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Absorption in atomic wires
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The transfer matrix formalism is implemented in the form of the multiple collision technique to account for
dissipative transmission processes by using complex potentials in several models of atomic chains. The ab-
sorption term is rigorously treated to recover unitarity for the non-Hermitian Hamiltonians. In contrast to other
models of parametrized scatterers we assemble explicit potentials profiles in the form of delta arrays, Péschl-
Teller holes, and complex Scarf potentials. The techniques developed provide analytical expressions for the
scattering and absorption probabilities of arbitrarily long wires. The approach presented is suitable for mod-
eling molecular aggregate potentials and also supports new models of continuous disordered systems. The
results obtained also suggest the possibility of using these complex potentials within disordered wires to study
the loss of coherence in the electronic localization regime due to phase-breaking inelastic processes.
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I. INTRODUCTION mention is required for the framework &f7-symmetry[12],

where it is possible to consider periodic wires under complex

The inelastic scattering processes occurring in mesoscoPEbtentials showing real band specfizs,14. There is noth-
samples as a consequence of a finite nonzero temperature Gag wrong in principle with the use of non-Hermitian Hamil-

noticeably change the coherent transport fingerprints of thesgnians as long as their properties are controlled by a
structures. The worsening of_ electronic_ transmission due WQufficient knowledge of the full spectrum. Indeed, renormal-
such effects is expected but in some situations the competjzation group calculations have been carried out giving rise
tion between the phase-breaking mechanisms and the quagyimaginary couplings as a result of quantum dressing of the
tum coherent interferences can improve conductance in cefjassical real potentialgL5]. An interesting modern review

tain energetic regimes. This is the case, for example, ofn apsorption in quantum mechanics has appeared recently
disordered structures. This fact has attracted much attentlo[r16] and we address the interested reader to this publication

in the study and modeling of dissipative transport in one—nq references therein.
dimensional structgres. Int_erest is also promp'ged by experi- The paper is organized as follows. In Sec. Il we briefly
ments currently being carried out on real atomic chgll}s  reyiew the multiple collision technique based on the transfer
A model of parametrized scatterers coupled through addimatrix method, and in Sec. 11l we show how unitarity can be
tional side channels to electron reservoirs incorporating i”éasily restored in the presence of absorption and how the
elastic events was initially proposed by Buttiked], and  general unitarity condition can be generalized accordingly.
much work has been done along this lif8}. On the other \ye then turn our attention to arrays of delta potentials and
hand, inelastic processes can be modeled by small absorgy|cylate and draw the scattering and absorption probabilities
tions which in turn can be described by extending the naturg, sec |v. In Sec. V. the Paschl-Teller potential is used to
of the quantum potentials to the complex domain. The mainiig atomic chains, and its complex extension, the complex
purpose of this work is to include absorptive processes bycarf potential, is fully developed in Sec. VI. The analytical
performing these complex extensions on previous quantuicattering probabilities are shown for a variety of composite
wire models developed by the authgdg and also on other  potential profiles and the effect of the imaginary parts on the
atomic potentials. , _ _ transmission is analyzed. The calculations concerning exact
The use of complex site energies and frequencies has afyaye functions and analytical conditions are offered in two

ready been considered in the study of electronic CO”dUCtiVi%ppendixes. The paper ends with several concluding re-
through one-dimensional chain$,6], but non-Hermitian  ,45ks.

Hamiltonians have also been used to account for a large va-
riety of phenomena, ranging from wave transport in absorb-

ing media[7], violation of the single parameter scaling in Il. THE MULTIPLE COLLISION TECHNIQUE
one-dimensional absorbing systeff@, appearance of ex- o _ _ _ _
ceptional points in scattering theof9] and quantum chaol- The time-independent scattering process in one dimension

ogy [10], description of vortex delocalization in supercon- can be described using the well-known continuous transfer
ductors with a transverse Meissner eff¢t], and more Mmatrix method[17],
phenomenologically with nuclear optical potentials. Special
)-fa )
BL ’
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*Corresponding author. Electronic address: cervero@usal.egyhereA B, (Ag,Bg) mean the amplitudes of the asymptotic
visit: http://www.usal.eSfnl traveling plane waveg®, e at the left(right) side of the
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potential. Whatever the nature of the potential is, real oproportional to the imaginary part of the potential
complex, the transmission matrix always verifies et 1 4 2

