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Coherent excitation of a two-state system by a Gaussian field
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This work presents an analytic description of the coherent excitation of a two-state quantum system by an
external field with a Gaussian temporal shape and a constant frequency. A very accurate analytic approximation
to the transition probability is derived by using the Dykhne-Davis-Pechukas approach. This approximation
provides analytic expressions for the frequency and amplitude of the probability oscillations, for the excitation
profile and excitation linewidth. The linewidth, in particular, shows a weak, logarithmic power broadening.
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I. INTRODUCTION detuning and weak interaction. Bermenal. [14] have stud-

The two-state quantum system is a fundamental ingredil®d the Gaussian model, along with four other models, and
ent in quantum mechanics. It can be found in a variety of12ve derived the asymptotic behavior of the transition prob-
problems across quantum physics, ranging from nucleagbility in the limits of small and large values of the ratio of
magnetic resonance, coherent atomic excitation, and qua#e coupling and detuning. In the present work we extend
tum information to chemical physics, solid-state physics, an@nd generalize these results for arbitrary values of this ratio,
neutrino oscillations. Moreover, many problems involving which allows us to derive the excitation line shape and line-
multiple states and complicated linkage patterns can veryidth.
often be understood only by reduction to one or more two- This paper is organized as follows. In Sec. Il we provide
state problems—e.g., by adiabatic elimination of weaklythe basic equations and definitions and define the problem. In
coupled statefl]. Sec. Il we derive the transition probability by using the

There are several exactly soluble two-state models, inDDP method. In Sec. IV, we derive and discuss the linewidth
cluding the Rabi[2], Landau-Zenel3], Rosen-Zenei(4], of the excitation profile. We summarize the conclusions in
Allen-Eberly-Hioe [5], Bambini-Berman [6], Demkov- Sec. V.

Kunike [7], Demkov [8], and Nikitin [9] models. Most of

these models use various special functions to solve the par- IIl. BASIC EQUATIONS AND DEFINITIONS
ticular two-state problem. There exist also methods for ap-

proximate solutions, such as perturbation theory, the adia- A. Definition of the problem

batic approximation, the Magnus approximation, and the Coherent excitation of a two-state quantum system is de-

Dykhne-Davis-Pechukas approximation. scribed by the Schrédinger equation, which in the rotating-
In the present work, we derive analytically the transitionywave approximatioiRWA) reads[1]

probability for a two-state system driven by a pulsed external

field of Gaussian temporal envelope and constant carrier fre- iﬁgc(t) ~ H(t)c(t) 1)

quency. This field, for which no exact analytic solution is dt '

known, is among the most important pulsed fields; e.g., in . _

coherent atomicgexcitation an i%eal phgse- and mode—l%cke‘Hh‘?reC(t):[,Cl(t)’C2(t)]T is the column vector with the prob-

pulsed laser delivers Gaussian pulses. We use the Dykhn@Pility amplitudescy(t) andcy(t) of the two statesy) and

Davis-PechukaéDDP) method[10,11, which involves inte-  1¥2), andH(t) is the Hamiltonian:

gration in the complex time plane, to derive a very accurate 1

approximation to the transition probability and the width of 0 =Q

the excitation line profile. H(t) =4 _ 2)
The Gaussian pulse shape is somewhat similar to the

hyperbolic-secant pulse, for which a beautiful exact analytic Eﬂ(t) A

solution is known, the Rosen-Zener mofi#]. The Gaussian

pulse, however, vanishes much faster away from its maxiThe detuningA measures the frequency offset of the field

mum, which makes it less adiabatic. The comparison becarrier frequencyw from the Bohr transition frequency,

tween the two shapes reveals interesting pulse-shapd=wo—w. The Rabi frequency)(t) quantifies the field-

effects—e.g., different power broadening. induced coupling between the two states. For example, for
There are several earlier studies of the Gaussian modéRser-atom excitation((t)=-d-E(t)/%, where d is the

Thomas[12] has shown that the Rosen-Zener conjecfdie  atomic transition dipole moment arilt) is the laser electric

is valid for the Gaussian pulse for very small detuningsfield amplitude.

