand, the equilibrium height is
determined by the value of this quantity[see Eq.(24) ], so
that the projection of the atomic magnetic moment on the
local field determines the cloud equilibrium height. Now, it is
a fact that, for a given geometry of magnetic fields within a
trap, such a height results in being independent of the initial
preparation condition. Thus, since the dynamical equations
do not select by itself any special value of this quantity, one
could argue, in order to explain some experimental features
of the Bose-Einstein condensate clouds[12,13], which a pos-
sible modification of the actual spin projection onBinst might
by involved in some steps of the preparation of the relative
Bose-Einstein condensate.

Further attention should also be devoted to the nonlinear
interaction within the condensate. In that respect a spinorial
Gross-Pitaevskii equation should be solved, and then the
analysis applied in Ref.[16] could be used.

FIG. 3. In (a), (b), and(c) plots of theBx, By, andBz geometric
fields, in units of 1.310−9 T, as a function of time in ms for atomic
motion within a TOP trap with a rf bias field of 200 nT. In(d) the
z position, inmm, of the atomic center of mass traced by integrating
the effective equations(45). Instead the integration of the classical
equations of motion(7) displays an unstable trajectory.

FIG. 4. Comparison between the equilibrium positionszeq of
rubidium atoms within the TOP trap versus theB0 RF field as pre-
dicted by the classical solution and by the effective equations(45)
and (47) at a given value of the quadrupole field gradientb
=0.18 T/m. ForB0ø5.0310−5 T, the classical model does not
support micromotion like orbits.
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APPENDIX A: ABOUT THE su „2… ALGEBRA

The sus2d algebra is defined starting from the angular mo-
mentum generatorssx,sy,sz and their commutation relations.
Using the standard definitions for the raising and lowering
operators, we derive the following relations for the deriva-
tives of the operatorMsf ,ud defined in Eq.(30):

M†sw,qd]wMsw,qd = −
i

"
ssz cosq − sx sin qd,

M†sw,qd]qMsw,qd = −
i

"
sy,

M†sw,qd]ww
2 Msw,qd = −

1

"2ssz cosq − sx sin qd2,

M†sw,qd]qq
2 Msw,qd = −

1

"2sy
2,

M†sw,qd]wq
2 Msw,qd = −

1

"2ssz cosq − sx sin qdsy,

M†sw,qdsxMsw,qd = sx cosq cosw − sy sin w

+ sz sin q cosw,

M†sw,qdsyMsw,qd = sx cosq sin w + sy cosw

+ sz sin q sin w. sA1d

APPENDIX B: GEOMETRIC TERMS

For a cylindric TOP trap with magnetic field as defined in
Eq. (5), the geometric fields result:

=q =
b

sBRd2ÎsBx
Rd2 + sBy

Rd23Bz
R bsx + r cosvTtd

Bz
R bsy + r sin vTtd
2fsBx

Rd2 + sBy
Rd2g

4 ,

=w =
b2

sBx
Rd2 + sBy

Rd23− y − r sin vTt

x + r cosvTt

0
4 ,

]tq =
vTb2Bz

R

sBRd2ÎsBx
Rd2 + sBy

Rd2
rsy cosvTt − x sin vTtd,

]tw = vTS brBx
R

sBx
Rd2 + sBy

Rd2 − 1D ,

Dq =
Bz

R

ÎsBx
Rd2 + sBy

Rd2
S1 + 6

sBx
Rd2 + sBy

Rd2

sBRd2 D ,

=w = q = 0, Dw = 0. sB1d

APPENDIX C: TDVP APPROACH

In our contest the TDVP method structures the dynamical
quantum state describing the atomic motion, in terms of a
trial state written, as in Eq.(36) , as the product of a time-
dependent phase factore−iSstd/" times a spatial- and time-
dependent scalar wave functionCsx ,td times a time-
dependent spinoru j ,tstdl. The time-dependent trial state
csx ,td has to be found in a self-consisting way. By imposing
the weaker form of the Schrödinger equation

E dxc†sx,tdfi"]t − HRgcsx,td = 0, sC1d

we get the effective actionSstd:

Sstd =E
0

t

dtE dxk j ,tstduC†sx,tdfi"]t − HRgCsx,tdu j ,tstdl.

