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The accuracy of classical trajectory Monte Carlo treatments of electron capture is studied, by focusing on
collisions on Hs1sd targets by Li3+ and Ne10+ projectiles, treated in a separate paper. We examine how the
choice of the initial distribution, and the partition of phase space usually employed to calculate partial cross
sections, influence the accuracy of the method. With respect to the former, an improvement over the single-
microcanonical choice is advisable, but further refinements based on the electron density are not worthwhile.
Regarding the latter, we illustrate the accuracy of the “binning” method forn.2. We show that classical and
semiclassical mechanisms are essentially the same, although at low velocities the method is unable to describe
the fall of the cross section.
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I. INTRODUCTION

Despite the large amount of research carried out on the
subject, the conditions of validity of the computational tech-
niques of classical physics remain an open question, whose
answer depends not only on the nature of the problem but
also on the particular method employed. This is because few
of these methods are purely classical, and most of them in-
corporate quantal effects in some form or another. Such is
the case, in the field of atomic collisions, of the classical
trajectory Monte Carlo(CTMC) method, originally devel-
oped by Abrines and Percival[1], and whose basis has been
examined in, e.g., Refs.[2–4]. Its success is due to both its
ease of application and its accuracy. With respect to the
former, the simplicity of its algorithms stand in sharp con-
trast with, say, close-coupling programs that require addi-
tionally a considerable amount of “know-how.” Regarding
the accuracy, the CTMC method has been successfully em-
ployed to obtain reliable total(see, e.g.,[5–9]) and partial
capture(e.g., [10–12]) cross sections, using either the so-
called three-body[5] or the impact-parameter[13] version.
Moreover, the method works best in the(difficult) energy
domain where ionization and electron capture compete with
each other, and its precision is not limited to the cross sec-
tions, extending[14] to the ionization probabilities and even
spatial and momentum densities, when an accurate initial
distribution is employed[15]. In addition, it can provide pic-
torial tools for the description of the mechanisms[14,16–18].

Since publications usually report positive results, it is use-
ful for potential users to know the limits within which suc-
cessful methods can be safely employed. In this spirit, an
analysis of the limitations of close-coupling methods has
been presented in Ref.[19] for molecular expansions and in

Ref. [20] for atomic bases. Likewise, a study of the accuracy
of the CTMC method for ionization has been presented in
Refs.[14,20]. However, such a study is lacking for electron
capture, even though some features are worth investigating.

A well known limitation at lowv concerns the inability of
the classical approach to treat H++H resonant charge ex-
change, for obvious reasons. However, in the other extreme
of highly charged projectile impact on H, very little is known
of the accuracy of the method. The answer is useful, because
the computational effort of the CTMC approach is roughly
independent of the nuclear charge, which is certainly not the
case of close-coupling techniques; it would thus be very use-
ful to treat, e.g., collisions of atomic hydrogen and helium
targets with highly charged ions such as Ne10+ or Ar18+,
which have recently become of strong interest in the study of
fusion plasmas. Another point to be elucidated is the accu-
racy of probabilities and partial cross sections. A third aspect
is whether this accuracy has a physical basis, arising from a
common mechanism with quantal approaches, or is partially
coincidental, and what are the main features of the method
that determine its limitations.

Regarding the first point of accuracy of the CTMC
method, its success was confirmed by explicit calculations
[8] for impact of Hs1sd with ions ranging from H+ to O8+.
This was further corroborated by a recent treatment([21],
hereafter called Paper I) for Ne10+ impact on H, in which
calculated capture and ionization cross sections are accurate
over a wide range of energiess10øEø250 keV amu−1d as
compared to converged close-coupling results using a very
large basis. From all these data alone, one would tend to
conclude that the accuracy of CTMC treatments improves
with the nuclear charge of the projectile. However, it was
also found in Paper I that the excellent accuracy does not
quite extend to the partial cross sections, which led us to
investigate the limits of confidence of the classical method,
using the molecular calculations as a standard of comparison.
In addition, since Paper I treated both Li3++H and Ne10+
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collisions, we were able to analyze the dependence of the
main features on the charge of the projectile. We further
extended the analysis to find out to what extent the limitation
of the method depends on what are usually considered the
optional aspects of the CTMC method. For the sake of co-
gency, our main findings on these topics are described sepa-
rately in the present paper.

In the next section we briefly state some details of the
methods that are additional to those given in Paper I. In Secs.
III and IV we focus our attention on the delicate topic of the
incorporation of quantal aspects in the asymptotic regions
where reaction channels are defined. The accuracy of capture
and ionization cross sections is discussed in Sec. V, and ana-
lyzed through the mechanisms in Sec. VI. Our main conclu-
sions are drawn in Sec. VII.

Atomic units are employed except where otherwise stated.

