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Above-threshold detachment of electrons from negative ions by an elliptically polarized laser field is ana-
lyzed within the strong-field approximation. The low-energy part of the spectrum, that is, its structure and its
apparent cutoff, strongly depends on the orbital quantum numberl of the initial ground state. The high-energy
part is characterized by the usual extended plateau caused by rescattering, which is essentially independent of
the ground state. The potential that the returning electron experiences during rescattering is modeled by the
sum of a polarization potential and a static potential. This rescattering potential does not have much effect on
the shape of the plateau, but it does on its height. For H− sl =0d, the yield of rescattered electrons is five orders
of magnitude below the direct electrons, while for I− sl =1d the yields only differ by a factor of 40. We also
analyze the dependence of the angle-resolved energy spectrum on the ellipticity of the laser field and confirm
general symmetry properties. An angle-integrated elliptic dichroism parameter is introduced and analyzed.
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I. INTRODUCTION

Laser-induced above-threshold detachment(ATD) of
negatively charged ions differs from above-threshold ioniza-
tion (ATI ) of neutral atoms by the absence of the net Cou-
lomb attraction of the detached electron by the residual atom.
Since the outermost electron of a negatively charged ion is
only loosely bound and easily detached by moderately strong
fields, it has been a challenge for many years to carry out
experiments with negatively charged ions with fields strong
enough to observe the nonperturbative effects that are char-
acteristic of ATI[1]. The early strong-field experiments only
investigated total detachment rates[2]. Only recent measure-
ments have succeeded in recording angle-resolved energy
spectra for H− [3] and, thereafter, for F− [4]. The rescattering
regime[5], which has generated the strong renewed interest
in ATI over the past decade, has not yet been entered in ATD,
even though the recent experiment[4] came close.

Strong-field ionization of many-electron atoms can be re-
markably well described in the single-active-electron ap-
proximation(SAEA), where the problem is treated as an ef-
fective one-electron problem with an optimized atom-
specific one-electron potential. Numerical solutions of the
three-dimensional time-dependent Schrödinger equation in
this context have reproduced the experimentally observed
angular-resolved electron energy spectra with high accuracy
[6,7]. However, for an elliptically polarized laser field, espe-
cially if the intensity is high and the frequency in the infra-
red, this method becomes extremely time consuming.

Within the SAEA, ATI processes have been successfully
described using quantum-mechanical models based on the
strong-field approximation(SFA) [8], which yields excellent
agreement with the data, in particular for circular polariza-
tion and not too low electron energies[9]. The high-order
ATI spectrum is characterized by an extended plateau whose
height is several orders of magnitude lower than that of the
direct ATI spectrum and extends up to a well-defined cutoff.
This plateau is the manifestation of rescattering[10]. It is
very well described by an improved Keldysh-Faisal-Reiss

(KFR) theory that takes into account the first-order correc-
tion in the rescattering potential[11,12]. The elastic or in-
elastic recollision of the ionized electron with its parent ion
leads to a variety of processes. Besides high-order ATI
[13–15], these include high-order harmonic generation[16],
nonsequential multiple ionization[17], laser-assisted x-ray
atom scattering[18], electron-ion recombination[19], and
electron-atom scattering[20].

The main problem of the SFA applied to ATI is its neglect
of the Coulomb attraction between the ionized electron and
its parent ion. This affects, in particular, the total ionization
rate and the electron spectrum for low energies, especially
for elliptic polarization. Moreover, even the improved SFA
does not incorporate the important effect of Coulomb refo-
cusing of the wave packet of the returning electron[21].
Consequently, one may also question its reliability regarding
high-order ATI, even though, for reasons not fully under-
stood, it reproduces even subtle effects such as the intensity-
dependent enhancements of groups of ATI peaks[22,23].

This problem is absent from ATD, and indeed it has been
argued that the combined SAEA and SFA should be quanti-
tatively reliable in this realm[24]. This has been recently
confirmed for the negative ion H− [3,25,26]. In particular,
given the absence of Coulomb refocusing, the improved SFA
should yield excellent results when applied to high-order
ATD of the negative ions. On the experimental side, there is
the problem of how to prevent premature detachment in the
leading edge of the pulse, in view of the low electron affinity
of the negative ions. This can be accomplished with the help
of short pulses and/or low frequencies, and by a proper
choice of the ion. The maximum binding energy is realized
by negative ions with a filled valence shell[27]. The electron
affinity of halogen ions(such as F−) exceeds 3 eV and there-
fore they are most suitable to explore strong-field effects
experimentally. Experiments with heavier halogen ions(Cl−,
Br−, and I−) have been done, but only for few-photon detach-
ment (see, for example,[28] and references therein).

With this in mind, we focus in this paper on high-order
ATD of negative ions, in particular for an elliptically polar-
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ized laser field. We will use the SFA formalism similar to that
of Ref. [12] in which high-order ATI by a linearly polarized
laser field was considered. The difference is the absence of
the long-range Coulomb potential. Also, for rescattering we
will use optimally suited potentials that depend on the elec-
tronic structure of the respective ion. Preliminary results of
this approach have been communicated before[29], also
with regard to the experiment[4].

In the absence of the long-range Coulomb potential, a
useful model results when the remaining electron-core inter-
action is modeled by a zero-range potential. This permits an
accurate solution within the quasistationary quasienergy ap-
proach[30,31]; for a review, see Ref.[32]. The ground states
of negative ions with high electron affinity(such as F−, Cl−,
Br−, I−, At−) arep statessl =1d, while the standard zero-range
potential approach was developed fors statessl =0d. Re-
cently, the effective-range method was applied in this context
[33], and the results were compared[34] with the experiment
[4].

The generalization of the SFA to elliptic polarization is
straightforward, thanks to the availability of the Volkov so-
lution [35]. However, this theory produces a fourfold sym-
metry in the angle-resolved electron spectra, which is
strongly violated by the experimental data for low electron
energies. Taking rescattering into account[36], which dis-
obeys the fourfold symmetry, does not improve the agree-
ment, since its effect on the low-energy spectra is insignifi-
cant. Much work has been done in order to explain these
results(see references in[14]). Again, for negative ions the
SFA results for elliptical polarization are expected to be re-
liable, but a verification is still needed.

