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The translational motion of molecular ions can be effectively cooled sympathetically to translational tem-
peratures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The rovi-
brational degrees of freedom, however, are expected to be largely unaffected during translational cooling. We
have previously proposed schemes for cooling of the internal degrees of freedom of such translationally cold
but internally hot heteronuclear diatomic ions in the simplest case of1S electronic ground-state molecules.
Here we present a significant simplification of these schemes and make a generalization to the most frequently
encountered electronic ground states of heteronuclear molecular ions:1S, 2S, 3S, and 2P. The schemes are
relying on one or two laser-driven transitions with the possible inclusion of a tailored incoherent far-infrared
radiation field.
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I. INTRODUCTION

The cooling and manipulation of neutral molecules has
become the subject of intense studies in recent years and
impressive advances have been made. Experiments include
the successful production of molecular Bose-Einstein con-
densates[1–3], the deceleration and trapping of polar mol-
ecules in inhomogeneous fields[4–9], and loading a trap
with paramagnetic molecules cooled by a He buffer gas
[10,11]. For the NH radical the presence of an unusually
large Franck-Condon factor offers prospects for direct Dop-
pler cooling of a trapped molecule[12].

Molecular ions constitute another class of molecules that
are very interesting to cool and manipulate. Diatomic mo-
lecular ions are, e.g., important constituents of interstellar
media[13,14], comets and cool stellar atmospheres including
that of the Sun[14,15], and the access to cold molecular ions
opens up for quantum-controlled chemistry experiments.

The cooling of molecules is in general more complicated
than that of atoms since the rovibrational substructure of the
electronic molecular energy levels normally makes it impos-
sible to find a closed optical pumping scheme to be used for
conventional laser cooling. Molecular ions, however, may be
very effectively cooled sympathetically by loading them into
a trap with laser cooled atomic ions[16–20]. The Coulomb
interaction between the charged particles provides efficient
momentum transfer from the initially hot molecular ions to
the cooled atomic ions. Dissipative cooling of the transla-
tional motion is hence obtained for both species although
only the atomic ions are subject to laser cooling.

One might expect that the rovibrational degrees of free-
dom of a diatomic molecule placed in the vicinity of a cooled
atomic ion would couple to the translational motion of the
atomic ion, resulting in strong sympathetic cooling of these
degrees of freedom. In a typical ion trap, however, the exci-

tation energy of the translational atomic motion in the trap
(vibrations in the harmonic trap potential) is of the order of
1 MHz, which is much smaller than typical energies of rovi-
brational excitations(of the order of 1011–1014 Hz). The
large difference between these numbers prohibits the internal
rovibrational states from coupling effectively to the external
motion of the ions in the trap. In the following we therefore
assume that the internal degrees of freedom relax to equilib-
rium with the blackbody radiation(BBR) present in the trap.
This will happen on a time scale of tens of seconds, which is
significantly faster than the inelastic collision time in the trap
which, from Langevin theory, is estimated to be hundreds of
seconds[21].

In Refs.[21,22] we proposed schemes for cooling of the
rotational degree of freedom of such molecular ions in the
case of heteronuclear molecules with a1S electronic ground
state. The schemes are based on two direct infrared(IR)
transitions between the lowest vibrational states in the mol-
ecule or two Raman transitions coupling the vibrational lev-
els via a near-resonant excited electronic state. In addition to
the pumping by the external light sources the cooling
schemes are assisted by rotational redistribution mediated by
the BBR. The time scale of the cooling schemes is on the
order of,60 s which is shorter than the estimated inelastic
collision rate with background gas.

Though most molecules appearing in nature have a1S
electronic ground state, it is necessary to consider other elec-
tronic states for molecules produced in the laboratory, in-
cluding molecular ions. The by-far most frequently encoun-
tered electronic ground states of such molecules and
molecular ions are, apart from the1S state, the2P, 2S, and
3S states. This includes the lighter diatomic hydrides—e.g.,
FH+s2Pd, BH+s2Sd, and OH+s3Sd. Such ionized hydrides are
attractive candidates for our cooling schemes as they have
low reduced masses and hence high rotational transition fre-
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quencies, leading to fast rotational relaxation rates, which is
beneficial for the time scale of the cooling scheme. By ex-
tending the schemes to2P, 2S, and3S states we have then
covered all the lighter ionic hydrides and the vast majority of
other molecules amenable for cooling. We show that it is
possible to cool such electronic states, though at the cost of
introducing more laser frequencies in some cases. For most
molecules, however, the present cooling schemes rely on
only a single IR laser, possibly assisted by broadband radia-
tion from a far-infrared(FIR) emitter which is filtered to
optimize the cooling efficiency.

The present paper is organized as follows. In Sec. II we
present cooling schemes for the1S electronic ground states.
In Sec. III we discuss a model of the cooling schemes and
present numerical simulations for MgH+sX 1Sd. In Sec. IV
we present cooling schemes applicable to the2S, 3S, and2P
electronic ground states together with numerical simulations
of each of the cooling schemes. A summary of the results is
given in Sec. V. In Appendix A, we have collected the Ein-
stein coefficients for the considered molecules and transi-
tions, and in Appendix B, we describe the Hönl-London fac-
tors of interest.

II. COOLING SCHEMES FOR 1S STATES

The suggested schemes for1S states are sketched in Fig.
1. The driven transitions are either Raman transitions via an
excited electronic state or transitions directly between vibra-
tional levels. Figure 1(a) represents the cooling scheme of
Ref. [21] in which two Raman transitions make a closed
cycle through pumping of population from the “pump states”
sn=0,N=1d and sn=0,N=2d to the excited statessn=1,N
=1d and sn=1,N=0d, respectively, followed by subsequent
spontaneous emission bringing the populations back to the
“pump states” or to the rovibrational ground state. Heren
and N denotes the vibrational and rotational levels, respec-
tively. Population initially in higher-lying states is fed to the
pump states through BBR-induced rotational transitions
within the vibrational ground state.

It would be advantageous for practical implementation to
use only a single Raman[Fig. 1(b)] or a single direct[Fig.
1(c)] transition, at the expense of not emptying thesn
=0,N=1d state. Without applying other means to limit the
pileup of population in thesn=0,N=1d state the cooling ef-
ficiency, measured as the percentage of population in the
ground state, will decrease. One can, however, take advan-
tage of the higher frequency of thesn=0,N=1d↔ sn=0,N
=2d rotational transition compared to the undesiredsn
=0,N=0d→ sn=0,N=1d heating transition inevitably driven
by the BBR and apply an incoherent source and a high-
frequency pass filter to reduce the radiation resonant with the
heating transition while still addressing thesn=0,N
=1d↔ sn=0,N=2d transition. Thereby one can obtain the de-
sired depletion of thesn=0,N=1d population by means of
incoherent radiation only. As the rate of depletion using re-
alistic incoherent sources will be slower than if the state was
addressed by a laser, it is necessary to design the cooling
scheme such that spontaneous decays to thesn=0,N=1d

state from states which are participating in the pumping
cycle are avoided. This can be done by addressing thesn
=0,N=2d↔ sn=2,N=0d transition with a resonant, dipole-
allowed sDN=0, ±2d Raman pulse as depicted in Fig. 1(b).
The pumping to thesn=2,N=0d state is then followed by
spontaneous decays throughsn=1,N=1d to sn=0,N=0d and
sn=0,N=2d in accordance with the dipole selection rules
fsDN,Dnd= ±1g for single-photon decays.

