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The accuracy of classical trajectory Monte Carlo treatments of electron capture is studied, by focusing on
collisions on H1s) targets by L¥* and Né®" projectiles, treated in a separate paper. We examine how the
choice of the initial distribution, and the partition of phase space usually employed to calculate partial cross
sections, influence the accuracy of the method. With respect to the former, an improvement over the single-
microcanonical choice is advisable, but further refinements based on the electron density are not worthwhile.
Regarding the latter, we illustrate the accuracy of the “binning” method fo2. We show that classical and
semiclassical mechanisms are essentially the same, although at low velocities the method is unable to describe
the fall of the cross section.

DOI: 10.1103/PhysRevA.70.052713 PACS nuniber34.10+x, 34.70:+e

I. INTRODUCTION Ref. [20] for atomic bases. Likewise, a study of the accuracy

. . of the CTMC method for ionization has been presented in
Despite the large amount of research carried out on th efs.[14,20. However, such a study is lacking for electron
subject, the conditions of validity of the computational teCh'captl.Jre even though some features are worth investigating.
hiques of classical physics remain an open question, whose s \ye|| known limitation at loww concerns the inability of
answer depends not only on the nature of the problem bupe classical approach to treat HH resonant charge ex-
also on the particular method employed. This is because feWhange, for obvious reasons. However, in the other extreme
of these methods are pure_ly classical, and most of them INsf highly charged projectile impact on H, very little is known
corporate quantal effects in some form or another. Such i§ the accuracy of the method. The answer is useful, because
the_ case, in the field of atomic coII|S|ons,_ qf the classicalpe computational effort of the CTMC approach is roughly
trajectory Monte CarlqCTMC) method, originally devel- jnqependent of the nuclear charge, which is certainly not the
oped by Abrines and Percivgl], and whose basis has been 556 of close-coupling techniques; it would thus be very use-
examined in, e.g., Ref$2—4]. Its success is due to both its fy (o treat, e.g., collisions of atomic hydrogen and helium
ease of application and its accuracy. With respect to th?argets with highly charged ions such aseor Arie*,
former, the simplicity of its algorithms stand in sharp con-hich have recently become of strong interest in the study of
trast with, say, close-coupling programs that require addig,sjon plasmas. Another point to be elucidated is the accu-
tionally a considerable amount of “know-how.” Regarding racy of probabilities and partial cross sections. A third aspect
the accuracy, the CTMC method has been successfully ems \hether this accuracy has a physical basis, arising from a
ployed to obtain reliable totalsee, e.g.[5-9) and partial  common mechanism with quantal approaches, or is partially

capture(e.g., [10-12) cross sections, using either the so- cincidental, and what are the main features of the method
called three-body5] or the impact-parametdd 3] version.  inat determine its limitations.

Moreqver, the .me.thoq works best in tlf@ifficult) energy _ Regarding the first point of accuracy of the CTMC
domain where ionization and electron capture compete Withathod, its success was confirmed by explicit calculations
each other, and its precision is not limited to the cross Seqg] for impact of H1s) with ions ranging from H to O8*.
tions, extending14] to the ionization probabilities and even T1is was further corroborated by a recent treatm@a1],
spatial and momentum densities, when an accurate initiglgreafter called Papey for Nel% impact on H, in which

distribution is employedl15]. In addition, it can provide pic- .50y lated capture and ionization cross sections are accurate
torial tools for the description of the mechanisfid,16—-18. over a wide range of energi¢d0< E< 250 keV amd') as
Since publ_|cat|ons usually report positive re_sultsz itis use'compared to converged close-coupling results using a very
ful for potential users to know the limits within which suc- large basis. From all these data alone, one would tend to
cessful methods can be safely employed. In this spirit, ang . de that the accuracy of CTMC treatments improves

analysis of the !imitations of close-coupling methods ha%ith the nuclear charge of the projectile. However, it was
been presented in RefL9] for molecular expansions and in also found in Paper | that the excellent accuracy does not

quite extend to the partial cross sections, which led us to

investigate the limits of confidence of the classical method,

* Author to whom correspondence should be addressed. Electronigsing the molecular calculations as a standard of comparison.
address: jaime.suarez@uam.es In addition, since Paper | treated both®14+H and Ne&®
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collisions, we were able to analyze the dependence of the 1, )
main features on the charge of the projectile. We further Ur,n =1(r,R)v -r = SHr, Rjv"t. (4)
extended the analysis to find out to what extent the limitation
of the method depends on what are usually considered thEo extend the molecular expansion to high energies, where
optional aspects of the CTMC method. For the sake of coionization starts to be sizable, we have carried out calcula-
gency, our main findings on these topics are described septions by adding to the OEDM basis a set of Gaussian func-
rately in the present paper. tions, centered on an intermediate point of the internuclear
In the next section we briefly state some details of theaxis, and whose populations yield the ionization probability;
methods that are additional to those given in Paper I. In Sec#his is the expansion called OEDM+GTGaussian-type or-
Il and IV we focus our attention on the delicate topic of the bital). The basis set for Ef+H(1s) collisions includes 35
incorporation of quantal aspects in the asymptotic region©EDM orbitals and a set of 80 GTOs. For &+ H(1s) we
where reaction channels are defined. The accuracy of captuegnployed a set of 213 OEDMs. Details of these basis sets are
and ionization cross sections is discussed in Sec. V, and angiven in Paper |.
lyzed through the mechanisms in Sec. VI. Our main conclu- As explained in Paper I, and in parallel with the semiclas-
sions are drawn in Sec. VII. sical approach, our classical work employed an impact-
Atomic units are employed except where otherwise statecharameter CTMC method, in which the internuclear vector
follows linear trajectories, and the electronic probability dis-
tribution p(r,p,t) is generated through aN-point discrete
representation of this distribution:
In the semiclassical treatment of Paper |, we employed an 1
impact-parameter formalism, in which the electronic wave p(r,p,t)y==> &(r - ri(t)s(p - p;(1), (5)
function satisfies a time-dependent Schroédinger equation for Njz1

the Born-Oppenheimer fixed-nuclei Hamiltonign and the
internuclear vectoR=b+vt follows a linear trajectory with

