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This work presents an analytic description of the coherent excitation of a two-state quantum system by an
external field with a Gaussian temporal shape and a constant frequency. A very accurate analytic approximation
to the transition probability is derived by using the Dykhne-Davis-Pechukas approach. This approximation
provides analytic expressions for the frequency and amplitude of the probability oscillations, for the excitation
profile and excitation linewidth. The linewidth, in particular, shows a weak, logarithmic power broadening.
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I. INTRODUCTION

The two-state quantum system is a fundamental ingredi-
ent in quantum mechanics. It can be found in a variety of
problems across quantum physics, ranging from nuclear
magnetic resonance, coherent atomic excitation, and quan-
tum information to chemical physics, solid-state physics, and
neutrino oscillations. Moreover, many problems involving
multiple states and complicated linkage patterns can very
often be understood only by reduction to one or more two-
state problems—e.g., by adiabatic elimination of weakly
coupled states[1].

There are several exactly soluble two-state models, in-
cluding the Rabi[2], Landau-Zener[3], Rosen-Zener[4],
Allen-Eberly-Hioe [5], Bambini-Berman [6], Demkov-
Kunike [7], Demkov [8], and Nikitin [9] models. Most of
these models use various special functions to solve the par-
ticular two-state problem. There exist also methods for ap-
proximate solutions, such as perturbation theory, the adia-
batic approximation, the Magnus approximation, and the
Dykhne-Davis-Pechukas approximation.

In the present work, we derive analytically the transition
probability for a two-state system driven by a pulsed external
field of Gaussian temporal envelope and constant carrier fre-
quency. This field, for which no exact analytic solution is
known, is among the most important pulsed fields; e.g., in
coherent atomic excitation an ideal phase- and mode-locked
pulsed laser delivers Gaussian pulses. We use the Dykhne-
Davis-Pechukas(DDP) method[10,11], which involves inte-
gration in the complex time plane, to derive a very accurate
approximation to the transition probability and the width of
the excitation line profile.

The Gaussian pulse shape is somewhat similar to the
hyperbolic-secant pulse, for which a beautiful exact analytic
solution is known, the Rosen-Zener model[4]. The Gaussian
pulse, however, vanishes much faster away from its maxi-
mum, which makes it less adiabatic. The comparison be-
tween the two shapes reveals interesting pulse-shape
effects—e.g., different power broadening.

There are several earlier studies of the Gaussian model.
Thomas[12] has shown that the Rosen-Zener conjecture[4]
is valid for the Gaussian pulse for very small detunings.
Bavaet al. [13] have found an interesting perturbative solu-
tion based on the Rosen-Zener model and valid for small

detuning and weak interaction. Bermanet al. [14] have stud-
ied the Gaussian model, along with four other models, and
have derived the asymptotic behavior of the transition prob-
ability in the limits of small and large values of the ratio of
the coupling and detuning. In the present work we extend
and generalize these results for arbitrary values of this ratio,
which allows us to derive the excitation line shape and line-
width.

This paper is organized as follows. In Sec. II we provide
the basic equations and definitions and define the problem. In
Sec. III we derive the transition probability by using the
DDP method. In Sec. IV, we derive and discuss the linewidth
of the excitation profile. We summarize the conclusions in
Sec. V.

II. BASIC EQUATIONS AND DEFINITIONS

A. Definition of the problem

Coherent excitation of a two-state quantum system is de-
scribed by the Schrödinger equation, which in the rotating-
wave approximation(RWA) reads[1]

i"
d

dt
cstd = Hstdcstd, s1d

wherecstd=fc1std ,c2stdgT is the column vector with the prob-
ability amplitudesc1std and c2std of the two statesuc1l and
uc2l, andHstd is the Hamiltonian:

Hstd = "3 0
1

2
Vstd

1

2
Vstd D 4 . s2d

The detuningD measures the frequency offset of the field
carrier frequencyv from the Bohr transition frequencyv0,
D=v0−v. The Rabi frequencyVstd quantifies the field-
induced coupling between the two states. For example, for
laser-atom excitation,Vstd=−d ·Estd /", where d is the
atomic transition dipole moment andEstd is the laser electric
field amplitude.

We are interested in the case when the coupling is a
Gaussian pulse and the detuning is constant:
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Vstd = V0e
−t2/T2

, s3ad

Dstd = const. s3bd

Because the transition probability is an even function ofV0,
D, and T, for simplicity and without loss of generality all
these constants will be assumed positive.

If the system is initially in stateuc1l fc1s−`d=1,c2s−`d
=0g, the transition probability after the interaction is given
by P= uc2s+`du2; its determination is our main concern.

No exact analytic solution to Eq.(1) for the Gaussian
model (3) is known. We shall derive below several approxi-
mations toP and calculate from them the period and the
amplitude of the probability oscillations, the line shape
PsDd, and the linewidthD1/2.