II. SEMICLASSICAL AND CLASSICAL METHODS

In the semiclassical treatment of Paper I, we employed an
impact-parameter formalism, in which the electronic wave
function satisfies a time-dependent Schrödinger equation for

the Born-Oppenheimer fixed-nuclei HamiltonianĤ, and the
internuclear vectorR=b+vt follows a linear trajectory with
impact parameterb and velocityv. To establish a connection
with classical calculations, we introduce as in Ref.[14] the
polar form of the wave function representing the electronic
motion:

Csr ,td = uCsr ,tdueiSsr ,td = ÎrQsr ,tdeiSsr ,td. s1d

Substitution in the Schrödinger equation yields the continuity
equation for the density:

] rQ

] t
= − = · j Q = − = · srQ = Sd. s2d

As explained in Paper I, to solve the impact parameter equa-
tion, we expandedC in a close-coupling series in terms of a
basis of the so-called one-electron-diatomic-molecule
(OEDM) orbitals x j of the LiH3+ or NeH10+ quasimolecule,
modified with a common translation factor(CTF) U [22–25]:

Csr ,v,b,td = eiUsr ,tdo
k

aksv,b,tdxksr ,RdexpS− iE
0

t

Ekst8ddt8D .

s3d

The CTF is mainly introduced to satisfy the limit conditions
of the problem, so that the basis functionsx jexpsiUd are
uncoupled at infinite internuclear separations. As is well
known, this requirement only determines the mathematical
form (plane waves) of the electronic translation factors
(ETF’s) in this asymptotic limit. For finite internuclear dis-
tancesR, the CTF approach chooses anR-dependent inter-
polative form between the plane waves corresponding to the
projectile and to the target channels, which is defined in
terms of a switching functionfsr ,Rd:

Usr ,td = fsr ,Rdv · r −
1

2
f2sr ,Rdv2t. s4d

To extend the molecular expansion to high energies, where
ionization starts to be sizable, we have carried out calcula-
tions by adding to the OEDM basis a set of Gaussian func-
tions, centered on an intermediate point of the internuclear
axis, and whose populations yield the ionization probability;
this is the expansion called OEDM+GTO(Gaussian-type or-
bital). The basis set for Li3++Hs1sd collisions includes 35
OEDM orbitals and a set of 80 GTOs. For Ne10++Hs1sd we
employed a set of 213 OEDMs. Details of these basis sets are
given in Paper I.

As explained in Paper I, and in parallel with the semiclas-
sical approach, our classical work employed an impact-
parameter CTMC method, in which the internuclear vector
follows linear trajectories, and the electronic probability dis-
tribution rsr ,p ,td is generated through anN-point discrete
representation of this distribution:

rsr ,p,td =
1

N
o
j=1

N

d„r − r jstd…d„p − p jstd…, s5d

wherer andp are the position and momentum vector of the
electron, respectively, with respect to the target nucleus. Sub-
stitution of the pointwise representation in the Liouville
equation then yields the Hamilton equations for the indi-
vidual r jstd ,p jstd trajectories. Initial conditions for these
equations were obtained from a sampling of a statistical dis-
tribution rsr ,pd for the Hs1sd state, which was taken to be
either a microcanonical distributionrmsr ,p ;Ed, or superpo-
sitions of such distributions; by substitution in the Liouville
equation, both choices are seen to be time independent in the
absence of the projectile. In our calculations, we considered
continuum superpositions

rsr ,pd =E rEsEdrmsr ,p;EddE= 2−1/2p−3

3E s− Ed5/2rEsEddsH − EddE s6d

as well as discrete sums

rsr ,pd = o
j

wjr
msr ,p;Ejd = 2−1/2p−3o

j

wjs− Ejd5/2dsH − Ejd

s7d

to be discussed in Sec. IV.
The Hamilton equations were integrated[26] up to inter-

nuclear distances of the order of 103 to achieve full conver-
gence of the densities and probabilities. For each nuclear
trajectory, the capture transition probabilities are given by
the relative number of asymptotic trajectories that yield a
negative energy with respect to the projectile and a positive
energy with respect to the target; similarly, ionization prob-
abilities are obtained from the relative number of asymptotic
trajectories that have positive energies with respect to both
nuclei. Total cross sections are then given by summing the
corresponding probabilities over all nuclear trajectories. Par-
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tial cross sections to a givenn state were obtained by the
usual partitioning of phase space inton, l “bins,” due to
Becker and MacKellar(hereafter called BM) [27]. A simple
connection between the CTMC and the semiclassical ap-
proaches can formally be obtained by integrating Liouville’s
equation with respect to the momentum variables. This
yields a continuity equation for the spatial densityrsr ,td:

] rsr ,td
] t

= − = · j = − = ·E p rsr ,p,tddp, s8d

which is analogous to Eq.(2). However, as pointed out in
Ref. [14], it would be misleading to pursue the connection by
employing in Eq.(2) the standard textbook WKB limit form
of S, which is the classical characteristic functionSC. It was
shown in that reference that for ionization the accuracy of the
CTMC method is far superior to what one would expect
from the WKB approach—which is rather poor since the
wavelength corresponding to the ionized electron is of the
size of the colliding region.

At first sight, a better connection between classical and
quantal statistical approaches was pointed out in Ref.[4], in
terms of quantal Wigner distributions(see Ref.[28]), and the
Moyal-Wigner equation(Ref. [29]) whose classical limit in
natural unitss"→0d is the Liouville equation. However, un-
like this latter equation, the Moyal-Wigner counterpart, even
when truncated toOs"2d, does not seem to be amenable to a
discretization procedure leading to electron trajectories, so
that one is compelled to work within the classical limit. This,
however, has the inconvenience that the Wigner function is
unstable when its evolution is treated in this classical limit,
and also has some unphysical properties when considered in
a classical context[30] (see Sec. IV). Hence, though for-
mally appealing, this line of thought has not been actually
pursued in a quantitative way.