It is shown in Ref.[21] that the Raman transitions in the
MgH+ test case[16] are saturated by a,100 kW/cm2,

FIG. 1. Rovibrational states of interest in the cooling schemes
for 1S states. The cooling concept involves transitions between
rovibrational states driven by Raman pulses[solid lines, double
arrows in(a) and (b)] via an excited electronic state or direct laser
pumping[solid line, single arrow in(c)] and subsequent spontane-
ous decays(dashed lines).
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10 ns pulse, which is a modest intensity for present-day laser
systems.

One of our schemes using only a single direct laser-
induced transition subject to the dipole selection rule is
shown in Fig. 1(c) [22]. The laser pumps thesn=0,N
=2d↔ sn=1,N=1d transition while subsequent spontaneous
decay brings the population back to the pump state or to the
rovibrational ground state. A filtered incoherent source is ap-
plied in order to bring population from thesn=0,N=1d state
to the “pump state.” The advantage of this direct scheme is
that it does not depend on the existence of an excited elec-
tronic state that can be addressed with laser light and also
that it requires only a single laser frequency. ArH+ is an
example of a molecule without excited electronic states
[23,21].

From a practical point of view, a pulsed laser system is
desirable for the direct scheme of Fig. 1(c). The IR light
could, for example, be generated by difference frequency
mixing of the primary beam of a frequency-doubled
Nd:YAG laser and a dye laser pumped with the same beam.
In the MgH+ case, the wavelength of thesn=0,N=2d↔ sn
=1,N=1d pumping transition is.5.9 mm [24] and the Ein-
stein A coefficient is.20 s−1. To ensure saturation of the
laser-driven transition we require that the population in the
states involved undergo at least ten Bloch oscillations during
a laser pulse and that the amplitude of each oscillation ex-
ceed 0.9. If we assume a detuning of 1 GHz and a pulse
duration of 10 ns, we find that an intensity of,500 W/mm2

is needed to fulfill both requirements. This corresponds to a
pulse energy of 5mJ. Typical nonlinear crystals should be

able to deliver an energy of,10 mJ per laser pulse at the
wavelength required.

The added incoherent field from a lamp will increase the
rate of rotational transitions needed for cooling, but at the
expense of heating the population distribution. The spectral
distribution of the incoherent field can therefore be shaped to
maximize the cooling efficiency as described in Ref.[22].

III. NUMERICAL SIMULATIONS FOR 1S STATES

In this section, we present our model of the cooling
scheme, show the results of numerical simulations, and dis-
cuss the optimal radiation distribution of the incoherent field.

A. Rate equations for the population dynamics

The population dynamics is well described by rate equa-
tions giving the change in population of a given state via
Einstein coefficients and frequency-specific radiation inten-
sities. The equation of motion for the molecular population
Pi in statei takes the form

dPi

dt
= − o

j=0

i−1

Aij Pi + o
j=i+1

M

AjiPj − o
j=0

i−1

PiBijWsvi jd

+ o
j=0

i−1

PjBjiWsvi jd − o
j=i+1

M

PiBijWsvi jd

+ o
j=i+1

M

PjBjiWsvi jd. s1d

Here

P = sPn=0,N=0,Pn=0,N=2¯ Pn=0,N=Nmax
,Pn=1,N=0¯ Pn=1,N=Nmax

,Pn=2,N=0¯ Pn=2,N=Nmax
d s2d

represents the populations in vector form withNmax chosen
so the population in higher-lying rotational states is negli-
gible during the cooling process.Aij andBij are the Einstein
coefficients describing spontaneous and stimulated transi-
tions from energy leveli to j . Wsvi jd is the cycle-averaged
radiative energy density present in the trap at the resonant
transition frequencyv=vi j , between levelsi and j . In Eq.
(1), the first term corresponds to spontaneous decay from
state i to states with lower energy, while the second term
describes spontaneous decay from levels with higher energy
into statei. Stimulated emission from theith state and stimu-
lated absorption from lower-lying states are then described
by the third and fourth terms, and finally, the last two terms
represent transitions due to absorption of radiation from the
ith state and stimulated emission from higher-lying states
into the ith state.

The system of equations(1) is conveniently expressed by
the matrix equation

dP

dt
= KP, s3d

whereK is an sM +1d3 sM +1d coupling matrix.

B. Calculation of molecular properties

As seen from Eq.(1), it is necessary to know the Einstein
coefficients to simulate the population dynamics. For many
molecules, the Einstein coefficients are available in the lit-
erature. If not, they are evaluated numerically as follows. We
use the well-known quantum mechanical expressions for the
Einstein coefficients between an upper stateCn and a lower
stateCm that are both nondegenerate[25],

Bn,m =
puDn,mu2

3e0"2 ,
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An,m =
"v3

p2c3Bn,m, s4d

wherev denotes the transition frequency andD the transi-
tion dipole moment between the states,

Dn,m
lab =E Cn

*M labCmdt, s5d

with dt denoting the volume element corresponding to inte-
gration over the complete set of coordinates for all particles
involved and

M lab = o
k

− erk + o
l=1,2

ZleRl s6d

the dipole operator.
The equations refer to a laboratory-fixed coordinate sys-

tem so the molecular wave functions include the rotational
terms. The summation indices in Eq.(6), k andl, refer to the
electrons and involved nuclei, whileZl denotes the nuclear
charge.

For degenerate states Eq.(4) is modified to

Bn,m =
puDn,mu2

3gne0"2 ,

An,m =
"v3

p2c3Bn,m, s7d

with gn the degeneracy of the initial, upper state and where
dipole matrix elements connecting rovibrational levels,Dn,m,
are derived in Appendix B:

uDm,nu2 = SJm,Jn
UE fnn

sRdDesRdfnm
sRdR2dRU2

. s8d

The Hönl-London factorsSJm,Jn
are tabulated in the litera-

ture [24,26–28] and may be evaluated by the expressions
given in Appendix B. Both the potential energy curve for the
molecule and the electronic dipole moment functionDe

molsRd
are evaluated withGAUSSIAN [29]. From the potential energy
curve the rovibrational eigenfunctionsfnn

are readily found
using the Numerov method, and the one-dimensional integral
of Eq. (8) can be evaluated. We use theLevel 7.5program[30]
to perform these tasks and to evaluate Eq.(7), leaving us
with the desired Einstein coefficients.

