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We present our recent results on the scattering length of4He-4He2 collisions. These investigations are based
on the hard-core version of the Faddeev differential equations. As compared to our previous calculations of the
same quantity, a much more refined grid is employed, providing an improvement of about 10%. Our results are
compared with otherab initio and model calculations.
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I. INTRODUCTION

Weakly bound small4He clusters have attracted consider-
able attention in recent years, in particular because of the
booming interest in Bose-Einstein condensation of ultracold
gases[1,2].

Experimentally, helium dimers have been observed in
1993 by Luoet al. [3], and in 1994 by Schöllkopf and Toen-
nies [4]. In the latter investigation the existence of helium
trimers has also been demonstrated. Later on, Grisentiet al.
[5] measured a bond length of 52±4 Å for4He2, which in-
dicates that this dimer is the largest known diatomic molecu-
lar ground state. Based on this measurement, they estimated
a scattering length of 104−18

+8 Å and a dimer energy of
1.1−0.2

+0.3 mK [5]. Further investigations concerning helium tri-
mers and tetramers have been reported in Refs.[6,7], but
with no results on size and binding energies.

Many theoretical calculations of these systems were per-
formed for various interatomic potentials[8–11]. Variational,
hyperspherical, and Faddeev-type techniques have been em-
ployed in this context(see, e.g., Refs.[12–28] and references
therein). For the potentials given in Refs.[9,10], it turned out
that the helium trimer has two bound states of total angular
momentum zero: a ground state of about 126 mK and an
excited state of about 2.28 mK. The latter was shown to be
of Efimov nature[13,15,21]. In particular, it was demon-
strated in Ref.[21] how the Efimov states emerge from the
virtual ones when decreasing the strength of the interaction.
High accuracy has been achieved in all these calculations.

While the number of papers devoted to the4He3 bound-
state problem is rather large, the number of scattering results
is still very limited. Phase shifts of4He-4He2 elastic scatter-
ing at ultralow energies have been calculated for the first
time in Refs.[17,18] below and above the three-body thresh-
old. An extension and numerical improvement of these cal-
culations was published in Ref.[24]. To the best of our
knowledge, the only alternativeab initio calculation of phase
shifts below the three-body threshold was performed in Ref.
[28]. As shown in Refs.[29,30], a zero-range model formu-
lated in field theoretical terms is able to simulate the scatter-
ing situation.

Although it is an ideal quantum mechanical problem, in-
volving three neutral bosons without complications due to
spin, isospin or Coulomb forces, the exact treatment of the
4He triatomic system is numerically quite demanding at the
scattering threshold. Due to the low energy of the helium
dimer, a very large domain in configuration space, with a
characteristic size of hundreds of Ångstroms, has to be con-
sidered. As a consequence, the accuracy achieved in Refs.
[19,24] for the scattering length appeared somewhat limited.
To overcome this limitation, we have enlarged in the present
investigation the cutoff radiusrmax from 600 to 900 Å and
employed much more refined grids.

II. FORMALISM

Besides the complications related to the large domain in
configuration space, the other source of complications is the
strong repulsion of the He–He interaction at short distances.
This problem, however, was and is overcome in our previous
and present investigations by employing the rigorous hard-
core version of the Faddeev differential equations developed
in Refs.[31,32].

Let us recall the main aspects of the corresponding for-
malism (for details see Refs.[19,24]). In what follows we
restrict ourselves to a total angular momentumL=0. In this
case one has to solve the two-dimensional integro-
differential Faddeev equations

F−
]2

] x2 −
]2

] y2 + lsl + 1dS 1

x2 +
1

y2D − EGFlsx,yd

= H− VsxdClsx,yd, x . c

0, x , c.
s1d

Here,x,y stand for the standard Jacobi variables andc for
the core range. The angular momentuml corresponds to a
dimer subsystem and a complementary atom; for anS-wave
three-boson state,l is evensl =0,2,4, . . .d. Vsxd is the He–He
central potential acting outside the core domain. The partial-
wave functionClsx,yd is related to the Faddeev components
Flsx,yd by
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and 1øhø1. The explicit form of the functionhll8 can be
found in Refs.[33,34].

The functionsFlsx,yd satisfy the boundary conditions

Flsx,ydx=0 = Flsx,ydy=0 = 0. s3d

Moreover, in the hard-core model they are required to satisfy
the condition

Flsc,yd + o
l8
E

−1

+1

dh hll8sc,y,hdFl8sx8,y8d = 0. s4d

This guarantees the wave functionClsx,yd to be zero not
only at the core boundaryx=c, but also inside the core do-
mains.

The asymptotic boundary condition for the partial-wave
Faddeev components of the two-fragment scattering states
reads, asr→` and/ory→`,

Flsx,y;pd = dl0cdsxdhsinspyd + expsipydfa0spd + osy−1/2dgj

+
expsiÎErd

Îr
fAlsud + osr−1/2dg. s5d

Here, cdsxd is the dimer wave function,E stands for the
scattering energy given byE=«d+p2 with «d the dimer en-
ergy, andp for the relative momentum conjugate to the vari-
able y. The variablesr=Îx2+y2 and u=arctansy/xd are the
hyperradius and hyperangle, respectively. The coefficient
a0spd is nothing but the elastic scattering amplitude, while
the functionsAlsud provide us, atE.0, with the correspond-
ing partial-wave Faddeev breakup amplitudes. The
4He–4He2 scattering length,sc is given by

,sc= −
Î3

2
lim
p→0

a0spd
p

. s6d

Here, we only deal with a finite number of equations
(1)–(4), assumingl ø lmax, wherelmax is a certain fixed even
number. As in Refs.[19,24] we use a finite-difference ap-
proximation of the boundary-value problem(1)–(5) in the
polar coordinatesr andu. The grids are chosen such that the
points of intersection of the arcsr=ri, i =1,2, . . . ,Nr and
the raysu=u j, j =1,2, . . . ,Nu, with the core boundaryx=c
constitute the knots. The value of the core radius is chosen to
bec=1 Å by the argument given in Ref.[24]. We also follow
the same method for choosing the grid radiiri (and thus the
grid hyperanglesu j), as described in Refs.[19,24].