A less formalistic approach to the connection between
classical and quantal methods was taken in Ref.[14] for
ionization, and we briefly recall the arguments. To start with,
for any reasonable initial distribution,j =0= j Q. Furthermore,
as shown in Ref.[20], the asymptotic form for the ionized
current also satisfiesj <rr / t<rQ=SQ= j Q for sufficiently
large r (and t) values. The accuracy of the CTMC method
was then reasoned to follow from these two asymptotic rela-
tions for the current, together with a good description of
electron-projectile collisions in the intermediate region,
where ionization is dominated by a direct mechanism yield-
ing soft electrons. In turn, such a description is understand-
able from the well-known fact that the two-body Rutherford
differential cross sections in classical and quantum mechan-
ics coincide(for a recent comparison of classical and quan-
tum mechanical Rutherford scattering, see, e.g., Ref.[31]).

We now apply a similar reasoning to electron capture. We
again consider three regions:(i) the initial stage of the colli-
sion, wherer<rQ and j = j Q=0; (ii ) the intermediate stage,
where a departure of the CTMC density from its quantal
analog is expected only when three-body effects are sizable;
and(iii ) the exit asymptotic region, where the capture part of
the distributionrcapsr ,p ,td peaks aboutp=v, so that, using a
peaking approximation,

j cap=E p rcapsr ,p,tddp < vE rcapsr ,p,tddp ; vrcapsr ,td

< vrQcapsr ,td. s9d

Now, since for the capture component in the close-coupling
expansion, ther dependence of its phaseS in this asymptotic
region takes essentially the form of the ETF, we have that
j Qcap=rQcap=Scap<vrQcap too. This ensures that the total
capture cross sections are close to each other. The accuracy
of partial cross sections then depends on how this capture
distributionrcapsr ,p ,td is partitioned intosnld subsets, which
brings up the question of how well are the final states repre-
sented by the method of BM. Since the first subset corre-
sponds to the initial state, which must also be described rea-
sonably well[step(i) above], we see that points(i) and (ii )
are related, and we start our analysis on how quantal effects
are introduced in the CTMC method by the partition method.

III. ACCURACY OF FINAL STATES

In the asymptotict→` domain, each trajectoryr jstd ,p jstd
describing a captured electron has a definite, constant energy
Epj with respect to the projectile, and may therefore be
considered as yielding a pointwise contribution
rmsr j ,p j ,Epjdd(p−p jstd)d(r −r jstd) to the statistical distribu-
tion. Adding up all trajectories, we obtain a sampling that
may be considered as a discretized approximation to a con-
tinuous superposition of the same form of Eq.(6):

rcapsr ,pd = Ncap
−1 o

j

Ncap

d„p − p jstd…d„r − r jstd…rmsr j,p j ;Epjd

< E rEsEpdrmsr ,p;EpddEp, s10d

where nowrEsEpd is a final density of projectile states.
As explained in paper I, the BM method ascribes each

trajectory of a captured electron to an atomic quantum state
by means of a partitioning of the phase space into subsets or
“bins” [7,27,32], and the ratio of trajectories falling into each
subset to the total number of trajectories then gives the cor-
responding partial probability. For the principal quantum
numbern the bins are defined bycsndøncZp/Î−2Ep,csn+1d,
or equivalently byEsndøEp,Esn+1d with Esnd=−Zp

2/2scsndd2

and nc=Î−1/2E. The values ofcsnd are obtained from the
condition that the volume of phase space divided bys2pd3

(in a.u.) equals the multiplicityn2 of then shell. This condi-
tion is obviously based on the high-n correspondence prin-
ciple, and yields[33]

scsn+1dd3 − scsndd3 = 3n2. s11d

The solution of this set of difference equations with the ini-
tial bin starting atcs1d=0 is

scsndd3 = sn − 1/2dsn − 1dn. s12d

A similar “binning” l /n,L /ncø sl +1d /n [7,27] (see also
Ref. [33]) employed for thel quantum number and the exit
classical angular momentumL yields ansn, ld partial distri-
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bution that may be considered as a discretized approximation
to

rsnldsr ,pd =E
Esnd

Esn+1d

rEsEpdrmsr ,p;Ep,lddEp, s13d

and this yields the corresponding partial transition probabil-
ity

Pnlsv,bd =E dr E dp rnlsr ,pd s14d

and cross section

snlsvd = 2pE db Pnlsv,bd. s15d

Since the procedure depends on the partition method em-
ployed, a pertinent question is whether the final(spatial and
momentum) densities actually obtained in collisions bear a
relation to the exact quantal ones, which is an aspect that
does not appear to have been explicitly checked. Upon in-
spection, we have found that forn.2 densities are indeed
reasonably accurate for the collisions considered here. We
now display an illustration of this point which is independent
of any particular impact parameter or nuclear velocity. Start-
ing from Eq. (10) for the case of a projectile Li3+, we can
reason that for highn values the energy intervalEsnd

øEp,Esn+1d is so small so that one can take an average

valuerEsEpd<ct within this interval, yielding an approxima-
tion which, once normalized to unity, takes the form

sEsnd − Esn+1dd−1E
Esnd

Esn+1d

rmsr ,p;Ep,lddEp. s16d

This approximation to the distribution of thenl state can then
be employed to obtain the corresponding spatial radial den-
sity and compare it to the quantal counterpart 4pr2uxsr du2.
We display these comparisons in Fig. 1 forn=3, 4, 5. As
expected, the classical densities exhibit no nodes; further-
more, thes component peaks atr =Zp/Esnd, and all compo-
nents vanish atr =Zp/Esn+1d, both features resulting from the
binning procedure and the discontinuous character of the mi-
crocanonical radial densityrmsr ,Ed [hence of the integrand
in (10)], which abruptly vanishes forr .Z/E. On the whole,
the overall comparison between classical and exact densities
is rather good, and improves with increasingl. Although our
illustrations employ an averaging approximation, we stress
that the densities actually obtained in our collisional calcula-
tions exhibit the same shapes and behavior. We thus con-
clude that the BM procedure provides a physically sound
procedure for the most important, outer part of the atomic
orbitals forn.2.