II. SEMICLASSICAL AND CLASSICAL METHODS

wherer andp are the position and momentum vector of the
) locitw. T blish . electron, respectively, with respect to the target nucleus. Sub-
impact paramete and velocityv. To establish a connection 4y tion of the pointwise representation in the Liouville

with classical calculations, we introduce asin Ra#] the . equation then yields the Hamilton equations for the indi-
polar form of the wave function representing the electroniq;iy ) rj(t),p;(t) trajectories. Initial conditions for these
motion: equations were obtained from a sampling of a statistical dis-
. _— tribution p(r ,p) for the H(1s) state, which was taken to be
W(r,t) = [W(r,p]eS" = po(r,H)eSr. (1) either a microcanonical distributiop™(r ,p;E), or superpo-
o o . . ... sitions of such distributions; by substitution in the Liouville
Subst_ltutlon in the Schrodlnger equation yields the Cont'nu'tyequation, both choices are seen to be time independent in the
equation for the density: absence of the projectile. In our calculations, we considered
5 continuum superpositions
P v jo=-V (peV 9. )
! p(r,p) = f pe(E)p™(r,p;E)dE = 272773
As explained in Paper I, to solve the impact parameter equa-
tion, we expande® in a close-coupling series in terms of a XJ (- E)*2pe(E)5(H - E)dE (6)
basis of the so-called one-electron-diatomic-molecule
(OEDM) orbitals y; of the LiH3* or NeH** quasimolecule,

. ) . i m
modified with a common translation fact@TF) U [22-25: as well as discrete sums

p(r,p) = 2 Wip™(r,p; Ej) = 272773 wj(- E))*28(H - E))
i j

t
W(r,v,b,t) =V ak(v,b,t)Xk(r,R)exp<— if Ek(t’)dt’>.
K 0 (7)
(3)  to be discussed in Sec. IV.

The Hamilton equations were integratg&b] up to inter-
The CTF is mainly introduced to satisfy the limit conditions nuclear distances of the order of31® achieve full conver-
of the problem, so that the basis functiogexp(iU) are  gence of the densities and probabilities. For each nuclear
uncoupled at infinite internuclear separations. As is wellrajectory, the capture transition probabilities are given by
known, this requirement only determines the mathematicalhe relative number of asymptotic trajectories that yield a
form (plane wavep of the electronic translation factors negative energy with respect to the projectile and a positive
(ETF’s) in this asymptotic limit. For finite internuclear dis- energy with respect to the target; similarly, ionization prob-
tancesR, the CTF approach chooses Rrdependent inter- abilities are obtained from the relative number of asymptotic
polative form between the plane waves corresponding to th&ajectories that have positive energies with respect to both
projectile and to the target channels, which is defined imuclei. Total cross sections are then given by summing the
terms of a switching functiorfi(r ,R): corresponding probabilities over all nuclear trajectories. Par-
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tial cross sections to a givem state were obtained by the

usual partitioning of phase space intgl “bins,” due to jcap:f P peadrl,p,t)dp *prcap(r,p,t)dp = Vpeadr,t)
Becker and MacKellathereafter called BM[27]. A simple

connection between the CTMC and the semiclassical ap- ~ Vpqeadl»t). (9
proaches can formally be obtained by integrating Liouville’sNOW since for the capture component in the close-coupling
equation with respect to the momentum variables. This =~

. - X . , ) expansion, the dependence of its pha&an this asymptotic
yields a continuity equation for the spatial density ,1): region takes essentially the form of the ETF, we have that

3 p(r 1) J acap=Pacap¥ Scap™ VPocap 100. This ensures that the total
—~=-V.j=-V f p p(r,p,t)dp, (8) capture cross sections are close to each other. The accuracy
at of partial cross sections then depends on how this capture

distributionpc,dr ,p,t) is partitioned inta(nl) subsets, which

brings up the question of how well are the final states repre-
P - sented by the method of BM. Since the first subset corre-
employing in Eq(2) the standard textbook WKB limit form sponds to the initial state, which must also be described rea-

of S which is the classical char_actgris_tic functia It was sonably well[step(i) abovd, we see that pointd) and (ii)
shown in that reference that for ionization the accuracy of th%re related and we start o;Jr analysis on how quantal effects

CTMC method is far superior to what one would expect_ _ . . L
from the WKB approach—which is rather poor since theare introduced in the CTMC method by the partition method.

