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Quantum behavior of a charged patrticle in an axial magnetic field
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We study some aspects of the quantum theory of a charged particle moving in a time-independent, unidi-
rectional magnetic field. When the field is uniform, we make a few clarifying remarks on the use of angular
momentum eigenstates and momentum eigenstates with the diamagnetism of a free electron gas as an example.
When the field is nonuniform but weakly varying, we discuss both perturbative and nonperturbative methods
for studying a quantum mechanical system. As an application, we derive the quantized energy levels of a
charged particle in a Helmholtz coil, which go over to the usual Landau levels in the limit of a uniform field.
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I. INTRODUCTION II. UNIFORM MAGNETIC FIELD

We take the field to be in the direction, and to have
componenB. We take the particle’s charge and mass tebe
andm. Two gauges for the vector potential which are com-
'monly used are

Although the quantum theory of a charged particle mov-
ing in a unidirectional constant magnetic field has been stu
ied over many decadg$or some textbook treatments, see
for example,[1]), we would like to make some clarifying
remarks which we believe are useful. In studying this prob- A =(-By/2,Bx/2,0) 1)
lem, one has to make a choice of the gauge. Different gaug
choices, of course, lead to a trivial phase redefinition of the
wave function. Moreover, corresponding to specific gauges, A =(-By,0,0. (2
one chooses a wave function which is an eigenstate either
the momentum operat@which has continuous eigenvalyes
of the angular momentum operat@which has discrete ei-
genvalues In Sec. Il we point out that such a choice is
unessential and derive an explicit relation between the two w=exgieBxy(2ch)]. (3
bases. This is then used in the treatment of diamagnetism therefore we miaht i

. . ght just as well chooéb.
a free electron gas with angular momentum eigenstates. In For brevity, we define
Sec. lll, we study the case when the magnetic field has a '
weakz dependencéwhere thez axis is in the direction of the B=eBCc. (4)
field). Then, there must be also a weak radial field and we L .
work under conditions where it is consistent to treat this! "€ Hamiltonian in gaugél) is
component of the field perturbatively. We find the energy 1
eigenvalues for certain models of tzedependence. These H= En[(px_By/Z)2+ (py+ Bx/2)? + p]
models could approximate the field between two parallel cir-
cular currents. In Sec. IV, we discuss the form of the wave
function for large quantum numbers associated with zhe
motion, using a nonperturbative approach in a slowly vary- B
ing field. As an application, we study in Sec. V the structure =H"+p;/2m, (5)
of the quantized energy levels of a charged particle in §ynere
Helmholtz coil, which are specified by two quantum num-
bers. The first is associated with the motion in they)
plane, while the second characterizes the motion inzhe
direction. This energy spectrum may be regarded as a gener-
alization of the Landau levelgl] to the case of a slowly
varying magnetic field. A brief conclusion is presented in
Sec. VL. We define also

(aut the difference between these two gauges can only be
trivial, since the wave functions just differ by the phase fac-
tor

1
= oDt Py + P2+ B0 +y))/4 + BL

N T .
px—_|ﬁ51 py__lhﬁ_y! pZ__lh&_Zl (6)

L =xp, — ypx (7)
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Py =pc+By/l2, P,=p,—Bx/2. 8
Pyt BY y py ( ) )(n'fzfdkxf(kx)qskx,n(x!y) (19)

Then the operatorB,, Py, andL each commute wittH and
p,. But they do not commute with each other: wheref is some function to be determined and

[P,P,]=ihB, [LPJ=iiP, [LP]=-ikP,. (9 )
de dYan,an,F5nnffdkx|f(kx)|2- (20)

We may choose the wave functiop(x,y,z) to be an
eigenfunction ofp, with eigenvaluefik,:

¥(xy,2) = €Fp(xy), (10)

In order to make Eq(19) an eigenstate df, we require

Mot = L = = 1i(27) 22 j dkxf<kx>(xi - yi>
Hep= eH' + 12k21(2m) |, (11) O

. , X exfgikx — ixy/21?]
and from now on we will be concerned wit' and ¢(x,y).