For n=2 the results(not shown) are less good but still
reasonable. This is not so for the 1s state, for which a direct
comparison of the collisional densities(the previous uniform

FIG. 1. Radial density function for differentnl levels in Li: —, quantum; - - -, obtained from binning[27].
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approximation is obviously meaningless in this case) shows
that the results are quite inaccurate. This is is not surprising,
in view of the use of the correspondence principle to obtain
the partition method, and is of little importance in the present
applications, since capture to Li2+s1sd or Ne9+s1sd is negli-
gible. A more detailed study shows that the results of the
partition method are most sensitive to the boundary between
the n=1 and 2 subsets. Another, more important, conse-
quence is that the procedure cannot be employed to construct
the initial Hs1sd state of the system, so that one is obliged to
employ different methods in the initial and exit regions to
relate the corresponding classical and quantal densities. This
gives the CTMC approach what seems to be an unavoidable
“asymmetrical” character.

IV. ACCURACY OF INITIAL 1 s STATE

Following the original proposal of Ref.[1], most CTMC
calculations for ion impact on Hs1sd have employed as initial
condition a microcanonical phase space distribution for the
target,rmsr ,p ,−0.5 a.u.d. This is known to yield a momen-
tum density that is identical to the quantal one, but a spatial
density that is too compact, with a cutoff value atr =2 a.u. If
one wishes to offset this liability, one can relax the restriction
of a sharp classical energy value. One possibility, suggested
by Eichenauer and Scheid[30] is to employ the Wigner func-
tion, so that both spatial and momentum densities are exact.
However, the Wigner function, considered as a classical dis-
tribution, is unstable in time, among other undesirable fea-
tures such as yielding a sizable number of electrons with
positive energies, so that, even in the absence of a projectile
and for all impact parameters and nuclear velocities, it would
yield a nonzero ionization probability. This shows the dan-
gers of a classical interpretation of the Wigner function, even
where it is definite positive.

To preserve stability in time in the absence of the projec-
tile, one can employ superpositions of microcanonical distri-
butions with different energy values, as in Eq.(6) or (7). For
instance, Hardie and Olson[15] employed a sum of eight
microcanonical distributions(7) with energiesEj falling
within the BM bin for the initial state(so as to avoid artificial
excitation in the absence of the projectile) and chosen from
equidistant cutoff values −1/Ej of the corresponding densi-
ties rmsr ,Ejd; the corresponding weightswj in Eq. (7) were
chosen from a least-squares fit of the quantal density. It was
further checked that a reasonable momentum density was
also obtained. Results were then seen to be better than the
single-microcanonical ones(see, e.g., Ref.[8]).

The finite sum method has the inconvenience that the de-
rivative of the initial radial density is discontinuous. This is
avoided by employing a continuous superposition such as
Eq. (6), which is a functionrsr ,pd= fsHd of H alone, and
which also yields a stable distribution. In the work of Cohen
[34], f was chosen such that the spatial density is exact, and
the corresponding momentum density was checked to be rea-
sonably accurate. This procedure appears to be marred by the
complicated form offsHd and from the fact that a small tail
of rEsEd falls outside the BM 1s bin, besides some unimpor-
tant odd features such as a negative energy density at very

low energies. In a further contribution, Raković et al. [33]
reasoned that neither spatial nor momentum densities should
be preferred, and proposed a simpler Gaussian form forfsHd,
with a dispersion parameter that is obtained by optimizing a
combined fit of spatial, momentum, and intermediate densi-
ties.

In Fig. 2 we display a comparison of the radial spatial and
momentum densities, respectively, obtained with the previ-
ous methods. We have also included the densities obtained
with two additional procedures:(i) that of improving the fit
of the spatial density given in Ref.[15], by using a sum of
ten microcanonical distributions in Eq.(7), and (ii ) that of
employing in Eq.(6) an energy densityrEsEd that takes a
Gaussian form in terms of a classical analog of then quan-
tum number,nc=Î−1/2E, with a cutoff fornc,0.5 a.u., and
whose dispersion parameter is determined by the condition
that the mean energykEl=−0.5 a.u. The main characteristics
of the distributions considered are given in Tables I(discrete
forms) and II (continuous forms). In our calculations, we
substituted in Eq.(6) the continuous distributions by ex-
tremely fine grids of discrete representations.

In Fig. 2 we show that, in spite of their rather different
generating conditions, both Gaussian forms yield very close
results, and that all forms provide good approximations to
spatial and momentum densities. The discrete forms(7) are
aesthetically less appealing, and, from the practical side, the
effect of their discontinuities in the derivatives is not obvi-
ous. However, they have the property that the corresponding
energies all fit within the 1s bin, whereas the continuous
superpositions involve energiesE.−0.24 a.u., which, ac-
cording to the binning procedure, would really describe ex-
cited states Hs2sd. The question whether this is a liability for
capture and ionization can only be answered by explicit cal-
culations.

V. COMPARISON OF CROSS SECTIONS

In the previous sections we have seen that the partitioning
method is a simple, and forn.2 a reasonably accurate, pro-
cedure to impose quantal conditions in the exit stage of the
collisional process; furthermore, it is a method that is not
easily improved. On the other hand, for the initial state we
have several possibilities, and it is worth finding out whether
the results are actually affected by these different choices.