B. Adiabatic basis

For the derivation of the transition probability we shall
need the adiabatic basis—i.e., the basis of the eigenstates of
the Hamiltonian(2). We summarize below the basic defini-
tions and properties of this basis.

In terms of the mixing angleqstd, defined as

tan 2qstd =
Vstd

D
S0 ø qstd ø

p

4
D , s4d

the eigenstates ofHstd read

uw−stdl = cosqstduc1l − sinqstduc2l, s5ad

uw+stdl = sinqstduc1l + cosqstduc2l. s5bd

The time dependences of the adiabatic statesuw−stdl and
uw+stdl derive from the mixing angleqstd, whereas the bare
(diabatic) statesuc1l and uc2l are stationary.

Because the Rabi frequencyVstd vanishes at large times
and becauseD.0, we haveqs±`d=0; hence,

uw−s±`dl = uc1l, s6ad

uw+s±`dl = uc2l. s6bd

It follows from these relations that a transition between the
diabatic states implies a transition between the adiabatic
states and vice versa. Hence the transition probability in the
adiabatic basis is equal to the transition probability in the
diabatic basis.

The energies of the adiabatic states are the eigenvalues of
Hstd:

"E±std =
"

2
fD ± ÎV2std + D2g. s7d

The splitting between them is given by

"Estd = "E+std − "E−std = "ÎV2std + D2. s8d

It tends to"D as t→ ±` and its maximum value"ÎV0
2+D2

is reached whenVstd is maximal, att=0.
The probability amplitudes in the diabatic and adiabatic

bases are connected via the rotation matrix

Rsqd = F cosq sinq

− sinq cosq
G s9d

as

cstd = R„qstd…astd, s10d

where the column vectorastd=fa−std ,a+stdgT comprises the
probability amplitudes of the adiabatic statesuw−stdl and
uw+stdl. These amplitudes satisfy the transformed
Schrödinger equation

i"
d

dt
astd = Hastdastd, s11d

where the transformed Hamiltonian is given by

Hastd = R−1
„qstd…HstdR„qstd… − i"R−1

„qstd…Ṙ„qstd…

= "FE−std − iq̇std

iq̇std E+std G , s12d

where the overdots denote time derivatives.

C. Adiabatic condition for the Gaussian model

The condition for adiabatic evolution is

uq̇u ! Estd; s13d

i.e., the nonadiabatic coupling in the Hamiltonian(12) must
be negligible compared to the eigenenergy splitting. In order
to estimate condition(13) for the Gaussian pulse(3) it is
convenient to use the adiabaticity function

Astd =
uq̇u
Estd

=
VstdDÎlnfV0/Vstdg

TfV2std + D2g3/2 . s14d

In terms ofAstd the adiabaticity condition(13) readsAstd
!1. For any fixedD, the maximum of this function occurs
approximately atVstd,D /Î2. Hence,

Amax,
Î2 lns2V0

2/D2d

3Î3DT
. s15d

The adiabatic condition can be written asAmax,e, wheree
is a small number measuring the deviation from perfect adia-
baticity. This leads to the condition

V0 &
D

Î2
expS27

4
D2T2e2D . s16d

III. GAUSSIAN MODEL

A. Dykhne-Davis-Pechukas approximation

1. Single transition point

We shall estimate the transition probabilityP for the
Gaussian model(3) by using the Dykhne-Davis-Pechukas
approximation. The DDP formula[10,11] provides the as-
ymptotically exact transition probability between the adia-
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batic states in the adiabatic limit. We shall use this formula to
calculate the transition probabilityP in the original, diabatic
basis because, as we discussed above, the transition prob-
abilities in the adiabatic and diabatic bases are equal. The
DDP formula reads

P , e−2 Im Dst0d, s17d

where

Dst0d =E
0

t0

Estddt. s18d

The pointt0 is called the transition point and it is defined as
the (complex) zero of the quasienergy splitting,

Est0d = 0, s19d

which lies in the upper half of the complext plane(i.e., with
Im t0.0). Equation(17) gives the correct asymptotic prob-
ability for nonadiabatic transitions provided(i) the quasien-
ergy splittingEstd does not vanish for realt, including at ±̀ ;
(ii ) Estd is analytic and single-valued at least throughout a
region of the complext plane that includes the region from
the real axis to the transition pointt0; (iii ) the transition point
t0 is well separated from the other quasienergy zero points(if
any) and from possible singularities;(iv) there exists a level
(or Stokes) line defined by

Im Dstd = Im Dst0d, s20d

which goes from −̀ to +` and passes throught0.
As has been pointed out already by Davis and Pechukas

[11], for the Landau-Zener model[3], which possesses a
single transition point, the DDP formula(17) gives the exact
transition probability, not only in the adiabatic limit, but also
in the general case. This amazing feature indicates not only
the relevance of the DDP approximation, but raises an in-
triguing, yet unanswered question: how can an approximate
method provide the exact solution?