In the present paper, we will analyze the ellipticity depen-
dence of the angular distributions of electrons withs and p
initial-state symmetry. Particular attention will be devoted to
the dependence of this angular distribution on the sign of the
ellipticity (the so-called elliptic dichroism effect[37]). We
use the atomic system of unitss"=e=m=1d.

II. THEORY

Consider a negative ion initially in its ground stateucil
that is irradiated by a laser pulse with vector potentialAstd
and electric fieldEstd=−d/dtAstd. The probability amplitude
for detecting an ATD electron with momentump and kinetic
energyEp=p2/2 is [14]

Mpi = − i lim
t→`
E

−`

t

dt8kcpstduUst,t8dr ·Est8ducist8dl. s1d

Here Ust ,t8d is the time-evolution operator of the Hamil-
tonian

Hstd = −
=2

2
+ r ·Estd + Vsr d, s2d

where r ·Estd is the laser-field–electron interaction in the
length gauge and the dipole approximation, andVsr d is the
interaction of the electron with the rest of the negative ion in
the absence of the laser field. The statescp and ci are a

scattering state with asymptotic momentump and the ground
state, respectively, of the negative-ion HamiltonianHi
=−=2/2+Vsr d. The time-evolution operatorUst ,t8d satisfies
the Dyson equation

Ust,t8d = ULst,t8d − iE
t8

t

dt9ULst,t9dVUst9,t8d, s3d

whereULst ,t8d is the time-evolution operator of the Hamil-
tonian HLstd=−=2/2+r ·Estd of a free electron in the laser
field. The eigenstates of the time-dependent Schrödinger
equation with the HamiltonianHLstd are the Volkov states

ucp
sLdstdl = up + Astdlexpf− iSpstdg, s4d

where

Spstd =
1

2
Et

dt8fp + Ast8dg2, s5d

and uql denotes a plane-wave state fkr uql
=s2pd−3/2expsiq ·r dg. The Volkov time-evolution operator
has the expansion

ULst,t8d =E d3k uck
sLdstdlkck

sLdst8du. s6d

Equations(1) and (3) are exact. Introducing the strong-
field approximation, i.e., replacingkcpstduUst ,t8d with
kcp

sLdstduUst ,t8d in Eq. (1) and, subsequently,U with UL on
the right-hand side of Eq.(3), we get

Mpi
SFA = Mpi

s0d + Mpi
s1d, s7d

where

Mpi
s0d = − iE

−`

`

dtkcp
sLdstdur ·Estducistdl, s8d

Mpi
s1d = −E

−`

`

dtE
t

`

dt8kcp
sLdst8duVULst8,tdr ·Estducistdl.

s9d

The amplitudeMpi
s0d is the KFR amplitude[8], which de-

scribes direct electron detachment[24], while the amplitude
Mpi

s1d is the rescattering amplitude, which is responsible for
the high-energy plateau in the electron energy spectrum. It
corresponds to a generalization of the three-step model of
high-order above-threshold ionization(see [14] and refer-
ences therein) to high-order ATD. In the first step, the elec-
tron is detached from the negative ion; in the second step, the
free electron moves in the laser field and may return to the
atom; in the third step, the electron scatters elastically off the
atom. Owing to further acceleration after this elastic scatter-
ing, the electron can acquire an energy much higher than in
the direct ATD process. In principle, in the single-active-
electron approximation, the potentialVsr d represents the op-
timized one-particle potential felt by the electron. We will
discuss our choice ofVsr d in Appendixes C and D.
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Using partial integration and the Schrödinger equations
for functionscp

sLd andcistd=ciexps−iEitd, the amplitudeMpi
s0d

can be transformed into

Mpi
s0d = iE

−`

`

dtH fp + Astdg2

2
− EiJkcp

sLdstducistdl, s10d

whereEi is the energy of the ground state. Inserting Eq.(6)
into Eq.(9) and performing the integration over the interme-
diate electron momentak (see Appendix A), we get the fol-
lowing exact resultst8= t−td:

Mpi
s1d = −E

−`

`

dtE
0

`

dtS2p

it
D3/2

exphifSks
st8d − Sks

stdgj

3expS−
i

2t

]2

] k2Dkcp
sLdstduVuk + Astdl

3kk + Ast8dur ·Est8ducist8dluk=ks
, s11d

where

ks = −
1

t
E

t−t

t

dt8Ast8d =
1

t
fast − td − astdg, s12d

with astd=etdt8Ast8d.
Exploiting the periodicity of the laser field with respect to

T=2p /v, as in Ref.[12], we can decompose the transition
amplitude in the form

Mpi = − 2pio
n

dsEp − Ei + UP − nvdTpisnd, s13d

which also displays energy conservation in terms of “absorp-
tion of laser photons.” The differential detachment with ab-
sorption ofn photons is then

wpisnd = 2ppuTpisndu2. s14d

In the expressions above, we defined

Tpisnd =E
0

2p dw

2p
Tpiswdexpsinwd, s15d

where( w=vt, w8=w−vt)

T piswd = sT pi
s0d + Tpi

s1ddexphifp · aswd + U1swdgj, s16d

with [q=p+Aswd],

T pi
s0dswd = iEswd ·

]

] q
c̃isqd = SEi −

q2

2
Dc̃isqd, s17d

T pi
s1dswd = − iE

0

`

dtS2p

it
D3/2

exphifSks
sw8d − Sks

swd

+ Eitgj expS−
i

2t

]2

] k2DVk−pkk + Asw8dur ·Esw8d

3uciluk=ks
, s18d

c̃isqd =E d3r

s2pd3/2cisr dexps− iq · r d, s19d

VK =E d3r

s2pd3Vsr dexpsiK · r d. s20d

The functionU1swd in Eq. (16) is defined as the periodic part
of Ustd= 1

2etdt8A2st8d=U1std+UPt, with UP the ponderomo-
tive energy. The termsT pi

s0d and T pi
s1d correspond to detach-

ment without and with rescattering, respectively. The integral
over the travel timet in Eq. (18) can be done by numerical
integration, while the integral overw in Eq. (15) can be
performed using the fast Fourier transform, or also by nu-
merical integration. The integrands contain matrix elements
whose explicit form is given in Appendixes B, C, and E.