Bavaet al. [13] have found an interesting perturbative solu- We are interested in the case when the coupling is a

tion based on the Rosen-Zener model and valid for smalGaussian pulse and the detuning is constant:
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Q) = Qe ™, (3a) R(9) = { cosd  sin } ©
—-sind cosd
A(t) = const. (3b) as
Because the transition probability is an even functiorfgf &) = RE)a) 10

A, and T, for simplicity and without loss of generality all
these constants will be assumed positive. where the column vectaa(t)=[a_(t),a,(t)]T comprises the

If the system is initially in statéyy) [c1(=)=1,c5(-*)  probability amplitudes of the adiabatic statks.(t)) and
=0], the transition probability after the interaction is given |p (t)). These amplitudes satisfy the transformed

by P=|c,(+=)|?; its determination is our main concern. Schrédinger equation

No exact analytic solution to Eql) for the Gaussian q
model(3) is known. We shall derive below several approxi- i _

. : —a(t) = Hy(ba(t), 11
mations toP? and calculate from them the period and the I dta() a(ha) (1)

lit f th ilit illati the i h e
;TAp)I :?13 t?]e Iineevx%?letzl y oscliations, the 1ine s apewhere the transformed Hamiltonian is given by

5. Adiabatic basis Ha(t) = R @OHOR(D(D) - IR HDOIR(ID)

For the derivation of the transition probability we shall _ {5—(") —iﬁ(t)]

need the adiabatic basis—i.e., the basis of the eigenstates of 'ﬁ(t) £.(1) 12
the Hamiltonian(2). We summarize below the basic defini- ! *
tions and properties of this basis. where the overdots denote time derivatives.
In terms of the mixing anglé(t), defined as
Q) - C. Adiabatic condition for the Gaussian model

tan 25() = A (0 <3< Z) @) The condition for adiabatic evolution is
the eigenstates dfl(t) read 9] < £(1); (13)

le-(1)) = cos®(t)|1hy) — sin 9(1)| 1), (58 j.e., the nonadiabatic coupling in the Hamiltonidr2) must

be negligible compared to the eigenenergy splitting. In order

[, (1)) = sin ()| ¢f) + cosH(t)| ). (5b)  to estimate condition{13) for the Gaussian puls€s) it is
The time dependences of the adiabatic stdtest)) and convenient to use the adiabaticity function
|o.(t)) derive from the mixing anglé)(t), whereas the bare |,,'9| Q(t)A\s"In[QolQ(t)]
(diabatig states|y;) and|) are stationary. Al = a0 = TIOA(1) + AP (14)

Because the Rabi frequené€)(t) vanishes at large times
and becaus@ >0, we haved(+»)=0; hence, In terms of A(t) the adiabaticity conditiori13) reads.A(t)
_ <1. For any fixedA, the maximum of this function occurs
|o-(220)) =[uha), (6a) approximately at)(t)~A/v2. Hence,
| (£)) = [4h). (6b) V2 In(20%/A?)
. L. max "~ [ . (15

It follows from these relations that a transition between the 3V3AT

diabatic states implies a transition between the adiabaticl‘.he adiabatic condition can be written as, < e, wheree
ax ’

states and vice versa. Hence the transition probability in th% a small number measuring the deviation from perfect adia-

adiabatic basis is equal to the transition probability in thebaticit This leads to the condition
diabatic basis. 4

The energies of the adiabatic states are the eigenvalues of A 27
H(b): d d Qo= —= exp(—Aszez). (16)
. \"2 4
h —s
REL(T) = E[A +VOA(t) + A?]. (7)

Ill. GAUSSIAN MODEL

The splitting between them is given by A. Dykhne-Davis-Pechukas approximation

RE() =HE(1) - RE(1) = hVQA(L) + A%, ) 1. Single transition point
It tends tohA ast— o0 and its maximum valué\uQ§+A2 We shall estimate the transition probabiliy for the
is reached whefi)(t) is maximal, att=0. Gaussian mode(3) by using the Dykhne-Davis-Pechukas
The probability amplitudes in the diabatic and adiabaticapproximation. The DDP formul§l0,1] provides the as-
bases are connected via the rotation matrix ymptotically exact transition probability between the adia-

053407-2



COHERENT EXCITATION OF A TWO-STATE SYSTEM. PHYSICAL REVIEW A 70, 053407(2004)

batic states in the adiabatic limit. We shall use this formula tchas been rigorously proved only for these transition points
calculate the transition probability in the original, diabatic [16]. The contributions from the farther zeros are exponen-
basis because, as we discussed above, the transition prdfally small and may therefore be neglected. Retaining the
abilities in the adiabatic and diabatic bases are equal. Theontributions fromall transition points, however, may be
DDP formula reads beneficial: it has been showj2Q] that for the Demkov-
P~ g2 mDlig) (17 Ezrr]]:lt(eel modelg7] the_ _fuII summation in Eq(21), involving
y many transition points, leads to the exact result as
where for the Landau-Zener model. This is a really astonishing re-
sult in view of the fact that the DDP approach is an approxi-
o mate, perturbative method. For another model, of nonlinear
D(tO):f g(tdt. (18) crossing, the contributions from all transition points have
0 . .
been shown to improve the accuracy considerdBly, al-
The pointt, is called the transition point and it is defined as though there the DDP approximation does not give the exact
the (comple® zero of the quasienergy splitting, result. Nevertheless, the validity of E(R1) in the general
case of arbitrarily many transition points should be consid-
Elt) =0, (19 ered as an open question.
which lies in the upper half of the compleéxplane(.e., with Another open question for the DDP method is the param-
Im t,>0). Equation(17) gives the correct asymptotic prob- eter range where it applies. Strictly, the DDP approximation,
ability for nonadiabatic transitions provided) the quasien- Peing a perturbative result in the adiabatic basis, should be
ergy splitting&(t) does not vanish for red) including at +o;  Valid only near the adiabatic limit. For a Gaussian field this
(i) £(t) is analytic and single-valued at least throughout aMmPplies the range defined by the adiabatic conditds).
region of the complex plane that includes the region from However, we shall see that the DDP approximation describes
the real axis to the transition poity, (iii ) the transition point VeTy accurately the transition probability well outside this
t, is well separated from the other quasienergy zero peints @nge, virtually for any parameter values, which follows
any) and from possible singularitiegiv) there exists a level similar earlier successes of this approximation for other