as a consequence of the.constant Wrons_kia}n of the solutipns — = SV r (2, (5)
of the Schrédinger equation. The transmission and reflection dx
amplitudes then read whereJ(x) is defined as
1 M21 M12 *
t=—, rt=-—= rR=—= 2 Ao . d¥(x) dW*(x)
M22 M22 M22 ( ) J(X) = ﬁ(qf (X) dX - \P(X) dX . (6)

where the superscripts, R stand for left and right incidence.
The insensitivity of the transmission amplitude to the inci-
dence direction is a universal property that holds for all kind

of potentials. However, the reflectivity, although symmetric""b”'t'eS T(E)+R(E).:1.'S no anger Va“d.' .One can St'." re-
for real potentials, changes with the incidence side for £°V€r @ pseudounitarity relation by defining a quantity that

complex one unless it is symmetrjdé8]. The effect of a accounts for the loss of flux in the scattering process. Deal-
i . . : L) =alkxg L —ikx
composition ofn different potentials can then be consideredi"d With the asymptotic stateV(—o)=e®+r-(ke™,

Therefore, in the presence of a nonvanishifx) the uni-
tarity relation regarding the transmission and reflection prob-

as the product of their transmission matrices, Wi(+)=t(k)€*, one can write the asymptotic values of the
flux as
W[[:Mn'Mle (3) ﬁk
The transmission matrix formalism is an important tool for Jo= E[l -R(K)], (7)

the numerical treatment of different problems. An intuitive

and general interpretation of the composition procedure can

be given in the following form. Consider two potentials Jw:ﬂ('r(k)' (8)
Vi(x),V,(x) characterized by the scattering amplitudes m

tl,rk,ri{,tz,r'ﬁ,r; and joined at a certain point. Then, the yie|ding the relation

scattering amplitudes of the composite potential can be ob-
tained by considering the coherent sum of all the multiple
reflection processes that might occur at the connection re-
gion,

T(K) + R-(K) + %(J_m ~3,)=1. (9)

. This latter equation remains the same for the right incidence
tyt, case[with RX(k)] when the asymptotic state takes the form
t=t,; Z (I’IérlR)” t,= 1R (49 \PE(—oc):t(k)e‘ikx,‘PE(+oo):e‘ikx+rR(k)eikX.
o 2t Using Eq.(5) the flux term reads

t 2m
rr=rbatrsy 2 5 =i —22 (4p) ANR =- Tf Vi)W () Pdx= 1 = R-R(k) = T(K),
n=0 1-rary Ak J
(10
* 2
R=rR+trR D (s pt, =rf+ rit . (40 and it is usually understood as the probability of absorption
o 1-r5rf [18]. But A(k) must be a positive defined quantity in order to

. . . . be strictly considered as a probability and this is not ensured
Replacing the scattering amplitudes with the elements of thBy the definition[unlessV,(x)<0 O x]. The sign ofA(k)

corresponding fransmission matrick ,M,, one can trivi- epends on both the changes in sign of the imaginary part of
ally check that in fact these last formulas are the equations g} . potential and the spatial distribution of the state. Al-

tgezfr:aoggﬂ\g szi\r/l éietjhtucxst:]heeccoor\mg:)sétr:zg .r;:tlgrs g:V;rlhbgsEe?:ethough a negative value fak(k) could be viewed as emis-
@ ' verg Interv ! §ion(because it means a gain in the flux curjenélso leads

= (eLeRyn : i -
2“=0(r2.r1) - They provide an explicit relation of the global . transmittivity and the reflectivity to attain anomalous val-

q b | d ty f ical %esT(k)>1,R(k)>1, which are difficult to interpret. Let us
and can be easily used recurrently for Numerical purposes, o, e that the integral representation of the absorption

This composition technique was first derived for a potential erm is useless for practical purposes because to build the

?ea;{iI§|;[[:;%] and has been used for designing absorbing PO%orrect expression of the stalie-"R(x) one needs to impose

the given asymptotic forms to the general solution of the
Schrodinger equation, therefore obtaining the scattering am-
plitudes, so one cannot calculate the absorption probability

Ill. THE SCHRODINGER EQUATION without knowingR(k) and T(K).