Alternatively, the integrals over time in the above equa-
tions can be evaluated by the method of steepest descent
(saddle-point method). The results in this paper will be ob-
tained as described above, but for later use in Sec. IV C we
state here the “saddle-point equation”

fp + Astdg2 = 2Ei . s21d

This equation is obtained by looking for timest that render
the exponential under the integral on the right-hand side of
Eq. (10) or Eq. (15) with Eqs.(16) and(17) stationary. This
exponential receives contributions from the Volkov action(5)
and the bound-state energy, which immediately leads to the
condition(21). SinceEi ,0, the solutionsts will be complex.
With the action(5) evaluated at the saddle-point solutions,
the direct amplitude assumes the form

Tpi
s0dsnd = −

1

2To
s
F 2p

iSp9stsd
G1/2

expfiSpistsdg

3hfp + Astsdg2 − 2Eijc̃i„p + Astsd…, s22d

whereSpistd=Spstd−Eit, Sp9std=−Estd ·fp+Astdg.

III. SYMMETRY CONSIDERATIONS

We will present explicit results for the elliptically polar-
ized laser field

Estd =
EL

Î1 + «2
sêz sin vt − êy« cosvtd s23d

with ellipticity «, where êy and êz are the unit polarization
vectors along they andz axis, respectively. For the momen-
tum of the detached electron, we use spherical coordinates
p=sp,u ,fd with the polar axis in the direction of the semi-
major axis of the field(23) so that cosu= p̂ ·êz. The electron
momentum is in the polarization plane of the laser iff
= ±p /2.

The exact differential ionization ratewsp ,«d;wpisnd [38]
satisfies the inversion symmetry(twofold symmetry) [39]

ws− p,«d = wsp,«d, s24d

as well as the symmetry

wsp,− «d = wspx,− py,pz,«d = wspx,py,− pz,«d. s25d

The symmetry (24) corresponds to su ,fd
→ sp−u ,f+pd, while for Eq. (25) py→−py implies
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f→f+p, and pz→−pz corresponds tou→p−u. In addi-
tion, the rate is independent of the sign of the momentum
componentpx which is perpendicular to the plane of polar-
ization.

If we consider only electron emission within the polariza-
tion plane, it is convenient to introduce the polar coordinates
sp,cd in the yz plane, such that tanc=py/pz, wherec is the
angle with respect to the major axis of the polarization el-
lipse. Its connection with the spherical coordinates is given
by c= ±u for f= ±p /2.In this case, the symmetry(24) is the
twofold symmetrywscd=wsc+pd,while the symmetry(25)
gives wsc ,−«d=wsp−c ,«d=ws−c ,«d. For linear polariza-
tion, it is wscd=ws−cd.

The above symmetry relations are exact. For the direct
electrons, we have the additional symmetries[39]

ws0dsp,«d = ws0dspx,− py,pz,«d = ws0dspx,py,− pz,«d s26d

and

ws0dsp,«d = ws0dsp,− «d. s27d

The relations (26) lead to the fourfold symmetrywscd
=wsp−cd=ws−cd, while the relation(27) has the conse-
quence that the elliptic dichroism parameter

ds«d ;
ws«d − ws− «d
ws«d + ws− «d

s28d

is zero in the KFR approximation,ds0ds«d=0.
Due to the symmetry relations(24) and (25), we have

wscd=wsc+pd and wsc ,«d−wsc ,−«d=wsp−c ,−«d−wsp
−c ,«d, so that it is enough to analyze the dichroic effects for
cP f0,p /2g. It is useful to introduce the angle-integrated
elliptic dichroism parameterDs«d by the relation

Ds«d ;
uWs«d − Ws− «du
Ws«d + Ws− «d

, s29d

with Ws«d=e0
p/2 ws« ,cddc.

IV. NUMERICAL RESULTS

A. Focal averaging

For fixed laser intensityI, the energy spectrum consists of
a series of discrete peaks at energiesEp=Ei +nv− I / s4v2d,
n=nmin,nmin+1, . . .. For adetailed comparison with experi-
mental data, this spectrum has to be integrated over the
spatio-temporal intensity distribution in the laser focus. We
will apply here Gaussian focal averaging as explained in Ref.
[40]. For the case of weak focusing(as is the case in the
experiment[4]), the diameter of the atomic beam is small
compared with the Rayleigh range of the laser beam focus,
and the focal-averaged electron yield is

kwpil ~ E
0

Imax dI

I
Sln

Imax

I
D1/2

o
n

wpisndd„Ep − Ei − nv

+ I/s4v2d…, s30d

whereImax is the peak intensity. Thed function cancels the

integral overI so that, for everyp, kwpil can be calculated as
a single sum overnù sEp−Eid /v.

In Figs. 1 and 2 we show examples of the spectra for

FIG. 1. (Color online) The focal averaged electron spectrum for
F− sEi =−3.4 eVd for a laser wavelength of 1800 nm and peak in-
tensity Imax=1.531013 W/cm2 for three different directions with
respect to the polarization axis of the linearly polarized field:u
=0°, 20°, and 40°. The direct detachment spectra are presented by
gray (red) curves, while the black curves also include detachment
with rescattering.

FIG. 2. (Color online) The focal-averaged electron spectrum for
F− in the direction of the major polarization axis for four different
ellipticities: «=0, 0.18, 0.36, and 0.5. The laser wavelength is 1800
nm and the peak intensity isImax=1013 W/cm2. The direct detach-
ment spectra are presented by gray(red) curves, while the black
curves also include detachment with rescattering.
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different angles and ellipticities. The spectrum is averaged
over the spatio-temporal intensity distribution in the laser
focus that corresponds to the experiment[4]. The finite mo-
mentum resolution of the detector is not taken into account.
According to Ref. [3], it amounts toDE,1 eV for Ep
&15 eV, so that it suppresses the peaks and makes them
smoother. Except for the lowest energies, the calculated
focal-averaged spectra display well-resolved peaks. At low
energies, the spectra are governed by the direct electrons. At
some rather well defined higher energy, the rescattered elec-
trons take over and form the characteristic plateau. The cut-
off of the spectrum is shifted to lower values with the in-
crease of the angleu and/or ellipticity «. The noticeable
feature of the rescattered spectra is pronounced enhance-
ments. These enhancements are also very pronounced in ex-
perimental ATI spectra, see[22]. For theoretical develop-
ments, see Ref.[23]. The plateau in the spectrum of the
low-energy direct electrons disappears with the increase of
the angleu, while for the high-energy rescattered electrons
only the cutoff position of the plateau is shifted to lower
values. In contrast, the rescattered plateau disappears with
the increase of the ellipticity, while the direct plateau is less
affected.