(or Stokes line defined by models(for some of which, as we discussed, it provides even
the exact resujlt This accuracy of the DDP approximation
Im D(t) = Im D(ty), (200  well beyond the adiabatic regime, essentially in the entire

) arameter plane, is another open question.
which goes from s to + and passes through. P P penq

As has been pointed out already by Davis and Pechukas N _
[11], for the Landau-Zener moddB], which possesses a B. Transition points
single transition point, the DDP formu(47) gives the exact For the Gaussian mod€), there are infinitely many tran-
transition probability, not only in the adiabatic limit, but also sition points in the upper half-plane. In terms of the dimen-
in the general case. This amazing feature indicates not onl§ionless timer=t/T=&+i7, they are given by
the relevance of the DDP approximation, but raises an in-
triguing, yet unanswered question: how can an approximate Te= £ &c+in, (239
method provide the exact solution?

1
2. Multiple transition points &= 5\’V4(|n a)’+(2k+ 1?7+ 2Ina,  (23b)

In the case of more than one zero point in the upper
plane, Davis and Pechuk§$l] have suggested, following 17
George and Lin[15], that Eq.(17) can be generalized to 7=\ Va(n a)*+ (2k+ 1?7 = 2Ina, (230
include the contributions from all the$¢zero pointst, in a
coherent sum. This suggestion was later verified by #ye \wherek=0,12,... and
al. [16] and Suomineret al. [17-20. The generalized DDP

formula has the form o= &0. (24)
N 2 A
P~ g,ll“(tk)e'p(tk) @D The first few pairs of transition pointg and, are shown in
Fig. 1 for three different values of the ratie. Because
whereI'(t,) are phase factors defined by (&)?=(70)?=In a, for eacha the transition points are situ-
_ ated on two symmetric hyperbolgsolid curves in Fig. L
Lt =4i t|il’Tt1(t =) O(1). (220 Fora<1 anda>1, the transition points lie on genuine hy-
—lk

perbolas, whereas far=1 they are on the straight ling
In principle, Eq.(21) should be used when there is more =7;. On the other hand, becauggr,=+(2k+1)w/4, the
than one transition point lying on the lowest Stokes ljiitee  transition points of the same ordkrlie on another pair of
closest one to the real axiand should include in principle hyperbolas, shown in Fig. 1 by dashed curves.
only the contributions from these points; moreover, &1) For <1, we have
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FIG. 1. Transition points for the Gaussian mog®) for three FIG. 2. Numerically calculated Stokes lines for the Gaussian
different values of the ratiee=0Qy/A: 0.1,1,10. The dashed curves model(3) for a=Qy/A=1.
show the hyperbolagn=(2k+1)#/4 (k=0,1,2,..) and the solid

2= .
curves the hyperbolag’~7°=In a. from all others and retain only the terms from these two

points.
2k+ 1w Becausd 7y)* =— 75 and becausé() is an even function
&~ 4\;|n(_1/a) (a<1), (253 of time, it is easy to show that
o D(ry)=-D* (7)), (27)
e~ VIn(l/la) (a<1). (25b)

that is, ReD(15)=-ReD(75) and ImD(75)=Im D(7).
Hence, asa decreases, the transition points approach thedence it is sufficient to calculate only one of these integrals
imaginary axis and in the limite— O coalescglogarithmi-  and we choos®( 1) for this purpose.

