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We study some aspects of the quantum theory of a charged particle moving in a time-independent, unidi-
rectional magnetic field. When the field is uniform, we make a few clarifying remarks on the use of angular
momentum eigenstates and momentum eigenstates with the diamagnetism of a free electron gas as an example.
When the field is nonuniform but weakly varying, we discuss both perturbative and nonperturbative methods
for studying a quantum mechanical system. As an application, we derive the quantized energy levels of a
charged particle in a Helmholtz coil, which go over to the usual Landau levels in the limit of a uniform field.
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I. INTRODUCTION

Although the quantum theory of a charged particle mov-
ing in a unidirectional constant magnetic field has been stud-
ied over many decades(for some textbook treatments, see,
for example,[1]), we would like to make some clarifying
remarks which we believe are useful. In studying this prob-
lem, one has to make a choice of the gauge. Different gauge
choices, of course, lead to a trivial phase redefinition of the
wave function. Moreover, corresponding to specific gauges,
one chooses a wave function which is an eigenstate either of
the momentum operator(which has continuous eigenvalues)
of the angular momentum operator(which has discrete ei-
genvalues). In Sec. II we point out that such a choice is
unessential and derive an explicit relation between the two
bases. This is then used in the treatment of diamagnetism of
a free electron gas with angular momentum eigenstates. In
Sec. III, we study the case when the magnetic field has a
weakz dependence(where thez axis is in the direction of the
field). Then, there must be also a weak radial field and we
work under conditions where it is consistent to treat this
component of the field perturbatively. We find the energy
eigenvalues for certain models of thez dependence. These
models could approximate the field between two parallel cir-
cular currents. In Sec. IV, we discuss the form of the wave
function for large quantum numbers associated with thez
motion, using a nonperturbative approach in a slowly vary-
ing field. As an application, we study in Sec. V the structure
of the quantized energy levels of a charged particle in a
Helmholtz coil, which are specified by two quantum num-
bers. The first is associated with the motion in thesx,yd
plane, while the second characterizes the motion in thez
direction. This energy spectrum may be regarded as a gener-
alization of the Landau levels[1] to the case of a slowly
varying magnetic field. A brief conclusion is presented in
Sec. VI.

II. UNIFORM MAGNETIC FIELD

We take the field to be in thez direction, and to havez
componentB. We take the particle’s charge and mass to bee
andm. Two gauges for the vector potential which are com-
monly used are

A = s− By/2,Bx/2,0d s1d

and

A = s− By,0,0d. s2d

But the difference between these two gauges can only be
trivial, since the wave functions just differ by the phase fac-
tor

v = expfieBxy/s2c"dg. s3d

Therefore we might just as well choose(1).
For brevity, we define

B = eB/c. s4d

The Hamiltonian in gauge(1) is

H =
1

2m
fspx − By/2d2 + spy + Bx/2d2 + pz

2g

=
1

2m
fpx

2 + py
2 + pz

2 + B2sx2 + y2d/4 +BLg

= H8 + pz
2/2m, s5d

where

px = − i"
]

]x
, py = − i"

]

]y
, pz = − i"

]

]z
, s6d

L = xpy − ypx. s7d

We define also
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Px = px + By/2, Py = py − Bx/2. s8d

Then the operatorsPx,Py, andL each commute withH and
pz. But they do not commute with each other:

fPx,Pyg = i"B, fL,Pxg = i"Py, fL,Pyg = − i"Px. s9d

We may choose the wave functioncsx,y,zd to be an
eigenfunction ofpz with eigenvalue"kz:

csx,y,zd = eikzzfsx,yd, s10d

Hc = eikzzfH8 + "2kz
2/s2mdgf, s11d

and from now on we will be concerned withH8 andfsx,yd.
We may choosef to be an eigenfunction of any one of

the three operatorsPx,Py,L. We discuss the two cases(i)
eigenfunction ofPx (by rotational invariance we can equally
well choose it to be an eigenstates ofPy) and(ii ) eigenfunc-
tion of L. These wave functions may be written in a more
compact form if we define a magnetic lengthl by