2. Multiple transition points

In the case of more than one zero point in the uppert
plane, Davis and Pechukas[11] have suggested, following
George and Lin[15], that Eq. (17) can be generalized to
include the contributions from all theseN zero pointstk in a
coherent sum. This suggestion was later verified by Joyeet
al. [16] and Suominenet al. [17–20]. The generalized DDP
formula has the form

P , Uo
k=1

N

GstkdeiDstkdU2

, s21d

whereGstkd are phase factors defined by

Gstkd = 4i lim
t→tk

st − tkdq̇std. s22d

In principle, Eq.(21) should be used when there is more
than one transition point lying on the lowest Stokes line(the
closest one to the real axis) and should include in principle
only the contributions from these points; moreover, Eq.(21)

has been rigorously proved only for these transition points
[16]. The contributions from the farther zeros are exponen-
tially small and may therefore be neglected. Retaining the
contributions fromall transition points, however, may be
beneficial: it has been shown[20] that for the Demkov-
Kunike models[7] the full summation in Eq.(21), involving
infinitely many transition points, leads to the exact result as
for the Landau-Zener model. This is a really astonishing re-
sult in view of the fact that the DDP approach is an approxi-
mate, perturbative method. For another model, of nonlinear
crossing, the contributions from all transition points have
been shown to improve the accuracy considerably[21], al-
though there the DDP approximation does not give the exact
result. Nevertheless, the validity of Eq.(21) in the general
case of arbitrarily many transition points should be consid-
ered as an open question.

Another open question for the DDP method is the param-
eter range where it applies. Strictly, the DDP approximation,
being a perturbative result in the adiabatic basis, should be
valid only near the adiabatic limit. For a Gaussian field this
implies the range defined by the adiabatic condition(16).
However, we shall see that the DDP approximation describes
very accurately the transition probability well outside this
range, virtually for any parameter values, which follows
similar earlier successes of this approximation for other
models(for some of which, as we discussed, it provides even
the exact result). This accuracy of the DDP approximation
well beyond the adiabatic regime, essentially in the entire
parameter plane, is another open question.

B. Transition points

For the Gaussian model(3), there are infinitely many tran-
sition points in the upper half-plane. In terms of the dimen-
sionless timet= t /T=j+ ih, they are given by

tk
± = ± jk + ihk, s23ad

jk =
1

2
ÎÎ4sln ad2 + s2k + 1d2p2 + 2 ln a, s23bd

hk =
1

2
ÎÎ4sln ad2 + s2k + 1d2p2 − 2 ln a, s23cd

wherek=0,1,2, . . . and

a =
V0

D
. s24d

The first few pairs of transition pointstk
− andtk

+ are shown in
Fig. 1 for three different values of the ratioa. Because
sjk

±d2−shk
±d2= ln a, for eacha the transition points are situ-

ated on two symmetric hyperbolas(solid curves in Fig. 1).
For a,1 anda.1, the transition points lie on genuine hy-
perbolas, whereas fora=1 they are on the straight linejk

±

=hk
±. On the other hand, becausejk

±hk
±= ± s2k+1dp /4, the

transition points of the same orderk lie on another pair of
hyperbolas, shown in Fig. 1 by dashed curves.

For a!1, we have
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jk ,
s2k + 1dp
4Îlns1/ad

sa ! 1d, s25ad

hk , Îlns1/ad sa ! 1d. s25bd

Hence, asa decreases, the transition points approach the
imaginary axis and in the limita→0 coalesce(logarithmi-
cally) with their counterparts on the other side of the imagi-
nary axis.

For a@1, we have

jk , Îln a sa @ 1d, s26ad

hk ,
s2k + 1dp

4Îln a
sa @ 1d. s26bd

As a increases, the transition points approach the real axis
and in the limita→` coalesce(again logarithmically) with
the zeros from the lower half-plane(with Im tk

± ,0). We
shall see that the coalescence of the transition points in the
limits a→0 and a→` do not affect the accuracy of the
DDP approximation.

Figure 2 displays the Stokes lines, defined by Eq.(20),
emanating from each transition point. Because for the Gauss-
ian model the zeros of the eigenenergy splittingEstd are
simple and because of the presence of the square root inEstd,
there are three Stokes lines emerging from each transition
point [11]. The lowest Stokes line, which connectst0

− andt0
+

and extends from −̀ to +`, is the most significant one be-
cause it is used in the derivation of the DDP approximation
[11] and its existence validates the approximation[16].

C. DDP integrals

Because for the Gaussian model(3) there are infinitely
many transition points, the most accurate transition probabil-
ity is expected to be given by the generalized DDP formula
(21). The dominant contributions to the sum in this formula
originate from the two transition points closest to the real
axis, t0

− andt0
+. For simplicity, we neglect the contributions

from all others and retain only the terms from these two
points.