cally) with their counterparts on the other side of the imagi- Because the imaginary part of the DDP integFlr) is

nary axis. the same for the two transition pointsand 7, [cf. Eq.(27)],
For a>1, we have these points lie on the same Stokes line, defined by #).
£~ na (&> 1) (263 This Stokes line extends fromee-to +o0, which is a neces-
kT Ve a2, sary condition for the validity of the DDP approximation
[11,16.
e~ (2k ‘Ll)ﬂ (a>1). (26b) With the arguments presented above, the problem is re-
4VIn « duced to the calculation of the DDP integral
As «a increases, the transition points approach the real axis ) 522
and in the limita— < coalescgagain logarithmically with D(15) =AT o Va'e™ +1d7. (28)

the zeros from the lower half-plan@vith Im 7 <0). We
shall see that the coalescence of the transition points in th€he estimation of this integral will be our main concern
limits «— 0 and a— do not affect the accuracy of the hereafter in this section.
DDP approximation.
Figure 2 displays the Stokes lines, defined by Ezf), 1. Behavior of the DDP integral for smalke
emanating from each transition point. Because for the Gauss- £ smalla (a<1) we expand the integrand in E(®8)

ian model the zeros of the eigenenergy splittifig) are bv using the Tavlor expansion
simple and because of the presence of the square rdiot)in y g y P

there are three Stokes lines emerging from each transition — - _(2n-3)!!
point [11]. The lowest Stokes line, which conneefsand 7, VI+x=1+2 (- 1)" Wx“, (29)
and extends from e to +, is the most significant one be- n=1 v
cause it is used in the derivation of the DDP approximationyhere we assume that1)!!=1, and perform term-by-term
[11] and its existence validates the approximatjfy. integration. This integration is justified within the cirdbe
=1, where the serie$29) is uniformly convergent. We
C. DDP integrals choose the path of integration to be the straight line from

= = i i + =g=
Because for the Gaussian mod@&) there are infinitely __0 to7=7, and parinlgiznze this path 38 703 (0=s=1).1t
many transition points, the most accurate transition probabillS €3Sy t0 see that’e™7[=1 along this path. Indeed,
ity is expected to be given by the generalized DDP formula 2,2| _
(21). The dominant contributions to the sum in this formula
originate from the two transition points closest to the realbecauser<1 and 0=s=1.
axis, 7, and 7,. For simplicity, we neglect the contributions By using the relation

|26 a2|e—2(rg)2s2| = 21 < 1,
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f+ 2Py \7TEI’f(TO\’2n) (30
0 2\2[‘1
we find that
- _(2n=3)!
+\ + _ n-1
D(73) _AT[TO+n§:‘,1( 1) RTST
2n — + r"_
JErf(,\V2n
x LT TNl \WZ ’2%:0\ )], (31)
\

where Erfx) is the error functiori22]. Using Eqs.(25), we
find the dominant asymptotic terms as

TAT

ReD(7) ~ m (<), (329
Im D(75) ~ ATVIn(1/a) (a<1). (32b)

2. Behavior of the DDP integral for largeaw

Calculation by power series expansioRor large « («
>1) we write the integra(28) as
~P\1 +a 2?7 dr.

D(15) = ATI (33

0

Again, as fora<<1, we choose the straight line fronx 0 to

=15 as the integration path and parametrize itrasgs (0

=s=1). Since|a %’ |=a21)=1 (due toa>1 and 0

=s=1), we can again use the expansi@®) and term-by-

term integration to find
—

D(TS):%TQOT[EH(TO)+IZ( 1)“(2n Sl

(2n)!!

o PErf(i 7'6\/2” -1) ]

34
Zn-1 (34)
The dominant asymptotic terms are
o
ReD(7) ~ ?QOT (a>1), (359
AT
Im D(r) ~ 4”_ (a> 1), (35b)

where for the real part we have used the asymptotics of th

error function [22], Erf(2~1 (|z—,|argz <3n/4),
whereas for the imaginary part we have usedd.) in the
Appendix.

Calculation by the method of steepest desceve now
apply the method of steepest descg2®] to calculate the
integral (28). We represent the integral as

W= J e Fdr,
c

where F(9)=-InVa2e2” +1 and the contouC is a curve
connecting 0 andj. The saddle point, defined B (79 =0,

(36)

PHYSICAL REVIEW A 70, 053407(2004)

is 7,=0. The integral has the asymptotif@s3]

W~ \/2_F2 TF[Qp+ Qut -+ ],

provided |argF,| < m, where Qy=1, Q,=5F3-3F,F,, etc.,
with F,=F"(7y). We find Fo=-Inya?+1, F,=2a%/(a?+1),
etc. Hence for larger the dominant term is

(37

?+1

D(rh) ~ AT ~ 20T, (38)

This result coincides with Eq353).

Because the saddle poin{=0 is real and the function
F(7) and all of its derivatives are real in this point, the
method of steepest descent provides only the real part of the
integral (28). Moreover, this method can deliver only the
large« asymptotics because the expangi®m is in terms of
the inverse powers at.

We derive below, using a middle-point method, uniform
approximations to R®(7;) and ImD(7), valid for any
value of .