l = Î"/B. s12d

In case(i), we have

fkx,n
sx,yd =

1
Î2p

eikxxe−ixy/2l2jnsyd, s13d

where"kx is the eigenvalue ofPx, andjn satisfies

"2

2m
F−

]2

]y2 + hsy/l2d − kxj2Gjnsyd = E8jnsyd, s14d

E8 being the eigenvalue ofH8. This equation describes a
simple harmonic oscillator whose equilibrium point is
shifted, and the eigenfunctions have the form

jnsyd = l−1/2unfsy − hd/lg, s15d

wheren is a positive integer,

h = l2kx, E8 =
"B
m
Sn +

1

2
D , s16d

andunswd is the real, normalized solution of

F−
]2

]w2 + w2Gunswd = s2n + 1dunswd. s17d

Next we take the case(ii ), where we use energy eigen-
functions which are also eigenfunctions of angular momen-
tum L with eigenvalue"M. We denote these normalized
wave functions by

zn,Msx,yd. s18d

Eigenfunctions of type (i), in Eq. (13), are non-
normalizable and have a continuous degeneracy, whereas
those of type(ii ) in Eq. (18) are normalized and have a
discrete degeneracy. Nevertheless, it should be possible to
express each type in terms of the other. To this end, we
consider a superposition of the form

xn,f =E dkxfskxdfkx,n
sx,yd s19d

where f is some function to be determined and

E dx dyxn8,f
*

xn,f = dnn8E dkxufskxdu2. s20d

In order to make Eq.(19) an eigenstate ofL, we require

"Mxn,f = Lxn,f = − i"s2pld−1/2E dkxfskxdSx
]

]y
− y

]

]x
D

3 expfikxx − ixy/2l2g

3unfsy/ld − lkxg. s21d

We convertx andx2 into derivatives ofeikxx and integrate by
parts to put these derivatives ontof and u. In this way, we
find that Eq.(21) is satisfied providedf obeys

−
1

l2
d2f

dkx
2 + l2kx

2f = f2sn − Md + 1gf . s22d

This equation is consistent, and its normalized solution is
just

fskxd = l1/2un−Mflkxg. s23d

Thus, finally, the required eigenfunction ofL is determined
to be

zn,Msx,yd = l1/2E dkxun−Mslkxdfkx,n
sx,yd. s24d

Using the orthonormality of theun coefficients in Eq.
(24), we can invert this equation to find the momentum
eigenfunctions in terms of the angular momentum eigenfunc-
tions:

fkx,n
sx,yd = l1/2 o

M=−`

n

un−Mslkxdzn,Msx,yd. s25d

The textbook treatment(see, for example,[2]) of the dia-
magnetism of a free electron gas is usually formulated in
terms of the eigenfunctions of momentum(13). The sample
is considered to have a finite size with dimensionsSx,Sy in
the x and y directions, in which case states contribute only
for

uhu , Sy. s26d

So the number of states with a given energy and value ofkz
is

BSxSy

2p"
=

SxSy

2pl2
. s27d

It ought to be possible to carry out the analysis using the
angular momentum eigenfunctions(18). In that case, it is
natural to consider a cylindrical sample, axis along thez axis,
with radius R. The asymptotic form of the wave function
(18), for larger, is proportional to
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eiMfr2n−M exps− r2/4l2d, s28d

and this has its maximum at

rmax= Î2s2n − Mdl . s29d

Thus we expect states to contribute for

2n − M ,
R2

2l2
. s30d

Then, for givenn, the range ofM is

2n −
R2

2l2
ø M ø n, s31d

so that the number of possible values ofM is

R2

2l2
− n. s32d

The relevant values ofn are of ordersmkTl2/"2d which is
small compared tosR2/ l2d for typical values ofB, R, andT
(temperature). Thus(32) gives a factor

pR2

2pl2
, s33d

which is proportional to the area just as in Eq.(27).

