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We consider the effect of using necessarily inexact target wave functions in a Kohn variational calculation
of the PsuHe scattering length. We use the simplest closed-shell or one-term Hylleraas function in the
static-exchange approximation and examine two plausible ways of handling such an inexact function. Both of
these methods have been employed in the past, and our results are compared with these previous calculations.
Significant differences are found which may persist in more elaborate calculations.
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I. INTRODUCTION

Positronium-heliumsPs-Hed elastic scattering has been of
interest for a long time, and it has been a difficult problem
from both the theoretical and the experimental viewpoints.
Even what should be the simplest theoretical question—
computing the scattering length—has generated a wide vari-
ety of estimates and approximations[1]. Table II of Ref.[1]
displays a variety of experimental and theoretical values for
the scattering length, varying froma=0.81a0 to a=1.81a0.
Some of the experimental values come from measurements
of scattering extrapolated to zero energy and some are from
analyses of the behavior of Ps in bulk helium. The theories
include Kohn variational and other calculations, some more
fundamental than others, which employed model exchange
potentials. But as far as we know, all of these need to calcu-
late separately an approximate form for the wave function of
the target helium atom and must also choose a method of
dealing with the inexactness of this function. Even the diffu-
sion Monte Carlo calculation reported in[1] needs to calcu-
late a target function separately, for both its asymptotic form
and its use in the importance function. That method gives a
scattering lengtha=1.4046s6da0, which appears to be a de-
finitive result.

In this paper we look at the differences between Kohn
variational scattering length calculations in which the inexact
target wave function is treated in two different ways: In the
first method one simply calculates the stationary expression
including the explicit form of the target wave function. In the
second method we treat the target wave function as if it were
exact, letting the helium Hamiltonian act as if the function is
an exact eigenfunction, and finally inserting the explicit ap-
proximate form. These two methods(neither of which is
known to be more correct) should converge as the target
wave function approaches the exact form. These two variants
have been discussed previously for the electron-atom case
[2]. Similar investigations, for positron-atom scattering
where there is no exchange, have also been carried out[3]. A
static-exchange calculation for Ps-Xe done using the first
variant[4] proved to be unstable, but the second variant was
satisfactory[5].

In this paper we will calculate the PsuHe scattering
length using both variants and applying the Kohn variational
principle. We will use the simplest helium wave function, the
closed-shell exponential(or one-term Hylleraas), and will
evaluate the scattering length in the Born and static-
exchange approximations. We find significant but not large
differences between the two variants, larger in the Born ap-
proximation than in the static-exchange approximation, and
in the course of our calculations we have clarified certain
historically obscure results.

II. FORMULATION OF THE METHOD

The system consists of three electrons, one positron, and a
helium nucleus, taken as fixed at the origin of coordinates.
The nonrelativistic Hamiltonian in Rydberg atomic units is
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wherexW andrWi describe the positions of the positron and the
electrons, respectively,rW i =xW −rWi, andrWi j =rWi −rW j. We are inter-
ested in obtaining a variationally correct estimatefag of the
scattering length for Ps-He, using the Kohn variational prin-
ciple at zero energy:

fag = a +
1

2p
E dtCsH − EdC. s2d

Here a is the explicit scattering length appearing in the
asymptotic form of the trial functionC. We will use the
static-exchange form of the trial function:

C =
1
Î3

fFsR1dfsr1dcsr2,r3da1s23 + FsR2dfsr2dcsr3,r1da2s31

+ FsR3dfsr3dcsr1,r2da3s12g, s3d

whereRW i =sxW +rWid /2, f=exps−r /2d /Î8p is the ground-state
wave function of the Ps atom, andc is the spatial part of the
helium atom wave function, symmetric in the two electronic
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coordinates. The spinora denotes up spin, and because of
the antisymmetry of the singlet helium spin functions, the
entire wave function is antisymmetric under interchange of
any two of the electrons. For the present purposes, we choose
a very simple form for the scattering function:

FsRd = 1 −
a

R
s1 − e−«Rd, s4d

where a and « will serve as variational parameters.(Our
experience with this type of trial function shows that it is
very effective in dealing with short-range potentials.) With
this form of C the variational scattering length becomes
fag=C0+C1s«da+C2s«da2. We will be interested here in two
different choices ofa: settinga=0 gives the Born approxi-
mation fagBorn=C0 and minimizing fag as a function ofa
gives

fagmin = C0 −
C1

2s«d
4C2s«d

, s5d

where

amin = −
C1s«d
2C2s«d

.

