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We describe a technique for creating superpositions of degenerate quantum states, such as are needed for
beam splitters used in matter-wave optics, by manipulating the timing of three orthogonally polarized laser
beams through which moving atoms(or molecules) pass; motion across the laser beams produces pulses in the
atomic rest frame. As illustrated with representative simulations for transitions in metastable neon, a single pass
through three overlapping laser beams can produce superpositions(with preselected phase) of atomic beams
differing by transverse momentum corresponding to the momentum of four photons. Like the two-photon
momentum transfer of the tripod linkage pattern which it extends, the method relies on controlled adiabatic
time evolution in the Hilbert subspace of two degenerate dark states. It is thus a generalization to multiple dark
states(and larger transfers of linear momentum to the atomic beam) of the single dark state occurring with the
stimulated Raman adiabatic passage(STIRAP) technique, and therefore it is potentially insensitive to deco-
herence due to spontaneous emission. By extending the tripod-linkage system to more numerous degenerate
states, the technique not only increases the atomic beam deflections but, as we demonstrate, allows control over
the superposition phase and amplitudes. LIke other techniques based on adiabatic time evolution, the technique
is robust with respect to variations of the intensity, timing, and other characteristics of the laser fields. Unlike
STIRAP, the same robust partial population transfer occurs for opposite timings of the pulse sequence, as is
needed for such procedures as Hadamard gates.
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I. INTRODUCTION

A. Statement of the problem

There exist many techniques for transferring population
completely and selectively from one quantum state—say,
ca—to another quantum state—say,cb. Many of these tech-
niques also provide the possibility to create a superposition
of the two states—say,Fsud=cosuca+sinucb or, more gen-
erally,

Fsu,wd = cosuca + expsiwdsinucb, s1d

with prescribe mixing angleu and superposition phasew.
When the two quantum states refer to internal excitation

that accompanies the absorption of a photon(or, more gen-
erally, n photons) in an atomic or molecular beam experi-
ment, then each transition necessarily accompanies a change
of transverse momentum of the atom or molecule. In an
n-photon transition the atom will absorb momentumn"k
transverse to the atomic beam axis, wherek=v /c for a pho-
ton of angular frequencyv, and will undergo a correspond-
ing deflection. The deflection may take place in two steps:
absorption of forward-moving photons followed by stimu-
lated emission of backward-moving photons—a total ofn all
together. The state superposition then corresponds to the cre-
ation of a coherent superposition of two matter waves having
different momentum directions. Such superpositions of trans-

verse center-of-mass motion are a key ingredient in schemes
for creating matter-wave beam splitters, an essential element
in the construction of an interferometer using matter waves
rather than optical waves. Figure 1 illustrates schematically
the momenta arrangements of such a superposition, in which
each of the two beams is deflected by the anglef
=arctansnk/K0d [1–5].

In principle, it is a simple matter to create such a super-
position Fsu ,wd using a resonant one-photon transition be-
tween nondegenerate states or, alternatively, a resonant two-
photon Raman transition; the mixing angleu is then just the
temporal pulse areaa:

u = a ; E
−`

`

dtVstd, s2d

basically the product of a peak Rabi frequencyVs0d and the
pulse temporal widthT. To produce the desired 50:50 super-
position it is only necessary to adjust the pulse area to be
p /4. Such techniques obviously require careful control of
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FIG. 1. Schematic diagram of superposition of beam deflection
states, showing original(longitudinal) momentumK0 of atoms,
transverse momentumnk of the n-photon transition, and resulting
atomic momentumK (all in units of "). The resulting deflection is
by anglef=arctansnk/K0d.
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pulse areas, and hence they are sensitive to variations of both
the peak intensity(i.e., the square of the Rabi frequency) and
the pulse durationT.

A highly desirable property for any such technique is in-
sensitivity to various characteristics of the pulses that pro-
duce the excitation. Such things as laser phase or pulse du-
ration and intensity(pulse area), for example, may be
difficult to control precisely. Adiabatic processes typically
are more robust than techniques that rely on precisely con-
trolled temporal pulse areas(as with so-calledp pulses,
whose temporal area is an odd-integer multiple ofp). For p
pulses the population change is often directly proportional to
temporal area; under such a situation an error of 1% in pulse
area will produce a 1% error in mixing angle. By contrast,
adiabatic processes are insensitive to pulse area and can be
made to depend only quadratically upon the principal experi-
mental parameters, the temporal delay between pulses.

B. Historical context

One of the techniques frequently used for robust popula-
tion transfer, and potentially available for the creation of su-
perpositions, is stimulated Raman adiabatic passage(STI-
RAP) [6]. This technique uses two pulses, offset from each
other in time, and the Raman couplingca↔cc↔cb. One of
the conditions for successful complete population transfer
ca→cb is that the two pulses occur with a definite time
ordering (the so-called counterintuitive sequence) in which
the c-b pulse precedes thea-c pulse. Such a pulse sequence
is unsatisfactory for the return transitioncb→ca, and so
STIRAP is not a technique available for constructing Had-
amard transformations.

The addition of one more linked quantum state, extending
the system from a three-statel linkage to a four-state tripod
linkage, provides the needed additional flexibility to devise
pulse sequences that have prescribed effects on each of the
potential starting(ground) statesca or cb [5,7,8].

The use of the STIRAP technique to produce deflection of
an atomic beam as part of a beam splitter was first proposed
by Marte et al. [1] and was subsequently demonstrated in
beams of metastable helium[2] and cesium[3]. This concept
was also demonstrated in a beam of metastable neon atoms,
where two applications of a five-state STIRAP-like process
led to beam momentum splittings of 8"k [4]. Recently a
four-state linkage in metastable neon, used with a STIRAP-
like procedure, has been used to create a superposition of
two states with arbitrary preselected phase, starting from a
third state[9]. By contrast, the superpositions described in
the present paper are of the initial state and a second state.