Becausest0
−d* =−t0

+ and becauseEstd is an even function
of time, it is easy to show that

Dst0
−d = − D * st0

+d, s27d

that is, ReDst0
−d=−ReDst0

+d and ImDst0
−d=Im Dst0

+d.
Hence it is sufficient to calculate only one of these integrals
and we chooseDst0

+d for this purpose.
Because the imaginary part of the DDP integralDstd is

the same for the two transition pointst0
+ andt0

− [cf. Eq.(27)],
these points lie on the same Stokes line, defined by Eq.(20).
This Stokes line extends from −̀to +`, which is a neces-
sary condition for the validity of the DDP approximation
[11,16].

With the arguments presented above, the problem is re-
duced to the calculation of the DDP integral

Dst0
+d = DTE

0

t0
+

Îa2e−2t2
+ 1dt. s28d

The estimation of this integral will be our main concern
hereafter in this section.

1. Behavior of the DDP integral for smalla

For smalla sa!1d we expand the integrand in Eq.(28)
by using the Taylor expansion

Î1 + x = 1 + o
n=1

`

s− 1dn−1s2n − 3d!!
s2nd!!

xn, s29d

where we assume thats−1d!!=1, and perform term-by-term
integration. This integration is justified within the circleuxu
%1, where the series(29) is uniformly convergent. We
choose the path of integration to be the straight line fromt
=0 to t=t0

+ and parametrize this path ast=t0
+s s0%s%1d. It

is easy to see thatua2e−2t2
u%1 along this path. Indeed,

ua2e−2t2
u = a2ue−2st0

+d2s2
u = a2s1−s2d % 1,

becausea,1 and 0%s%1.
By using the relation

FIG. 1. Transition points for the Gaussian model(3) for three
different values of the ratioa=V0/D: 0.1,1,10. The dashed curves
show the hyperbolasjh=s2k+1dp /4 sk=0,1,2, . . .d and the solid
curves the hyperbolasj2−h2= ln a.

FIG. 2. Numerically calculated Stokes lines for the Gaussian
model (3) for a=V0/D=1.
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E
0

t0
+

e−2nu2
du=

ÎpErfst0
+Î2nd

2Î2n
, s30d

we find that

Dst0
+d = DTFt0

+ + o
n=1

`

s− 1dn−1s2n − 3d!!
s2nd!!

3
a2nÎpErfst0

+Î2nd

2Î2n
G , s31d

where Erfsxd is the error function[22]. Using Eqs.(25), we
find the dominant asymptotic terms as

ReDst0
+d ,

pDT

4Îlns1/ad
sa ! 1d, s32ad

Im Dst0
+d , DTÎlns1/ad sa ! 1d. s32bd

2. Behavior of the DDP integral for largea

Calculation by power series expansion. For largea sa
@1d we write the integral(28) as

Dst0
+d = DTE

0

t0
+

ae−t2Î1 + a−2e2t2
dt. s33d

Again, as fora!1, we choose the straight line fromt=0 to
t=t0

+ as the integration path and parametrize it ast=t0
+s s0

%s%1d. Since ua−2e2t2
u=a−2s1−s2d%1 (due to a.1 and 0

%s%1), we can again use the expansion(29) and term-by-
term integration to find

Dst0
+d =

Îp

2
V0TFErfst0

+d + io
n=1

`

s− 1dns2n − 3d!!
s2nd!!

3
a−2nErfsit0

+Î2n − 1d
Î2n − 1

G . s34d

The dominant asymptotic terms are

ReDst0
+d ,

Îp

2
V0T sa @ 1d, s35ad

Im Dst0
+d ,

pDT

4Îln a
sa @ 1d, s35bd

where for the real part we have used the asymptotics of the
error function [22], Erfszd,1 suzu→` , uargzu,3p /4d,
whereas for the imaginary part we have used Eq.(A1) in the
Appendix.

Calculation by the method of steepest descent. We now
apply the method of steepest descent[23] to calculate the
integral (28). We represent the integral as

W=E
C

e−Fstddt, s36d

where Fstd=−lnÎa2e−2t2
+1 and the contourC is a curve

connecting 0 andt0
+. The saddle point, defined byF8stsd=0,

is ts=0. The integral has the asymptotics[23]

W,Î p

2F2
e−F0fQ0 + Q2 + ¯ g, s37d

provided uargF2u,p, where Q0=1, Q2=5F3
2−3F2F4, etc.,

with Fn=Fsndstsd. We find F0=−lnÎa2+1, F2=2a2/ sa2+1d,
etc. Hence for largea the dominant term is

Dst0
+d ,

Îp

2
DT

a2 + 1

a
,

Îp

2
V0T. s38d

This result coincides with Eq.(35a).
Because the saddle pointts=0 is real and the function

Fstd and all of its derivatives are real in this point, the
method of steepest descent provides only the real part of the
integral (28). Moreover, this method can deliver only the
large-a asymptotics because the expansion(37) is in terms of
the inverse powers ofa.

We derive below, using a middle-point method, uniform
approximations to ReDst0

+d and ImDst0
+d, valid for any

value ofa.