So the solution of the problem involves calculating the inte-
grals leading to the three coefficientsCjs«d.

After carrying out the spin algebra and without loss of
generality because of the symmetrical form, we rewrite the
Kohn expression(2) in the following explicit form:

fag = a +
1

2p
E dtfFsR1dfsr1dcsr2,r3d

− FsR2dfsr2dcsr1,r3dgFH0sr1d − EPs+ H0sr2,r3d − EHe

−
1

2
¹R1

2 + V1GFsR1dfsr1dcsr2,r3d, s6d

where
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The two terms in the first factor of the integral generate the
direct and exchange parts of the scattering length, respec-
tively. The volume elementdt=d3xd3r1d

3r2d
3r3; all the co-

ordinates are independent and run over all space. In this pa-
per we will be using the simplest helium wave function
cVsr3,r3d=sZ3/pdexpf−Zsr2+r3dg, with Z=27/16, which
corresponds to a variational energyEV=−2Z2=
−5.695 312 5; this differs from the best variational energy

value by about 2%. There are two reasonable ways to handle
the inexactness of this wave function in Eq.(6).

A. Variant 1

In this method we simply carry out the indicated opera-
tions on the approximate wave function and insert the value
of EV in place ofEHe in Eq. (6). That is,

fH0sr2,r3d − EVgcVsr2,r3d

= F 2

r23
+ s2Z − 4dS 1

r2
+

1

r3
DG

3cVsr2,r3d ; Qs2,3dcVsr2,r3d. s7d

In the first term in Eq.(6) this expression vanishes because it
is equivalent to the helium energy variational calculation it-
self, but it does not vanish in the second term, where the
coordinates 1 and 2 are exchanged.

B. Variant 2

Instead, we can treat the helium wave function as if it is
exact until it is necessary to insert an explicit form for it.
That is, we simply recognize the Schrödinger equation satis-
fied by the exact wave function:

fH0sr2,r3d − EHegcHesr2,r3d = 0. s8d

Of course, this simplifies some of the mathematical opera-
tions that must be carried out, but it also expresses the idea
that one should go as far as possible with the exact compu-
tation before inserting the inevitable approximations.

C. Born approximation

As a first (crude) estimate we can seta=0 in Eq. (4),
which generates the Born approximation for the scattering
length fag and also evaluates the constantC0 to be used in
the full variational expression, Eq.(5). The Born expression
reduces to

fagBorn
skd = −

1

2p
E dtWfV1 + Qs2,3dd1kg = C0

skd, s9d

whereW=fsr1dcsr2,r3dfsr2dcsr1,r3d and the indexk=1 or
2 denotes the variant. In both cases the direct term vanishes:
symmetry under interchangerW1↔xW makes the integral term
in V1 vanish, and theQ integral vanishes as discussed above.

D. Terms depending on«

The coefficients of linear and quadratic terms ina are
dependent in complicated ways on the variational parameter
«, and they also have contributions from both exchange and
direct terms in Eq.(6). The coefficients take the following
slightly simplified forms:

C1
skds«d =

1

2p
E dtWHfF̄sR1d + F̄sR2dgfV1 + Qs2,3dd1kg

+
«2

2R1
e−«R1J , s10d
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C2
skds«d =

«
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2p
E dtWF̄sR2dHF̄sR1dfV1 + Qs2,3dd1kg

+
«2

2R1
e−«R1J , s11d

whereF̄sRd=s1−e−«Rd /R. In these expressions forC1 andC2

we have used the fact that the positronium wave function
fsrd=s1/Î8pde−r/2 is an exact eigenfunction, have set all
the direct integrals involving the potentials to zero as dis-
cussed above, and have carried out the direct kinetic-energy
integrals explicitly.