Einstein coefficients for MgH+

Since translational cold samples of MgH+ have been pro-
duced in a trap loaded with laser-cooled Mg+ atomic ions
[16], this molecular ion is the first choice for an implemen-
tation of the presented cooling schemes. To our knowledge
only a few Einstein coefficients for transitions within the
electronic ground state have been published[21]. We have
recalculated the coefficients using the approach of the previ-
ous section. The potential curves obtained fromGAUSSIAN

[29] using various theoretical approaches on a 6-311+ +G
basis set[31] are given in Fig. 2 together with the corre-
sponding dipole moment functions in the molecular center-

of-mass system. The potential curves show convincing con-
vergence, and our derived vibrational transition frequencies
and equilibrium distance agree with published data within
1.5% [24]. To compute the accurate electronic dipole mo-
ment function is more challenging, since this requires accu-
rate electronic wave functions. Generally the Møller-Plesset
fourth-order perturbation theory[35] and the coupled-cluster
theories[36] are reliable for the task. The dipole moment
functions converge against a unique function as the level of
approximation is refined as shown in Fig. 2, indicating that
the highest-order coupled-cluster function(CCSDT) is a
good approximation to the physical dipole moment function.
Furthermore, we have performed equivalent calculations on
the isoelectronic molecules NaH and BeH+ [37–39] to com-
pare our results with other published calculations. The results
were in agreement within 5%, a level which is not critical for
the simulations of the cooling schemes. The calculated Ein-
stein coefficients are given in Appendix A.

We have now set up the model and acquired the param-
eters entering the coupling matrixK in Eq. (3) and the solu-
tion can now be found numerically using standard methods
as described below.

C. Solving the population dynamics

We model the dynamics of the cooling on the test case of
MgH+ by solving Eq.(3) [40]. In the population vectorP of

FIG. 2. Top: Born-Oppenheimer electronic potential energy
curves of MgH+sX 1Sd calculated byGAUSSIAN in a 6–311+ +G
basis set[31] using Hartree-Fock(HF) theory, Møller-Plesset
nth-order perturbation theorysMPnd, coupled-cluster theories with
singles and double excitations(CCD), and single, double, and triple
excitations (CCSDT). See Refs.[32–36] for descriptions of the
methods. The curves for the MP4, CCD, and CCSDT calculations
are in good agreement close to the equilibrium position, 1.65 Å,
indicating that these methods give an accurate description of the
problem. Bottom: corresponding dipole moment functionsDe

molsRd
of Eq. (B3) pointed along the internuclear axis, of MgH+, calculated
with GAUSSIAN. The MPn and coupled-cluster theories largely agree
around the equilibrium distance, although not as well as for the
potential curve due to the dependence on electronic wave functions
rather than eigenenergies. The classical turning points for the vibra-
tional ground state are marked on the common abscissa at 1.5 and
1.8 Å. The result of the MP2 calculation cannot be discriminated
from the MP4 result at the internuclear distances of interest.

VOGELIUS, MADSEN, AND DREWSEN PHYSICAL REVIEW A70, 053412(2004)

053412-4



Eq. (2) we useNmax=20 since the population of this and
higher-lying levels is effectively zero during the cooling pro-
cess. In addition, we omit thesn=2,Nd states in the cooling
schemes if the second excited vibrational state is not coupled
by laser fields. The radiation densityWsvd at resonance be-
tween levels not addressed by lasers has been calculated
from a Boltzmann distribution at 300 K plus incoherent
fields from lamps as described below. The pulsed lasers are
assumed to saturate the pumped transitions, described in Sec.
II, at a repetition rate of 100 Hz. In the simulation this is
done by redistributing the population in the involved rovibra-
tional levels at the given repetition rate according to the de-
generacy of the levels. All simulations are made with popu-
lations which are initially Boltzmann distributed at a
temperature of 300 K. The shape of the incoherent field is
chosen so that it maximizes the final population in the rovi-
brational ground state.

All simulations are made with the most abundant iso-
topes, in this case24Mg 1H+ (79%).

D. Efficiency of 1S cooling schemes

In Ref. [22] we found that the optimized radiation density
at intermediate timescales induces transitions up to and in-
cluding the peak of the population distribution in BBR alone
at 300 K. Specifically, for MgH+ the optimized spectral dis-
tribution of the incoherent source used in the schemes of Fig.
1(b) and 1(c) is found to be a square distribution with the
maximal density allowed on the rotational transitions from
sn=0,N=1d↔ sn=0,N=2d to sn=0,N=3d↔ sn=0,N=4d.
Furthermore, we showed that the spectral radiation density
reaching the molecular ions from a realistic lamp is approxi-
mately 5 times the spectral radiation energy density of BBR
at 300 K. This has been included as a constraint in the opti-
mization of the incoherent field.

While the cooling efficiency at a given time depends criti-
cally on the ability to filter out radiation addressing the heat-
ing transition in the low-frequency end of the distribution, it
is only weakly depending on the sharpness of the filter in the
high-frequency end. This is illustrated in Figs. 3 and 4 by the
inclusion of a simulation using a square incoherent field ad-

dressing the transitionssn=0,N=1d↔ sn=0,N=2d to sn
=0,N=7d↔ sn=0,N=8d roughly corresponding to the cutoff
frequency of a crystalline quartz window[41]. This distribu-
tion will be referred to as the “quartz-filtered” distribution
below. Simulations of the evolution of the rovibrational
ground-state population of MgH+ during cooling with the
direct and Raman scheme using these two incoherent fields
are presented in Fig. 3 together with the results obtained
without the inclusion of an incoherent source and those ob-
tained by applying the scheme of Ref.[21] [Fig. 1(a)].

For very short cooling times no significant difference be-
tween the schemes is seen as the relatively slow rotational
transitions have not yet set in. On intermediate time scales
the effect of the added incoherent field is evident and the
optimized scheme has an advantage to the scheme of Ref.
[21] at times less than,100 s. At long times the slower
depletion of thesn=0,N=1d state using the incoherent field
rather than a laser, as well as the heating effect of the added
radiation, makes the scheme of Ref.[21] more effective than
the other schemes.

The schemes presented here have the advantage of reach-
ing significant cooling after,30 s which, combined with the
modest demands to coherent light sources, makes them ex-
perimentally attractive. Anticipated performance of traps for
neutrals give storage times exceeding 10 s, comparable to
the timescale of the cooling schemes applied on MgH+ [5]
and in the same regime as ArH+, which is a faster candidate
[21]. Hence the application of the schemes may be consid-
ered to create rotationally cold neutral molecules in the pres-
ence of BBR.