3. Uniform approximation to the DDP integral

We shall derive a uniform approximation to the DDP in-
tegral D(7;), Eq. (28), by choosing an appropriate integra-
tion contour. We require on this contour the integrdtg to
be real, where

f() = Va2e 2" + 1=\ 2O 411 (39)

Then the complexity will originate solely from the integra-
tion path, which greatly facilitates the derivation of the real
and imaginary parts of the integral. Iff(7) vanishes when

4ép=km (k=0,%£1,%2,..). (40)

The latter equation defines a family of hyperbo{és k=0
the corresponding hyperbola degenerates into the &x€s
and »=0). The initial point7=0 of the integration path ob-
viously lies on thek=0 hyperbola. The final point of the
g}tegranon pathr; lies on the hyperbola witk=1 in the first
quadrant. Hence we can connect the initial and final points of
the integration path by first going from the origin to infinity
along the real axigstaying on thek=0 hyperbola and then
returning to the transition point; along thek=1 hyperbola
4¢éxn=qr. This integration path is drawn in Fig. 3. On this path
the integrand () is always real[Had we approached, on
thek=1 hyperbola from above, frome, thenf(7) would be
imaginary]

We shall first calculate Ird(7;), which is simpler, and
then ReD(7).

Imaginary part of the DDP integralFor the imaginary
part of the DDP integral28) we have

053407-5



G. S. VASILEV AND N. V. VITANOV PHYSICAL REVIEW A 70, 053407(2004)

1.0

0.8

Im
S
'Y

Rez Ratio o

FIG. 3. Integration contour for the calculation of the integral  FIG. 5. The imaginary part of the DDP integral Br(7;) versus

D(7p) for a=1. the ratio parameterr=Qq/A. The dots show the exact numeric
values, the solid curve the uniform approximati¢td), and the
+00 7 dashed curves the asymptotic formul@2b) and (35b) for small
Im D(75) = AT |m<f +J )f(r)dq- and largea, respectively.
0 +o0
70 T the overestimation of the functiog(») by its maximum
=ATIm jo g(n)| - a7 +i|dy Omax=1 in the interval0,7,] (regionA).
We choosey, to be the point at whicly(7) decreases to
B 0 NOmax Where the numbex remains to be fixed. We find from
=AT 0 g(ndxy, (41) here that
17— 5
with =5\ V4 In“(ma) + 7° - 2 In(ma), (43
—1/J1 =22 i ; ;
B /_2—2—772/82 wherem=1/y1-\°. Then the integra{41) is approximated
9(7) = V1 - a?7 07, (42 a5 ImD(7) ~ ATgnaxn—i-e.,

where we have used that the integral on the real axis part e T2 _
[0, +0) is real and we have changed the integration variable Im D7) ~ 2AT\'\‘4 In*(ma) + = 2In(ma). (44)
in the second integral fromr to % through r=#/47n+iyn
(sinceé=m/47n on thek=1 hyperbola

The integrandg(#) is a monotonically decreasing func-

Obviously, for eachy, both 7, or A can be chosen such that
Eq. (44) provides the exact result; then, howevgf, and \
will be functions of @ and this calculation is equivalent to

gﬁg V\(/):] :Z] '\é\;hwr br?]issltsror?/%xérsn;rql s:i?fi:c%tgi]ggxf:ogr(g):rléx?riat— solving the integral. We fix the value af by requesting Eq.
9. P J PP (44) to provide the exact result for=1; this gives\

ing the integral by rgplacmg the-lnt.egrag(b.y) by |ts. maxi- 5 s16083 andn~1.311 468.

mum valuegm,, and in return shrlnk_lng the integration inter- The advantage of this choice is that the approximation
val from [0, 7] t0 [0, 7] W.here 1S a frge paramgter _for . (44), besides providing the exact result far=1 (i.e., Q

the moment. An argument in support of this approximation is- ) ' is also very accurate in some vicinity of this important

that the error fr_om the neglected contribution from the inter-point_ On the other hand, E¢#4) has the following asymp-
val [ 7, ,70] (regionB) can be compensated by the error from