wavelength corresponding to the ionized electron is of the

which is analogous to Eq2). However, as pointed out in
Ref.[14], it would be misleading to pursue the connection by

size of the colliding region. IIl. ACCURACY OF FINAL STATES
At first sight, a better connection between classical and . _ .
quantal statistical approaches was pointed out in R&f.in In the asymptoti¢ — o domain, each trajectomy(t), p;(t)

terms of quantal Wigner distributiorisee Ref[28]), and the ~ describing a captured electron has a definite, constant energy
Moyal-Wigner equatior(Ref. [29]) whose classical limit in Epj With respect to the projectile, and may therefore be
natural units(#— 0) is the Liouville equation. However, un- considered ~ as yielding a pointwise  contribution
like this latter equation, the Moyal-Wigner counterpart, even?" Ui+, Ep) Ap=p;()) &(r —r(1)) to the statistical distribu-
when truncated t@(#?), does not seem to be amenable to ation- Adding up all trajectories, we obtain a sampling that
discretization procedure leading to electron trajectories, s§'@y be considered as a discretized approximation to a con-
that one is compelled to work within the classical limit. This, inuous superposition of the same form of E6):

however, has the inconvenience that the Wigner function is Neap

unstable when its evolution is treated in this classical limit, p_(r,p)=N;L> 8(p - p;©)5(r - r;©)p™(r;,p}Ep

and also has some unphysical properties when considered in j

a classical contexf30] (see Sec. IY. Hence, though for-

mally appealing, th_is I_ine of thought has not been actually ~ f pe(Ep)p™(r,p; E)dE,, (10)
pursued in a quantitative way.

A less formalistic approach to the connection betwee
classical and quantal methods was taken in Ref] for
ionization, and we briefly recall the arguments. To start with
for any reasonable initial distribution=0=]jq. Furthermore,
as shown in Ref[20], the asymptotic form for the ionized

MWwhere nowpe(E,) is afinal density of projectile states.

As explained in paper |, the BM method ascribes each
trajectory of a captured electron to an atomic quantum state
by means of a partitioning of the phase space into subsets or
Lo . - “bins” [7,27,33, and the ratio of trajectories falling into each
current also satisfiep= pr /t=~poVSy=]q for sufficiently subset to the total number of trajectories then gives the cor-

larger (andt) values. The accuracy of the CTMC method . . 0 L
) I ndin rtial pr ility. For th rincipal ntum
was then reasoned to follow from these two asymptotic relacs PO ding partial probability. For the principal guantu

i ; n< — < ¢+l
tions for the current, together with a good description Ofnumbern the bins are defined by NoZp/ \=2Bp=c™" "

o L . . ; . i M <E <EMD i N =_ ()2
electron-projectile collisions in the intermediate reglon,Or equivalently byE Ep<E with E ZP/Z(C )

=\/- (n) i
where ionization is dominated by a direct mechanism yield—and n.=v=1/2E. The values oic™ are obtained from the

ha g 3
ing soft electrons. In turn, such a description is understandgondltlon that the volume of phase space divided(2y)

able from the well-known fact that the two-body Rutherford (_in a.u) equals the multiplicin” of the n shell. This condi-

differential cross sections in classical and quantum mechar}io" 1S obwc_)usly based on the highcorrespondence prin-

ics coincide(for a recent comparison of classical and quan-c'ple’ and yieldg33]

tum mechanical Rutherford scattering, see, e.g., Rdf). (D)3~ (cM)3=3n2, (11
We now apply a similar reasoning to electron capture. We

again consider three region@) the initial stage of the colli- The solution of this set of difference equations with the ini-

sion, wherep~ po andj=jo=0; (i) the intermediate stage, tial bin starting atc'V=0 is

where a departure of the CTMC density from its quantal (N3 — [ _

analog is expected only when three-body effects are sizable; (©)*=(n=172(n=Dn. (12

and(iii ) the exit asymptotic region, where the capture part ofA similar “binning” I/n<L/n.<(1+1)/n [7,27] (see also

the distributionpc,r ,p,t) peaks aboup=v, so that, using a Ref. [33]) employed for thd quantum number and the exit

peaking approximation, classical angular momentumyields an(n,l) partial distri-
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FIG. 1. Radial density function for differemti levels in Li: —, quantum- - -, obtained from binning27].

bution that may be considered as a discretized approximatiovalue pg(E,) ~ ct within this interval, yielding an approxima-
to tion which, once normalized to unity, takes the form

g(n+1) (n+1)
p(m)(r,p) = f o PE(Ep)pm(r,p;Eva)dEpv (13 (E(n) _ E(n+1))—1JE p"(r,p; Ep,l)dEp. (16)
gln E(n)

and this yields the corresponding partial transition probabil
ity

This approximation to the distribution of thm state can then
be employed to obtain the corresponding spatial radial den-

Pnl(v!b):Jdrfdp Pnl(rap)

sity and compare it to the quantal counterpartrZy(r)|?.