The STIRAP procedure makes use of a so-calleddark
state: an adiabatic state constructed from two stable or meta-
stable states that do not fluoresce. The extension of the origi-
nal three-state chain of STIRAP to longer chains, all with a
single dark state, was discussed several years ago[10,11].
The benefits of extending the coherent dynamics of the
single dark state of thel system(or its generalizations) to
the two dark states of the tripod system have been pointed
out [7,8]. The experimental demonstration of superposition
creation, and consequent beam splitting, in a tripod system

was first demonstrated by Theueret al. in a beam of meta-
stable neon atoms[5]. The tripod system was subsequently
proposed as the basis for a Hadamard gate by Duanet al.
[12]. We note that linkage patterns allowing more than two
dark states have been discussed,[13–15] although their use
has not yet been exploited.

In the present paper we extend the previous work on tri-
pod systems[5,8] to consider a generalization to larger num-
bers of coupled quantum states and two dark states, as occurs
when one has transitions between degenerate angular mo-
mentum states. We will illustrate the proposal with simula-
tions appropriate to metastable neon.

II. HAMILTONIAN

We consider a degenerate two-level system, having
ground energiesEg and excited energiesEe.Eg, whose de-
generacy originates in the orientation degeneracy of the an-
gular momentum,Jg andJe, of the ground and excited levels,
respectively. We take the interaction to be that of an electric
dipoled with the electric fieldEstd evaluated at the center of
mass of an atom moving with constant velocityv across laser
beams. For an electric field expressible as a sum of polariza-
tion components in spherical coordinates, all at the same
frequencyv=2pc/l,

Estd = o
q

Eqstdeq cossvtd, s3d

the electric dipole interaction Hamiltonian is

Hintstd = − d ·Estd = − cossvtdo
q

s− 1dqdqE−qstd. s4d

HereE−qstd is the electric field amplitude(generally complex
valued) associated with the unit polarization vectoreq and
the dipole componentdq, for the three choicesq=−1,0, +1.

We make the usual rotating-wave approximation(RWA)
by writing the state vector as

Cstd = expf− izgstdgo
Mg

CJgMg
stduJgMgl

+ expf− izestdgo
Me

CJeMe
stduJeMel s5d

and choosingzestd=zgstd+vt. In the Hamiltonian we replace
the cosine with its cycle average 1/2. With allowance for
three independent polarization fields the interaction Hamil-
tonian matrix elements can be written, in the RWA, as

kJeMeuHRWAstduJgMgl =
1

2
s− 1dqE−qstdkJeMeudquJgMgl.

s6d

Here and henceforthq is constrained to take the valueq
=Me−Mg. We extract the dependence on magnetic quantum
numbers as a Clebsch-Gordon coefficient using the Wigner-
Ekart theorem(cf. [16], Sec. 20.5), writing
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kJeMeuHRWAstduJgMgl = −
"

2
Vqstds− 1dqsJgMg,1quJeMed

Î2Jg + 1
,

where the Rabi frequencyVqstd is proportional to the re-
duced dipole-moment matrix elementsJeidiJgd;deg and to
the field amplitudeEqstd:

"Vqstd ; Eqstddeg. s7d

Although the Clebsch-Gordon coefficients are real values, as
will be noted the field amplitudes may be complex valued,
and so the Rabi frequencies also must be allowed this gen-
rality.

A. Two-state superposition

Our concern is primarily the creation of a 50:50 superpo-
sition su=p /4d of two of the ground-state sublevels—
namely,

ual = uJg,− Jgl and ubl = uJg, + Jgl, s8d

with the notation uJ,Ml for an angular momentum state.
Various atomic and molecular systems can be found on
which to demonstrate the concepts presented above, involv-
ing two dark states. Here we discuss first a generic tripod
schemesJg=1d, revealing in simplest form the basic prin-
ciples. Such a scheme involves a two-photon transition from
statea to stateb, and hence a transverse momentum transfer
from field to atom of 2"k. We follow this with a proposal for
using a transition of metastable neon, for whichJg=2 and
which offers the possibility of 4"k momentum transfer. We
show that, despite having a multiplicity ofc states in this
case, it is still possible to create the desired superposition
state.

B. Tripod linkage pattern

Figure 2 illustrates the general linkages of the well-known
tripod configuration[7,8,12,19], starting from the three sub-
levels ofJg=1 and ending with the single sublevel ofJe=0.
The p linkages are present at all time, whereas thes link-
ages are pulsed, sequentially. The superposition of interest
involves the statesca= uJg,−Jgl;u1,−1l and cb= uJg, +Jgl
;u1, +1l.

C. Needed linkages

To create the desired linkages, a multistate generalization
of the tripod system, we require laser beams capable of ex-

hibiting each of the three orthogonal polarizations appropri-
ate to spherical coordinates, usually termeds+, s−, and p.
The selection rules for electric dipole radiation, assumed
here, allow three types of linkages between upper and lower
levels, distinguished by the selection rules

q = + 1, Me = Mg + 1 ss+ polarizationd,

q = − 1, Me = Mg − 1 ss− polarizationd,

q = 0, Me = Mg sp polarizationd.

We will consider situations in which all three of these fields
are present simultaneously. Because the sublevels are degen-
erate, all three types of transitions can be resonantly excited,
as we shall assume, by a single frequency field"v=Eg−Ee.
Then all diagonal elements of the RWA Hamiltonian vanish.