totics:
- T Im D(7) ~ AT\In(Ma) (a<1), (459
1.0_ "
AT
_o8F ' Im D(7) ~ —— (a>1). (45b)
OO 4yIn(ma)
20.6 1
g I These expressions agree with E¢R2b) and (35b), except
Zoal i for the factorm, which is insignificant in the limitgx>1 and
A a<1 [since IMma)=Inm+Ina=In « for a>1 and simi-
02F Bl 1 larly for a<<1]. This factor becomes significant for interme-
- diate «, where, however, the accuracy of Eg44) improves
0 0'2 : 0'4 : 0'6 : * 10 until, as explained above, it becomes exactderl.
) o Mt Figure 5 shows InD(7;) plotted versus the ratio param-
eter . The analytic approximatiof4) is undistinguishable
FIG. 4. Integrandy(n) of the integral ImD(75), Eq. (42). from the exact result. The asymptotic formulégg2b) and
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(35b) describe the asymptotic behaviors for small and large 1000 g~
a very accurately. | P ]
Real part of the DDP integralFor the real part of the o O 4
DDP integral(28) we follow the same path of integration as 5 ] ]
for the imaginary part, Fig. 3. We have 2 ol ]
+oo TS g ; }
ReD(75) =ATR f +J )f(T)dT /
0 +o0 3 4 E
£ /!
+00 +00 _ /// ]
—_ - NP7 AN SR
B AT{JO f(ndr f h<§)d§] %lo01 01 10 1000
%o Ratio &
= AT[Zy(e) + Zy(a) + ol )], (46) FIG. 6. The real part of the DDP integral R¥7}) versus the
wheref(7) is defined by Eq(39), h(&) by ratio parameter={,/A. The dots show the exact numeric result,
the solid curve the uniform approximatiai®3), and the dashed
h(g) = \/l _ aze_2§2+”2/8§2 (47) curves the asymptotic formul&@82g and (353 for small and large
’ a, respectively.
and
+00 IZ(a) =~ g/.L(a) - go(a) . (52)
Zy(a) = fo [f(7) - ]dr, (483 By requesting that this approximation give the exact value of
I(a) for a=1, we find ©u=0.316193... andu(2-u)
o =0.532408....
To(a) = [1-h(&)]de. (48b) Combining the results in this section, we find

)

Here we have first changed the integration variable in thkReD(75) =~ AT| (Va?+1-1)
latter integral fromr to & by the substitutionr=¢&+im/4¢

(sincen=/4¢ on thek=1 hyperbolain order to replace the 5

complex contour integral by a real one. Then we have added % E In @

and substracted the term 1 in order to make both integrals 2 [1+v(aP+1-DP-1
convergent.

We shall estimat&;(a) andZ,(«) by using the midpoint 1 a2 2 a?
method used above for Im(rg). We begin with the integral +— \/{In —‘ +m+Ih—
Z,(a). The integrand has its maximum valye?+1-1 at 2 (2 =) (2 = )
7=0 and decreases monotonically agncreases. We intro- (53)

duce the number, as the value of- at which the integrand
decreases t@ times of its maximum. From here we find For =1, Eq.(53) gives the exact result. In the limit of small
«, the second term dominates and Es8P) gives

\/ Lin o (49)
=15 , : AT
27 [1+v(Va?+1-DP-1 ReD(r) ~ —— (a<1), (54)
4VIn(1/a)
The integralZ,(«) is approximated as
which is the same as the correct asymptot829). For large

Ti(a) = NP+ 1 -7, (50) a, it is the first term in Eq(53) that dominates and Re(7y)
reduces to
By requesting that this approximation give the exact value of
Z:(a) for @=1 we findv=0.462 350 ... .
We now turn to the calculation of the second integral
Z,(). Again its integrand is a monotonically decreasing
function of the argumeng with a maximum equal to 1 in the This result is slightly differentin the numeric factorfrom
beginning&, of the integration intervafthereh(£§)=0]. We  the correct asymptotio@5a for large «. However, this dif-
introduce the numbeg,, as the value of at which the inte- ~ ference is less than 1% becauge(1/»)~0.878 in Eq(55),
grand decreases o times of its maximum. From here, compared to/7/2~0.886 in Eq.(353.
Figure 6 shows R®(7;) plotted versus the ratio param-
1 \/\/ o? |2 2 o? eter o. The analytic approximatio53) virtually coincides
fu‘a In w(2-p) +a+in w2-pw (51) with the exact values. The asymptotic formul@2a and
(359 describe accurately the asymptotic behaviors for small
The integralZ,(«) is approximated as and largea.

1
ReD(7p) ~ QpTA/In = (a>1). (55)
v
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4. Comparison with earlier work AT=03 AT=1

4
%

The results in the present paper are related to earlier re-
sults by Berman and co-workef$4], who have studied the
Gaussian model, along with four other models, and have
derived the asymptotic behaviors of the DDP intedPé?).

The asymptotic behaviors of Re(7;) found here, Eqg323
and (353, are the same as the results in R@#4]. The as-
ymptotics of ImD(;) for small &, Eq.(32b), also coincides
with the result of Ref.[14]. The asymptotic behavior of
Im D(7;) for largea, however, differs. Indeed, the res{iq.
(38e)] of Ref. [14],

o o o
[ SR

0
0

2.0x10°%

(=]

AT=3 AT =10

e
59

1.5x10°
1.0x10°

e
o

0.5x10°%

Transition Probability Transition Probability

OO

10 2 30 0 100 20 3(?