A comparison of the experimental data from Ref.[4]
(only electrons withEp,18 eV were registered) and the the-
oretical results foru=0 and«=0 were presented in our ear-
lier paper [29] and in Ref.[34]. Both papers found better
agreement for a peak intensity higher than reported in[4]. A
qualitative discrepancy between the theory and the data that
could not be removed by adjusting the intensity was ob-
served in the region near 15 eV. We conjectured[29] that
this discrepancy might be due to many-electron contributions
to ATD that are beyond the single-active-electron approxima-
tion, as in one-photon photodetachment[41]. Indeed, Ref.
[34] attributes the peaks near 15 eV to the shape resonance,
which in F− is located at 14.85 eV(see p. 611 in Ref.[42]).

B. Dependence on the initial state

In order to analyze general properties of the detachment
rates, in Figs. 3 and 4 we present results obtained without
focal averaging. The detachment rates by a linearly polarized
field are plotted as functions of the electron energy in units
of the ponderomotive energy for different emission direc-
tions and for H− (Fig. 3) and F− (Fig. 4). The figures show
that the ultimate high-energy cutoff of the spectrum depends
on the angleu and is the same for both H− and F−. It is at
10UP for u=0 and decreases with increasingu. The low-
energy part of the spectrum is determined by the direct de-
tachment rates. One can notice that the direct part appears to
have different cutoffs for H− and F−: while the rates for H−

quickly decrease for energies above 2UP, the direct rates for
F− extend to higher energies and start to decrease noticably
only above the higher energy 3UP.

In order better to understand the behavior of the direct
detachment rates, we recall that they can be obtained from
Eqs. (14)–(17) solving the integral overw=vt using the
saddle-point method[see Eq.(22)]. For fixed electron mo-
mentump, for a linearly polarized laser field there are two

solutions of the saddle-point equationq2+k2=0 (see Appen-
dix E) so that

Tpi
s0dsnd ~ M1 + s− 1dlM2, Ms =

expsiSsd
Î− Ss9

. s31d

For example, for the detachment of electrons in the direc-
tion of a linearly polarized field, we haveS=nw+spAL

FIG. 3. Detachment rates of H− sEi =−0.75 eVd as functions of
the electron energyEp (scaled to the ponderomotive energyUP) for
different angles:u=0° (upper panel), 20° (middle panel), and 40°
(bottom panel). The laser-field intensity isI =1011 W/cm2 and the
wavelength isl=10 600 nm. The dotted lines correspond to direct
detachment.

FIG. 4. Same as Fig. 3, but for F−, I =1013 W/cm2, l
=1800 nm.
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+UP coswdsin w /v, −S9=sp+ALcoswdELsin w, w1

=arccosfs−p− ikd /ALg, w2=2p−w1
* , Im wù0, 0øRe w

,2p. In Fig. 5, we compare the rates obtained taking only
solution 1(circles), only solution 2(dot-dashed curve), both
solutions with l =0 (solid curve denoted by
“S1+S2”), and both solutions withl =1 (dashed curve de-
noted by “ S1−S2”). We see that the contributions of the
solutions 1 and 2 are practically identical. Near 4.2UP they
interfere destructively forl =0, while they interfere construc-
tively for l =1. These results are in agreement with numerical
results presented in[29] and Eq.(1) of Ref. [4]. The very
pronounced difference between the complete spectra forl
=0 and l =1 is due to the different behavior of thedirect
electrons. Owing to the destructive interference nearEp
<4.2UP for l =0, the direct electrons appear to have their
cutoff at lower energies forl =0 than forl =1. Therefore, for
l =0 the rescattered electrons have a chance to become domi-
nant for lower electron energies than forl =1.

For increasing ellipticity, the saddle-point equation(21)
keeps having two solutions per cycle up to a certain “criti-
cal” ellipticity «cr=0.755[43]. For «.«cr, there is only one
solution per cycle, and the interferences considered above
cease to exist. For circular polarizations«= ±1d, this solution
is given by cossw−rd=−sp2+2UP+k2d /Î2UPspy

2+pz
2d,

tan r=«py/pz. The absence of interferences for circular po-
larization has been confirmed by the most recent ATD ex-
periment[44].

C. Analogy with double-slit diffraction

For a linearly polarized laser field, the saddle-point equa-
tion (21) for specifiedp has two solutions during one cycle
of the field. We decompose the momentum in components
parallel and perpendicular to the laser field,p=spi ,p'd, and

refer to the two solutions byt1 and t2 sRe t1,Re t2d. They
satisfy

fpi + Astidg2 = 2Ei − p'
2 si = 1,2d. s32d

Let us ignore, for sufficiently high intensity, the right-hand
side of this equation so thatt1 and t2 are real[provided upiu
ømax uAstdu]. After its birth at either one of these two times,
the electron then follows the classical orbits

vistd = p + Astd, p = spi,p'd = „− Astid,p'…,

xistd = st − tidp +E
ti

t

dtAstd. s33d

When an electron is born at the timet2, an electron born at
the earlier timet1 would have reached the turning point of its
motion, which is at the distance

x1st2d = st2 − t1dp +E
t1

t2

dtAstd ; Dx s34d

from its starting point at the origin at the position of the ion.
The subsequent motion of these two electrons is identical,
except that one is delayed with respect to the other by the
distanceDx. Hence, there are two different points of view:
electronic wave packets originate at the same position—the
position of the ion—at different times, or at the same time
but at different positions—at the ion and at the turning point
of the ponderomotive motion. Both are equivalent.