Our interest here is with an atomic beam experiment(in
contrast with experiments with trapped ions or atoms). We
take the axis of the atomic beam to define they axis. Then
the first of these fields can be obtained from a circularly
polarized laser beam propagating along thez axis, perpen-
dicular to the atomic beam. By means of a beam splitter and
mirrors, this same laser beam can serve as the source of the
second field, propagating also along thez axis, possibly in
the opposite direction. The third field, thep polarization,
requires a laser beam propagating along thex axis, perpen-
dicular to both of thes beams and to the atomic beam, with
linear polarization along the atomic beam axis. Figure 3 il-
lustrates the assumed geometry of such situations, obtained
from a single laser field, passing through a suitable arrange-
ment of mirrors, lenses, beam splitters, and polarizers. The
s+ and s− beams propagate in parallel, but spatially offset;
the atomic beam travels perpendicular to each of these laser
beams.

The result of these overlapping traveling-wave fields is
seen, in a reference frame moving with the atomic center of
mass, as a sequence of pulses. By suitably adjusting the
beam widths and the separation of their centers, it is possible
to create fields in the center of mass of the moving atoms as
shown in Fig. 4: a long but weakp-polarization pulse that
overlaps the twos-polarization pulses. These latter pulses
are offset from each other in time and will be assumed to
have equal amplitudes. However, in addition to a temporal

FIG. 2. Excitation betweenJg=1 andJe=0, showing separate
links of s+, s−, andp polarization fields. Thick lines mark the two
states between which a superposition is created.

FIG. 3. Sketch of the propagation axes of the laser beams pro-
viding thes+, s−, andp polarization fields at the coordinate origin
and of the atomic beam axis directed perpendicular to each of these.
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offset between thes+ ands− pulses, as seen by the moving
atoms, there can be a phase delayDf between these two
fields, perhaps originating in a different path length from the
beam splitter; this appears as a phase of the field envelope
Eqstd. As we shall demonstrate, phases do affect the excita-
tion dynamics in this system.

D. Parametrizing the interaction

The time dependence of the pulsed field derives from the
spatial variation of the laser beams, across which atoms
move with constant speedv, and thus the temporal pulse
shape is a direct transcription of the spatial beam profile.
Although typical laser beams are idealized as Gaussians, ad-
vantages are to be expected from beam profiles whose cen-
tral distribution has a slower variation. To demonstrate this
we take the spatial profile to be of generalized Gaussian
form. For those beams traveling along thez axis it is

Eqsx,yd = uEqs0duexps− ifqdexpf− sx/vTdn − sy/vTdng, s9d

and thus, with the assumption that the atoms pass through the
beam centersy=0,x=0d, the time dependence is

Eqstd = uEqs0duexps− ifqdexpf− st/Tdng, s10d

where the pulse durationT is obtainable, for given atom
velocity v and beam waistw, asT=w/v. The power in the
beam is evaluated as

pq =
c

8p
E

−`

+`

dxE
−`

+`

dyuEqsx,ydu2 =
c

8p
uEqs0du2

svTAd2

2
,

s11d

whereA is the integral of the generalized Gaussian:

A ; E
−`

+`

dxexpf− xng. s12d

Resonant two-state coherent excitation is often param-
etrized by the temporal pulse area, defined as the time inte-
gral of the Rabi frequency. When degeneracy is present,
there are numerous dipole transition moments(from the nu-
merous combinations of magnetic quantum numbers) and
hence numerous Rabi frequencies. We shall use just three
pulse areasaq, q=0, ±1, corresponding to the use of the
single reduced dipole moment:

aq =
deg

"
E

−`

+`

dtEqstd =
deg

"
Eqs0dTA. s13d

When expressed in terms of beam powerpq and atom veloc-
ity v as the two essential experimentally controllable param-
eters, the temporal pulse areaaq is independent of the beam
waist:

aq =
deg

"v
Î8ppq

c
. s14d

Thus the peak Rabi frequencies are expressible variously as

uVqs0du =
deg

"
uEqs0du =

aq

A =
deg

"wAÎ8ppq

c
. s15d

E. Defining the pulses

We shall write the time dependence of the Rabi frequen-
cies in terms of real-valued functionsfqstd having unit peak
value

Vqstd = uVqs0dufqstdexps− ifqd s16d

and explicit phasesfq. To permit modeling a variation in the
pulse shape we take the temporal shape to be a hyper-
Gaussian(for n=2 this is a Gaussian)

f±1std = expf− st ± 0.5tdn/Tng, s17d

f0std = expf− st/50Tdng. s18d

That is, the twos polarization pulses are offset in time byt
and thep polarization pulse is essentially constant during the
other pulses.

Although the magnetic sublevels associated with the
lower-lying levels may remain immune to spontaneous emis-
sion loss, the upper sublevels have no such constraint. The
assumed dipole linkages that produce laser-induced excita-
tion will also provide links for spontaneous emission. The
effect of such transitions can only be treated correctly by
means of a density matrix equation; see the Appendix.

We are interested in partial population transfer between
two of the degenerate magnetic sublevels of the lower-
energy level. Specifically, we consider partial transfer be-
tween the two extremes, those withMg=−Jg andMg= +Jg.