The population distribution after 60 s of cooling is com-
pared with the initial Boltzmann distribution in Fig. 4. The
depletion of the rotational levels above theN=2 “pump
state” is evident. The difference between using the optimized
and quartz-filtered spectral distribution of incoherent light
can be seen in the figures, but the effect is very limited.

The final population in the rovibrational ground state of
just below 80%(cf. Fig. 4) corresponds to the ground-state
population of a thermal ensemble of MgH+ at ,7 K.

IV. COOLING SCHEME FOR MOLECULES
WITH ROTATIONAL SUBSTRUCTURE

In the previous sections, we discussed cooling schemes
applicable to molecular ions with their rovibrational energy

FIG. 3. Population in the rovibrational ground state of
MgH+sX 1Sd vs cooling time for the Raman(a) and direct (b)
schemes presented in Figs. 1(b) and 1(c) with the optimized distri-
bution of incoherent radiation(solid line), quartz-filtered distribu-
tion (dashed line), and no incoherent source(dash-dotted line). The
same simulation using the scheme of Fig. 1(a) is depicted for com-
parison(dot).

FIG. 4. Population distribution in MgH+sX 1Sd after 60 s of
cooling using the Raman(a) and direct(b) schemes with the opti-
mized energy distribution of the incoherent source(black), the
quartz-filtered energy distribution(gray), compared to the initial
population distribution at 300 K(white). The ground-state popula-
tion after cooling with the optimized incoherent field corresponds to
that of a thermal ensemble at,7 K.
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levels determined by molecular rotation and vibration only.
This will be the case if the relevant electronic state has van-
ishing total spin and if the projection of the orbital angular
momentum of the electronic state along the internuclear axis
is zero—i.e., in1S states. We now turn to the other electronic
round states found in lighter diatomic hydride ions:2S, 3S,
and2P

A range of quantum numbers will be needed to describe
the rotational substates of the molecules to be discussed. We
follow the notation of Huber and Herzberg[24] designating
the quantum numbers as indicated in Table I. The meaning of
the coupled angular momenta is explained below.

We now treat Hunds coupling case(a) and (b) separately
and study cooling schemes for both cases.

A. „2S+1…P states: Hunds case (a)

An interaction term of the formHso=AL ·S will appear in
the Hamiltonian if the projection on the internuclear axis of
both electronic spinS and electronic orbital angular mo-
mentaL are nonzero. For moderate rotational excitations this
will normally dominate over terms from the rotational
HamiltonianHrot=B·N2. It is therefore convenient to choose
the Hunds case(a) basis set, consisting of basis functions
un,S2J2MJLSVl wheren is collecting the quantum numbers
defining the molecular state but not mentioned in Table I. In
this basis set, the unperturbed Hamiltonian,H0 is diagonal
and the main perturbation termHso is nearly diagonal with
the off-diagonal terms satisfying DV=0. The
un,S2J2MJLSVl basis states are therefore a good approxi-
mation to eigenfunctions with good quantum numbers if
uAu@B·J. In the following section, we restrict the calculation
to the pure Hunds case(a) limit where this condition is ful-
filled. 2P states are often close to this limit at low rotational
excitations and they form the most interesting example of
Hunds case(a) coupling for our purpose, as they are found as
ground states of a number of molecules interesting for cool-
ing, including NH+ and FH+.

1. Energy levels and selection rules

The first order effect ofHso is to split the electronic
ground state into states according to the value ofV. For each

of these states there will be a set of rovibrational substates
arising fromHrot.

In Hunds case(a), the molecule is well described as a
rotating symmetric top, for which the rotational energies are
expressed by[24]

FnsJd = BnfJsJ + 1d − V2g. s9d

HereJ must take values greater thanuV−Nu and the lowest
rotational state will therefore, in general, haveJÞ0. The
overall structure of the molecular energy levels can be seen
from the sketch of the modified cooling scheme in Fig. 5 for
S= 1

2.
The case(a) basis state in the laboratory frame can be

written as a Wigner rotation of the corresponding wave func-
tion in the molecular rest frame[42]

khr ijRunJMJVSSl =Î2J + 1

8p2 khr i8jRunluSSlDMJV
J*

sabgd,

s10d

wherehr ij ,Rshr i8j ,Rd are the electronic and internuclear co-
ordinates in the laboratory(body-fixed) frame. Finally

DMV
J*

sabgd is an element of the Wigner rotation matrix
evaluated at the given Euler angles,abg [43]. The Hönl-
London factorsSsJ8 ,J9d are found as outlined in Appendix
B:

SsJ8,J9d = s2J9 + 1dukJ9V91sV8 − V9duJ8V8lu2dS8,S9dS8,S9,

s11d

where kJ9V91sV8−V9d uJ8V8l is a Clebsch-Gordan coeffi-
cient. This result immediately gives us the dipole selection
rules

DJ = 0, ± 1 butJ = 0↔/ J = 0,

TABLE I. Overview of quantum numbers describing the rovi-

brational state of a molecule, neglecting nuclear spin.ẑ denotes a
unit vector along the internuclear axis.

Label Definition

L Total electronic orbital angular momentum

L Projection ofL on internuclear axis

N Angular momentum of molecular rotation

S Total electronic spin

S Projection ofS on internuclear axis

MS Projection ofS on laboratory Z-axis

V L+S

K Sum ofN andL ·ẑ

J Total angular momentum of molecule neglecting
nuclear spin

MJ Projection ofJ on laboratory Z-axis

FIG. 5. Cooling scheme for2P states. Each of the two possible
values ofV results in a series of energy levels and it is necessary to
cool the2P1/2 and 2P3/2 separately if both are populated. Popula-
tion is pumped from the first excited rotational state in then=0
vibrational ground state to the rovibrational ground state by a laser-
induced vibrational transition and subsequent spontaneous decays.
All the involved transitions are dipole allowed[cf. Eq. (12) ]. Solid
lines indicate laser-pumped transitions while dashed lines indicate
spontaneous decay paths. TheL doubling is not shown in the
figure.
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DL = 0, ± 1,

DS= DS = 0, s12d

which can also be combined toDV=0.

2. Cooling schemes

For 2P molecules we propose the cooling scheme de-
picted in Fig. 5, where we distinguish between the possible
values ofV= 1

2 and V= 3
2. Since only transitions withDJ

=0, ±1 are allowed, we can pump population from the first
excited rotational state in the vibrational ground state to the
rotational ground state of the first excited vibrational level.
The former is denoted the “pump state” in analogy with the
nomenclature in Sec. II. From thesn=1,J=Vd state sponta-
neous emission brings population either back to the pump
state or down to the rovibrational ground state. The cooling
scheme must be applied for each populatedV state individu-
ally. In Fig. 5 we have assumed population of bothV= 1

2 and
V= 3

2. In the absence of incoherent radiation this forms a
pumping cycle where population initially in thesn ,Jd
=s0,V+1d state is transferred to the rovibrational ground
state. As in the singlet case, the presence of BBR and possi-
bly additional incoherent radiation from a lamp, will induce
rotational transitions and thereby feed the pump state with
population from higher-lying states. The entire population is
therefore cooled.