3. Uniform approximation to the DDP integral

We shall derive a uniform approximation to the DDP in-
tegral Dst0

+d, Eq. (28), by choosing an appropriate integra-
tion contour. We require on this contour the integrandfstd to
be real, where

fstd = Îa2e−2t2
+ 1 =Îa2e2sh2−j2d−4ijh + 1. s39d

Then the complexity will originate solely from the integra-
tion path, which greatly facilitates the derivation of the real
and imaginary parts of the integral. Imf2std vanishes when

4jh = kp sk = 0,±1,±2, . . .d. s40d

The latter equation defines a family of hyperbolas(for k=0
the corresponding hyperbola degenerates into the axesj=0
andh=0). The initial pointt=0 of the integration path ob-
viously lies on thek=0 hyperbola. The final point of the
integration patht0

+ lies on the hyperbola withk=1 in the first
quadrant. Hence we can connect the initial and final points of
the integration path by first going from the origin to infinity
along the real axis(staying on thek=0 hyperbola) and then
returning to the transition pointt0

+ along thek=1 hyperbola
4jh=p. This integration path is drawn in Fig. 3. On this path
the integrandfstd is always real.[Had we approachedt0

+ on
the k=1 hyperbola from above, fromi`, then fstd would be
imaginary.]

We shall first calculate ImDst0
+d, which is simpler, and

then ReDst0
+d.

Imaginary part of the DDP integral. For the imaginary
part of the DDP integral(28) we have
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Im Dst0
+d = DT ImSE

0

+`

+E
+`

t0
+ D fstddt

= DT Im E
0

h0

gshdS−
p

4h2 + iDdh

= DTE
0

h0

gshddh, s41d

with

gshd = Î1 − a2e2h2−p2/8h2
, s42d

where we have used that the integral on the real axis part
f0, +`d is real and we have changed the integration variable
in the second integral fromt to h through t=p /4h+ ih
(sincej=p /4h on thek=1 hyperbola).

The integrandgshd is a monotonically decreasing func-
tion of h, which has its maximum ath=0,gmax=gs0d=1, as
shown in Fig. 4. This provides a justification for approximat-
ing the integral by replacing the integrandgshd by its maxi-
mum valuegmax and in return shrinking the integration inter-
val from f0,h0g to f0,hlg wherehl is a free parameter for
the moment. An argument in support of this approximation is
that the error from the neglected contribution from the inter-
val fhl ,h0g (regionB) can be compensated by the error from

the overestimation of the functiongshd by its maximum
gmax=1 in the intervalf0,hlg (regionA).

We choosehl to be the point at whichgshd decreases to
lgmax, where the numberl remains to be fixed. We find from
here that

hl =
1

2
ÎÎ4 ln2smad + p2 − 2 lnsmad, s43d

wherem=1/Î1−l2. Then the integral(41) is approximated
as ImDst0

+d<DTgmaxhl—i.e.,

Im Dst0
+d <

1

2
DTÎÎ4 ln2smad + p2 − 2 lnsmad. s44d

Obviously, for eacha, bothhl or l can be chosen such that
Eq. (44) provides the exact result; then, however,hl and l
will be functions ofa and this calculation is equivalent to
solving the integral. We fix the value ofl by requesting Eq.
(44) to provide the exact result fora=1; this gives l
<0.646 983 andm<1.311 468.

The advantage of this choice is that the approximation
(44), besides providing the exact result fora=1 (i.e., V0
=D), is also very accurate in some vicinity of this important
point. On the other hand, Eq.(44) has the following asymp-
totics:

Im Dst0
+d , DTÎlnsm/ad sa ! 1d, s45ad

Im Dst0
+d ,

pDT

4Îlnsmad
sa @ 1d. s45bd

These expressions agree with Eqs.(32b) and (35b), except
for the factorm, which is insignificant in the limitsa@1 and
a!1 [since lnsmad=ln m+ln a< ln a for a@1 and simi-
larly for a!1]. This factor becomes significant for interme-
diatea, where, however, the accuracy of Eq.(44) improves
until, as explained above, it becomes exact fora=1.

Figure 5 shows ImDst0
+d plotted versus the ratio param-

etera. The analytic approximation(44) is undistinguishable
from the exact result. The asymptotic formulas(32b) and

FIG. 3. Integration contour for the calculation of the integral
Dst0

+d for a=1.

FIG. 4. Integrandgshd of the integral ImDst0
+d, Eq. (41).

FIG. 5. The imaginary part of the DDP integral ImDst0
+d versus

the ratio parametera=V0/D. The dots show the exact numeric
values, the solid curve the uniform approximation(44), and the
dashed curves the asymptotic formulas(32b) and (35b) for small
and largea, respectively.
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(35b) describe the asymptotic behaviors for small and large
a very accurately.