III. RESULTS

Our calculations are based on the semiempirical HFD-B
[8] and LM2M2 [9] potentials by Aziz and co-workers, and

the more recent, purely theoretically derived TTY[10] po-
tential by Tang, Toennies, and Yiu. For the explicit form of
these polarization potentials, we refer to the appendix of Ref.
[24]. As in our previous calculations, we choose"2/m
=12.12 K Å2, wherem stands for the mass of the4He atom.
The 4He dimer binding energies and4He–4He scattering
lengths obtained with the HFD-B, LM2M2, and TTY poten-
tials are shown in Table I. Note that the inverse of the wave
numberûs2d=Îu«du lies rather close to the corresponding scat-
tering length.

Unlike the trimer binding energies, the4He–4He2 scatter-
ing length is much more sensitive to the grid parameters. To
investigate this sensitivity, we take increasing values of the
cutoff hyperradiusrmax, and simultaneously increase the di-
mension of the gridN=Nu=Nr. Surely, in such an analysis
we can restrict ourselves tolmax=0. The results obtained for
the TTY potential are given in Table II and Fig. 1. Inspection
of this figure shows that, when increasing the dimensionN of
the grid, convergence of the4He-4He2 scattering length,sc is
essentially achieved, however, with different limiting values
of ,sc for different choices ofrmax. This concerns, in particu-
lar, the transition fromrmax=600 Å to rmax=700 Å, while
the transition to 800 Å or even 900 Å has practically no
effect.

Bearing this in mind, we feel justified to choosermax
=700 Å when going over fromlmax=0 to lmax=2 and 4. The
corresponding results are presented in Table III. There we
also show our previous results[24] where, due to lack of
computer facilities, we had to restrict ourselves tormax
=460 Å andN=605. We see that an improvement of about
10% is achieved in the present calculations, as already indi-
cated by the trends in Fig. 1.

Table III also contains the fairly recent results by Blume
and Greene[23] and Roudnev[28]. The treatment of[23] is
based on a combination of the Monte Carlo method and the

TABLE I. Dimer energy«d, wave length 1/ûs2d, and4He–4He
scattering length,sc

s2d for the potentials used, as compared to the
experimental values of Ref.[5].

«d smKd ,sc
s2dsÅd Potential «d smKd 1/ûs2d sÅd ,sc

s2d sÅd

LM2M2 −1.30348 96.43 100.23

Expt. 1.1−0.2
+0.3 104−18

+8 TTY −1.30962 96.20 100.01

HFD-B −1.68541 84.80 88.50

TABLE II. The 4He–4He2 scattering length,scsÅd for ,max=0
in case of the TTY potential as a function of the grid parameters
rmax andN=Nr=Nu.

rmax N

1005 1505 2005 2505 3005 3505

600 162.33 159.80 158.91 158.61 158.31

700 164.13 159.99 158.57 157.99 157.65 157.48

800 167.15 160.98 158.90 158.03 157.46

900 171.19 162.52 159.66 158.40 157.66
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hyperspherical adiabatic approach. The one of Ref.[28] em-
ploys the three-dimensional Faddeev differential equations in
the total angular momentum representation. Our results agree
rather well with these alternative calculations.

This gives already a good hint on the quality of our
present investigations. A direct confirmation is obtained by
extrapolating the curves in Fig. 1. According to this figure,
convergence of,sc as a function ofN is essentially, but not
fully, achieved. A certain improvement, thus, is still to be
expected when going to higherN. In order to estimate this
effect we approximate the curves of Fig. 1 by a function of
the form

,scsNd = a +
b

N − g
. s7d

Clearly,,scs`d=a. The constantsa, b, andg are fixed by the
values of,sc at N=1005, 2005, and 3005. In this way we get
the corresponding optimal scattering lengths,scs`d=157.5,
156.4, 155.4, and 154.8 Å forrmax=600, 700, 800, and
900 Å, respectively. Comparing with Table II shows that the
differences between these asymptotic values and the ones for
N=3005 lie between 1 and 3 Å.

For lmax=4, rmax=700 Å and the LM2M2 potential, the
scattering length has been calculated forN=1005, 1505, and
2005. Employing again the extrapolation formula(7) with a,
b, g being chosen according to these values, we find
,scs`d=117.0 Å. The difference between the scattering

length obtained forN=2005 and the extrapolated value is
therefore 1.7 Å. A direct calculation for higherN should lead
to a modification rather close to this result. Following this
argument, we conclude that the true value of,sc for the
LM2M2 and TTY potentials lies between 115 and 116 Å.

For completeness, we mention that besides the aboveab
initio calculations there are also model calculations, the re-
sults of which are given in the last two columns of Table III.
The calculations of Ref.[35] are based on employing a
Yamaguchi potential that leads to an easily solvable one-
dimensional integral equation in momentum space. The ap-
proach of Ref. [30] (see also Ref.[29] and references
therein) represents intrinsically a zero-range model with a
cutoff introduced to make the resulting one-dimensional
Skornyakov-Ter-Martirosian equation[36] well defined. The
cutoff parameter in Refs.[29,30] as well as the range param-
eter of the Yamaguchi potential in Ref.[35] are adjusted to
the three-body binding energy obtained in theab initio cal-
culations. In other words, these approaches are characterized
by a remarkable simplicity, but rely essentially on results of
the ab initio three-body calculations.
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