(14) We display these comparisons in Fig. 1 for3, 4, 5. As
) expected, the classical densities exhibit no nodes; further-
and cross section more, thes component peaks at=Z,/E™, and all compo-
nents vanish at=2,/E™?, both features resulting from the
(V) = 27Tf db Py(v,b). (15  binning procedure and the discontinuous character of the mi-

crocanonical radial density™(r ,E) [hence of the integrand
Since the procedure depends on the partition method enirn (10)], which abruptly vanishes far>Z/E. On the whole,

ployed, a pertinent question is whether the fi(edatial and the overall comparison between classical and exact densities
momentum densities actually obtained in collisions bear ais rather good, and improves with increasindlthough our
relation to the exact quantal ones, which is an aspect thalustrations employ an averaging approximation, we stress
does not appear to have been explicitly checked. Upon inthat the densities actually obtained in our collisional calcula-
spection, we have found that for>2 densities are indeed tions exhibit the same shapes and behavior. We thus con-
reasonably accurate for the collisions considered here. Welude that the BM procedure provides a physically sound
now display an illustration of this point which is independentprocedure for the most important, outer part of the atomic
of any particular impact parameter or nuclear velocity. Start-orbitals forn>2.

ing from Eq.(10) for the case of a projectile £i, we can For n=2 the resultgnot shown are less good but still
reason that for highn values the energy intervaE™ reasonable. This is not so for the dtate, for which a direct
<E, < E™D js so small so that one can take an average&omparison of the collisional densitiéhe previous uniform
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approximation is obviously meaningless in this gasgows low energies. In a further contribution, Rakéwet al. [33]

that the results are quite inaccurate. This is is not surprisingeasoned that neither spatial nor momentum densities should
in view of the use of the correspondence principle to obtairbe preferred, and proposed a simpler Gaussian forrfi( oy,

the partition method, and is of little importance in the presentwith a dispersion parameter that is obtained by optimizing a
applications, since capture to2{1s) or Ne’*(1s) is negli-  combined fit of spatial, momentum, and intermediate densi-
gible. A more detailed study shows that the results of thdies.

partition method are most sensitive to the boundary between In Fig. 2 we display a comparison of the radial spatial and
the n=1 and 2 subsets. Another, more important, consemomentum densities, respectively, obtained with the previ-
quence is that the procedure cannot be employed to construstis methods. We have also included the densities obtained
the initial H(1s) state of the system, so that one is obliged towith two additional proceduresi) that of improving the fit
employ different methods in the initial and exit regions to of the spatial density given in Ref15], by using a sum of
relate the corresponding classical and quantal densities. Thien microcanonical distributions in E¢7), and (i) that of
gives the CTMC approach what seems to be an unavoidabkmploying in Eq.(6) an energy densityg(E) that takes a

“asymmetrical” character. Gaussian form in terms of a classical analog of thguan-
tum numbern,=+-1/2E, with a cutoff forn,<0.5 a.u., and
IV. ACCURACY OF INITIAL 1 s STATE whose dispersion parameter is determined by the condition

. o that the mean enerdg§)=-0.5 a.u. The main characteristics
Following the original proposal of Refl], most CTMC s the distributions considered are given in Tablédiscrete

calculations for ion impact on ¢1s) have employed as initial forms) and Il (continuous formg In our calculations, we
condition a microcanonical _ph_ase space distribution for theyypstituted in Eq(6) the continuous distributions by ex-
target,p™(r,p,~0.5 a.u). This is known to yield a momen- tremely fine grids of discrete representations.
tum density that is identical to the quantal one, but a spatial |n Fig. 2 we show that, in spite of their rather different
density that is too compact, with a cutoff valuera2 a.u. If  generating conditions, both Gaussian forms yield very close
one wishes to offset this liability, one can relax the restrictionresults, and that all forms provide good approximations to
of a sharp classical energy value. One possibility, suggesteshatial and momentum densities. The discrete foffasare
by Eichenauer and Schefié0] is to employ the Wigner func-  gesthetically less appealing, and, from the practical side, the
tion, so that both spatial and momentum densities are exacéffect of their discontinuities in the derivatives is not obvi-
However, the Wigner function, considered as a classical dispus. However, they have the property that the corresponding
tribution, is unstable in time, among other undesirable feagnergies all fit within the 4 bin, whereas the continuous
tures such as yielding a sizable number of electrons witlsuperpositions involve energigs>-0.24 a.u., which, ac-
positive energies, so that, even in the absence of a projectilgyrding to the binning procedure, would really describe ex-
and for all impact parameters and nuclear velocities, it wouldsited states KPs). The question whether this is a liability for

yield a nonzero ionization probability. This shows the dan-capture and ionization can only be answered by explicit cal-
gers of a classical interpretation of the Wigner function, everyy|ations.

where it is definite positive.

To preserve stability in time in the absence of the projec-
tile, one can employ superpositions of microcanonical distri-
butions with different energy values, as in E) or (7). For In the previous sections we have seen that the partitioning
instance, Hardie and Olsdil5] employed a sum of eight method is a simple, and far>2 a reasonably accurate, pro-
microcanonical distributiong7) with energiesE; falling  cedure to impose quantal conditions in the exit stage of the
within the BM bin for the initial statéso as to avoid artificial  collisional process; furthermore, it is a method that is not
excitation in the absence of the projectind chosen from easily improved. On the other hand, for the initial state we
equidistant cutoff values ~E of the corresponding densi- have several possibilities, and it is worth finding out whether
ties p™(r,E;); the corresponding weights; in Eq. (7) were  the results are actually affected by these different choices.
chosen from a least-squares fit of the quantal density. It was We first consider L13*+H collisions. We display in Fig. 3
further checked that a reasonable momentum density wahe total capturga) and ionization(b) cross sections ob-
also obtained. Results were then seen to be better than th&ined using the CTMC method described in Sec. Il, together
single-microcanonical ongsee, e.g., Ref8]). with experimental [35-37 and accurate theoretical