The direct quantum-mechanical transition amplitude(22)
incorporates the superposition of these two orbits. It can be
written in the form

Tpi
s0dsnd = CeiSpist1dh1 + s− 1dleifSpist2d−Spist1dgj, s35d

where the prefactorC combines the square root and the form
factor on the right-hand side of Eq.(22). [The factor of
s−1dl that multiplies the second term comes from the parity
of the ground state in Eq.(22) and the fact thatEst2d=
−Est1d, while p+AL cosvt2,1= ± ik.] Let us consider the
case whereupu!max uA0stdu, so that we may neglect the first
contribution toDx with respect to the second. Moreover, for
small upu, the electrons are born near the maxima of the field
so thatt2− t1<T/2 and

Spist2d − Spist1d = sp2/2 + UP − EidT/2 + p · Dx. s36d

But, for a not too short pulse, we have

p2/2 + UP − Ei < nv s37d

for some integern. Hence, we obtain the interference pattern
of a two-slit source,

u1 + s− 1dleifSpist2d−Spist1dgu2 = 2f1 + s− 1dn+l cossp · Dxdg.

s38d

This is a rederivation of a result by Gribakin and Kuchiev
[24]; see also[25,26]. For simplicity, we have treatedDx as
real, which restricts us to the tunneling limit.

FIG. 5. (Color online) Electron spectrum in the directionu=0°
for direct ATD of F− by a linearly polarized laser with a wavelength
of 1800 nm and intensity 1013 Wcm−2. The results are obtained
taking only one of the two saddle-point solutions(dot-dashed curve
and circles) or taking both solutions but with different ground state:
a fictitious l =0 ground state(solid curve “S1+S2”) and the correct
l =1 ground state(dashed curve “S1−S2”). Notice that the positions
of destructive and constructive interference are almost(at least for
low energies) complementary forl =0 andl =1.
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D. Dependence on the rescattering potential

In our previous paper[29], we have analyzed the influ-
ence of the static and polarization potentials on the high-
energy ATD spectra. The examples of H− and F− ions were
investigated(please notice that the laser intensity for F− was
1.131013 W/cm2 and not 1013 W/cm2 as mentioned in Fig.
4 of Ref. [29]). We also noticed that for H−, the polarization
potential makes a slightly stronger contribution than the

static potential, while for F− the contribution of the static
potential is dominant. Here we will analyze the spectra of
heavier halogen ions. In Fig. 6, we present high-energy
sEp.4UPd ATD spectra for Br− and Cl−. The laser intensity
and wavelength are 1013 W/cm2 and 1800 nm, respectively.
We see that both for Cl− (lower panel) and Br− (upper panel),
the total spectrum(solid lines) is mainly determined by the
contribution of the static rescattering potential(C8) (dotted

FIG. 6. (Color online) ATD electron spectra(solid curves) for
Br− (upper panel) and Cl− (lower panel) in the direction of the laser
polarization. The contributions of the polarization part(C4) (dashed
curves) and the static part(C8) (dotted curves) of the rescattering
potential are analyzed.

FIG. 7. (Color online) ATD electron spectra normalized so that
the maximum of their direct low-energy part is equal to 1. Only the
high-energy part withEp.4UP is shown. The laser intensity is
1013 W/cm2, the wavelength 1800 nm, andu=0. The laser field is
linearly polarized and no focal averaging is taken. The spectra are
for F− (dot-dashed line), Cl− (dotted line), Br− (dashed line), and I−

(solid line), with the relevant parameters given in the Appendixes.

FIG. 8. (Color online) Detachment rates, Eq.(C11) as functions of the polar anglec, tanc=py/pz (see Sec. III), for fixed electron energy
Ep=2UP, for different ellipticities:«=0 (solid black line), «=0.18(dashed blue line), «=0.36(dotted red line), and«=0.5 (dot-dashed green
line), and for (a) H−, laser intensity 1011 W/cm2 and wavelength 10 600 nm, rates inx310−7 a.u., with x=2.25 for «=0, x=1.6 for «
=0.18, andx=0.8 for «=0.36 and 0.5;(b) F−, intensity 1013 W/cm2 and wavelength 1800 nm, rates in 5.25310−7 a.u.
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lines) and that the contribution of the polarization potential
(C4) (dashed lines) is small.

For H−, the low-energy direct detachment rates are almost
five orders of magnitude larger than those of the rescattering
plateau. For the heavier halogen ions, the static part of the
rescattering potential is much stronger so that the rescatter-
ing plateau becomes higher. In order to explore this, in Fig. 7
we compare the rescattering parts of the negative-halogen-
ion spectra. The spectra are normalized so that the maxima
of their direct parts are equal to 1. In this way, we are able to
compare the relative heights of the rescattering plateaus for
F−, Cl−, Br−, and I−. As expected, because the number of
scattering centers is the largest for iodine, the corresponding
plateau is the highest. It is lower than the direct part of the
spectrum by a factor only 40. The heights of the rescattering
plateaus decrease from iodine to fluorine by a factor of about
30, but even the plateau in fluorine is still higher than the one
in H− by almost two orders of magnitude. Therefore, the
heavier negative halogen ions are excellent candidates for an
experimental observation of the rescattering plateau.

E. Elliptical polarization

First, we will present numerical results for the low-energy
electrons. According to the symmetry considerations of Sec.
III, the detachment rates should obey the fourfold symmetry
(26) which holds regardless of the angular momentum of the
ground state. This is confirmed by Fig. 8, which displayswc
polar diagrams forEp=2UP, for various ellipticities, and for
H− sl =0d and F− sl =1d ions.

Next, in Figs. 9 and 10 we show results for the higher
energiesEp=4UP and 6UP. For «=0, the fourfold symmetry
is preserved, as it should, and the spectrum shows the typical
sidelobes(see Ref.[12] and references therein). For nonzero
ellipticity, the fourfold symmetry is violated but the twofold
symmetry (24) is preserved. Comparing the results for«
=0.36, with those for«=−0.36, we confirm that the symme-
try relation (25) is satisfied.