Cooling schemes for other Hunds case(a) molecules may
be derived from straightforward generalization of the2P
scheme.

3. Numerical simulations

The simulation is done using the approach described in
Sec. III C but with the dipole transition matrix elements cal-
culated using the Hönl-London factors of Eq.(11). We have
chosen the molecule FH+ as an example of a2P ground state
molecule.

Since the spin-orbit coupling parameterA=−292 cm−1 is
much larger in magnitude than the rotational constantB
=17 cm−1, FH+ is best described in the Hunds case(a)
scheme[44]. The appropriate cooling scheme is depicted in
Fig. 5, although it should be noted that, for FH+, V= 3

2 is the
lower state. To model the cooling scheme we use the dipole
moment functions in Ref.[45] and the accurate spectroscopic
data of Ref.[44].

In the cooling scheme of Fig. 5 the pumping is done from
the first excited rotational level. This fact, combined with a
large permanent dipole moment and hence rotational transi-
tion rate of FH+ s2.57 Debyed, makes the effect of the broad-
band incoherent radiation marginal. We have therefore per-
formed the simulations without the inclusion of an
incoherent source. The results of simulations are given for
both the2P1/2 and2P3/2 states in Figs. 6 and 7.

Further splitting of the levels indicated in Fig. 5 will ap-
pear due toL doubling. The effect is largest in the2P1/2 state
where it has a magnitude on the order of 10 GHz, which is
more than one can expect to cover with the bandwidth of a
single pulsed laser. Therefore the laser transitions indicated

for the 2P1/2 scheme need to be divided into 2. The splitting
of the lowest2P3/2 state is an order of magnitude smaller, so
it is not necessary to split that laser transition if a pulsed laser
system is used. This leaves us with three laser frequencies to
use for the cooling scheme if we assume that bothV= 1

2 and
V= 3

2 are populated.
Complications arise if we are not in the pure Hunds case

(a) scheme. This occurs if the rotational part of the Hamil-
tonian cannot be neglected compared to the spin-orbit part.
Treated in the case(a) basis, the rotational part will produce
nondiagonal perturbations[46]. This would allow a coupling
from sn=1,J=Vd→ sn=0,J=V+2d (the introduction of
quadrupole couplings would have a similar effect). We do
not expect this effect to be significant given the difference
betweenuAu and B. We did, however, check the stability of
the scheme when introducing such couplings and found that,
due to the fast rotational redistribution rates, the population
that was coupled out of the cooling cycle byDJ=2 transi-
tions would rapidly be taken back. The negative effect of

FIG. 6. Cooling efficiency of FH+sX 2Pd in the twoV substates.
In the dipole approximation the two substates are uncoupled if pure
Hunds case(a) applies. The cooling scheme will therefore be sig-
nificantly simplified if one can design the experiment such that only
the lowestV= 3

2 state is populated in the cooling scheme.

FIG. 7. Cooling efficiency as function of cooling time for the
two V substates of the2P electronic ground state of FH+. The
cooling is seen to reach steady state after&10 s without the inclu-
sion of an incoherent source, largely due to the large permanent
dipole moment of FH+.
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such couplings is small(less than 10% decrease in cooling
efficiency) if the DJ= ±2 couplings are less than 20% of the
DJ=0 coupling strength.

It should be noted that since the coupling between theV
states is also absent in the pure case(a) coupling, it would be
possible to prepare the sample so that only theV= 3

2 substate
is populated, due to its significantly lower energy. This
would make the lasers addressing the other level superfluous.
In that case only a single laser frequency is needed to cool
the molecules.

B. „2S+1…S states: Hunds case (b)

If B* uAu or at high rotational excitations, the Hunds case
(a) basis functions will no longer be approximate energy
eigenfunctions. IfHrot dominates, the Hunds case(b) basis
unJ2MJN

2S2Ll is convenient as the total Hamiltonian is
nearly diagonal in this basis. In particular this is fulfilled for
2S+1S states which are common as electronic ground states of
light diatomic molecular ions, including BH+sX 2Sd and
OH+sX 3Sd. Below we treat the2S and3S cases separately.

1. Energy levels of doublet states

The substates of a rotational level in a molecule in a2S
state are split due to the interaction of the spin of the un-
paired electron and the molecular rotational angular momen-
tum. This is due to the spin-rotation HamiltonianHsr

=gN ·S, with g denoting the spin-rotation coupling constant.
The resulting energies of the doublet are given by[24]

F1sNd = BNsN + 1d +
1

2
gN, s13d

F2sNd = BNsN + 1d −
1

2
gsN + 1d, s14d

and the substates are denotedF1 and F2 for J=N+ 1
2 and J

=N− 1
2, respectively.

2. Energy levels of triplet states

Molecular ions in3S electronic states will, apart from the
spin-rotation splitting discussed above, have an additional
splitting from the coupling of the electronic spin of the two
unpaired electrons. Such states are relatively rare, as pairing
of the electronic spins is usually favored. Nevertheless, the
ionic hydrides in the 16th group of the periodic table, includ-
ing OH+ and SH+, have such electronic ground states and we
therefore consider the applicability of the cooling schemes to
such states here. The energies of the three spin substates are
given by [24]

F1sNd = BNsN + 1d +
2lsN + 1d

2N + 3
+ gsN + 1d, s15d

F2sNd = BNsN + 1d, s16d

F3sNd = BNsN + 1d −
2lN

2N − 1
− gN. s17d

In analogy with the doublet caseF1, F2, andF3 denote the
substates withJ=N+1, J=N, and J=N−1, respectively. In
the expressiong is the spin-rotation coupling constant andl
is the spin-spin-splitting constant. The latter is normally an
order of magnitude or more larger thang and, consequently,
the multiplet splitting of triplet states at moderate rotational
excitations are much greater than the corresponding split-
tings of a doublet electronic states.