The finite sum method has the inconvenience that the dg5,38—45 data. Although the comparison with these data is
rivative of the initial radial density is discontinuous. This is discussed in Paper I, they are also included here as a guide to
avoided by employing a continuous superposition such aghe eye regarding the accuracy of the different classical re-
Eq. (6), which is a functionp(r ,p)=f(H) of H alone, and sults.
which also yields a stable distribution. In the work of Cohen  We first comment here that Fig(a is quite typical of
[34], f was chosen such that the spatial density is exact, an@hat we expect of the CTMC method for capture by a lowly
the corresponding momentum density was checked to be reaharged ion. We note that the scale has been chosen so as to
sonably accurate. This procedure appears to be marred by théghlight the failure of the classical method to describe elec-
complicated form off(H) and from the fact that a small tail tron capture at low nuclear velocities. Results in the higher-
of pe(E) falls outside the BM & bin, besides some unimpor- energy rangév > 1.2 a.u) and for ionization are reasonably
tant odd features such as a negative energy density at veaccurate, as reported in paper I. Our next comment is that

V. COMPARISON OF CROSS SECTIONS
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FIG. 2. Spatial and momentum initial densities as functions @fi a.u) andp (in a.u), respectively, for Kils): - - -, quantum.(a) —,
ten microcanonicalgb) —, eight microcanonicalgc) —, single microcanonicald) —, Cohen(see Table Ii (spatial density is identical to
guantum ong (e) —, Gaussiar(see Table ll. (f) —, Rakovt et al. (see Table ).

there is an overall improvement of the accuracy when(Bg. consequently inhibited when one uses a description for this
or (7) is used as initial distribution rather than the single-cloud that is too compact. Incidentally, we note that our
microcanonical choice, especially at low velocities. This cansingle-microcanonical data agree well with those of Olson
be reasoned to be due to the fact that the ionization processd Salod6], who used a rather limited number of trajecto-
mainly involves the outer part of thes&lectron cloud, and is ries: this indicates that statistically converged impact-
parameter and three-body CTMC cross sections are identical,
TABLE |. Coefficientsw;, energiesE;, average energéE), and  as can be expected from the success of the impact-parameter
standard deviatiors for the sum of eight and ten microcanonical approximation in the semiclassical cont¢x8].
ensembles Turning now to the finer comparison between the CTMC
results using different initial conditions of the type of E6)

Eight microcanonicals Ten microcanonicals
i E W E W TABLE Il. Forms of energy density functionsg(E). The aver-
! ' : : age energy is fof34] (E)=-0.5;[33], (E)=-0.478; GaussianE)

1 2.0 0.016 1.25 0.030 =-0.5.E=-1/2n:.

2 1.0 0.098 1.0 0.045

3 0.66 0.1923 0.8 0.069 PE
4 0.5 0.2185 0.66 0.150

5 0.4 0.1849 0.5 0.187 [34] 7 1 2 > >

—— 7€ SWLyp i = = | = 1+ = W d — =

6 0.33 0.1349 0.435 0.135 P Al £ |Waz-14 = 2

7 0.28 0.092 0.36 0.156 a

8 0.25 0.063 0.3 0.099 5

9 0.26 0.032 - 2T eerton -7

’ : 25.66 °©

10 0.24 0.092
(E) -0.528 -0.509 Gaussian 2 755-11.949n.-1.27

S 0.047 0.031

W, ,(2) stands for Whittaker’s functiotsee[54]).
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FIG. 3. Capturga) and ionization(b) cross sections as functions of the relative nuclear velacftyr Li*+H(1s) collisions:—, present
OEDM (88 states molecular resultsy, OEDM+GTO. Present classical results for different initial distributi¢gee Table I ---, single
microcanonical- - -, Cohen; - -- -, sum of eight microcanonical distributions; —, sum of ten microcanonical distributions. Other theoretical
results:O, [5]; V, [38]; A, [44]; X, [42]; T, [39]; <, [43]; <, [40Q]; +, [55]; - - - - - , [45]. Experimental results®, [36]; H, [35,37.

or (7), we see that, although there is a slight improvement othall only emphasize the accuracy of the close-coupling data,
our fit with ten microcanonical distributions over the previ- which are as good as for the previous system. We see from
ous one of Hardie and Olsda5], discrepancies between the Fig. 4 that the cross sections obtained with the CTMC and
use of different choices in Eq7) are very small. Similarly, close-coupling methods agree with each other much better
the results using in Eq6) the distribution of Coheri34], than in the previous case, and for the whole domain consid-
Rakovi et al. [33], and our Gaussian fortfTable Il) are so  ered(down tov=0.2 a.u). In fact, the reader may wonder
close to each other that in Fig. 3 and in the following wewhy we did not consider smaller nuclear velocities to find
shall quote only the Cohen result. In addition, discrgte  out the “domain of validity” of the method for highly
and continuoug6) superpositions also yield close results. charged projectiles; the reason will be apparent in the next
For the sake of conciseness, we do not illustrate the fact thatection. We also see from the figure that a sizable improve-
all these agreements also hold for the partial cross sectionsnent follows by using the initial conditions of Eg&) and

Our calculated capture and ionization cross sections fof7) rather than the single-microcanonical choice, for both
the Né%*+H system are displayed in Fig. 4, where we havecapture and ionization. Discrepancies between the use of dif-
included other theoreticgb,46-51 and experimental52] ferent initial densities in Eqg6) and (7) are slightly larger
results. Again, comparison of these data with our calculathan before, but are still very small, and are of the same order
tions is analyzed in Paper I. The total capture probabilitiesas the small divergence with respect to the semiclassical
[Eq. (14)] are given in Fig. 5 for some selectedralues. We  data. Use of the ten-microcanonical fit appears to fare best.