Finally, in Fig. 11 the angle-integrated elliptic dichroism
parameterDs«d, defined in Eq.(29), is shown for F− ions as
a function of ellipticity for various electron energies. For
energies less than 3UP, this parameter is close to zero be-
cause this part of the spectrum is dominated by the direct
electrons for whichDs0ds«d=0 in view of Eq.(27). For higher
energies,Ds«d is a smooth function of«. It assumes its maxi-

FIG. 9. Polar diagrams of the high-energy detachment rates of
H− for the same laser parameters as in Fig. 8(a), for Ep=4UP (left-
hand panels), Ep=6UP (right-hand panels), and for the ellipticity
«=0 (top panels), «=0.18(panels in the second row), «=0.36(third
row), and«=−0.36(bottom row). The rates forEp=4UP (left-hand
panels) are in multiples ofx310−10 a.u., withx=1.5, 0.9, and 1.07
for «=0, 0.18, and ±0.36, respectively. ForEp=6UP (right-hand
panels) we havex=1.1, 0.33, and 0.004 38 for«=0, 0.18, and
±0.36, respectively.

FIG. 10. The same as in Fig. 9 but for F− and for the laser
parameters of Fig. 8(b). The rates forEp=4UP (left-hand panels)
are in multiples of 1.25310−8 a.u., except for«=0, for which they
are in multiples of 2310−8 a.u. ForEp=6UP (right-hand panels)
they are inx310−9 a.u., withx=13.2 for«=0, x=7.9 for «=0.18,
andx=0.87 for«= ±0.36.
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mum ofDs«=0.28d=0.31 forEp=4UP, Ds«=0.51d=0.25 for
Ep=6UP, while for Ep=8UP the maximum isDs«=0.67d
=0.36. Ultimately, when the ellipticity approaches circular
polarization, elliptic dichroism disappears. Maybe surpris-
ingly, Fig. 11 shows that, for lower electron energies, this
tendency already develops for rather low ellipticity.

V. CONCLUSIONS

The energy spectra of electrons detached from negative
ions are characterized by two regions. The low-energy region
(below 2–4UP, depending on the parity of the ground state)
is dominated by the direct electrons and is strongly affected
by the parity of the ground state. The spectrum is made up by
two contributions, which can be attributed to electrons enter-
ing the continuum at different times during the field cycle.
The parity dependence is particularly important in the region
around 3–4UP where these two contributions interfere con-
structively for odd parity and destructively for even parity.
This is relevant to the interpretation of the experiment with
F− sl =1d [4]. The apparent plateau in the region in question
is caused by this constructive interference.

The high-energy spectral region is characterized by the
rescattering plateau whose yield is below that of the direct
electrons by several orders of magnitude, depending on the
ionic species. Its start depends upon how quickly the yield of
the direct electrons drops with increasing energy, as just dis-
cussed. Hence, for H− it starts between 2 and 3UP, while for
F− its onset is at significantly higher energies above 4UP. In
any case, for a linearly polarized field and electrons emitted
in the direction of the field, it starts rolling off near its clas-
sical cutoff at 10UP. The shape of this plateau is determined
by the laser field parameters, in particular the ellipticity, and
on the direction of electron emission, but it is essentially
independent of the angular momentum of the ionic ground
state. However, its height strongly depends on the number of
rescattering centers. This number is higher for the heavier

negative halogen ions so that these are excellent candidates
for an experimental detection of the rescattering plateau for
negative ions.

The angular distribution of high-energy electrons is
strongly affected by the laser ellipticity. A measure of the
asymmetry introduced by the ellipticity is the angle-
integrated elliptic dichroism parameter introduced in this pa-
per.

For elliptical polarization, there are only few experimental
data for high-order ATI of atoms[45,46] and none for high-
order ATD of ions. For rare-gas atoms and the pertinent laser
parameters, theoretical calculations based on the same for-
malism discussed in this paper and interpreted in terms of
quantum orbits can be found in Refs.[45,47]. They show
features very similar to Figs. 9 and 10, in particular the lack
of symmetry with respect to the two polarization axes. In
view of the lingering doubts regarding the significance of
Coulomb effects even for high-order ATI, experiments with
negative ions, where the absence of the long-range Coulomb
potential facilitates the comparison of theory and experi-
ments, are highly desirable.
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APPENDIX A: INTEGRAL OVER THE INTERMEDIATE
ELECTRON MOMENTA

In Eq. (9), having inserted the expansion(6) of the Volkov
time-evolution operator, we are concerned with an integral of
the type

Isa,ksd =E d3k fskdexpfiask − ksd2g. sA1d

Shifting repeatedly the integration variablek, we may write

Isa,ksd =E d3k fsk + ksdexpsiak2d

=E d3k expsk · ] /] ksdfsksdexpsiak2d

=E d3k expFiaSk +
1

2ia

]

] ks
D2GexpS i

4a

]2

] ks
2D fsksd

= S ip

a
D3/2

expS i

4a

]2

] ks
2D fsksd, sA2d

which is a formal solution of the integral. This yields Eq.
(11) of the main body of the paper.

The three-dimensional integral over the intermediate elec-
tron momenta(A1) appears frequently in consideration of
higher-order atomic processes in strong fields. The exact so-
lution of this integral was presented in the form of a power
series in Ref.[48] in the context of high-order harmonic

FIG. 11. (Color online) Angle-integrated elliptic dichroism pa-
rameter as a function of the ellipticity for F−, laser intensity
1013 W/cm2, and wavelength 1800 nm. The detached electron en-
ergy is Ep=4UP (solid curve), Ep=6UP (dashed curve), and Ep
=8UP (dot-dashed curve).
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generation. Later on it was used for high-order above-
threshold ionization[12], laser-assisted x-ray–atom scatter-
ing [18], and electron-ion recombination[19]. In the special
cases when the atomic system is modeled by the zero-range
potential[31,49], this integral can be solved exactly(only the
zeroth-order term of the mentioned power series survives
[50]). An exact solution also exists for a Gaussian potential
(see[51] and references therein). In this appendix, we have
considered the solution of this integral in the context of the
rescattering matrix elementMpi

s1d.