III. WEAKLY VARYING MAGNETIC FIELD

We now allow the magnetic field to vary slowly withz,
but we restrict ourselves to motion near thez axis. Along the
axis, we use an expansion

Bzszd = B0f1 + b1sz/ad2 + b2sz/ad4 + ¯ g s34d

wherea is a characteristic length.
A realistic case would be a pair of two similar current

loops, each perpendicular to the commonz axis and of radius
a, separated by a distance 2d. This system, known as the
Helmholtz coil, is shown in Fig. 1.

Near the origin the field has an expansion of the above
form, whereB0 is determined by the current carried by the
loops and[in terms ofr =sd/ad2]

b1 =
3s4r − 1d
2sr + 1d2 , b2 =

15s1 − 12r + 8r2d
8sr + 1d4 . s35d

Off the axis, the magnetic field must have some radial
component. Up to second order(that is, theb1 term), we take
the vector potential to be

A =
1

2
B0f1 + b1sz2 − r2/4d/a2gs− y,x,0d. s36d

This form follows by rotational symmetry(if the field is
generated by currents in circles about the axis), together with
the gauge choice= ·A =0 and Maxwell’s equation¹2A =0.

As the leading approximation, we keep just theb1z
2 term

in Eq. (34) (we shall see that ther2 term is effectively
smaller). We seek an energy eigenfunction of the Hamil-
tonian (5), with B now z dependent, of the form

WszdFsx,yd. s37d

Then the equation forW is (we now definel to beÎ" /B0)

−
d2W

dz2 + s2n + 1d
b1z

2

a2l2
W=

2mDE

"2 W, s38d

where the second term on the left comes fromE8 in Eq. (14)
whenB is z dependent. This is just the equation for a simple
harmonic oscillator and, forkz=0, the energy associated with
the z motion is

DE =
"2

mal
Îb1s2n + 1dSN +

1

2
D . s39d

We can now treat thez4 term in Eq.(34) and ther2 term
in Eq. (36) as perturbations. These terms are of the same
order. This is because the transverse size of the wave func-
tion is of orderl whereas the longitudinal size is of orderÎla.
Note that, as an example, for a magnetic flux density of 1 T,
l =2.5310−8 m.

Treating thez4 term by perturbation theory, we find an
additional energy

DE8 =
3"2

4ma2

b2

b1s2n + 1d
s1 + 2N + 2N2d. s40d

Note that this is independent ofB and usually very small ifa
is macroscopic. However, for large values ofN, the contri-
butions from theb2 term and higher terms in Eq.(34) may be
significant.

We also treat by perturbation theory ther2 term in Eq.
(36). To this end we require, inserting ther2 term in Eq.(36)
into the Hamiltonian(5),

DE9 = −
"b1

16ma2l2
E dx dyfn,M

* s2Lr2 + "r4/l2dfn,M .

s41d

These expectation values can be worked out using

E dx dyc * r2c = s2n − M + 1dl2, s42d

FIG. 1. Schematic illustration of a Helmholtz coil.
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E dx dyc * r4c = fs2n − M + 1d2 + 2nsn − Md

+ 2n − M + 1gl4. s43d

As a result, we have

DE9 = −
"2b1

16ma2f6nsn + 1d − MsM + 1d + 2s1 − nMdg.

s44d

This is independent ofB and, in general, is much smaller
than Eq.(40) for large values ofN.

IV. NONPERTURBATIVE APPROACH TO A SLOWLY
VARYING FIELD

We have seen that when the quantum number associated
with thez motion is large,N@n, the dependence ofBz upon
r may be neglected in first approximation. In this case, the
vector potential may be written as