III. DARK STATES

As in previous work on thel and tripod linkages, our
interest lies with systems for which the degeneracy of the
ground levels exceeds that of the excited level, so that at
least one dark state exists. In particular, we assume that the
angular momentum of the higher-energy level,Je, is Jg−1.
The total number of magnetic sublevels—and thus the total
number of quantum states—isN=4Jg. The structure of the
linkage patterns of interest, in which there exist two more
quantum states of the lower degenerate level than of the up-
per degenerate level, means that for any combination of po-
larization linkages the system is equivalent, at any instant of

FIG. 4. AmplitudesA of s+, s−, andp polarization fields versus
time t, as seen in the atomic reference frame. Thes+ pulses pre-
cedes thes− by t.
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time, to a set ofNb=2Je+1=2Jg−1 independent two-state
systems(an excited state paired with a bright ground state),
plus two additional states(dark states) constructed from the
set of ground states[17]. These have no connection to the
excited states; they are unaffected by the radiation at that
moment. The composition of these two dark states varies as
the pulse polarizations vary, but they never include any com-
ponent from the upper manifold of states. Thus the dark
states never undergo spontaneous emission—they do not
fluoresce.

This property, of multiple dark states, differs from the
situation in STIRAP, where there is only a single dark state.
In that case it is possible to transfer population from stateca
to statecb via counterintuitive pulses(Stokes before pump)
or to create a superposition of these states starting from state
ca, but the requirement of counterintuitive pulses means that
these pulses will not transfer population fromcb back toca;
nor will they create a desired superposition starting from
statecb: there is an asymmetry between the states of this
system which prevents the use of STIRAP for the creation of
a Hadamard gate, for example.

The situations discussed in the present paper also differ
from the tripod linkage discussed earlier in having more than
one state comprising what is here termed thec set—
degenerate ground states that are neither thea state or theb
state. As will be demonstrated, the extra complication does
not prevent a similar production of a superposition; in fact, it
allows control of the phase of this superposition

In treating adiabatic evolution it is desirable to use the
adiabatic statesF jstd, solutions to the eigenvalue equations

HstdF jstd = « jstdF jstd. s19d

The adiabatic states are orthogonal and are assumed normal-
ized, kFistd uF jstdl=di j . We know that in our system there
exists a subspace of two degenerate dark states, which we
take to be the first two of this set. They are identifiable by
their null eigenvalues,«1std=«2std=0.

We aim to start in a state within this two-dimensional dark
space and to ensure that the time evolution thereafter is adia-
batic, as will happen if the energy separation between the
adiabatic energies of the dark states and those of any other
adiabatic state is large. Under these conditions we can write
the state vector as

Cstd = A1stdF1std + A2stdF2std. s20d

Such a restriction to the subspace of two dark states is justi-
fied if the initial state is within this subspace(as it will be in
our systems) and if the subsequent evolution is adiabatic.
The condition for this can be shown to be that all the pulse
areas be large:

VqT @ 1, q = 0, ± 1. s21d

Because these two adiabatic states are degenerate, their
amplitudesAjstd will not remain constant. Their changes are
governed by the equations

d

dt
A1std = − VstdA2std,

d

dt
A2std = − VstdA1std, s22d

where the coupling is

Vstd =KF1stdu
d

dt
F2stdL . s23d

It follows from Eq. (22) that after the conclusion of all
pulsed interaction, which we take to be ast→`, the adia-
batic amplitudes take the values

A1s+ `d = A1s− `dcossgd − A2s− `dsinsgd, s24d

A2s+ `d = A1s− `dsinsgd + A2s− `dcossgd, s25d

where the dark-state mixing angle is the integral of the cou-
pling:

g =E
−`

+`

dtVstd. s26d

Unlike the mixing angle of single-photon excitation, this
angle does not depend on the pulse area: it is ageometrical
rather thandynamicalangle[8,12,18,19].

A. Linkage pattern of neon

Figure 5 shows the important transitions of metastable
neon. The two degenerate levels considered are3P1sJe

=1,Me=−1,0,1d and 3P2sJg=2,Mg=−2, . . . ,2d. The super-
position of interest involves the statesca= uJg,−Jgl;u2,−2l
andcb= uJg, +Jgl;u2, +2l. The complete transfer of popula-
tion corresponds to a transverse momentum change from
four photons. We denote the corresponding probabilities, fol-
lowing pulse completion, asPa andPb.

Spontaneous emission occurs from the3P1 levels to the
lower-lying 3P1 and 1P1 levels of the 2p53s configuration,
with rates, respectively, gdecoh=0.011 ns−1 and gout
=0.0438 ns−1. Of these decays, 20% goes to the3P2 level of
interest.

Figure 6 illustrates the general linkages of this situation.
The p linkages are present at all time, whereas thes link-
ages are pulsed, sequentially. The Appendix presents the
RWA Hamiltonian matrix elements in detail.

FIG. 5. Energy levels and transitions in metastable neon. The
transitions of interest(shown by heavy line) are at wavelength
0.588mm, between magnetic sublevels of3P2 and 3P1. Dashed
lines show spontaneous emission paths.
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As with the tripod system, there are two dark states for
this system. However, the transition between statesa andb
involves four photons, so this transfer will be accompanied
by a linear momentum change of 4"k.

B. Useful observables

To complete the definition of the superposition states we
require the anglew of Eq. (1). Our goal can be usefully
quantified through the use of a two-state density matrix by
defining the populationsPastd;raastd and Pbstd;rbbstd to-
gether with the Bloch variables

ustd + ivstd = rabstd andwstd = rbbstd − raastd s27d

for the two states of interest. A typical objective is to start all
the atoms in state a, with initial conditionsustd=vstd=0 and
wstd=−1 at t→−`, and by subjecting the atoms to a crafted
pulse sequence to obtain the resultsuustd u =1 andvstd=wstd
=0 after the pulse completion, att→ +`. The goal of creat-
ing a 50:50 superposition corresponds to rotating the Bloch
vector byp /2 from its initial alignment.