We may choosep to be an eigenfunction of any one of Xup[(y/1) =1k, ]. (21)
the three operator®y,Py,L. We discuss the o cased e convertx andx? into derivatives 0% and integrate by
eigenfunction ofP, (by rotational invariance we can equally parts to put these derivatives ontandu. In this way, we

well choose it to be an eigenstatesRy) and(ii) eigenfunc- find that Eq.(21) is satisfied provided obeys
tion of L. These wave functions may be written in a more

compact form if we define a magnetic lendtb 1 d?f
P J gty —|—2—+I2k)2(f:[2(n—M)+1]f. (22
| = \RIB. (12) dk,
In case(i), we have J'IJ;S equation is consistent, and its normalized solution is
1 . .
b n(XY) = ?ék%e-'xwz'zgn(y), (13) f(ke) = 112Uy 1Ky (23)
N&TT
Thus, finally, the required eigenfunction bfis determined
wherefik, is the eigenvalue oP,, and &, satisfies to be
ﬁz &2 2 2 ’
om —$+{(yll )~k |&(Y) =E"&(y), (14 Zam(xy) =112 f Akt (1K) By n(X,Y). (24)

E’ being the eigenvalue ofi’. This equation describes a  Using the orthonormality of thei, coefficients in Eqg.
simple harmonic oscillator whose equilibrium point is (24), we can invert this equation to find the momentum

shifted, and the eigenfunctions have the form eigenfunctions in terms of the angular momentum eigenfunc-
1 tions:
&n(y) =17 U (y = p/1], (15)
n
wheren is a positive integer, Br nl(X,y) = 123 Up (1K) & (X,Y). (25)
M=—
) , _hB 1 )
n=1%, E'= ™ n+ 5/ (16) The textbook treatmerisee, for examplg2]) of the dia-
magnetism of a free electron gas is usually formulated in
andu,(w) is the real, normalized solution of terms of the eigenfunctions of momentydB). The sample

is considered to have a finite size with dimensi®sS, in

s the x andy directions, in which case states contribute only
—at W2 [u,(W) = (2n + 1)u,(w). 1D for
Next we take the cas@i), where we use energy eigen- 7 <S. (26)

functions which are also eigenfunctions of angular MOMeNg ' umber of states with a given enerav and valde of
tum L with eigenvaluezM. We denote these normalized 9 9y

wave functions by IS

Lnm(XY). (19) BSS _sS -
’ 2t 2ml?
Eigenfunctions of type(i), in Eq. (13), are non-

normalizable and have a continuous degeneracy, wheredisought to be possible to carry out the analysis using the
those of type(ii) in Eqg. (18) are normalized and have a angular momentum eigenfunctiorig8). In that case, it is
discrete degeneracy. Nevertheless, it should be possible tatural to consider a cylindrical sample, axis alongzhsis,
express each type in terms of the other. To this end, wevith radius R. The asymptotic form of the wave function
consider a superposition of the form (18), for largep, is proportional to
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Off the axis, the magnetic field must have some radial

component. Up to second ordghat is, theb, term), we take
/fx the vector potential to be
X% 1 2 2
: A= EBo[l +by(Z - pA4)la’](- y,x,0). (36)
2d! 0¢
This form follows by rotational symmetryif the field is

‘:, generated by currents in circles about the ptgether with
® the gauge choic¥ -A=0 and Maxwell’s equatiofV?A =0.
As the leading approximation, we keep just the® term

in Eqg. (34) (we shall see that the? term is effectively
smalle). We seek an energy eigenfunction of the Hamil-
tonian(5), with 5 now z dependent, of the form

FIG. 1. Schematic illustration of a Helmholtz coil.

eM $p2"M exp(— p2/412), (28)
and this has its maximum at WERIPXxY). 37
D= v’—Z(Zn— M)l (29) Then the equation fow is (we now defind to be A /By)
Thus we expect states to contribute for d’w (2n+1) b122W 2mAEW 39)
-—+(2n+1)—=W=—7—W,
R2 dZ al? h?
2n-M < ? (30)
where the second term on the left comes frigfrin Eq. (14)
Then, for givenn, the range oM is whenB is z dependent. This is just the equation for a simple
2 harmonic oscillator and, fd,=0, the energy associated with
on— o <M=n, (31) the z motion is
. ! h? — 1
so that the number of possible valueshdfis AE= —I\«‘bl(Zn +1)| N+ 5/ (39
ma
R .
P (32 We can now treat the* term in Eq.(34) and thep? term

in Eq. (36) as perturbations. These terms are of the same
The relevant values af are of order(mkTPR/A2) which is ~ order. This is because the transverse size of the wave func-

small compared t¢R2/1?) for typical values o8, R, andT  tion is of order whereas the longitudinal size is of ordda.