APPENDIX B: MATRIX ELEMENTS FOR DIRECT ATD

The amplitude of direct ATD can be obtained by calculat-
ing the integral over timet, i.e., over the variablew=vt. This
can also be done by using the saddle-point method as in[24].
We will prefer here the numerical integration. The ground-
state wave functions of the negative ion in momentum space,
which appear as the subintegral functions, are given in[24].
We will present here explicit expressions for the negative
halogen ions we are interested in. According to Ref.[24], we
have

ci ; clmsr d = sA/rdexps− krdYlmsr̂ d, sB1d

whereEi =−k2/2 and for

H−: l = 0, A = 0.75, k = 0.235, sB2d

F−: l = 1, A = 0.7, k3/2 = 0.4998, k1/2 = 0.5035,

sB3d

while according to[52] we have

Cl−: A = 1.34, k = 0.516,

Br−: A = 1.49, k = 0.498,

I−: A = 1.9, k = 0.475, sB4d

with l =1 and j =3/2. In our paper, the calculations for F−

were done forj =1/2. Using Eq.(19), we get

c̃00sqd =
4pA

s2pd3/2

Y00sq̂d
q2 + k2 , sB5d

c̃1msqd = i
4pA

s2pd3/2qfsqdY1msq̂d, sB6d

where

fsqd =
1

q2S k

q2 + k2 −
1

q
arctan

q

k
D

= −
2

k3o
n=0

`

s− 1dn n + 1

2n + 3
Sq

k
D2n

. sB7d

According to Eq.(17) and with the explicit expressions for
the spherical harmonicsYlm, the direct amplitudesT pi

s0d are

T p00
s0d = −

A
Î8p2

, sB8d

T p1m
s0d = −

iAÎ6

4p
sq2 + k2dqfsqdssuq,fqd, sB9d

with

ssuq,fqd = dm,0 cosuq −
m
Î2

sin uqe
imfq. sB10d

For the detached electron momentump=sp,u ,fd and q
= up+Aswdu, the anglesuq andfq are determined by the ex-
pressions

q cosuq = p cosu +
EL cosw

vÎ1 + «2
,

sin uq = Î1 − cos2 uq,

q sin uq cosfq = p sin u cosf,

q sin uq sin fq = p sin u sin f +
«EL sin w

vÎ1 + «2
, sB11d

for the elliptically polarized laser field(23). For a linearly
polarized field along thez axis, we havefq=f.

An alternative form of the matrix elementTplm
s0d can be

obtained using Eq.(8) and the first equation in Eq.(17). The
result is

T p00
s0d = − i

AÎ2

p

Eswd ·q

sq2 + k2d2 , sB12d

and, for linear polarization,

T p1m
s0d =

AÎ6

2p
EL sin wFdm,0h + sin uq

] s

] uq
sh + fdG ,

sB13d

with

hsqd = − S1 +
]

] q
D fsqd =

2ks2q2 + k2d
q2sq2 + k2d2 −

2

q3arctan
q

k

=
2

k3o
n=0

`

s− 1dnsn + 1ds2n + 1d
2n + 3

Sq

k
D2n

. sB14d

For linear polarization, the dependence onfq=f in Eq.
(B10) disappears after taking the absolute square of
expsimfd in the detachment rate. For elliptical polarization,
the matrix element(B13) has the more complicated form

T p1m
s0d = −Î 3

2umu+1

A

p

ELeimf

Î1 + «2
hsh + fdsin uqfsin uq8 sin w

+ « cosuq8 sin fq coswg+ i umuf«e−imf cosw

+ sumu − 1dh sin wj, sB15d

with uq8=uq+mp /2.This form of the matrix element we will
also need in Appendix C.
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APPENDIX C: MATRIX ELEMENTS FOR ATD
WITH RESCATTERING

According to Eq.(18), in order to calculate the rescattered
electron spectrum, we need the matrix element

kgur ucil = i
]

] g
c̃isgd, sC1d

where the vectorg=ks+Asw−vtd [see Eq.(12)] lies in the
laser polarization plane. Using the results of Appendix B, we
get

kgur uc00l = −
iAÎ2

p

g

sg2 + k2d2 . sC2d

For the elliptically polarized field, the matrix element
kgur ·Eswduc1ml is given by Eq. (B15) with w→w−vt,
q→g, fg=sgnsg·êydp /2, and cosug= ĝ·êz, sin ug= uĝ·êyu.
For a linearly polarized field along thez axis, we have

kgur · êzuc1ml = dm,0
AÎ6

2p
hsgd. sC3d

We also need the Fourier transform of the rescattering
potential V. We haveVsrd=VSsrd+VPsrd, where VP is the
polarization potential,

VPsrd = −
aP

2sr2 + d2d2, d4 =
aP

2Z1/3, sC4d

with aPsHd=4.5 a.u., aPsFd=3.76 a.u., aPsCld=14 a.u.,
aPsBrd=30 a.u., aPsId=27 a.u., ZsHd=1, ZsFd=9, ZsCld
=17,ZsBrd=35, andZsId=53. The Fourier transform ofVP is

VK
sPd = −

aP

16pd
exps− Kdd. sC5d

The static potentialVS for H− can be calculated exactly, with
the result

VSsrd = − S1 +
1

r
De−2r sC6d

and

VK
sSd = −

1

2p2

K2 + 8

sK2 + 4d2 . sC7d

The static potential for fluorine can be modeled by the
double Yukawa potential,

VSsrd = −
Z

H

e−r/D

r
f1 + sH − 1de−Hr/Dg, sC8d

with D=0.575,H=DZ0.4, and with the Fourier transform

VK
sSd = −

Z

2p2H3 1

K2 + D−2 +
H − 1

K2 + SH + 1

D
D24 . sC9d

The vectorK in the above expressions isK =ks−p.
It should be mentioned that our detachment ratewpisnd,

for a linearly polarized laser field, does not depend on the

anglef. Namely, in the rescattering term we have the factor
dm,0 [see Eq.(C3)], while for the direct term we have the
factor expsimfd [see Eqs.(B10) and (B11)], which disap-
pears upon taking the absolute square in Eq.(14) . For an
elliptically polarized laser field, the results do not depend on
f in the special case where the electron is emitted along the
major axis(z axis) of the polarization ellipse, i.e., foru=0.
We usually integrate over all anglesf, which gives an addi-
tional factor 2p in the differential detachment rate. The rate
summed over allm and over the electron spin projections,
and integrated overf, is then

Wpu,lsnd = 2 o
m=−l

l

2pwplmsnd. sC10d

If the effect of fine-structure splitting is taken into account,
the detachment rate for thej = l ±1/2 sublevel is

Wpu,l
s jd snd =

2j + 1

2l + 1
Wpu,lsnd. sC11d

For example, for F− the electron affinityk j
2/2 is different for

j =1/2 andj =3/2 [see Eq.(B3)].