IV. SIMULATION RESULTS

In this section we provide illustrative simulations of
pulsed excitation of the two systms defined in the previous
section: a simple four-state tripod system and a more elabo-
rate eight-state linkage system.

A. Essential parameters

We shall assume that the twos-polarization pulses have
the same peak intensities, meaning that areasa+1=a−1;a,
and have the same pulse widthsT, but we allow them to have
different phases; they are offset in time byt. When solving
the Schrödinger equation it proves useful to express all times
in multiples of the pulse durationT (accomplished by setting
T=1 in the various algebraic expressions) and to express the
three-peak Rabi frequenciesVqs0d in terms of pulse area and
phase,Vqs0d=aq/A expsifqd, whereA is the normalization
area of Eq.(12).

We assume that thep-polarization pulse is of much
longer duration than these pulses and that its peak value is
centered midway between the other two pulses. For compu-
tations we often take it to be of constant amplitude. We char-

acterize this field by the ratio of peak electric field ampli-
tudes or, what is the same thing,

uV0s0du = buV+1s0du = buV−1s0du. s28d

The excitation dynamics is affected also by the phase of this
field, as we note in Sec. IV F.

Even with the foregoing simplifications, several param-
eters are needed to describe the pulse sequence: one pulse
areaa, the ratio of amplitudesb, the delayt, and, taking the
phase of thes− pulse as a reference, the two phasesf+1 and
f0. As befits adiabatic procedures, there is typically a mini-
mum value of the areaa that must be exceeded for the results
to be satisfactory, but any larger area will produce the same
results. As will be noted, there are particularly desirable
choices for the two adjustable phases. Thus the search for
optimum conditions for producing a specified superposition
[and a corresponding optimum path in the parameter space
sV+,V0,V−d] reduces essentially to a search in a two-
dimensional parameter space, that ofb andt.

B. Tripod system

The dynamics of the tripod system has been considered
earlier in some detail[7,8,12,19]. As has been noted, it is
possible to achieve population balance using pulses ordered
either intuitively (the s+, connected with the initially popu-
lated statea, occurs first) or counterintuitively(thes− occurs
first). The two orderings correspond to atoms passing
through the laser beams in opposite directions. Figure 7 il-
lustrates these two possibilities. The plots display the time

FIG. 6. Excitation betweenJg=2 andJe=1, showing separate
links of s+, s−, and p polarization fields. Thick horizontal lines
mark the two states between which a superposition is created.

FIG. 7. Time dependence of populations in the initial statesad,
the target statesbd, and the intermediate statescd for the tripod
system.(a) Pulses in intuitive order(s+ precedess−, t= +1.2). (b)
Pulses in counterintuitive order(s− precedess+, t=−1.2). Param-
eters: a=50p, t=1.2, andb=0.54. Phases:f−1=0, f0=0, and
f+1=p.
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dependence of the populations in the states of interest,a, b,
andc. This latter population is only transient: at the end of
the pulse sequence only statesa andb have population. The
population in the excited statee is at all times too small to be
seen.

Some idea of the adiabatic nature of the evolution dis-
played in Fig. 7 can be obtained from the time-integrated
population in the excited state,edtPestd. For Fig. 7(a) this
value is 1.4310−3T, while for Fig. 7(b) it is 7310−4T.

In obtaining these plots, which demonstrate successful
50:50 superposition but without indication of the phase, we
first fixed the pulse area and phases, and then iteratively
found satisfactory values fort andb.

To appreciate the complementarity of these two delay val-
ues and to see the phase of the superposition, it is useful to
examine values of the Bloch variables at the end of the pulse
sequence. For a perfect 50:50 superposition(maximal coher-
ence) these values arew=0 andu2+v2=1. Figure 8 shows
such a plot. The equality of populationsw=0d occurs here at
t= ±te, wherete=1.2T. We see that the population inversion
w is symmetric aboutt=0, but that the curve of the phase-
sensitive variableu vs t is antisymmetric; whent= +te, we
find u= +1, while for t=−te the coherence isu=−1. These
two values are associated with the two coherent superposi-
tions ual± ubl. It should be noted that these simple symmetry
properties occur only when the evolution is adiabatic.

C. Metastable neon: Numerical values

Although the simulation of this system need make no spe-
cific reference to either the laser power or the the laser in-
tensity, it is useful to associate various choices of pulse area
with realistic values of those quantities. For that purpose it is
only necessary to have available a dipole moment. To obtain
the reduced dipole transition momentdeg we use the connec-
tion between the EinsteinA coefficient(here in cgs and then
atomic units):

Aeg=
4

3"
Sv

c
D2udu2

ge
=

1

ta.u.

4

3
S2pa0

l
D2Seg

ge
s29d

and the transition strength

Seg= Sge; udegu2 ;
sJe i d i Jgd2

ea0

2. s30d

We then have the formula

deg;
sJe i d i Jgd

ea0
; ÎSeg=Îs2Je + 1dta.u.Aeg

3

4

l3

s2pa0d2

= 22.216Îs2Je + 1dAegfns−1gslfmmgd3. s31d

For neon, using the valueAeg=1.1 ns−1 for l=533mm,
we obtain a dipole momentdeg=1.819 66. With this dipole
moment and a representative velocityv=103 m/s, a pulse
area of 200p corresponds to beam power of 12.2 mW. With
a beam waist of 2 mm, the peak intensity is 0.19 W/cm2, the
pulse duration isT=2000 ns, and the peak Rabi frequency is
0.18 rad/ns.