A =
1

2
Bzszds− y,x,0d. s45d

This leads to the Schrödinger equation

]2c

]r2 +
1

r

]c

]r
− SM2

r2 +
eBzM

"c
+

e2Bz
2

4"2c2r2Dc +
]2c

]z2 = −
2m

"2 Ec,

s46d

where we have taken the energy eigenfunction to be also an
eigenfunction of the angular momentumLz with eigenvalue
"M. Let us consider a solution of the form

csf,r,zd = Fsf,r,zdfszd s47d

and assume, since the field is slowly varying, that

U ]F

]z
U ! U ]F

]r
U . s48d

Then, the Schrödinger equation(46) takes the form

1

F
F ]2F

]r2 +
1

r

]F

]r
G −

M2

r2 −
eBzM

"c
−

e2Bz
2

4"2c2r2

= − F1

f

d2f

dz2 +
2m

"2 EG . s49d

The right-hand side of Eq.(49) depends onz only, so that we
have

d2f

dz2 +
2m

"2 Ef =
2m

"2 E8szdf s50d

and

]2F

]r2 +
1

r

]F

]r
− SM2

r2 +
eBzM

"c
+

e2Bz
2r2

4"2c2 DF = −
2m

"2 E8szdF.

s51d

But we know how to solve Eq.(51), in which z is just a
parameter. Comparing with Eq.(16), we see that

E8szd =
e"

mc
Sn +

1

2
DBzszd. s52d

Thus, Eq.(50) may be written as

d2f

dz2 +
2m

"2 FE −
e"s2n + 1d

2mc
BzszdG f = 0, s53d

which is just an ordinary differential equation.
We can now check the assumption(48). The solutions of

Eq. (51) have the form(18), namely,

Fsf,r,zd = zn,MSf,Î eBz

2"c
rD . s54d

Hence, the condition(48) requires that

r

Bz

dBz

dz
! 1. s55d

Although this cannot be satisfied for allr, we note that the
solution (54) contains the factor

expS−
eBz

4"c
r2D , s56d

so that typical values ofr are of orderÎ"c/eBz. Thus, we
expect(55) to be valid for

Î"c

e

1

Bz
3/2

dBz

dz
! 1. s57d

This can be satisfied provided we takeBz to be varying
slowly enough. For instance, ifBzszd has the form(34) with
uzu of ordera, then the left hand side of(57) is of orderl /a,
which is very small for typical values ofB0 anda.

V. QUANTIZED ENERGY LEVELS
IN A HELMHOLTZ COIL

A simple example of a magnetic mirror is provided by the
pair of current loops shown in Fig. 1. Then, as can be seen
from Eqs.(34) and (35) for 2d.a, the magnetic field can
increase enough in the region near the current loops so that a
charged particle may eventually be reflected out of this re-
gion toward the center of the coil. The classical restoring
force which may confine the particle along thez axis is pro-
vided by ther component of the magnetic field:

Bszd = −
1

2
r

]Bz

]z
r̂ + Bzẑ. s58d

which can be derived from Eq.(45) usingB= = 3A.
In this section, we will discuss the quantized energy levels

of a charged particle in a Helmholtz coil. To this end, we will
analyze the basic equation(53), where

Bzszd =
1

2
B0sd2 + a2d3/2H 1

fsz+ dd2 + a2g3/2

+
1

fsz− dd2 + a2g3/2J . s59d

The general behavior of this field, for 2d.a, is shown in
Fig. 2.
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Since Eq.(53) was derived under the assumption that
N@1, our analysis will be more appropriate in the semiclas-
sical regime. This may be studied conveniently in the WKB
approximation, which is particularly useful since we are
dealing with a slowly varying potential:

Vszd =
e"

2mc
s2n + 1dBzszd. s60d

One of the most interesting results arising from the WKB
method is a semiclassical estimate for the quantized energy
levels in a potential. Matching the WKB wave function at
each of the classical turning points, which are determined by
the relationE=Vszd, leads to the Bohr-Sommerfeld quantiza-
tion condition

E
−Z+

Z+ Î2mfE − Vszdgdz= SN +
1

2
Dp", s61d

where the classical turning points for bound motion, ±Z+, are
situated inside the well as shown in Fig. 2.(We neglect, in
first approximation, the very small probability of tunneling
through the potential barrier.)