III. RESULTS AND COMPARISONS

We found the evaluation of the necessary integrals to be
quite tedious, and we are relegating to the Appendix some
discussion of the various methods we applied. In this section
we will present our results and will compare them with ear-
lier results to clarify differences appearing in the literature.

The results for the Born approximation arefagBorn
1

=5.837 51a0 andfagBorn
2 =4.937 99a0 for the two variants, re-

spectively. Both of these results are very large, but there is
clearly a significant difference stemming from the two treat-
ments of the target. When we include the«-dependent cor-
relation function the situation changes. The minimum values
of the scattering length using the two variants are much
smaller than the Born values and are much closer to each
other: fagmin

1 =1.82a0 (at «=0.6221) and fagmin
2 =1.70a0 (at

«=0.6386). We actually calculated the quantities in Eq.(5) at
intervals ofD«=0.125, with« going from 0.25 to 1.0, and
interpolated to find the minima. The curves are very flat near
the minima. These two values of the scattering length are
interesting when compared with previously reported static-
exchange values. Table I gives a summary of all such values.

Table I shows that there are two sets of values, those near
1.8a0 and those near 1.7a0. Our two values lie just above the
results of Barker and Bransden[7] and Sarkar and Ghosh[9],
respectively. The unpublished result of Kraidy[8] is also
consistent with variant 2, as it should be, since it used that
variant at the request of one of us(R.J.D.). Only the result of
Fraser[6] is significantly far from the value we obtained for

variant 1, probably due to numerical difficulties. Both Refs.
[6,7] used the same method, numerical solution of an inte-
grodifferential equation; we obviously prefer the result of
Ref. [7]. In Ref. [9] the problem was attacked using a
momentum-space integral-equation technique, and although
it is not obvious from that paper, they seem to have used
variant 2. The fact that our results are above the best previ-
ous values for each variant is reassuring; since our method is
variational and not completely converged, it should give up-
per bounds on the scattering length.

In conclusion, we have shown the effect, in the static-
exchange approximation, of using two different methods in
treating the target wave function when it is not exact. The
difference is significant but not large, and we suspect that
differences of this magnitude might persist in more elaborate
variational treatments. Nevertheless, it is interesting and
somewhat surprising that the difference between the two
variants is so much smaller at the best value of the varia-
tional parameters than in the Born approximation.
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APPENDIX: DETAILS OF THE CALCULATION

Because our helium function is in the form of a product, it
is possible to perform the integral overd3r3 analytically, re-
sulting in the following expressions:

Cj
fkg =

1

p
E E E d3xd3r1d

3r2h− d j0 + fF̄sR1d + F̄sR2dgd j1 − F̄sR1dF̄sR2dd j2jfsr1dfsr2dcsr1,r2dHUsxd − Usr1d +
1

r12
−

1

r2

+
1

2
FZ − 1

r2
+ ZsZ − 2d − e−2Zr2S 1

r2
+ ZDGdk1J +

«2

2p
E E E d3xd3r1d

3r2hd j1 − F̄sR2dd j2j
e−«R1

R1
fsr1dfsr2dcsr1,r2d +

«

2
d j2,

sA1d

where Usrd=1/r +exps−2Zrds1/r +Zd. (By the use of Kro-
neckerd symbols we have constructed a compact expression

that combines all three coefficients and both variants.) Notice
that most of the terms appearing here are factorable in terms

TABLE I. Reported values of the scattering length in units
of a0.