Peak Rabi Frequency (units of 1/7)
N wAT N B .
IMD(ry) ~ —= (a>1), (56) FIG. 7. Transition probability for the Gaussian pulse plotted vs
4lnVa the peak Rabi frequenc§), for four values of the detuningAT

=0.3,1,3,10. The exact results obtained by numerical integration of
the Schrodinger equation are shown by dots and our approximation,
Egs.(59), (44), and(53), by solid lines.

differs significantly from Eq.(35h). As Fig. 5 shows, our
result (35b) provides the correct asymptotic behavior for
large . We have verified that Eq56) deviates considerably

from the exact result. ) )
deed, fora>1 the real and imaginary parts of the DDP

integralsD(r;) have the behaviors
D. Transition probability
ReD(7,) ~ ReD(1), (603
1. Transition probability
In order to sum the contributions from various DDP inte- Im D(7y) ~ (2k + 1)Im D(7). (60b)
grals we need the factoi§, Eg.(22). One finds after simple ) ) )
algebra that The asymtpotics of R®(r,) can be derived in the same
. . manner as Eq:35a), whereas the asymptotics of IP(7) is
I(n)= (=D~ (57) derived in the Appendix, EqtALl). With the phase factors

Now we have all the ingredients to calculate the transitior{®?) included the generalized DDP formu(al) reads
probability P. Collecting the results from Eq$21), (44),

o 2
(53), and(57), we find P~ 4{2 (= 1)kg (@k+Dim D<%>] sirf[ReD(7)], (61)
k=0

P ~ 4 exii— 2 ImD(7y)Jsirf[Re D(7)]. (58)
) . which leads immediately to E@59).
We replace this expression by

sif[ReD(73)] - 2. Examples
cost[Im D(7y)] (59 Equation(59) with the approximationg53) and (44) for

) ) ReD(7,) and ImD(7;) provides a very accurate description
There are several arguments in favor of this replacementy ihe transition probability. The latter is plotted on Fig. 7
First of all, the error we make when replacing E88) with o5 5 function of the peak Rabi frequen@y for four differ-
Eq. (59) is comparable or smaller,. and ther'efore negl|g|ble,ent values of the detuning. As Q, increases, Rabi-like
compared to the errors in neglecting the higher-order termggijiations are observed, with both amplitude and frequency
in the calculation of the DDP integrgk8), the errors from .oy very well by our approximati@g9).
the neglect of the higher transition poings (k=1), and the In Fig. 8 the transition probabilit® is plotted versus the
DDP approximation itself. Second, E9) is superior to EQ.  getuningA for four different values of the peak Rabi fre-
(58) because it does not violate unitariP<1), whereas  quency(,. Both the line shape and linewidth are described
Eq. (58) does (albeit only outside its range of validity very accurately by our approximatiof59). Note that the
Third, such a replacement has already been y2éfland |inewidth increases only marginally &T increases from 5

shown to improve the accuracy. Last, such a re_placement ih 200, indicating a very weak power broadening; we shall
P of an exponent by a hyperbolic secant occurs in the Rosenetyrn to this observation in Sec. V.

Zener model, which is similar in many respects to the Gauss-
ian model(3), when adding the contributions from all tran-
sition points[20Q]. This is particularly important in view of
the fact that such a summation provides the exact transition
probability in the Rosen-Zener model. It is interesting to compare the Gaussian model with the

There is an additional, even more convincing argumenexactly soluble Rosen-ZendRZ) model [4]. In the RZ
supporting the replacement of EGS8) by Eq. (59): in the  model, the Rabi frequency has a hyperbolic-secant shape and
limit @>1 this replacement can be proved rigorously. In-the detuning is constant:

3. Comparison of the Gaussian model and the
Rosen-Zener model
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FIG. 8. Transition probability for the Gaussian pulse plotted VS 1 9. The transition probability for the Gaussian pulse as a

the detuningA for four values of the .peak Rabi frequeq@oT ~ function of the detuning\ and the peak Rabi frequendy,. The
=5,16,48,200. The exact results obtained by numerical integratiofree sets of concentric curves show the level lines of transition

of the Schrodinger equation are shown by dots and our approximgs onapiiiies 0.9(inne, 0.5 (dasheg, and 0.1(outen. The thick
tion (59) by solid lines. curve illustrates the analytic linewidth calculated from Egp).