3. Selection rules

In Hunds case(b) the good quantum numbers are
N,S,J,MJ, andL. We therefore write the eigenfunctions in
the laboratory frame as

khr ij,RunJMJNS,Ll =Î2N + 1

8p2 o
MS=−S

S

o
MN=−N

N

khr i8j,Runl

3kNMNSMSuJMJl

3 uSMSlDMNL
N*

sabgd, s18d

wherehr ij ,Rshr i8j ,Rd are the electronic and internuclear co-
ordinates in the laboratory(body-fixed) frame. We then fol-
low the approach of Appendix B to get the Hönl-London
factors

SsJ8,J9d = s2N9 + 1ds2J8 + 1ds2J9 + 1d

3kN9L91sL8 − L9duN8L8l2

3HS9 N9 J9

1 J8 N8
J2

dS8S9, s19d

where

HS8 N9 J9

1 J8 N8
J

is a 6j symbol [43]. The following selection rules are ex-
tracted:

DJ = 0, ± 1 butJ = 0↔/ J = 0,

DN = 0, ± 1 butDN Þ 0 if L8 = L9 = 0,

DL = 0, ± 1,

DS= 0. s20d

4. Cooling scheme

The cooling scheme proposed for Hunds case(b) mol-
ecules closely resembles the singlet cooling scheme. It is
depicted in Fig. 8 for2S molecules and in Fig. 9 for3S
molecules. The optical pumping is done from thesn=0,N
=2,Jd set of states tosn=1,N=1,J8d. Then dipole-allowed
spontaneous decay will result in transitions back to the
“pump states” or to the nondegenerate rovibrational ground
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state. The only change to the scheme when compared to the
singlet case is to assure the addressing of all substates in the
N multiplet. This is possible because theDN= ±1 selection
rule for S states from Eq.(20) is the same as in the singlet
case. The role of BBR and additional incoherent radiation is
the same as in the previous schemes.

The number of transitions to be pumped is three for the
3S states and two for the2S states. The splitting of the levels
in the former is expected to be much larger than for the2S
case, since the spin-spin coupling parameterl is much
greater than the spin-rotation parameterg as mentioned in
Sec. IV B.

5. Numerical simulations: BH+(2S)

Here we treat BH+ as an example of a2S ground-state
molecule and discuss the molecule specific parameters and
their implications on the cooling schemes.

The numerical simulation is done for11B1H+ which is the
dominant isotope(80%). We use the potential energy and
dipole moment functions of Ref.[47]. With those functions,
we use the approach of Sec. IV B 3 to calculate the matrix of
Einstein coefficients between rotational and vibrational
states. Finally, we make the simulation as described in Sec.
III C but with the modified energy level structure. If one
neglects fine structure, the laser wavelength for the two, then
identical, pump transitions depicted in Fig. 8 isV0
=4.17mm. The real resonant transition frequencies are
shifted from this central frequency through Eq.(13) where
g=−0.014 cm−2 [24]. This gives a splitting of laser frequen-
cies, including fine structure, of ±0.007 cm−1. ±210 MHz.
This difference is comfortably smaller than the typical band-
width of a pulsed laser system. The hyperfine coupling coef-
ficient has, to our knowledge, not been calculated. Typical
values are, however, on the order tens to hundreds of MHz,
allowing us to address all hyperfine substates with the same
pulsed laser system. Hence, it is reasonable to expect that for
practical implementations only a single, pulsed laser fre-
quency is needed.

The results of a numerical simulation are given in Figs. 10
and 11. We note that the convergence is quite slow compared
to what we saw from MgH+ and FH+. Optimal cooling is not
obtained until after,2 min. This is not too critical as 60%
of the population is in the ground state after 20 s. As ex-
pected from the discussion in Ref.[22] we find that the op-
timized distribution of the incoherent source addresses the
transitions sn=0,N=1d↔ sn=0,N=2d and sn=0,N
=2d↔ sn=0,N=3d. Similarly it is confirmed, that the cool-
ing efficiency has little sensitivity towards the high fre-
quency cutoff of the incoherent field.

6. Numerical simulation: OH+(3S)

As an example of a molecule with the3S ground state we
have chosen OH+. This molecule plays an important role in
the chemistry in comet tails[15], the upper Earth atmo-
sphere, and interstellar clouds[49]. The electronic ground

FIG. 8. Cooling scheme for2S states. Due to the spin-rotation
coupling, each rotational quantum stateN split into two sublevels
with J= uN+ 1

2u , uN− 1
2u. The dipole-allowed vibrational transitions

are indicated on the figure using solid lines for laser-pumped tran-
sitions and dashed lines for subsequent spontaneous decay paths.

FIG. 9. Cooling scheme for3S states. Due to spin-spin and
spin-rotation coupling, each rotational quantum stateN split into
sublevels withJ= uN+1u ,N, uN−1u. The dipole-allowed vibrational
transitions are included in the figure with solid lines to indicate
laser-pumped transitions and dashed lines to indicate spontaneous
decay paths.

FIG. 10. Population in the lowest rotational state of BH+sX2Sd
as function of cooling time. Simulations are made using the scheme
of Fig. 8 with BBR only(dashed line) and with the inclusion of the
field from an incoherent source addressing theN=1→N=2 and
N=2→N=3 transitions(solid line). We see that a significant im-
provement is obtainable using the incoherent source. In line with
our experience from MgH+ there is only a couple of percent loss of
cooling efficiency when using a softer low-frequency pass filter, for
example, letting the broadband incoherent radiation extend to in-
clude transitions up to and includingN=4→N=5.
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state of OH+ is 3S−. The effect of hyperfine splittings is
expected to be much smaller than the bandwidth of a typical
pulsed laser system due to the nuclear spinsI =0 andI = 1

2 of
O and H, respectively. Hence the molecule is well described
by the level scheme of Fig. 9. The frequencies of the three
laser beams required are found from Eq.(15) and the con-
stantsg=−0.0147 cm−1 and l=2.13 cm−1 [24]. The wave-
length of the unsplit transition is 3.3mm with the three sub-
transitions shifted −3.2 GHz, 0, and −12 GHz with respect to
it. This splitting is to large to be covered by a single broad
laser unless one finds a way to generate shorter and thereby
broader and more intense pulses in this wavelength regime.
This is an obvious experimental complication that will often
arise in the case of3S states due to the generally large value
of the spin-spin splitting constantl. It should, however, be
noted that the 3 GHz may be covered by a single pulsed
laser, leaving only two laser frequencies in the cooling
scheme. We have calculated the dipole moment functions of
OH+ and compared our results to Ref.[48] in Fig. 12. In the
simulations we use the function obtained in the CCSDT
(aug-cc-pVTZ) calculation.

Figures 13 and 14 show the results of our simulations.
The scheme is both faster and more effective than what was
found for MgH+. This can be understood from comparison of
the Figs. 2 and 12. A larger gradient of the dipole moment
function of OH+ results in a higher effective pump rate from
N=2 to N=0. As with MgH+ we see a significant increase in
the cooling efficiency when introducing broadband radiation
from an incoherent source to deplete theN=1 population.