We first consider Li3++H collisions. We display in Fig. 3
the total capture(a) and ionization(b) cross sections ob-
tained using the CTMC method described in Sec. II, together
with experimental [35–37] and accurate theoretical
[5,38–45] data. Although the comparison with these data is
discussed in Paper I, they are also included here as a guide to
the eye regarding the accuracy of the different classical re-
sults.

We first comment here that Fig. 3(a) is quite typical of
what we expect of the CTMC method for capture by a lowly
charged ion. We note that the scale has been chosen so as to
highlight the failure of the classical method to describe elec-
tron capture at low nuclear velocities. Results in the higher-
energy rangesv.1.2 a.u.d and for ionization are reasonably
accurate, as reported in paper I. Our next comment is that
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there is an overall improvement of the accuracy when Eq.(6)
or (7) is used as initial distribution rather than the single-
microcanonical choice, especially at low velocities. This can
be reasoned to be due to the fact that the ionization process
mainly involves the outer part of the 1s electron cloud, and is

consequently inhibited when one uses a description for this
cloud that is too compact. Incidentally, we note that our
single-microcanonical data agree well with those of Olson
and Salop[6], who used a rather limited number of trajecto-
ries: this indicates that statistically converged impact-
parameter and three-body CTMC cross sections are identical,
as can be expected from the success of the impact-parameter
approximation in the semiclassical context[13].

Turning now to the finer comparison between the CTMC
results using different initial conditions of the type of Eq.(6)

FIG. 2. Spatial and momentum initial densities as functions ofr (in a.u.) andp (in a.u.), respectively, for Hs1sd: - - -, quantum.(a) —,
ten microcanonicals.(b) —, eight microcanonicals.(c) —, single microcanonical.(d) —, Cohen(see Table II) (spatial density is identical to
quantum one). (e) —, Gaussian(see Table II). (f) —, Raković et al. (see Table II).

TABLE I. Coefficientswi, energiesEi, average energykEl, and
standard deviationS for the sum of eight and ten microcanonical
ensembles

Eight microcanonicals Ten microcanonicals

i −Ei wi −Ei wi

1 2.0 0.016 1.25 0.030

2 1.0 0.098 1.0 0.045

3 0.66 0.1923 0.8 0.069

4 0.5 0.2185 0.66 0.150

5 0.4 0.1849 0.5 0.187

6 0.33 0.1349 0.435 0.135

7 0.28 0.092 0.36 0.156

8 0.25 0.063 0.3 0.099

9 0.26 0.032

10 0.24 0.092

kEl −0.528 −0.509

S 0.047 0.031

TABLE II. Forms of energy density functionsrEsEd. The aver-
age energy is for[34] kEl=−0.5; [33], kEl=−0.478; Gaussian,kEl
=−0.5.E=−1/2nc

2.

rE

[34] Îp

4uEu4
e1/EF1

4
W−1/2,−1/2S−

2

E
D − S1 +

2

E
DW1/2,−1/2S−

2

E
DG

a

[33] Î2p3

25.66
nc

5e−10.1snc − 1d2

Gaussian 2.75e−11.95snc−1.2d2

aWk,mszd stands for Whittaker’s function(see[54]).
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or (7), we see that, although there is a slight improvement of
our fit with ten microcanonical distributions over the previ-
ous one of Hardie and Olson[15], discrepancies between the
use of different choices in Eq.(7) are very small. Similarly,
the results using in Eq.(6) the distribution of Cohen[34],
Raković et al. [33], and our Gaussian form(Table II) are so
close to each other that in Fig. 3 and in the following we
shall quote only the Cohen result. In addition, discrete(7)
and continuous(6) superpositions also yield close results.
For the sake of conciseness, we do not illustrate the fact that
all these agreements also hold for the partial cross sections.

Our calculated capture and ionization cross sections for
the Ne10++H system are displayed in Fig. 4, where we have
included other theoretical[5,46–51] and experimental[52]
results. Again, comparison of these data with our calcula-
tions is analyzed in Paper I. The total capture probabilities
[Eq. (14)] are given in Fig. 5 for some selectedv values. We

shall only emphasize the accuracy of the close-coupling data,
which are as good as for the previous system. We see from
Fig. 4 that the cross sections obtained with the CTMC and
close-coupling methods agree with each other much better
than in the previous case, and for the whole domain consid-
ered(down to v=0.2 a.u.). In fact, the reader may wonder
why we did not consider smaller nuclear velocities to find
out the “domain of validity” of the method for highly
charged projectiles; the reason will be apparent in the next
section. We also see from the figure that a sizable improve-
ment follows by using the initial conditions of Eqs.(6) and
(7) rather than the single-microcanonical choice, for both
capture and ionization. Discrepancies between the use of dif-
ferent initial densities in Eqs.(6) and (7) are slightly larger
than before, but are still very small, and are of the same order
as the small divergence with respect to the semiclassical
data. Use of the ten-microcanonical fit appears to fare best.

FIG. 3. Capture(a) and ionization(b) cross sections as functions of the relative nuclear velocityv for Li3++Hs1sd collisions:—, present
OEDM (88 states) molecular results;p, OEDM+GTO. Present classical results for different initial distributions(see Table II): ¯, single
microcanonical; - · -, Cohen; - ·· -, sum of eight microcanonical distributions; —, sum of ten microcanonical distributions. Other theoretical
results:s, [5]; ,, [38]; n, [44]; 3, [42]; h, [39]; L, [43]; v, [40]; +, [55]; - - · - -, [45]. Experimental results:P, [36]; j, [35,37].