By splitting the Hamiltonian asHR=Had
s +DHs, whereHad

s

has been introduced in Eq.(13) , we get

Sstd =E
0

t

dtE dxC†sx,tdfi"]t − Had
s gCsx,td

+E
0

t

dtE dxk j ,tstdufi"uCsx,tdu2]t

− C†sx,tdDHsCsx,tdgu j ,tstdl. sC2d

Heresstd is the slow time-dependent quantity introduced in
Eq. (39) , which varies on times of the order ofth=2p /vr,z
@ tL=2p /vL. By expanding the HamiltonianHad

s in a power
series of the displacement coordinatessx,y,z=z−hd, we get
the harmonic Hamiltonian with the time-dependent potential
of Eq. (15) . Thus, by introducing the structureCsx ,td of Eq.
(19) for the atomic wave function we find the Schrödinger
equation (21). After taking the time average of the latter
equation on a short time 2p /vT, we get the harmonic prob-
lem (22) of which the general solutionFsx ,td is known.
Thus, the first term on the right-hand side in Eq.(C2) van-
ishes, and we obtain

Sstd =E
0

t

dtk j ,tstdufi"]t − kDHs2d
s lgu j ,tstdl,

where kDHs2d
s l=edxfC†sx ,tdDHs2d

s Csx ,tdg and DHs2d
s is ob-

tained by expandingDHs in a power series inx andp up to
the second order. Explicitly we have
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kDHs2d
s l = o

i

khs2d
i lsi + o

jk

kgs2d
jk lsjsk − ksmBs2d

R l,

with the obvious meaning of index(2).
The HamiltoniankDHs2d

s l is built of sus2d algebra genera-
tors acting on the time-dependent spin vectoru j ,tstdl. We
choose foru j ,tstdl the components of the sus2d atomic co-
herent stateutstdl of j representation. As a support for this
choice let us remember that, if the HamiltoniankDHs2d

s l was
a closed dynamical algebra—i.e., a linear combination of the
sus2d generators—the solutions of the Schrödinger equation
given by these coherent states would be exact[15]. The
equation of motion for the labeltstd (and its complex conju-
gate), which involves the dynamical evolution of the state
csx ,td, is obtained by stationarizing the effective actionSstd:

dS= dSE
0

t

dtHi" k j ,tstduFṫ
d

dt
+ ṫ̄

d

dt̄
Gu j ,tstdl − k j ,tstd

3ulDHs2d
s lU j ,tstdL = 0. sC3d

After boring algebra we get the equations of motion

dt

dt
=

s1 + utu2d2

2i" j
]t̄Hst,t̄d,

whereHst , t̄d=ktuDHs2d
s utl andt̄ is the complex conjugate of

t. These tricky equations can be cast in more familiar form

by writing them in terms of the classical spin components
Sx,Sy,Sz introduced in the text. The dynamics of these spin
components, apart terms irrelevant for the equations of mo-
tion, is generated by the following Hamiltonian:

HsSx,Sy,Szd = o
i

khs2d
i lSi + S1 −

1

2j
Do

i

kgs2d
ii lSi

2 + 2S1 −
1

2j
D

3kgs2d
xz lSxSz, sC4d

where the time-dependent coefficients are derived by the
center-of-mass wave functionCsx ,td as

khs2d
i l =E dxfC†sx,tdhs2d

i Csx,tdg for i = x,y,z,

kgs2d
i j l =E dxfC†sx,tdgs2d

i j Csx,tdg for i, j = x,y,z,

sC5d

and the operatorshi and gij have been given in Eq.(35) .
Therefore we obtain a canonical system for the classical spin
components whose dynamics is generated by the effective
Hamiltonian H, endowed with the Poisson brackets
hSx,Syj=Sz and cyclic permutations.
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