0 —————T———"T— T 50_""|""| T T ]
=g ] u N ]
o T 4 40F -
E ] C N
e . C -
2 1 wF -
£ 50 — C ]
s Tk i C

s F 4 20 =
2 - 3 r n
ot 3 f :
9 - C N
©or 10 =
0-.|...|...|...|...- 0_...;: FEPEPE B B
0.4 0.8 12 1.6 2 0 1 2 3 4 5

(a) v (a.u.) (b) v (au.)

FIG. 4. Total capturga) and ionization(b) cross sections in N&"+H(1s) collisions, as functions of the relative nuclear veloaity—,
present OEDM(213 states molecular resultsy, spherical Bessel monocentric expansion. Present classical results for different initial
distributions:- -+, single microcanonical- - -, Cohen; - -- -, sum of eight microcanonical distributions; —, sum of ten microcanonical
distributions. Other CTMC calculationg, [47]; O, [5]; [T, [48]; V, [49]-——, Hidden crossing calculatigds®]. Perturbative calculations:
+, [50]; ¢, unitarized distorted wave approximatigdDWA) [51]. Experimental results®, [52].
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FIG. 5. Capture probabilitieB(b) times the impact parametby as functions ob (in a.u), for Net®*+H(1s) collisions at different impact
velocities(for v=2 a.u. results correspond &loss probabilities - - -, OEDM; —, 10 nicrocanonicals- - -, Cohen;: -+, single microca-
nonical.

The previous encouraging features are tempered by thieistory”, given by the evolution of the populatiorishe
finding, reported in Paper I, that the lawagreement be- modulus squared of the expansion coefficietag(t)|?; see
tween CTMC and close-coupling total capture cross sectiongg. (3)] of the molecular channels along selected nuclear
is less good for the partial ones. Hence, the domain of validtrajectories. A more compact, related quantity is the elec-
ity of the method can be stated to be similar fof*Land for  tronic molecular energy, which is the expectation value of
Ne'%* projectiles. This feature of accurate total cross sectionshe clamped-nuclei Hamiltonian:
and poorer partial ones can only be the result of a cancella-
tion of errors, and we found that this is indeed the case. E‘r’ncol(t):E |a,()|2En(R(1)). 17
Moreover, the compensation depends little on the initial dis- n
tribution, although the use of the superposition of eight or te
microcanonical distributionfEq. (7) and Table ] appears to
behave better than the continuum oifigg. (6) and Table I].

Mrhis qguantity depends on both the individual probabilities
and energies, differing when the total probabilities coincide

Th . ffect d ke Dl for th 'Qti/m the partial ones do not. To obtain the CTMC counterpart,
e compensation effect does not take place for the partigf, s first define electronic velocities with respect to fixed

cross sections, and at higher velocities-2 a.u ), the clas- 1 cjei This is readily done by substracting from the elec-
sical probabilities become accurate. To examine some of theonic momenta the drag from the nuclear motidir , R)v,
reasons why the method fails at law we now study the i, 5 inverse procedure to the introduction of common ETFs
mechanisms. in close-coupling calculationd 6,53, with the same switch-
ing function f(r,R) [see Eq.(4)] employed in the close-
coupling calculation[21]. The molecular energy of the dis-

VI. COMPARISON OF MECHANISMS cretized classical electrons distribution then reads:

The first question of a comparative study of the dynamics N
described by the CTMC and semiclassical methods is ECTMC(y) = 12 }[Di —f(r,R) - V]2 - 1.4 _
whether they describe a common mechanism. Such is the Niz (2 rori-R]|

case of ionization, for which it was shown in R¢14] that (19)

even the time-dependent spatial and momentum densities are

alike. It is not easy, however, to extend that analysis to elechh the quantal molecular approach, electron transfer mostly
tron capture, where the main difficulty is to choose whattakes place through transitions between the molecular states
should be compared, or contrasted. For instance, drawings @f the pseudocrossing regions of the correlation diagram. In
the overall densities yield similar pictures which are not il-the classical approach, one substitutes this mechanism in-
lustrative enough because of their compact structure. On theolving dicrete states by one involving contingar quasi-
other hand, the usual way to analyze mechanisms using thentinug, with a collisional energy density,o/(Emno), With

molecular approach makes use of the so-called “collisiormean valueES[ () and statistical dispersion

N
= 1 } - . . 2_}__ZP__ CTMC z
g(t)— \/Ngl{z[pl f(rwR) V] r |I’i—R| EmoI } . (19)

052713-8



ACCURACY OF THE CLASSICAL TRAJECTORY MONTE. PHYSICAL REVIEW A 70, 052713(2004)

One can then expect that the more quantal molecular ener-
gies are included in a unit energy interval, the more accurate
can the classical approach be expected to be. In practice,
therefore, one may expect more problems at low velocities,
where the behavior of the collisional wave function at the
critical inner pseudocrossing becomes adiabatic, and the
cross section falls. [
We can study this point and follow the workings of Y IR
pPmol(Emo) in the classical mechanism by considering the S T n=s ]
evolution, for a given nuclear trajectory, of the collisional [
energy bandESTMC -2, ESTMC+125] aboutESTMC. Obvi-
ously, for a single-microcanonical distributienis initially R
zero, and increases at small distances where electron capture 0o 10 20 30 4
take place, whereas for the hydrogenic initial state it is ini- @ R(au.)
tially given by the dispersion of the distributions in E@6)
and (7), and accordingly its final value is larger than the
single-microcanonical one. For a given impact parameter,
one can then qualitatively gauge the size of the transition
probability to a givem level by a consideration of the over-
lap of the energy band with that of an empirical molecular
bin. This can be obtained from an extrapolation to the mo-
lecular states of the binning method for the projectile states,
given by

\ 1 1071 1
“h=| | HW?]EMR)

. { 1 1 } En(R)} ' (20) (b) R (a.u.)