FIG. 4. Total capture(a) and ionization(b) cross sections in Ne10++Hs1sd collisions, as functions of the relative nuclear velocityv:—,
present OEDM(213 states) molecular results;p, spherical Bessel monocentric expansion. Present classical results for different initial
distributions:¯, single microcanonical; - · -, Cohen; - ·· -, sum of eight microcanonical distributions; —, sum of ten microcanonical
distributions. Other CTMC calculations:n, [47]; s, [5]; h, [48]; ,, [49]·––·––, Hidden crossing calculations[46]. Perturbative calculations:
+, [50]; L, unitarized distorted wave approximation(UDWA) [51]. Experimental results:P, [52].
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The previous encouraging features are tempered by the
finding, reported in Paper I, that the low-v agreement be-
tween CTMC and close-coupling total capture cross sections
is less good for the partial ones. Hence, the domain of valid-
ity of the method can be stated to be similar for Li3+ and for
Ne10+ projectiles. This feature of accurate total cross sections
and poorer partial ones can only be the result of a cancella-
tion of errors, and we found that this is indeed the case.
Moreover, the compensation depends little on the initial dis-
tribution, although the use of the superposition of eight or ten
microcanonical distributions[Eq. (7) and Table I] appears to
behave better than the continuum ones[Eq. (6) and Table II].
The compensation effect does not take place for the partial
cross sections, and at higher velocitiessv.2 a.u.d, the clas-
sical probabilities become accurate. To examine some of the
reasons why the method fails at lowv, we now study the
mechanisms.

VI. COMPARISON OF MECHANISMS

The first question of a comparative study of the dynamics
described by the CTMC and semiclassical methods is
whether they describe a common mechanism. Such is the
case of ionization, for which it was shown in Ref.[14] that
even the time-dependent spatial and momentum densities are
alike. It is not easy, however, to extend that analysis to elec-
tron capture, where the main difficulty is to choose what
should be compared, or contrasted. For instance, drawings of
the overall densities yield similar pictures which are not il-
lustrative enough because of their compact structure. On the
other hand, the usual way to analyze mechanisms using the
molecular approach makes use of the so-called “collision

history”, given by the evolution of the populations[the
modulus squared of the expansion coefficients,uanstdu2; see
Eq. (3)] of the molecular channels along selected nuclear
trajectories. A more compact, related quantity is the elec-
tronic molecular energy, which is the expectation value of
the clamped-nuclei Hamiltonian:

Emol
cc std = o

n

uanstdu2En„Rstd…. s17d

This quantity depends on both the individual probabilities
and energies, differing when the total probabilities coincide
but the partial ones do not. To obtain the CTMC counterpart,
we must first define electronic velocities with respect to fixed
nuclei. This is readily done by substracting from the elec-
tronic momentap the drag from the nuclear motionfsr ,Rdv,
in an inverse procedure to the introduction of common ETFs
in close-coupling calculations[16,53], with the same switch-
ing function fsr ,Rd [see Eq.(4)] employed in the close-
coupling calculation[21]. The molecular energy of the dis-
cretized classical electrons distribution then reads:

Emol
CTMCstd =

1

N
o
i=1

N H1

2
fpi − fsr i,Rd ·vg2 −

1

r i
−

Zp

ur i − RuJ .

s18d

In the quantal molecular approach, electron transfer mostly
takes place through transitions between the molecular states
in the pseudocrossing regions of the correlation diagram. In
the classical approach, one substitutes this mechanism in-
volving dicrete states by one involving continua(or quasi-
continua), with a collisional energy densityrmolsEmold, with
mean valueEmol

CTMCstd and statistical dispersion

§std =Î 1

N
o
i=1

N H1

2
fpi − fsr i,Rd ·vg2 −

1

r i
−

Zp

ur i − Ru
− Emol

CTMCJ2

. s19d

FIG. 5. Capture probabilitiesPsbd times the impact parameterb, as functions ofb (in a.u.), for Ne10++Hs1sd collisions at different impact
velocities(for v=2 a.u. results correspond toe-loss probabilities): - - -, OEDM; —, 10 microcanonicals; - · -, Cohen;¯, single microca-
nonical.
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One can then expect that the more quantal molecular ener-
gies are included in a unit energy interval, the more accurate
can the classical approach be expected to be. In practice,
therefore, one may expect more problems at low velocities,
where the behavior of the collisional wave function at the
critical inner pseudocrossing becomes adiabatic, and the
cross section falls.

We can study this point and follow the workings of
rmolsEmold in the classical mechanism by considering the
evolution, for a given nuclear trajectory, of the collisional
energy bandfEmol

CTMC−Î2§ ,Emol
CTMC+Î2§g aboutEmol

CTMC. Obvi-
ously, for a single-microcanonical distribution§ is initially
zero, and increases at small distances where electron capture
take place, whereas for the hydrogenic initial state it is ini-
tially given by the dispersion of the distributions in Eqs.(6)
and (7), and accordingly its final value is larger than the
single-microcanonical one. For a given impact parameter,
one can then qualitatively gauge the size of the transition
probability to a givenn level by a consideration of the over-
lap of the energy band with that of an empirical molecular
bin. This can be obtained from an extrapolation to the mo-
lecular states of the binning method for the projectile states,
given by

Emol
n sRd = F 1

sn + 1d2 −
1

n2G−1HF 1

csnd2 −
1

n2GEn+1sRd

+ F 1

sn + 1d2 −
1

csnd2GEnsRdJ , s20d

which has the property that it tends to the atomic value at
infinite nuclear separations:

Emol
n sRd→R→`Esnd, s21d

with EnsRd andEn+1sRd the molecular quantal energies of Eq.
(17) andcsnd andEsnd defining the corresponding atomic bins
as given in Sec. III. One may then reason that the larger the
overlap and the largerrmolsEmold in the overlap region(e.g.,
the smaller the corresponding width§ there), the larger the
transition probability. We have checked the overall applica-
bility of this rule of thumb; we shall present some illustra-
tions, and quote other results.