(temperaturg Thus(32) gives a factor Note that, as an example, for a magnetic flux density of 1 T,
1=2.5x108m.
mR? 33 Treating thez* term by perturbation theory, we find an
22’ (33) additional energy
which is proportional to the area just as in Eg7). 342 b, ,
AE' = —————=—(1+2N+2N?). (40)
4mab,(2n+1)

. WEAKLY VARYING MAGNETIC FIELD

Note that this is independent Bfand usually very small i&
is macroscopic. However, for large valuesf the contri-
butions from theb, term and higher terms in E¢34) may be

We now allow the magnetic field to vary slowly with
but we restrict ourselves to motion near thaxis. Along the
axis, we use an expansion

significant.
B,(2) = Bo[1 +by(Z/a)? + by(Za)* + -] (34 We also treat by perturbation theory tpé term in Eq.
) . (36). To this end we require, inserting tpé term in Eq.(36)
wherea is a characteristic length. into the Hamiltonian(s)

A realistic case would be a pair of two similar current
loops, each perpendicular to the comnzaxis and of radius

a, separated by a distancel.2This system, known as the AE" = - fiby 5 f dx dyepy, y(2Lp% + 7ip1?) -
Helmholtz coil, is shown in Fig. 1. 16ma] '

Near the origin the field has an expansion of the above (41
form, whereB, is determined by the current carried by the
loops and[in terms ofr=(d/a)?] These expectation values can be worked out using

3(4r-1) 15(1 - 12 +8r?)
1=ﬁ, 2= T o a4 (39 dx dvi* 02 = _ 12
(r+1) 8(r+1) xdyy* pcp=(2n-M + 1)I4, (42)
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eh 1
fdx dyy* p*y=[(2n-M +1)?+ 2n(n— M) E'(2= C(n+ 2) B,(2). (52
+2n-M + 1)1, (43)  Thus, Eq.(50) may be written as
As a result, we have d’f  2m efi(2n+ 1) }
—+— —_— f= 53
2y dZ 4?2 { 2mc B.2) 53
AET=- 16ma2[6n(n+ D)=M(M+1)+2(1-nM)]. which is just an ordinary differential equation.
(44) We can now check the assumptietB). The solutions of
Eqg. (51) have the form(18), namely,
This is independent oB and, in general, is much smaller
than Eq.(40) for large values ofN. F(b,p,2) =, M(¢ £ —2 eB ) (54)
w ’ 2’
IV. NONPERTURBATIVE APPROACH TO A SLOWLY . .
VARYING FIELD Hence, the conditio48) requires that
We have seen that when the quantum number associated » 4B, <1. (55)
with the z motion is large N> n, the dependence &, upon B, dz

p may be neglected in first approximation. In this case, th

> . eAlthough this cannot be satisfied for gl we note that the
vector potential may be written as

solution(54) contains the factor

1
A=2BA2)(-y.x0). (45) exp<_ eB 2) 56
27" yroCEE (56)
This leads to the Schrodinger equation so that typical values o are of order\%c/eB,. Thus, we
521# Loy <M2 eBZM e?B? ) Py 2m expect(55) to be valid for
- 2 — = - —Ey,

ap? pr?p p? he 4ﬁ2 Zp v i h? v fic 1 dB,
3 <1 (57)

(46) e B dz

where we have taken the energy eigenfunction to be also ahhis can be satisfied provided we taBg to be varying

eigenfunction of the angular momentum with eigenvalue ~ Slowly enough. For instance, B,(2) has the form(34) with

M. Let us consider a solution of the form |z| of ordera, then the left hand side @67) is of orderl/a,
which is very small for typical values @, anda.

W ,p,2) =F(,p,0f(2) (47)
. . . . V. QUANTIZED ENERGY LEVELS
and assume, since the field is slowly varying, that IN A HELMHOLTZ COIL
JaF Ik (48) A simple example of a magnetic mirror is provided by the
9z p pair of current loops shown in Fig. 1. Then, as can be seen
e from Egs.(34) and (35) for 2d>a, the magnetic field can
Then, the Schrodinger equatioa6) takes the form increase enough in the region near the current loops so that a
12 1 aF M2 eBM eZB§ , charged particle may eventually pe reflected Qut of this_re-
—+= e ST gion toward the center of the coil. The classical restoring
Flog? " pap] p hc  4hc force which may confine the particle along thexis is pro-
1d%f 2m vided by thep component of the magnetic field:
=-|73+3E (49
fdZ & 16B,. _.
B(z)=-—-p—p+B,z. (58)
The right-hand side of Eq49) depends o only, so that we 2" oz
have which can be derived from E@45) usingB=V X A.
®?f 2m 2 In this section, we will discuss the quantized energy levels
e +—Ef=—E'(9f (50) of a charged particle in a Helmholtz coil. To this end, we will
d h h analyze the basic equati@f3), where
and 1 2 2\3/2 1
B,(2) = =By(d*+a)* —————=5
PFLF_(M? eBM eZB 2m 272 [(z+d)?+a?*"?
ot T\t 22 |F=- zE(Z)F
dp~ pdp p hc 4ﬁ h 1
+ 2 213/2 | * (59)
(51) [(z-d)*+a7]
But we know how to solve Eq51), in which z is just a  The general behavior of this field, ford2-a, is shown in
parameter. Comparing with E¢L6), we see that Fig. 2.
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FIG. 2. Pattern of the fielB,(z) in a Helmholtz coil. Circles
indicate the classical turning points.