Q1) = Qo secht/T), 6238 pait maximum, P(A1)=5P(0). With the observation that
the transition probability59) decreases witlh mainly via
A(t) = const. (620 the sech factor, we find readily from Eq(44) that
The sech shape is very similar to the Gaussian shape, but its Ay - 1
wings vanish more slowly; that is, the sech pulse is more Qo=—7 exp[—(g“(Al/zT)z— —2” (64)
adiabatic. The transition probability for the RZ model is m 4 §(Ag2)
given exactly by where¢=/(2 coshly2)2~1.011 043
1 Equation(64) is qualitatively very similar to Eq(16) de-
sir?(—wQOT) rived from the adiabatic conditiof13), except for the second
7;:2—_ (63) (small term in the exponent and small differences in the
R 1 AT numeric factors.
cos o7 Equation(64) gives the dependence of the peak Rabi fre-

) ) guency ), on the linewidthA,,. It can be invertedapproxi-
In this model, .the dependence @fon the Rabl frequency mately) to provide the dependence af, on Q. By taking
and the detuning factorizes, which is a unique feature. Thgygarithms of both sides of E¢64) and noting thaf), grows

oscillation amplitude is determined solely by the detuning  exponentially withA,;, (meaning that)o> A ,,), we obtain
and the phase of the oscillations depends only on the peak

Rabi frequency,, __2 ===
For the Gaussian pulse, the oscillation phaseDR&), Bap= V¢ VIn(@QT). (65)
Eq. (53), depends both of)q andA. For Qy<A, ReD(73) _ o ,
depends primarily om and only logarithmically or), [see The Ia_tter equation shows that th_e linewidth is determlned
Eq.(54)]. In contrast, foy> A, ReD(7) is determined by primarily by the pulse widthT and increases only logarith-
Q, [cf. Eq. (55)], as in the RZ model. mically with the Rabi frequencyl,. Hence there is a very
The oscillation amplitude sedim D(73)] in the Gauss- weak, logarithmic power broadening, as demonstrated in

ian model, Eq.(44), depends, for all ratios of), and A, Fig. 8.

P ; Figure 9 shows a contour plot of the numerically calcu-
primarily on A, as in the RZ model. In contrast to the RZ L - .
model, however, this amplitude does depend(ay albeit lated transition probability? for the Gaussian modgl3)

T ; ; lotted versus the detuningy and the peak Rabi frequency
logarithmicall &k : b . 9 '€ P
ogarithmically, and increases inereases Q. As Qg increases, Rabi-like oscillations appear along the

vertical axis. In the horizontal directio® decreases aA

IV. LINE PROFILE increases away from resonance. The figure §hovys an excel-
lent agreement of the analytically calculated linewigitiick
A. Linewidth line) with the numerical results.
The expression for the transition probability9), which _ _
in coherent atomic excitation represents the absorption line B. Comparison with other pulse shapes

profile, allows us to derive an analytic formula for the ab-  The dependencéss) of the linewidth A, on the Rabi
sorption linewidthA,,. The latter is defined as the detuning, frequency(), is different from those for other pulse shapes.
for which the averagéover sirf) transition probabilityP(A) For a rectangular pulse, the absorption line is Lorentzian and
decreases to one-half of its resonance vahedf width at its width is proportional to(),, indicating a typical power
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broadening. For a hyperbolic-secant pulse, the line profilesymptotic behaviof26), which implies thag,> 1> 7,; i.e.,
(63) is squared hyperbolic secant and its width does not des; is near the real axis. In order to calculate Mfir;) we
pend on(), at all—i.e., there is no power broadenin—which choose an integration path, which initially follows the real
is a unique feature for the sech pulse. Hence the Gaussiaxis from 7=0 to 7=§, and then makes an upturn from
pulse is much closer to the hyperbolic secant but it is less¢ to r=7,=§+in. Since the real axis part gives only a
adiabatic, which leads to weak, but nonzero power broaderreal contribution to the integral, we have
ing.

Im D(7) = AT Im o’ + 1dr

i
V. CONCLUSIONS b

In the present work we have derived analytically the tran-
sition probability between two quantum states driven by a
pulsed field with a Gaussian temporal envelope. We have

0
used the Dykhne-Davis-Pechukas method, which provides a ! \/T
~ ATy Re a?e 25 Aaam + 1dy
0

1
= ATp Re| Va2e2émyd-46my 4 1dy

very accurate approximation to the transition probability. We
have derived both the amplitude and frequency of the Rabi-

like oscillations induced by the Gaussian pulse. We have ! o P
obtained an analytic formula for the width of the excitation = AT, Ref Ve ™+ 1dy,
line profile, which shows a weak, logarithmic power broad- 0
ening. where we have changed the integration variable through
=&.+iny and we have used the relatiogs> 1> 7, e‘zfﬁ
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EU Marie Curie Training Site Project No. HPMT-CT-2001- NG ™ _
00294. N.V.V. acknowledges support from the Alexander von S— ReJ V1 +edu,
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because the integrand is a periodic function. Since

APPENDIX: ASYMPTOTICS OF Im D(7}) Re[ZJ1+eUdu=, we obtain
FOR LARGE «
_ _ _ _ _ . (2k+ 1)7AT
In this appendix we derive the asymptotic behavior for Im D(7) ~ AT~ -
a> 1 of the imaginary part of the DDP integrB(7) for the Nina
kth transition point7,=&+in. For large @, 7; has the ~(2k+DImD(75) (a>1). (A1)
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