In our analysis of the mechanisms, we have further split
the energies(17) and(18) into kinetic and potential parts; we
have studied individual electron trajectories in the classical
case, and the collision histories in the semiclassical calcula-
tions; and we have drawn the time variation of the quantal
[j Q of Eq. (2)] and classical[j of Eq. (5)] current density,
obtained, as in Ref.[14], by a local averaging process. Al-
though we have also studied the case of Li3++H, we restrict
our illustrations to the more “problematic” case of Ne10+ pro-
jectiles. We consider in Figs. 6(a)–6(c) the relative velocity
v=1 a.u., and three impact parameters:b=10 [Fig. 6(a)], 7
[Fig. 6(b)], and 3 a.u.[Fig. 6(c)]. It is useful to examine
these figures together with the drawings of the transition
probabilities ton=4 [Fig. 7(a)], 6 [Fig. 7(b)], and 8 [Fig.
7(c)], as functions of the impact parameterb.

Figure 6(a) shows that bothEmol
cc and Emol

CTMC diabatically
follow the energy of the entrance channelE10 9 0 (with para-
bolic quantum numbers 10 9 0) in the way in to the collision:
this means for instance that atR=40 a.u. it becomesE980; at

FIG. 6. Energy correlation diagram for the NeH10+ quasi-
molecule. Forv=1 a.u. and three impact parametersb (a) 10, (b) 7,
(c) 3 a.u. we also give the energy curves for the classical mean
molecular energyEmol

CTMC (- - -) and the values forEmol
CTMC±Î2§ (- .

-), yielding a dynamical energy band. This is to be compared with
the exit bands obtained from an empirical molecular binning pro-
ceeding, defined by the values ofEmol

n [Eq. (20)] (¯). Close-
coupling electronic molecular energyEmol

cc is also represented by
(m).
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R=25 a.u.,E870; and so on. In the way out from the collision
st.0d, the values of the molecular energies are given by
roughly the same combination of this initial energy andE760
and E650 so thatEmol

cc <Emol
CTMC. The physical mechanism as

given by the variation of the current density vector diagrams
consists in a part of the electron cloud being attracted by the
projectile and captured by it; the captured cloud first rotates
about the projectile, and finally shares its velocity along the
Z axis. We can now employ the overlap criteria between
collisional and BM energy bands, described above, to ex-
plain why transitions to the high-lying energy levels are rea-
sonably well reproduced by the CTMC calculations[Fig.
7(c)], since the corresponding partial cross sections are
dominated by the contributions of large impact parameters.
Incidentally, we mention that the corresponding overlaps
with the single-microcanonical results are extremely small,
thereby explaining why this method is unsuitable to treat
transitions to those states—just as it cannot describe ioniza-
tion at threshold.

Similarly, the energiesEmol
cc andEmol

CTMC in Fig. 6(b) have
roughly the same behavior. In this case, the electron cloud
strongly accelerates as it approaches the projectile, and this
results in a sudden increase of the electronic kinetic energy
when the two nuclei are closest, giving rise to the peculiar
“loop” of the molecular energies in the figure. We find, how-
ever, a limitation of the method that can be ascribed to an
inadequacy of the lower limit of the collisional band. This
appears to be a little too low so thatrmolsEmold is too diffuse
there, so that the probabilities ton=5 and 6[see Fig. 7(b)]
are underestimated. In turn, this behavior of the collisional
band can be attributed to a value for the smallest energy in
Eq. (7) (a rather arbitrary quantity) that is too low. Thus, the
results of using a single-microcanonical distribution are bet-
ter, because then one finds that the lower limit of the colli-
sional band lies slightly higher up.

These features are considerably enhanced in Fig. 6(c) for
b=3 a.u., in which case the collisional band even penetrates
too much in then=4 BM band, with the results that prob-
abilities to n=4 are considerably overestimated[Fig. 7(a)],
and the limitations of the method stand out clearly.

In addition to the previous features, we find that the clas-
sical method cannot, as expected, reproduce the destructive
interference of the phases in the amplitudes of the molecular
states(mainly the 760 and 650 states) in the way out of the
collision. At lower velocities, this well-known interference
phenomenon gives rise to noticeable Stückelberg oscillations
in the probability, which are visible in Fig. 5. Finally, at even
lower impact parameters(not illustrated here), the molecular

energies display a double “loop,” due to the rotation of the
electron cloud(first loop), in which the electrons are so much
accelerated that they issue with a velocity that is about 2v;
later on in the way out of the collision, the drag from the
projectile reduces this speed tov (second loop). In this case,
when considering spatial densities, one has the curious opti-
cal effect that the accelerated cloud appears to be pushed by
the projectile rather than being captured by it. It is notewor-
thy that in this way out of the collision, the quantal descrip-
tion of the electron cloud follows the same mechanism
through a complicated set of transitions to bonding molecu-
lar orbitals (quantum numbers 760, 650, 540, 430) at first,
and then to antibonding ones(quantum numbers 700, 710,
610, 600, 500, 400) in order to describe the accelerated cloud
traveling in front of the projectile.