Since Eq.(53) was derived under the assumption that

N> 1, our analysis will be more appropriate in the semiclas-
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FIG. 3. Numerical solutioricrosseg of Eq. (65) for the energy

sical regime. This may be studied conveniently in the WKBSsPectrum and plogsolid) of the formN** for largeN.

approximation, which is particularly useful since we are
dealing with a slowly varying potential:

V(2) = Zﬂ(zn +1)B2). (60)

mc

One of the most interesting results arising from the WKB

method is a semiclassical estimate for the quantized energy

levels in a potential. Matching the WKB wave function at

each of the classical turning points, which are determined by

the relationE=V(z), leads to the Bohr-Sommerfeld quantiza-
tion condition

yan

J.

where the classical turning points for bound motiod, tare
situated inside the well as shown in Fig. (Ve neglect, in
first approximation, the very small probability of tunneling
through the potential barrier.

In general, Eq(61) is rather complicated and can only be
solved numerically. However, whetVa is somewhat larger
than 1/2, it may be solved in closed form, since in this cas
z/a will be effectively of order 1/2 or smaller. Then, we can
expand the potentidl(z) [see Eqs(59) and(60)] up to terms
which are of quartic order ia/a, as shown in Eqg.34) and
(35). In this approximation, the quantization conditi@Bil)
may be written in the form

Z. Z>2 (Z>4
f_z+ \/g_l_bj_(a _bz a dZ

V2mE - V(2)]dz= <N+%)ﬂ'ﬁ, (61)

= \/L<N+1) (62)
"N (2n+ 1B, 2)’
where the dimensionless paramefeis defined by
2mc
(63)

f=—""" —E.
(2n+ 1)ehB,

We can now determine explicity the positions of the classical

turning points, which are given by

R
{— by + b2+ 4by(& - 1)}1’2
2b, ’

where #_ are the turning points for unbound motion, which

(64)

form in terms of the complete elliptic integrals of the fifE)
and secondE) kinds [3], with the result
2\~ b,

— é) _— (Z_)}
322 Z_{(ZJr Z_)F(Z_ +(Z:+Z29)E 7

_ \/L(N+l>
"N (2n+ DeR, '

2
This is a transcendental equation which determines implicitly
the energy in terms of the quantum numberThe energies
of the bound states have an upper bo&T* which corre-
sponds to the maximum value of the potential. At this energy,
Z,=Z_, so that using Eq¥63) and(64) we obtain
1-—L

o

WhenZ,=Z_, Eq. (65) simplifies considerably and fixes
the maximum value of the quantum numbéy which is

(65)

2

b).

ehB
—%2n+1)

S
2mc

(66)

given by the relation

1 V2(2n+1)b3?a
Nmact 5= 5, lby| I’ €7
wherel =ycfi/eB, is the magnetic length. HencBl,,. is in
general a very large number, which is in accordance with our
previous assumption.

A more explicit relation givinge as a function ofN can
be obtained by solving numerically E@5). As an example,
the numerical solution fon=0 andd/a=3/5 is shown in
Fig. 3. Here, the numerical values @&®=1.028 and
Nmax=1.12X 10° are in good agreement with the correspond-
ing results obtained from the closed form expressi@®
and (67). One can see that the numerical solution can be
fitted reasonably well, for large quantum numbers, by a
simple phenomenological form liki®'®,
Finally, we note from Eqgs(34) and (35) that for d/a
=1/2,b;=0, andb,=-144/125. Then, the system of the two
current loops provides a practically uniform field in the cen-
tral region of the Helmholtz coil. In this case, E§6) re-
duces to the well known expression for the Landau levels
which occur in a constant field. Therefore, one may regard
the quantized energies described by E5) and(66) as an

are situated outside the well as shown in Fig. 2. Then, thextension of the Landau levels to the case of a slowly vary-

integral appearing in Eq62) can be evaluated in closed

ing magnetic field.
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VI. CONCLUSION varying field. Such a field may be present, for example, in a
] . magnetic mirror like the Helmholtz coil. We have shown that
In this paper, we have discussed several aspects concefiiis energy spectrum represents an interesting extension of
ing the quantum behavior of a charged particle in a statighe well known Landau levels which occur in a uniform
magnetic field. We have treated the issue of the relation benagnetic field.
tween the choice of gauge and the choice of the diagonal
operators which commute with the Hamiltonian of the sys- ACKNOWLEDGMENTS
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