(n+1)? c?

L /z‘é F1T st

E(au)

which has the property that it tends to the atomic value at
infinite nuclear separations:

EnmoI(R)_)RHocE(n)u (21)

AP : " - . 2 ek et
il o e ottt e it ik ke Bk

2k %77 =5 4

E(a.u)

with E,(R) andE,,(R) the molecular quantal energies of Eq.
(17) andc™ andE™ defining the corresponding atomic bins
as given in Sec. lll. One may then reason that the larger the # !
overlap and the larges,o(Emo) in the overlap regiorie.g., BE e
the smaller the corresponding widghtherg, the larger the 7}
transition probability. We have checked the overall applica-
bility of this rule of thumb; we shall present some illustra- e
tions, and quote other results. (©) R(au.)

In our analysis of the mechanisms, we have further split
the energieg17) and(18) into kinetic and potential parts; we g1 6. Energy correlation diagram for the N¥H quasi-
have studied individual electron trajectories in the classicajglecule. Fow=1 a.u. and three impact parameter&) 10, (b) 7,
case, and the collision histories in the semiclassical calcular) 3 a.u. we also give the energy curves for the classical mean
tions; and we have drawn the time variation of the quantaholecular energESTMC (- - ) and the values foES,MC+ V2s (-
liq of Eq. (2)] and classicalj of Eqg. (5)] current density, -), yielding a dynamical energy band. This is to be compared with
obtained, as in Refl14], by a local averaging process. Al- the exit bands obtained from an empirical molecular binning pro-
though we have also studied the case df &H, we restrict  ceeding, defined by the values &, [Eqg. (20)] (---). Close-
our illustrations to the more “problematic” case of'Rigpro-  coupling electronic molecular enerdsfs ) is also represented by
jectiles. We consider in Figs.(&-6(c) the relative velocity (A).
v=1 a.u., and three impact parametdrs:10 [Fig. &a)], 7
[Fig. 6b)], and 3 a.u.[Fig. 6c)]. It is useful to examine Figure Ga) shows that botESS, and ESTMC diabatically
these figures together with the drawings of the transitiorfollow the energy of the entrance chanig}, ¢ o (with para-
probabilities ton=4 [Fig. A@], 6 [Fig. 7#b)], and 8[Fig.  bolic quantum numbers 10 9 th the way in to the collision:
7(c)], as functions of the impact parameter this means for instance thatRtE40 a.u. it becomeEggy at
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R=25 a.u.,Eg;g and so on. In the way out from the collision energies display a double “loop,” due to the rotation of the
(t>0), the values of the molecular energies are given byelectron cloudfirst loop), in which the electrons are so much
roughly the same combination of this initial energy &g, accelerated that they issue with a velocity that is abaut 2
and Eggo S0 thatES, ~ESTMC. The physical mechanism as later on in the way out of the collision, the drag from the
given by the variation of the current density vector diagramsprojectile reduces this speedddasecond loop In this case,
consists in a part of the electron cloud being attracted by thehen considering spatial densities, one has the curious opti-
projectile and captured by it; the captured cloud first rotatesal effect that the accelerated cloud appears to be pushed by
about the projectile, and finally shares its velocity along thethe projectile rather than being captured by it. It is notewor-
Z axis. We can now employ the overlap criteria betweerthy that in this way out of the collision, the quantal descrip-
collisional and BM energy bands, described above, to extion of the electron cloud follows the same mechanism
plain why transitions to the high-lying energy levels are reathrough a complicated set of transitions to bonding molecu-
sonably well reproduced by the CTMC calculatiofi§g.  lar orbitals (quantum numbers 760, 650, 540, 430 first,
7(c)], since the corresponding partial cross sections arand then to antibonding ong¢guantum numbers 700, 710,
dominated by the contributions of large impact parameters610, 600, 500, 400n order to describe the accelerated cloud
Incidentally, we mention that the corresponding overlapdraveling in front of the projectile.
with the single-microcanonical results are extremely small,
there_b_y explaining why this_ metho_d is unsuitable_ to treat VIl. CONCLUSIONS
transitions to those states—just as it cannot describe ioniza-
tion at threshold.