Real part of the DDP integral. For the real part of the
DDP integral(28) we follow the same path of integration as
for the imaginary part, Fig. 3. We have

ReDst0
+d = DT ReSE

0

+`

+E
+`

t0
+ D fstddt

= DTFE
0

+`

fstddt −E
j0

+`

hsjddjG
= DTfI1sad + I2sad + j0sadg, s46d

where fstd is defined by Eq.(39), hsjd by

hsjd = Î1 − a2e−2j2+p2/8j2
, s47d

and

I1sad =E
0

+`

ffstd − 1gdt, s48ad

I2sad =E
j0

+`

f1 − hsjdgdj. s48bd

Here we have first changed the integration variable in the
latter integral fromt to j by the substitutiont=j+ ip /4j
(sinceh=p /4j on thek=1 hyperbola) in order to replace the
complex contour integral by a real one. Then we have added
and substracted the term 1 in order to make both integrals
convergent.

We shall estimateI1sad andI2sad by using the midpoint
method used above for ImDst0

+d. We begin with the integral
I1sad. The integrand has its maximum valueÎa2+1−1 at
t=0 and decreases monotonically ast increases. We intro-
duce the numbertn as the value oft at which the integrand
decreases ton times of its maximum. From here we find

tn =Î1

2
ln

a2

f1 + nsÎa2 + 1 − 1dg2 − 1
. s49d

The integralI1sad is approximated as

I1sad < sÎa2 + 1 − 1dtn. s50d

By requesting that this approximation give the exact value of
I1sad for a=1 we findn=0.462 350 . . . .

We now turn to the calculation of the second integral
I2sad. Again its integrand is a monotonically decreasing
function of the argumentj with a maximum equal to 1 in the
beginningj0 of the integration interval[therehsjd=0]. We
introduce the numberjm as the value ofj at which the inte-
grand decreases tom times of its maximum. From here,

jm =
1

2
ÎÎFln

a2

ms2 − mdG2

+ p2 + ln
a2

ms2 − md
. s51d

The integralI2sad is approximated as

I2sad < jmsad − j0sad. s52d

By requesting that this approximation give the exact value of
I2sad for a=1, we find m=0.316 193 . . . andms2−md
=0.532 408 . . ..

Combining the results in this section, we find

ReDst0
+d < DTHsÎa2 + 1 − 1d

3Î1

2
ln

a2

f1 + nsÎa2 + 1 − 1dg2 − 1

+
1

2
ÎÎFln

a2

ms2 − md
G2

+ p2 + ln
a2

ms2 − md
J .

s53d

For a=1, Eq.(53) gives the exact result. In the limit of small
a, the second term dominates and Eq.(53) gives

ReDst0
+d ,

pDT

4Îlns1/ad
sa ! 1d, s54d

which is the same as the correct asymptotics(32a). For large
a, it is the first term in Eq.(53) that dominates and ReDst0

+d
reduces to

ReDst0
+d , V0TÎln

1

n
sa @ 1d. s55d

This result is slightly different(in the numeric factor) from
the correct asymptotics(35a) for largea. However, this dif-
ference is less than 1% becauseÎlns1/nd<0.878 in Eq.(55),
compared toÎp /2<0.886 in Eq.(35a).

Figure 6 shows ReDst0
+d plotted versus the ratio param-

eter a. The analytic approximation(53) virtually coincides
with the exact values. The asymptotic formulas(32a) and
(35a) describe accurately the asymptotic behaviors for small
and largea.

FIG. 6. The real part of the DDP integral ReDst0
+d versus the

ratio parametera=V0/D. The dots show the exact numeric result,
the solid curve the uniform approximation(53), and the dashed
curves the asymptotic formulas(32a) and(35a) for small and large
a, respectively.
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4. Comparison with earlier work

The results in the present paper are related to earlier re-
sults by Berman and co-workers[14], who have studied the
Gaussian model, along with four other models, and have
derived the asymptotic behaviors of the DDP integralDst0

+d.
The asymptotic behaviors of ReDst0

+d found here, Eqs.(32a)
and (35a), are the same as the results in Ref.[14]. The as-
ymptotics of ImDst0

+d for small a, Eq. (32b), also coincides
with the result of Ref.[14]. The asymptotic behavior of
Im Dst0

+d for largea, however, differs. Indeed, the result[Eq.
(38e)] of Ref. [14],

Im Dst0
+d ,

pDT

4 lnÎa
sa @ 1d, s56d

differs significantly from Eq.(35b). As Fig. 5 shows, our
result (35b) provides the correct asymptotic behavior for
largea. We have verified that Eq.(56) deviates considerably
from the exact result.