The simulation shows the efficiency of the rotational re-
distribution in the3S state. Considering the nonzero line
strengths for transitions between theFi ,FJ,si Þ jd series of
states, providedDN= ±1, one could be tempted to omit one
or more laser frequencies expecting rotational redistribution
to empty the remaining substates by rotational transitions
through neighboringN levels. Unfortunately such redistribu-
tion rates, requiring two or more rotational transitions
through specific substates, are much too slow to have a sig-

nificant effect on the cooling scheme. Therefore each of the
three laser frequencies is needed to make the cooling scheme
effective. In accordance with the previous results we find that
the optimized distribution of incoherent radiation from a

FIG. 11. Population in the lowest rotational states of BH+sX2Sd
after cooling in 120 s using the incoherent radiation from a lamp
addressing theN=1→N=2 andN=2→N=3 transition(black col-
umns) and in BBR only(grey columns). The initial 300 K Boltz-
mann distribution is included for comparison(unfilled columns).
We note that slightly better cooling efficiency should can be ob-
tained using longer cooling times(cf. Fig. 10). This is, however,
impractical and the obtainable improvements would be rather small.
The substructure of the rotational levels is included in the simula-
tion but omitted in the figure.

FIG. 12. Top: Born-Oppenheimer potential curves forX 3S OH+

calculated byGAUSSIAN with various theoretical models compared
to the calculation of Ref.[48]. All our calculations are done in a
6−311+ +G basis set except the solid black line which is made in
the generally more accurate aug-cc-pVTZ basis[31]. The curves
agree close to the equilibrium, 1.03 Å, for the MP4(fourth-order
Møller-Plesset perturbation theory) and coupled-cluster approaches
(CCD, CCSDT) indicating an accurate level of theory. The different
methods are described in Refs.[32–36]. Bottom: dipole moment
function calculated withGAUSSIAN using similar levels of theory
and basis sets. The agreement between the calculations is reason-
able and the effect of using the larger basis set for the CCSDT
theory is not visible on the given scale, but our results show some
discrepancy with the results of Ref.[48]. This small discrepancy,
however, has very little effect on the cooling scheme. The classical
turning points for the vibrational ground state are marked on the
common abscissa at 0.95 and 1.15 Å. The dipole moment functions
are given in center-of-mass coordinates.

FIG. 13. Population in the lowest rotational state of OH+sX 3Sd
as function of cooling time. Simulations are made using the scheme
of Fig. 8 with BBR only(dashed line) and with the inclusion of the
field from an incoherent source addressing theN=1→N=2 and
N=2→N=3 transitions(solid line). We see that a significant im-
provement is obtainable using the incoherent source. In line with
our experience from MgH+and BH+ there is only a marginal loss of
cooling efficiency when using a softer low-frequency pass filter.
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lamp addresses only thesn=0,N=1d↔ sn=0,N=2d transi-
tion.

Finally, it should be noted that2S+1S states are always
cases of pure case(b) coupling due to the vanishing orbital
angular momentum and the selection rule inN is close to
exact. This stands in contrast to2S+1P states which often
have effects of intermediate coupling which will complicate
the suggested case(a) cooling scheme further.

V. SUMMARY

We have presented cooling schemes for rotational cooling
of translational cold molecular ions in the1S, 2S, 3S, and2P
electronic ground states. For all but the relatively rare3S

electronic state the schemes can be realized by optical pump-
ing with a single pulsed laser beam, possibly combined with
the inclusion of a broadband incoherent source. They are
therefore experimentally attractive, and preliminary experi-
ments are presently under way with MgH+.

Possible applications include high-precision spectroscopy
and measurements of absolute reaction rates with molecular
ions in a single, well-defined quantum state. This could, for
example, be used to study dissociative recombination with
unprecedented resolution or molecular reactions in interstel-
lar media or comet tails[13,14]. Ultimately, access to cold
molecular ions could be used in implementations of quantum
logics.
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APPENDIX A: EINSTEIN COEFFICIENTS

Here we list (Table II) the Einstein coefficients for se-
lected transitions and corresponding transition frequencies.

APPENDIX B: HÖNL-LONDON FACTORS

For completeness we include the details of the derivation
of Eqs.(8), (11), and(19).

1. 1S ground state

Equation(4) must be modified ifCm and Cn are degen-
erate. The effective EinsteinB coefficient is found asBn,m

FIG. 14. Population in the lowest rotational states of OH+sX 3Sd
after cooling in 10 s using the incoherent radiation from a lamp
addressing theN=1→N=2 andN=2→N=3 transition(black col-
umns) and in BBR only(grey columns). The initial 300 K Boltz-
mann distribution is included for comparison(unfilled columns).
The spin substructure of the rotational levels is included in the
simulation but omitted on the figure.

TABLE II. Einstein coefficients for selected transitions in s−1 and corresponding transition frequencies in
cm−1. In the table the quantities have the following meaning:Arot=Asn=0,N=1→n=0,N=0d, Avib=Asn
=1,N=1→n=0,N=0d for the S states andArot=Asn=0,J=V+1→n=0,J=Vd, Avib=Asn=1,J=V→n
=0,J=Vd for the P state. A similar notation is used for the transition frequencies. The pure rotational
transition rates(first column) indicate the rotational redistribution speed while the vibrational transition rates
give the spontaneous decay rate from the excited vibrational state in the pumping schemes. The data largely
explains the qualitative difference in cooling efficiency for the molecular ions. Large rotational redistribution
rates indicate a fast scheme, while fast spontaneous decays from the excited vibrational state indicate high
effective pump rate—i.e., high cooling efficiency. The data for BH+ is found using the data from Ref.[47]
and the computer program of Ref.[30] from which the Hönl-London factors were corrected to conform with
the multiplet expressions of Sec. IV. Data for OH+ were found using the same approach and data from Fig.
12. Finally the data on FH+ was obtained using the data of Refs.[44,45].

Arot ss−1d Avib ss−1d vrot scm−1d vvib scm−1d

24Mg 1H+sX 1Sd 2.5310−3 20.5 12.9 1672
11B1H+sX 2Sd 0.2310−3 (Q branch) 11.5 25.0 2437

0.4310−3 (R branch) 23.0
16O1H+sX 3Sd 3.8310−3 (P branch) 18.3

19.2310−3 (R branch) 91.6 33.07 2990

11.5310−3 (Q branch) 54.9

Arotss−1d Avibss−1d vrotscm−1d vvibscm−1d
19F1H+sX 2Pd 93.8310−3sV= 1/2d 82.4 51.6 2964

347310−3sV= 3/2d 98.9 85.5 2999
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=om oj Bmj,nm
/gn, wherem andj denote the substates ofCn

and Cm, respectively, andgn the degeneracy of the initial
(upper) state. One summation is done to include transitions
to all substates of the final state,m, while the remaining
terms correspond to averaging the result over the substates of
the initial state. We then define the total transition dipole
moment for degenerate states as

uDn,mu2 = o
j,m

uDnj,mm
u2, sB1d

where the summation is done over all transitions between
substates of the system. The Einstein coefficients between
degenerate states then take the form

Bn,m =
puDn,mu2

3gne0"2 ,

An,m =
"v3

p2c3Bn,m, sB2d

which is the same as Eq.(4) except for the degeneracy factor.
We now move to a molecule-fixed coordinate system. We
define the electronic dipole moment function by integrating
the dipole operatorMmol over the electronic variableste:

De
molsRd =E ceshr i8j,Rd*Mmolceshr i8j,Rddte. sB3d

Here we stay in the electronic state defined by the wave
function cesRd in the body-fixed frame. We have calculated
De

molsRd ab initio with GAUSSIAN [29]. Details of these cal-
culations are molecule specific and will be given below.