This work reports our findings on the accuracy of CTMC
Similarly, the energie£€, andESTMC in Fig. 6b) have  treatments of electron capture in atomic collisions, which
roughly the same behavior. In this case, the electron clouwere obtained in the course of the work reported in Paper I;

strongly accelerates as it approaches the projectile, and thier this purpose, we have extended our calculations to such
results in a sudden increase of the electronic kinetic energpw velocities that the limitations of the classical method are
when the two nuclei are closest, giving rise to the peculiahighlighted. In our analysis of these limitations, we have
“loop” of the molecular energies in the figure. We find, how- taken up a pragmatic viewpoint, in view of the difficulty of
ever, a limitation of the method that can be ascribed to arsetting up a suitable working scheme to relate classical and
inadequacy of the lower limit of the collisional band. This quantal (or semiclassical approaches: although either the
appears to be a little too low so that(E.) is too diffuse  WKB or the Moyal-Wigner method would formally appear
there, so that the probabilities to=5 and 6[see Fig. fb)]  to provide such a formal scheme, since they tend to the clas-
are underestimated. In turn, this behavior of the collisionasical approach in th#— 0 limit, we have argued that neither
band can be attributed to a value for the smallest energy iaf them is really appropiate. Thus, while the WKB method
Eq. (7) (a rather arbitrary quantijythat is too low. Thus, the has been widely used for nuclear trajectories, and has the
results of using a single-microcanonical distribution are betasset of providing a hierarchy of approximations from the
ter, because then one finds that the lower limit of the colli-purely classical to the purely quantal formalism, it yields a
sional band lies slightly higher up. grossly inaccurate classical description of the initial state of

These features are considerably enhanced in Fay.fér  the collisional system, unlike the CTMC method. On the
b=3 a.u., in which case the collisional band even penetrategther hand, the statistical Moyal-Wigner approach is un-
too much in then=4 BM band, with the results that prob- wieldy, and is unsuitable to provide suitable classical initial
abilities ton=4 are considerably overestimatffig. 7(a)],  States or the corrections to the Hamilton equations employed
and the limitations of the method stand out clearly. in the CTMC treatment.

In addition to the previous features, we find that the clas- Because of this difficulty, we have chosen to focus on the
sical method cannot, as expected, reproduce the destructi@curacy of specific capture and ionization probabilities and
interference of the phases in the amplitudes of the moleculz#ross sections. As in Paper |, we have focused on collisions
states(mainly the 760 and 650 stateis the way out of the ~ on H(1s) targets, and low-charged.i®*) and high-charged
collision. At lower velocities, this well-known interference (Net®) projectiles. For L¥*, there is a wealth of accurate
phenomenon gives rise to noticeable Stiickelberg oscillationtheoretical and experimental data, and we have added to
in the probability, which are visible in Fig. 5. Finally, at even these data our results of close-coupling calculations employ-
lower impact parametei®ot illustrated herg the molecular ing a very large molecular basis including pseudostates. We
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have then extended our study to*Reprojectiles, for which For higher-lying states, our main conclusion regarding the
there is little information, and which has recently become ofoverall accuracy of the CTMC method is quite encouraging,
interest in fusion work. As a result of our encouraging find-and many of the previous findings on its accuracy for ioniza-
ings, a systematic calculation of capture and ionization crostion extend to electron capture for higmumbers. In fact, at
sections for other systems such as*ArH, which is very intermediate energies, CTMC and atomic close-coupling re-
difficult to treat with close-coupling methods, is presently sults for the total cross sections agree with each other, and
under way. are probably more accurate than experiment with regard to
In practice, a CTMC calculation involves three main both ionization and capture. We have reasoned that the basis
steps, to wit, constructing the initial probability distribution, for such a success for electron transfer must be similar as for
carrying out the classical trajectory calculations, and obtainionization, and must rely on a dominance of two-body inter-
ing the probabilities. While the second step is basically stanactions in the capture process. A good proof that this is so is
dard, the other ones involve what are, to some extent, ophat CTMC and semiclassical methods essentially describe
tional ways of imposing “quantal” conditions in an otherwise the same mechanism, as mentioned in the previous section.
classical formulation. We have thus investigated whether uson the other hand, at low velocities, the situation is not so
ing different proposed initial conditions changes the resultsgood as could be deemed from the cross sections: fé¥*Ne
and whether the usual BM partitioning method for the exitprojectiles, we have also seen that the accuracy of the total
states is appropriate. With respect to the former, we find thatharge exchange cross section does not quite extend to the
substituting the single-microcanonical description of the ini-partial ones, and in particular, the partial cross sections to
tial state by a sunfiEq. (4)] or integral[Eq. (3)] over micro-  n=4 are overestimated, while thoseris 5, 6 are underesti-
canonical distributions significantly improves the results formated. Consideration of the mechanisms involved has en-
the ionization and total electron capture cross section. On thabled us to trace this limitation to the fact that the superpo-
other hand, those results are quite insensitive to the fine deitions (6) or (7) that are employed to represent the initial
tails of the improved initial state. This is good news for thedistribution involve unphysically low energies. There seems
users of the method, but it also means that when the methad be no way round this problem as long as one employs the
fails, little improvement can be reached in general by makingspatial and momentum distributions to gauge the quality of
the description of the initial state of the system more sophisthis distribution, and requires the mean initial energy to be
ticated. about —0.5 hartree. Use of a single-microcanonical distribu-
With respect to the final states, we have illustrated howtion is free from this liability, but then transitions to high-
the binning procedure yields a reasonable description of thiging and ionizing states are worse represented. Finally, the
outer part of the electronic densities of atomic states withproblem takes place in a velocity domain where interference
n>2, the better for larger angular momentum, which is quiteeffects also start to take place in the physi¢glianta)
reasonable from the way the method was developed. Unfomechanism.
tunately, the procedure is useless to describe tfis)Hnitial
state, and the separation between the subsets corresponding ACKNOWLEDGMENTS
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