APPENDIX D: RESCATTERING POTENTIAL

In our model, we suppose that the detached electron res-
catters on the residual part of its parent atom. We will neglect
exchange effects. In this case, the potentialV on which the
electron rescatters consists of two parts,V=VP+VS. The tar-
get atom is polarized by the Coulomb field of the incident
electron and this effect is usually modeled by the potential

VPsrd = −
aP

2sr2 + d2d2 , sD1d

whereaP is the electrostatic dipole polarizability of the atom
whose values can be found in Ref.[52]. The parameterd is
connected withaP and the nuclear chargeZ by the formula
d4=aP/ s2Z1/3d [53].

The static potentialVS includes the interaction of the in-
coming electron with the nucleus and the atomic electron
cloud. It can be written in the form[54]

VSsr d = −
Z

r
+E d3s

ur − su
rssd, sD2d

where

rssd = o
j=1

Z E p
k=1,kÞ j

Z

d3r kucasr 1, . . . ,r j−1,s,r j+1, . . . ,r Zdu2

sD3d

is the density of the atomic electrons in the stateual. The
Fourier transform ofVS can be represented in the form

VK
sSd =

1

2p2K2fFsK d − Zg, sD4d

whereFsK d=ed3rrsr dexpsiK ·r d is a real form factor. For an
electron scattering of a hydrogen atom, we haversr d
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= uc1ssr du2=exps−2rd /p, so thatVS and VK
sSd are given by

Eqs. (C6) and (C7), respectively. For electron scattering off
helium, the wave function can be obtained variationally, with
the result csr1,r2d=expf−sr1+r2d /bg / spb3d, b=16/27, so
that rsrd=2 exps−2r /bd / spb3d and FsKd=2/s1+K2b2/4d2.
For more complex atoms, an analytical expression forVK

sSd

cannot be obtained. However, numerical calculations for
electron-atom scattering can be simplified significantly by
using a semiempirical core potential, i.e., by effectively treat-
ing the target as one quasielectron[55]. A relatively simple
analytical potential for describing elastic scattering of elec-
trons off atoms was proposed in Refs.[56,57]. It is based on
the independent-particle model for bound states of electrons
in atoms, which maintains a close relationship to the Hartree-
Fock model[58]. For F−, Cl−, Br−, and I−, here we use the
independent-particle-model potential(C8) represented by the
double Yukawa potential[59] with the parametersH andD
given in Ref. [58], which has the Fourier transform(C9).
Potentials for negative atomic ions are given in[60,61]. For
more recent developments of analytical local electron-
electron interaction model potentials for atoms, see Ref.[62].

APPENDIX E: DIRECT MATRIX ELEMENT
FOR ARBITRARY l

Let us start from Eq.(10) . In view of the wave functions
(B1), we need to calculate the spatial integral

I lmsqd ; E d3re−iq·r e−kr

r
Ylmsr̂ d, sE1d

whereq=p+Astd. With the help of the plane-wave expan-
sion

exps− iq · r d = 4po
l=0

`

s− idl j lsqrd o
m=−l

l

Ylmsr̂ dYlm
* sq̂d,

sE2d

we find that

I lmsqd = 4pYlmsq̂ds− idlXlsqd sE3d

with

Xlsqd =E
0

`

rdr exps− krd j lsqrd. sE4d

The temporal part of the matrix element(10) will be car-
ried out by saddle-point integration. As a result, the momenta
q will satisfy

q2 = fp + Astdg2 = − k2, sE5d

and, in turn, the momentum componentssqx,qy,qzd will be
complex. The plane-wave expansion(E2) can immediately
be analytically continued to complex values ofqi, since
exps−iq ·r d is an entire analytic function of the momentum
componentsqi, and, on the right-hand side, so is the product
j lsqrdYlm

* sq̂d. Note that individuallyj lsqrd andYlmsq̂d depend
on odd powers ofq for odd l and, therefore, exhibit a branch
cut in q=Îqx

2+qy
2+qz

2.
In view of Eqs.(10) and(E5), what we actually need after

having carried out the saddle-point integration is

lim
q2+k2→0

sq2 + k2dXlsqd. sE6d

Integrating by parts and using the differential equation satis-
fied by the spherical Bessel functions, we find

sq2 + k2dX0sqd = 1, sE7d

while for l Þ0 we get

sq2 + k2dXlsqd = lsl + 1dE
0

`

dre−kr j lsqrd/r

=
Îp

2
S q

2k
Dl Gsl + 2d

Gsl + 3/2d
FS l

2
,
l + 1

2
; l +

3

2
;−

q2

k2D
=

ÎpGsl + 2d

2l+1GS l + 3

2
DGS l

2
+ 1DS

q

k
Dl

= Sq

k
Dl

, sE8d

where, evaluating the hypergeometric function, we used that
q2=−k2. Putting everything together, we note that the only
dependence on the angular-momentum quantum numbers oc-
curs in the form of the solid harmonics,

Sq

k
Dl

Ylmsq̂d. sE9d

These are homogeneous polynomials of orderl in the Carte-
sian momentum componentsqi si =x,y,zd and, therefore, en-
tire analytic functions ofqi for any integerl. Once the(com-
plex) solutions ts of the saddle-point equation(21) are
determined, the momentaq=p+Astsd are known. Hence,
there is no branch-cut-related ambiguity in the evaluation of
the solid harmonics(E9) for complex momenta. This result
can be applied for arbitrary ellipticity and not only for the
linearly polarized case of Ref.[24].
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