D. Transition probability

1. Transition probability

In order to sum the contributions from various DDP inte-
grals we need the factorsGk, Eq. (22). One finds after simple
algebra that

Gstk
±d = ± s− 1dk. s57d

Now we have all the ingredients to calculate the transition
probability P. Collecting the results from Eqs.(21), (44),
(53), and(57), we find

P , 4 expf− 2 Im Dst0
+dgsin2fReDst0

+dg. s58d

We replace this expression by

P ,
sin2fReDst0

+dg

cosh2fIm Dst0
+dg

. s59d

There are several arguments in favor of this replacement.
First of all, the error we make when replacing Eq.(58) with
Eq. (59) is comparable or smaller, and therefore negligible,
compared to the errors in neglecting the higher-order terms
in the calculation of the DDP integral(28), the errors from
the neglect of the higher transition pointstk

± skù1d, and the
DDP approximation itself. Second, Eq.(59) is superior to Eq.
(58) because it does not violate unitaritysPø1d, whereas
Eq. (58) does (albeit only outside its range of validity).
Third, such a replacement has already been used[24] and
shown to improve the accuracy. Last, such a replacement in
P of an exponent by a hyperbolic secant occurs in the Rosen-
Zener model, which is similar in many respects to the Gauss-
ian model(3), when adding the contributions from all tran-
sition points[20]. This is particularly important in view of
the fact that such a summation provides the exact transition
probability in the Rosen-Zener model.

There is an additional, even more convincing argument
supporting the replacement of Eq.(58) by Eq. (59): in the
limit a@1 this replacement can be proved rigorously. In-

deed, fora@1 the real and imaginary parts of the DDP
integralsDstk

+d have the behaviors

ReDstk
+d , ReDst0

+d, s60ad

Im Dstk
+d , s2k + 1dIm Dst0

+d. s60bd

The asymtpotics of ReDstk
+d can be derived in the same

manner as Eq.(35a), whereas the asymptotics of ImDstk
+d is

derived in the Appendix, Eq.(A1). With the phase factors
(57) included the generalized DDP formula(21) reads

P , 4Fo
k=0

`

s− 1dke−s2k+1dIm Dst0
+dG2

sin2fReDst0
+dg, s61d

which leads immediately to Eq.(59).

2. Examples

Equation(59) with the approximations(53) and (44) for
ReDst0

+d and ImDst0
+d provides a very accurate description

of the transition probabilityP. The latter is plotted on Fig. 7
as a function of the peak Rabi frequencyV0 for four differ-
ent values of the detuningD. As V0 increases, Rabi-like
oscillations are observed, with both amplitude and frequency
matched very well by our approximation(59).

In Fig. 8 the transition probabilityP is plotted versus the
detuningD for four different values of the peak Rabi fre-
quencyV0. Both the line shape and linewidth are described
very accurately by our approximation(59). Note that the
linewidth increases only marginally asV0T increases from 5
to 200, indicating a very weak power broadening; we shall
return to this observation in Sec. IV.

3. Comparison of the Gaussian model and the
Rosen-Zener model

It is interesting to compare the Gaussian model with the
exactly soluble Rosen-Zener(RZ) model [4]. In the RZ
model, the Rabi frequency has a hyperbolic-secant shape and
the detuning is constant:

FIG. 7. Transition probability for the Gaussian pulse plotted vs
the peak Rabi frequencyV0 for four values of the detuning,DT
=0.3,1,3,10. The exact results obtained by numerical integration of
the Schrödinger equation are shown by dots and our approximation,
Eqs.(59), (44), and(53), by solid lines.
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Vstd = V0 sechst/Td, s62ad

Dstd = const. s62bd

The sech shape is very similar to the Gaussian shape, but its
wings vanish more slowly; that is, the sech pulse is more
adiabatic. The transition probability for the RZ model is
given exactly by

P =

sin2S1

2
pV0TD

cosh2S1

2
pDTD . s63d

In this model, the dependence ofP on the Rabi frequency
and the detuning factorizes, which is a unique feature. The
oscillation amplitude is determined solely by the detuningD
and the phase of the oscillations depends only on the peak
Rabi frequencyV0.

For the Gaussian pulse, the oscillation phase ReDst0
+d,

Eq. (53), depends both onV0 andD. For V0!D, ReDst0
+d

depends primarily onD and only logarithmically onV0 [see
Eq. (54)]. In contrast, forV0@D, ReDst0

+d is determined by
V0 [cf. Eq. (55)], as in the RZ model.

The oscillation amplitude sech2fIm Dst0
+dg in the Gauss-

ian model, Eq.(44), depends, for all ratios ofV0 and D,
primarily on D, as in the RZ model. In contrast to the RZ
model, however, this amplitude does depend onV0, albeit
logarithmically, and increases asV0 increases.

IV. LINE PROFILE

A. Linewidth

The expression for the transition probability(59), which
in coherent atomic excitation represents the absorption line
profile, allows us to derive an analytic formula for the ab-
sorption linewidthD1/2. The latter is defined as the detuning,

for which the average(over sin2) transition probabilityP̄sDd
decreases to one-half of its resonance value(half width at

half maximum), P̄sD1/2d= 1
2P̄s0d. With the observation that

the transition probability(59) decreases withD mainly via
the sech2 factor, we find readily from Eq.(44) that

V0 =
D1/2

m
expFp

4
SzsD1/2Td2 −

1

zsD1/2Td2DG , s64d

wherez=p / s2 cosh−1Î2d2<1.011 043
Equation(64) is qualitatively very similar to Eq.(16) de-

rived from the adiabatic condition(13), except for the second
(small) term in the exponent and small differences in the
numeric factors.