VII. CONCLUSIONS

This work reports our findings on the accuracy of CTMC
treatments of electron capture in atomic collisions, which
were obtained in the course of the work reported in Paper I;
for this purpose, we have extended our calculations to such
low velocities that the limitations of the classical method are
highlighted. In our analysis of these limitations, we have
taken up a pragmatic viewpoint, in view of the difficulty of
setting up a suitable working scheme to relate classical and
quantal (or semiclassical) approaches: although either the
WKB or the Moyal-Wigner method would formally appear
to provide such a formal scheme, since they tend to the clas-
sical approach in the"→0 limit, we have argued that neither
of them is really appropiate. Thus, while the WKB method
has been widely used for nuclear trajectories, and has the
asset of providing a hierarchy of approximations from the
purely classical to the purely quantal formalism, it yields a
grossly inaccurate classical description of the initial state of
the collisional system, unlike the CTMC method. On the
other hand, the statistical Moyal-Wigner approach is un-
wieldy, and is unsuitable to provide suitable classical initial
states or the corrections to the Hamilton equations employed
in the CTMC treatment.

Because of this difficulty, we have chosen to focus on the
accuracy of specific capture and ionization probabilities and
cross sections. As in Paper I, we have focused on collisions
on Hs1sd targets, and low-chargedsLi3+d and high-charged
sNe10+d projectiles. For Li3+, there is a wealth of accurate
theoretical and experimental data, and we have added to
these data our results of close-coupling calculations employ-
ing a very large molecular basis including pseudostates. We

FIG. 7. State-selective transi-
tion probabilitiesbPsbd as func-
tions of b (in a.u.), for a Ne10+

+Hs1sd collision at impact veloc-
ity v=1.0 a.u.: - - -,OEDM; —,
ten microcanonicals; - · -, Cohen;
¯, single microcanonical.
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have then extended our study to Ne10+ projectiles, for which
there is little information, and which has recently become of
interest in fusion work. As a result of our encouraging find-
ings, a systematic calculation of capture and ionization cross
sections for other systems such as Arq++H, which is very
difficult to treat with close-coupling methods, is presently
under way.

In practice, a CTMC calculation involves three main
steps, to wit, constructing the initial probability distribution,
carrying out the classical trajectory calculations, and obtain-
ing the probabilities. While the second step is basically stan-
dard, the other ones involve what are, to some extent, op-
tional ways of imposing “quantal” conditions in an otherwise
classical formulation. We have thus investigated whether us-
ing different proposed initial conditions changes the results,
and whether the usual BM partitioning method for the exit
states is appropriate. With respect to the former, we find that
substituting the single-microcanonical description of the ini-
tial state by a sum[Eq. (4)] or integral[Eq. (3)] over micro-
canonical distributions significantly improves the results for
the ionization and total electron capture cross section. On the
other hand, those results are quite insensitive to the fine de-
tails of the improved initial state. This is good news for the
users of the method, but it also means that when the method
fails, little improvement can be reached in general by making
the description of the initial state of the system more sophis-
ticated.

With respect to the final states, we have illustrated how
the binning procedure yields a reasonable description of the
outer part of the electronic densities of atomic states with
n.2, the better for larger angular momentum, which is quite
reasonable from the way the method was developed. Unfor-
tunately, the procedure is useless to describe the Hs1sd initial
state, and the separation between the subsets corresponding
to Hs1sd and Hsn=2d is rather artificial. This means that
cross sections to Li2+ and Ne9+sn=1d, of no importance in
the present context, cannot be expected to be accurate. More
importantly, this would also affect excitation to Hsn=2d,
which was not treated here. Because of this limitation, the
CTMC method as is usually employed is limited to not-too-
low principal quantum numbers.

For higher-lying states, our main conclusion regarding the
overall accuracy of the CTMC method is quite encouraging,
and many of the previous findings on its accuracy for ioniza-
tion extend to electron capture for highn numbers. In fact, at
intermediate energies, CTMC and atomic close-coupling re-
sults for the total cross sections agree with each other, and
are probably more accurate than experiment with regard to
both ionization and capture. We have reasoned that the basis
for such a success for electron transfer must be similar as for
ionization, and must rely on a dominance of two-body inter-
actions in the capture process. A good proof that this is so is
that CTMC and semiclassical methods essentially describe
the same mechanism, as mentioned in the previous section.
On the other hand, at low velocities, the situation is not so
good as could be deemed from the cross sections: for Ne10+

projectiles, we have also seen that the accuracy of the total
charge exchange cross section does not quite extend to the
partial ones, and in particular, the partial cross sections to
n=4 are overestimated, while those ton=5, 6 are underesti-
mated. Consideration of the mechanisms involved has en-
abled us to trace this limitation to the fact that the superpo-
sitions (6) or (7) that are employed to represent the initial
distribution involve unphysically low energies. There seems
to be no way round this problem as long as one employs the
spatial and momentum distributions to gauge the quality of
this distribution, and requires the mean initial energy to be
about −0.5 hartree. Use of a single-microcanonical distribu-
tion is free from this liability, but then transitions to high-
lying and ionizing states are worse represented. Finally, the
problem takes place in a velocity domain where interference
effects also start to take place in the physical(quantal)
mechanism.
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