Reference a

Fraser[6] 1.88

Variant 1 1.82

Barker and Bransden[7] 1.81

Kraidy [8] 1.72

Variant 2 1.70

Sarkar and Ghosh[9] 1.68
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of coordinates 1 and 2. For example, the Born approximation
involves the coefficient withj =0 whose first term can be
written as

−
4Z3

p
E

0

`

dxx2UsxdfE d3rfsrde−Zrg2. sA2d

The integral overr can be performed analytically, and the
integral overx can be done easily numerically. Similar sepa-
rable forms come from other terms, but those involving both
R andr need to be done numerically. The multidimensional
integrals that result have been evaluated in most cases using
Gaussian quadrature methods.

The nonseparable terms involving 1/r12 are more compli-
cated, and we have evaluated them numerically following a
Fourier transformation. As an example, we may consider the
following Born term:

−
1

p
E E E d3xd3r1d

3r2fsr1dfsr2dcsr1,r2d
1

r12

= −
128Z5

p2 E
0

` p2dp

Sp2 +
1

4
D4E

0

`

dq

sp2 + q2 + Z2d2 +
4

3
p2q2

fsp2 + q2 + Z2d2 − 4p2q2g3

= −
80

3

s3 + 36Z + 152Z2 + 144Z3 + 48Z4d
s1 + 2Zd6 . sA3d

In passing from the left to the right side of this equation we
have inserted the Fourier transforms of all the functions ap-
pearing in the integrand, have applied the definition of the
d-function 3 times, and have then carried out the integration
over m= p̂·q̂. The final expression, resulting from the two
integrations overp and q, was obtained with the aid of
MATHEMATICA .

We have used both integration methods, Fourier and di-
rect coordinate-space methods, as appropriate in evaluating
the various integrals that contribute to the final results. In
many cases numerical integration in several dimensions is
necessary; this is the limit on the accuracy we can achieve.
The most difficult integral we needed to evaluate involves

the product of two scattering functionsF̄sRd and the trouble-
some factor 1/r12:

−
1

p
E E E d3xd3r1d

3r2F̄sR1dF̄sR2dfsr1dfsr2d
csr1,r2d

r12
.

sA4d

This integral taxed our numerical capabilities either in the
coordinate or Fourier representation, but we made use of a
trick to simplify its evaluation. First, we Fourier transformed
the most difficult part of the integrand:

1

r12
=

1

2p2 E d3p
eipW·srW1−rW2d

p2 . sA5d

Then Eq.(A4) can be rewritten in a more convenient form

−
Z3

2p4 E E d3x
d3p

p2 ufsxW,pWdu2, sA6d

where

fsxW,pWd =E d3rF̄srdfsrde−ZreipW·rW.

If we takexW along thez axis, then we can write

pW · rW = prbmpmr + Îs1 − mp
2ds1 − mr

2dcossfp − frdc, sA7d

wherem=cosu refers to the polar angle of each vector andf
refers to the azimuthal angle. The expression forf becomes
the following:

fsx,p,mpd =E
0

`

drr2e−ZrE
−1

1

dmrF̄sRdfsrdeiprmpmr

3E
0

2p

dfre
iprÎs1−mp

2ds1−mr
2dcossfp−frd. sA8d

The simplification stems from the fact that thef integral
above can be written in terms of a Bessel function:

E
0

2p

dfeiA cosf = 2pJ0sAd. sA9d

Equation(A8) can be expressed asf =2pff1+ i f 2g, where

H f1

f2
J =E

0

`

drr2e−ZrE
−1

1

dmrF̄sRdfsrd 3 Hcossprmpmrd
sinsprmpmrd

J
3 J0fprÎs1 − mp

2ds1 − mr
2dg. sA10d

Finally, we can write the integral appearing in Eq.(A6) as

− 16Z3E
0

`

dxx2E
0

`

dpE
−1

1

dmpff1
2sx,p,mpd + f2

2sx,p,mpdg.

sA11d

This is still a high-dimension integration, but it turned out to
be tractable, using Mathematica and a standard personal
computer.
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