Equation(64) gives the dependence of the peak Rabi fre-
quencyV0 on the linewidthD1/2. It can be inverted(approxi-
mately) to provide the dependence ofD1/2 on V0. By taking
logarithms of both sides of Eq.(64) and noting thatV0 grows
exponentially withD1/2 (meaning thatV0@D1/2), we obtain

D1/2 <
2

TÎpz
ÎlnsV0Td. s65d

The latter equation shows that the linewidth is determined
primarily by the pulse widthT and increases only logarith-
mically with the Rabi frequencyV0. Hence there is a very
weak, logarithmic power broadening, as demonstrated in
Fig. 8.

Figure 9 shows a contour plot of the numerically calcu-
lated transition probabilityP for the Gaussian model(3)
plotted versus the detuningD and the peak Rabi frequency
V0. As V0 increases, Rabi-like oscillations appear along the
vertical axis. In the horizontal directionP decreases asD
increases away from resonance. The figure shows an excel-
lent agreement of the analytically calculated linewidth(thick
line) with the numerical results.

B. Comparison with other pulse shapes

The dependence(65) of the linewidth D1/2 on the Rabi
frequencyV0 is different from those for other pulse shapes.
For a rectangular pulse, the absorption line is Lorentzian and
its width is proportional toV0, indicating a typical power

FIG. 8. Transition probability for the Gaussian pulse plotted vs
the detuningD for four values of the peak Rabi frequency,V0T
=5,16,48,200. The exact results obtained by numerical integration
of the Schrödinger equation are shown by dots and our approxima-
tion (59) by solid lines.

FIG. 9. The transition probability for the Gaussian pulse as a
function of the detuningD and the peak Rabi frequencyV0. The
three sets of concentric curves show the level lines of transition
probabilities 0.9(inner), 0.5 (dashed), and 0.1(outer). The thick
curve illustrates the analytic linewidth calculated from Eq.(64).

COHERENT EXCITATION OF A TWO-STATE SYSTEM… PHYSICAL REVIEW A 70, 053407(2004)

053407-9



broadening. For a hyperbolic-secant pulse, the line profile
(63) is squared hyperbolic secant and its width does not de-
pend onV0 at all—i.e., there is no power broadenin—which
is a unique feature for the sech pulse. Hence the Gaussian
pulse is much closer to the hyperbolic secant but it is less
adiabatic, which leads to weak, but nonzero power broaden-
ing.

V. CONCLUSIONS

In the present work we have derived analytically the tran-
sition probability between two quantum states driven by a
pulsed field with a Gaussian temporal envelope. We have
used the Dykhne-Davis-Pechukas method, which provides a
very accurate approximation to the transition probability. We
have derived both the amplitude and frequency of the Rabi-
like oscillations induced by the Gaussian pulse. We have
obtained an analytic formula for the width of the excitation
line profile, which shows a weak, logarithmic power broad-
ening.
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APPENDIX: ASYMPTOTICS OF Im D„tk
+
…

FOR LARGE a

In this appendix we derive the asymptotic behavior for
a@1 of the imaginary part of the DDP integralDstk

+d for the
kth transition pointtk

+=jk+ ihk. For large a, tk
+ has the

asymptotic behavior(26), which implies thatjk@1@hk; i.e.,
tk

+ is near the real axis. In order to calculate ImDstk
+d we

choose an integration path, which initially follows the real
axis from t=0 to t=jk and then makes an upturn fromt
=jk to t=tk

+=jk+ ihk. Since the real axis part gives only a
real contribution to the integral, we have

Im Dstk
+d = DT ImE

jk

jk+ihk Îa2e−2t2
+ 1dt

= DThk ReE
0

1 Îa2e−2sjk
2−hk

2y2d−4ijkhky + 1dy

, DThk ReE
0

1 Îa2e−2jk
2−4ijkhky + 1dy

= DThk ReE
0

1
Îe−is2k+1dpy + 1dy,

where we have changed the integration variable throught

=jk+ ihky and we have used the relationsjk@1@hk, e−2jk
2

,a−2 [see Eq.(26)], and 4jkhk=s2k+1dp. By choosing a
new integration variableu=s2k+1dpy we find

Im Dstk
+d ,

DThk

s2k + 1dp
ReE

0

s2k+1dp
Î1 + e−iudu

=
DThk

p
ReE

0

p

Î1 + e−iudu,

because the integrand is a periodic function. Since
Ree0

pÎ1+e−iudu=p, we obtain

Im Dstk
+d , DThk ,

s2k + 1dpDT

4Îln a

, s2k + 1dIm Dst0
+d sa @ 1d. sA1d
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