To transform the dipole moment to the laboratory frame
we now specialize to1S states, postponing the general solu-
tion to Sec. IV. For1S diatomic molecules the cylindrical
symmetry of the potential will ensure thatDe

molsRd points
along the internuclear axis. Hence theZ component of
De

molsRd in the laboratory system is given by

De
labsRdZ = De

molsRd · Ẑ = De
molsRdcosu. sB4d

The molecular states are degenerate, so it is necessary to
sum over all substates to obtain the transition dipole moment
defined in Eq.(B1). In the case of1S molecules this corre-
sponds to summing over all projectionsMJ of the molecular
angular momentumJ. In carrying out the summation over
the substates in Eq.(B1) the selection ruleDMJ=0, ±1
makes it possible to rewrite the expression as a single sum
overm=MJ which can be related to the total transition dipole
moment. Since the transition probability must be indepen-
dent of the orientation of the laboratory coordinate system,
we have

uDm,n
lab u2 = o

MJ

uDlabu2 = 3o
MJ

uDZ
labu2. sB5d

Inserting Eq.(B4) in Eq. (5) we find

DZ
lab =E crn,nn

mol su,f,Rd*De
molsRdcosu

3 crm,nm

mol su,f,RdR2 sinu dRdudf, sB6d

wherecrn,nn
andcrm,nm

are the remaining rovibrational wave
functions obtained after the integration over electronic coor-
dinates in Eq.(B3). Now, we assume that the rovibrational
wave function may be written as a productCrn,nn

sR,u ,fd
=Frn

su ,fdfnn
sRd. Then,

uDZ
labu2 = uLJn,Mn

Jm,Mmu2UE fnn
sRdDe

molsRdfnm
sRdR2dRU2

,

sB7d

with

LJn,Mn

Jm,Mm =E Frn

lab*su,fdcosuFrm

labsu,fdsin ududf. sB8d

Defining

SJm,Jn
= 3 o

Mn,Mm

uLJn,Mn

Jm,Mmu2, sB9d

known as the Hönl-London factors[24,27,50], we combine
the above results with Eq.(B5) to find the total transition
dipole moment entering Eq.(B2):

uDm,nu2 = SJm,Jn
UE fnn

sRdDesRdfnm
sRdR2dRU2

. sB10d

2. Hunds case (a)

We use the Hunds case(a) eigenfunctions in the labora-
tory frame from[42] [cf. Eq. (10)]

khr ijRunJMJVSSl =Î2J + 1

8p2 khr i8j,RunluSSlDMJV
J*

sabgd

sB11d

and write thelth component of thekth moment transition
operator in the laboratory frame,Tl

k, as a similar rotation of
the operator working in the molecular rest frame:

Tl
kshr ijRd = o

L=−k

k

TL
k shr i8j,RdDlL

k*
sabgd. sB12d

Combining the above equations and performing the integral
over Euler angles, while writing the Wigner rotation func-
tions as an expansion over Clebsch-Gordan coefficients[51],
one finds the dipole moment transition matrix elementssk
=1d

kn8J8MJ8uTl
1shr ij,Rdn9J9MJ9l

=Î2J9 + 1

2J8 + 1 o
L=−1

1

kn8n8uTL
1 un9n9lkJ9MJ91l uJ8MJ8l

3kJ9V9kLuJ8V8l. sB13d

Summing over the projections ofJ and emission directions
one finds the line strength
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o
MJ8,MJ9

ukn8J8MJ8uTl
1shr ijRdun9J9MJ9lu

2

= s2J9 + 1dukn8n8uTL
1 un9n9lu2ukJ9V91sV8 − V9duJ8V8lu2

3dsS8,S9ddsS8,S9d. sB14d

Finally we find the Hönl-London factors in Hunds case(a):

SsJ8,J9d = s2J9 + 1dukJ9V91sV8 − V9duJ8V8lu2dS8,S9dS8,S9.

sB15d

3. Hunds case (b)

We gave the Hunds case(b) eigenfunctions in the labora-
tory frame in Eq.(18):

khr ijR,nJMJNMNSMSl

=Î2N + 1

8p2 o
MS=−S

S

o
MN=−N

N

khr i8j,RunlkNMNSMSuJMJluSMSl

3DMNL
N*

sabgd. sB16d

The rotated dipole moment operator was given in a general
form in Eq. (B12). We then use the identities[43]

Dll
k Dmm

n = o
N8M8m8

knmkluN8M8lknmkluN8m8lDMm8
N8

sB17d

and

E Dlm
k Dlm

k dV =
8p2

2k + 1
dl,ldm,mdk,k, sB18d

whereedV=e0
2p dae0

2p dge0
p db sinb. One thereby finds the

expression for the dipole matrix element:

kn8J8MJ8uTl
1shr i8j,Rdun9J9MJ9l

=Î2N9 + 1

2N8 + 1
kn8n8uTL8−L9

1 un9n9lkN9L91sL8 − L9duN8L8l

3 o
MN8 , MN9

MS8, MS9

kN9MN91l uN8MN8 lkN8MN8S8MS8uJ8MJ8l

3kN9MN9S9MS9uJ9MJ9ldS8S9dMS8MS9
. sB19d

This is summed over the projections ofJ and squared to
find the dipole transition probability. The task is simplified
by rewriting the products of Clebsch-Gordan coefficients in
terms of Wigner 6j symbols [52]. After some algebra one
then finds

ukn8J8N8uTl
1un9J9N9lu2

=
1

3
s2N9 + 1ds2J8 + 1ds2J9 + 1dkn8n8uTL8−L9

1 un9n9l2

3kN9L91sL8 − l9duN8L8l2HS N9 J9

1 J8 N8
J2

. sB20d

Summing over the emission directions cancels the factor of
1
3, leaving the expression for the Hönl-London factor in
Hunds case(b):

SsJ8,J9d = s2N9 + 1ds2J8 + 1ds2J9 + 1d

3kN9L91sL8 − L9duN8L8l2HS N9 J9

1 J8 N8
J2

dS8S9.

sB21d
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