In general, Eq.(61) is rather complicated and can only be
solved numerically. However, whend/a is somewhat larger
than 1/2, it may be solved in closed form, since in this case
z/a will be effectively of order 1/2 or smaller. Then, we can
expand the potentialVszd [see Eqs.(59) and(60)] up to terms
which are of quartic order inz/a, as shown in Eqs.(34) and
(35). In this approximation, the quantization condition(61)
may be written in the form

E
−Z+

Z+ ÎE − 1 −b1S z

a
D2

− b2S z

a
D4

dz

= pÎ c"

s2n + 1deB0
SN +

1

2
D , s62d

where the dimensionless parameterE is defined by

E =
2mc

s2n + 1de"B0
E. s63d

We can now determine explicity the positions of the classical
turning points, which are given by

Z± = aF− b1 ± Îb1
2 + 4b2sE − 1d
2b2

G1/2

, s64d

where ±Z− are the turning points for unbound motion, which
are situated outside the well as shown in Fig. 2. Then, the
integral appearing in Eq.(62) can be evaluated in closed

form in terms of the complete elliptic integrals of the firstsFd
and secondsEd kinds [3], with the result

2Î− b2

3a2 Z−FsZ+
2 − Z−

2dFSZ+

Z−
D + sZ+

2 + Z−
2dESZ+

Z−
DG

= pÎ c"

s2n + 1deB0
SN +

1

2
D . s65d

This is a transcendental equation which determines implicitly
the energy in terms of the quantum numberN. The energies
of the bound states have an upper boundEmax which corre-
sponds to the maximum value of the potential. At this energy,
Z+=Z−, so that using Eqs.(63) and (64) we obtain

En
max=

e"B0

2mc
s2n + 1dS1 −

b1
2

4b2
D . s66d

When Z+=Z−, Eq. (65) simplifies considerably and fixes
the maximum value of the quantum numberN, which is
given by the relation

Nmax+
1

2
=

Î2s2n + 1d
3p

b1
3/2

ub2u
a

l
, s67d

where l =Îc" /eB0 is the magnetic length. Hence,Nmax is in
general a very large number, which is in accordance with our
previous assumption.

A more explicit relation givingE as a function ofN can
be obtained by solving numerically Eq.(65). As an example,
the numerical solution forn=0 andd/a=3/5 is shown in
Fig. 3. Here, the numerical values ofEmax=1.028 and
Nmax=1.123106 are in good agreement with the correspond-
ing results obtained from the closed form expressions(66)
and (67). One can see that the numerical solution can be
fitted reasonably well, for large quantum numbers, by a
simple phenomenological form likeN5/6.

Finally, we note from Eqs.(34) and (35) that for d/a
=1/2,b1=0, andb2=−144/125. Then, the system of the two
current loops provides a practically uniform field in the cen-
tral region of the Helmholtz coil. In this case, Eq.(66) re-
duces to the well known expression for the Landau levels
which occur in a constant field. Therefore, one may regard
the quantized energies described by Eqs.(65) and(66) as an
extension of the Landau levels to the case of a slowly vary-
ing magnetic field.

FIG. 2. Pattern of the fieldBzszd in a Helmholtz coil. Circles
indicate the classical turning points.

FIG. 3. Numerical solution(crosses) of Eq. (65) for the energy
spectrum and plot(solid) of the formN5/6 for largeN.
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VI. CONCLUSION

In this paper, we have discussed several aspects concern-
ing the quantum behavior of a charged particle in a static
magnetic field. We have treated the issue of the relation be-
tween the choice of gauge and the choice of the diagonal
operators which commute with the Hamiltonian of the sys-
tem. We have also developed some approaches which may
be useful for physical applications in a slowly varying mag-
netic field. These methods have been applied to study the
quantized energy levels of a charged particle in a weakly

varying field. Such a field may be present, for example, in a
magnetic mirror like the Helmholtz coil. We have shown that
this energy spectrum represents an interesting extension of
the well known Landau levels which occur in a uniform
magnetic field.
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