D. Gaussian beams: Optimizingb and t

In the following sections and figures we consider the ex-
tension of the four-state tripod results shown above to the
eight-state neon system. We first consider purely Gaussian
beams,n=2 in Eq. (17). With a suitable choice of area,
phases, delay, andb one finds a time dependence as shown
in Fig. 9. Here, as in Fig. 7, are displayed the time depen-
dence of the populations in the states of interest,a andb, but
now c denotes the summed populations in all the other three
ground states. This latter population is only transient: at the
end of the pulse sequence only statesa andb have popula-
tion. The population in the excited states is at all times too
small to be seen; the time integral ofPestd is 1.6310−3T.

Figure 9, appropriate to neon, is to be compared with
frame (a) of Fig. 7, for the tripod system. The qualitative
behaviors of curvesa and c are similar, but they are by no
means identical.

In obtaining this plot, which demonstrates successful
50:50 superposition but without any indication of the phase,
we first fixed the pulse area and phases, and then iteratively
found satisfactory values fort and b. A similar superposi-
tion, but with opposite phase, is obtained with the choicet
=−1.5 while all other parameters remain the same. This so-
lution corresponds to a situation where the atoms move
across the beams in the opposite directions. Figure 10 shows

FIG. 8. Bloch variablesu, v, andw for the tripod system at the
end of the pulse sequence, as a function of delayt. Parameters:a
=50p andb=0.54. Phases:f−1=0, f0=0, andf+1=p.

FIG. 9. Time dependence of populations in the initial statesad,
the target statesbd, and all other ground statesscd for the neon
system. Parameters:a=200p, t=1.5, andb=0.318. Phases:f−1

=0, f0=0, andf+1=p.
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such a plot. The equality of populationsw=0d occurs here at
t= ±te, wherete=1.2T. We see that the population inversion
w is symmetric aboutt=0, but that the curve of the phase-
sensitive variableu vs t is antisymmetric; whent= +te, we
find u= +1, while for t=−te the coherence isu=−1. These
two values are associated with the two coherent superposi-
tions ual± ubl.

Figure 10 displays results for an optimal choice of the
Rabi ratio—namely,b=0.318. This plot is qualitatively simi-
lar to Fig. 8. In both cases the curve ofw vs t is symmetric
aboutt=0 and that ofu vs t is antisymmetric. However, the
details of the two plots differ noticeably.

In making these plots we selectedb so thatw approached
but did not exceed 0. Figure 11 illustrates the effect of vary-
ing the choice ofb. When b is larger than the optimum
value, the inversionw is never complete for any delay. When

b is smaller than optimum, there are four possible values for
which w=0 and 50:50 superpositions occur. However, unlike
the situation of Fig. 10, where an error in choice oft affects
the superposition quadratically, here the effect of such an
error is linear, and therefore these choices ofb are less de-
sirable.

E. Effects of the pulse shape: Hyper-Gaussian beams

Gaussian profiles are the usual forms assumed for focused
laser beams, but in principle other shapes are possible. As the
beams become more rectangular, there is a longer interval of
delay over which the 50:50 superposition occurs. Figure 12,
for a Gauss-6 beam[n=6 in Eq. (9)], illustrates this.

The increasing rectangularity of the pulse does not pre-
vent adiabatic evolution and has definite advantages: the pro-
duction of population equality is less sensitive to the choice
of pulse delay. With increasingn there occurs an increasingly
wide range of delay values for which the desired superposi-
tion occurs.

F. Effects of the pulse phase

For the tripod system the relative phases of the pulses
only affects the phase of the superposition(i.e., whetheru or
v or some combination occurs whenw=0). However, for
Jg=2 the relative phase of the twos pulses has a profound
effect on the excitation dynamics. This can be seen even in
the simple choice of a change in sign, as is obtained with the
choicef−1=f+1=0, rather than the choice above in which
the two phases differed byp. Figure 13(a), for equal phases,
illustrates this assertion. Here there are four possible choices
for t that will give the desired superposition. Figure 13(b)
shows thet dependence when the twos are 90° out of
phase. In this case a 50:50 superposition is possible at two
times, but at each of these bothu and v are nonzero: the
superposition has a complex phase.

The phase of thep-polarization pulse also matters. Figure
14 shows the Bloch variables as a function of this phase. As
can be seen only the choicesf0=np for integern will allow
the desired superposition.

G. Understanding the effect of the pulse phase

An understanding of the dynamics can be obtained by
considering first a four-state tripod linkage, with population

FIG. 10. Bloch variablesu, v, and w at the end of the pulse
sequence, as a function of delayt. Parameters:a=200p and b
=0.318. Phases:f−1=0, f0=0, andf+1=p.

FIG. 11. Bloch variablesu, v, and w at the end of the pulse
sequence, as a function of delayt. Parameters are area=200p and
(a) b=0.4 and(b) b=0.25.

FIG. 12. Bloch variablesu, v, and w at the end of the pulse
sequence, as a function of the delayt, for a Gauss-6 beam[n=6 in
Eq. (10)]. Parameters are: area=400p andb=0.363.
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initially in statea, as indicated in Fig. 15(a). This system is
to be subjected to a longp pulse and a sequence ofs+ and
s− pulses. We can regard the overall dynamics as three
stages.

(i) In the initial stage, prior to the presence of thes−
pulse, there is first ap pulse and then a strongers+ pulse.
These two provide the conventional counterintuitive pulse
sequence(of STIRAP) to transfer all population from statea
into statec, a temporary residence; see Fig. 15(a).

(ii ) In the second stage of the interaction all pulses are
present: thep ands+ pulses form an “intuitive” sequence for
reversing the population transfer from statec back into state
a. The s− pulse serves to produce a dynamic Stark shift of
these two states, thereby preventing continued two-photon
resonance. Therefore only a portion of the population returns

to statea, and a coherent superposition is created. The am-
plitudes of this superposition do not depend on the phases of
the applied pulses.

(iii ) In the final stage of the interaction only thes− andp
pulses are present; see Fig. 15(b). These provide a counter-
intuitive (STIRAP) sequence for moving population from
state c into stateb, the desired final destination. Because
some population has returned during stage 2 into statea, the
final result is a coherent superposition of statesa andb.

The situation is more complicated when there are more
linkages, as is the case with metastable neon we have con-
sidered above; see Fig. 16. Nevertheless, we can identify
three stages of the dynamics.

(i) In the initial stage, prior to the presence of thes−
pulse, there is first ap pulse and then a strongers+ pulse.
The resulting “counter-intuitive” pulse sequence transfers
population into one of thec states; see Fig. 16(a).

(ii ) In the second stage of the interaction all pulses are
present. There is population transfer back into statea. During
this stage the various state vector amplitudes acquire phases
that depend on the phases of the laser pulses.

(iii ) In the final stage of the interaction only thes− andp
pulses are present; see Fig. 16(b). Population moves from the
c states into stateb. The phases of thec-state components is
critical in determining the result of the final stage.

H. Decoherence processes

In an atomic beam experiment collisions have no influ-
ence, but the possibility of spontaneous emission is always
present. Only this mechanism can produce changes not pre-
dicted within the coherent dynamics of the Schrödinger
equation.

As described here, the successful creation of a superposi-
tion takes place by means of adiabatic time evolution in
which the state vector is restrained to a degenerate dark

FIG. 13. Bloch variablesu, v, and w at the end of the pulse
sequence, as a function of delayt. Parameters are area=400p, (a)
f+1=0, b=0.493, and(b) f+1=p /2, b=0.19.

FIG. 14. Bloch variablesu, v, and w at the end of the pulse
sequence, as a function of the phasef0. Parameters are area
=400p, t=1.2, andb=0.318.

FIG. 15. Tripod-system linkage patterns(a) initially and (b) fi-
nally. Insets show schematic pulse forms appropriate to the linkage.
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space. Were the time evolution to be completely adiabatic,
then no population would be present in the excited states at
any time, and therefore spontaneous emission could not take
place. Such time dependence can be successfully modeled
using the Schrödinger equation. The dependence on such ex-
perimentally controlled quantities as beam power, beam
waist, and atomic velocity occur only through the single pa-
rameter, the temporal pulse area(time integral of the Rabi
frequency).

The time evolution in any real experiment will deviate to
some extent from the adiabatic ideal, and with this deviation
some population may come temporarily into the excited
states. Thus it is desirable to verify that the assumed adia-
batic evolution does describe situations of possible experi-
mental interest.

We expect that when pulses are shorter than the sponta-
neous emission lifetime, meaninggT,1, then any excited-
state population will have little liklihood of decaying, and
hence we expect the Schrödinger equation to remain satis-
factory, even though the evolution may not be adiabatic.
Only when the pulses become much longer can the effects of
spontaneous emission be felt. But as the pulses become
longer, we expect the evolution to become more adiabatic,
and so the influence of the excited states should become less
evident.

If spontaneous decay proceeds primarily to states other
than those of the set of states being modeled by coherent
excitation(i.e., the system is “open”), then such effects can
be satisfactorily treated by simply including a loss(imagi-
nary energy) from the upper state. However, with the neon
system considered here this is not a good approximation: an
appreciable fraction of the decays are to the states of interest.
Such a situation requires treatment using a density matrix.
The lifetime of the3P1 state of neon, 18 ns, provides the
needed time scale for simulating the effects of spontaneous

emission; the conditiongT=1 impliesT=18 ns.
To verify the validity of our approximation, under as-

sumed experimental conditions, we have carried out simula-
tions using more elaborate density matrix equations of mo-
tion, as discussed in the Appendix. These are for the full set
of eight sublevels, not just thea-b pair, and they take into
account both the losses of probability from spontaneous
emission outside of the chosen two degenerate levels, and
the return of population within the chosen set.

With the density matrix equations the behavior can be
considered as depending on two parameters: the pulse area
(an absolute quantity) and the pulse duration relative to the
lifetime of the excited state, orgT. For the simulations re-
ported in previous sections we have taken the pulse area to
be 200p. With this value the population in the excited state is
seen to be small, and the results are seen to be essentially
independent of pulse area. However, with the beam param-
eters mentioned above, including a pulse duration ofT
=2000 ns, we havegT.100, and so even a small transient
excitation can have an appreciable effect.

The error produced by spontaneous emission affects our
results in two ways.

(i) Loss of probability out of the eight-state manifold will
mean that fewer atoms remain in any superposition. Loss
from the two-state manifold will similarly diminish the avail-
able atoms. To measure this effect we examine the normal-
ization«w=1−Trr, wherer is the 232 density matrix of the
a-b sublevels.

(ii ) Within this reduced numbers of atoms there will occur
loss of coherence, as measured by the error«u=u/Trr−ucoh
between the Bloch componentu in the presence of sponta-
neous emission and the valueucoh obtained by neglecting all
spontaneous emission. Among those atoms that have not
been lost to other manifolds, this is a measure of the attain-
able coherence and, hence, of the coherence loss due to spon-
taneous emission.

Figure 17 shows examples of the effect of spontaneous
emission upon the two-state normalization, as a result of(a)
varying the pulse duration(by adjusting the beam waist or
the atomic velocity) or (b) as a result of varying the pulse
area(by adjusting the beam power). The uppermost curves of
the two frames are the same; the subsequent curves reveal
how errors can be improved either by making the pulses
shorter so that the atom spends less time in the excited state
or by increasing the power, so that the evolution is more
adiabatic.

As can be seen, even though the excited-state population
is never large, the product of this population withgT can be
appreciable. Thus considerable population is lost when one
has pulses as long as 2000 ns.

It is significant that, although population is lost and there-
fore fewer atoms are available to provide the desired super-
position nevertheless the superpositions of the remaining at-
oms remains good. Figure 18 shows examples of the effect
of spontaneous emission upon the coherence, as a result of
varying the pulse duration(by adjusting the beam waist or
the atomic velocity) or as a result of varying the pulse area
(by adjusting the beam power).

These plots show that the experimental conditions de-
scribed earlier should suffice to permit the formation of co-

FIG. 16. J linkage patterns(a) initially and (b) finally.
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herences with degradation error of around 0.04 and that an
increase of power by a factor of 25(a factor of 5 in Rabi
frequency) would be needed to drop this error to 0.01.

V. SUMMARY AND CONCLUSIONS

In common with other coherent excitation schemes for
manipulating atomic beams, our scheme requires a prelimi-
nary step of optical pumping to replace the typical thermal
distribution of populations among all magnetic sublevels by
a situation in which all atoms are in a single quantum state of
internal excitation, termed here thea state. From this start,
the three laser beams produce the desired superposition of
internal excitation and the consequent superposition of the
transverse translational motion.

We mention that this preparation can be done without loss
of population by optical pumping with circularly polarized
light on the 3P2-

3D3 transition, since this forms a closed
system.

Our proposed scheme for producing 50:50 superpositions
is an adiabatic process. As such, it can be improved by in-
creasing the pulse areas of thes pulses, with consequent
increase in laser-power requirements. In particular, the con-
tamination(and consequent decoherence from spontaneous

emission) from excited states can be lessened by using larger
pulse areas.

Extension from the tripod to more general linkage sys-
tems, associated with angular momentum larger than 1, is
readily accomplished. The general principles acting to
achieve coherent superpositions with the tripod system work
equally well for more general systems; it is only necessary
that Jg.Je, so that there be two dark states. As the angular
momentum increases, so too will the momentum transfer
and, in turn, the separation of the two beams from a beam
splitter. Thus it is advantageous to use large angular mo-
menta.

The creation of a superposition state in the manner de-
scribed in the present paper has a symmetry of initial and
final states that is absent with conventional STIRAP: starting
with either initial state and applying a fixed pulse sequence,
one arrives through adiabatic evolution to a specific
superposition—say,ual+ ubl. Subsequent reversal of the
pulses returns the system to the initial state. This can be
understood by following the evolution of the Bloch vector
from pole to equator and back. Such behavior is needed for
the construction not only of beam splitters and atomic optics
elements, but also for the construction of Hadamard gates

FIG. 17. Normalization error,«w=1−Trr as a function of delay
t. (a) For fixed area 200p, varying the pulse durationT, 2000 ns
and 200 ns.(b) For fixedT=2000 ns, varying the pulse area, 200p,
400p, and 1000p.

FIG. 18. Coherence error«u=u/Trr−ucoh as a function of delay
t. (a) For fixed area 200p, varying the pulse durationT, 2000 ns
and 200 ns.(b) For fixedT=2000 ns, varying the pulse area, 200p,
400p, and 1000p.
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and other elements needed for quantum information process-
ing.

Our simulations with the density matrix give an idea of
the degree to which the proposed superpositions can be ac-
complished in the presence of spontaneous emission. With
known radiative properties of neon and assumed values of
the lasers and atomic beam, errors of 0.04 or less should be
possible; these can be reduced by increasing the laser power
or shortening the pulse duration.
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APPENDIX: SIMULATING SPONTANEOUS EMISSION

To test the the applicability of the Schrödinger equation to
the neon system we used density matrix equations. We took
these to be of Lindblad form[20]

]r

]t
= − ifHRWA,rg −

gout

2
Lr −

gout

2
rL +

gdecoh

2

3 o
m=−1

1

fLmr,Lm
†g +

gdecoh

2 o
m=−1

1

fLm,rLm
†g. sA1d

The coefficientsgdecohandgout are, as defined in Sec. III A,
gdecoh=0.011 ns−1, and gout=0.0438 ns−1. The RWA Hamil-
tonian matrixHRWA is 1/Î10 times:

3
0 0 0 Î6V+

Î3V0 − V− 0 0

0 0 0 0 Î3V+ 2V0 − Î3V− 0

0 0 0 0 0 V+ Î3V0 − Î6V−

Î6V+ 0 0 0 0 0 0 0

Î3V0
Î3V+ 0 0 0 0 0 0

− V− 2V0 V+ 0 0 0 0 0

0 − Î3V−
Î3V0 0 0 0 0 0

0 0 − Î6V− 0 0 0 0 0

4 .

The nonzero elements of the matrixL are

Ls1,1d = 1, Ls2,2d = 1, Ls3,3d = 1,

and the nonzero elements of the matricesLmsm=−1,0, +1d
are 1/Î10 times:

L−1s6,1d = 1, L−1s7,2d = Î3, L−1s8,3d = Î6,

L0s5,1d = Î3, L0s6,2d = 2, L0s7,3d = Î3,

L+1s4,1d = Î6, L+1s5,2d = Î3, L+1s6,3d = 1.

We integrate this equation numerically using the fifth-order
Runge-Kutta method.
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