FOR A COMPLEX POTENTIAL

Let us consider a one-dimensional complex potential of V. SCATTERING OF A CHAIN OF DELTA POTENTIALS

finite supportV(x)=V,(x) +iV;(x) [V(x*)=0]. For the sta- Let us consider a potential constituted by a finite array of
tionary scattering states, the density of the current flux iDirac delta distributions, each one with its own couplimg
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ABSORPTION IN ATOMIC WIRES

and equally spaced at a distaraeThis is probably the sim-
plest one-dimensional model imaginable, but in spite of its
apparently simplicity it supports an unexpected physica
richness. It has been successfully used to model band strug o |
ture in a periodic quantum wirg4] and has proved its use-
fulness when considering uncorrelated and correlated diso
der structure$4,21], showing interesting effects such as the
fractality of the density of states and the different localiza-0-6

tion regimes for the electronic states.

The global potential will be characterized by the arrangec
sequence of the parametded a;), wherea;=%2/ma; means
the “effective range” of théth delta, in the order they appear
from left to right. The transmission matrix for a delta poten-

tial preceded by a zero potential zone of lengtreads

) (1 _ é)eika _ ki_aje_ika )
Mj(k)‘< ki_ajeika (1+ki_aj)e—ika ) (11)

Considering a chain oN different deltas and applying the
composition rules to this type of matrices one finds that it is
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possible to write a closed expression for the scattering am- p. 1. (Color onling Scattering and absorption probabilities

plitudes. They are given by

eiNka
tk;ay,...,ay) = m (129
Lo __g(k;al,...,aN)
r-(k;ay,...,an) = —f(k;al,...,aN)' (12b)

with the definitions

-ENITEY

-1
a a )
X — )| — 1- e2|ka(rr,+1—rr,)
<a0'2> (aaj>g.( )]
(13a

. N
| a
f(k,al,...,aN) - 1 +k_a]§l (_)

. N N Lo\
g(k;ali___,aN):kl—aE eZikaj(E)+2< | )l

=\ o \ka

{ele-f2)-(2

-1
X H (1 _ e2ika(o'r+l_‘7r))]

r=1

(13b)

where for each the 2, means we are summing over tﬂlﬁ
combinations of sizej from the set {1,2,...,N} o
={01,0%,...,05} With 0;<0,<--<oj. The r* amplitude

for one-species delta chains with length=15 and parameters
(a/a;)=1.0(dashed linesand(a/a;)=1.0-0.015 (solid lines.

modeled that effect by including an imaginary part in the
potential. In this case the natural complex extension of our
system consists in promoting the delta couplings from real to
complex, thus writinga/a;)=r;—is;. We also takes; >0 for

all j in order to avoid anomalous scattering. The effect of
including complex couplings on the spectrum of an infinite
periodic delta chain has recently been studied in d¢t&].

Let us see what happens in a chain with open boundaries. In
Fig. 1 the usual scattering diagram is shown for a short pe-
riodic chain with real potentials. Including a small imaginary
part in the couplings we see how the transmission pattern is
altered with a non-negligible absorption that peaks at the
incoming band edges while the reflectivity is not noticeably
changed. This tendency of the absorption term also appears
when several species are included in the periodic array, and
its pattern does not change much if only some of the cou-
plings are complexified.

When the array presents no ordering at all, the graph is
quite unpredictable and different configurations can be ob-
tained. In Fig. 2a) a peaky spectrum with very sharp absorp-
tion resonances is shown. The scattering process in this case
is strongly dependent on the direction incidence, as can be
seen. On the other hand, smoother diagrams are also possible
in which the effect of the complex potential manifests
through an almost constant absorption background and a
small change depending upon the colliding side, like the one
in Fig. 2b). This naive potential, apart from being exactly

up to a phase is obtained frorhfor the reverse chain. These solvable, is powerful enough to account for very different
latter formulas resemble the equations for the band structurghysical schemes, which makes it a very useful bench-proof

and eigenenergies of the closed sysfdin In spite of their

formidable aspect, Eq$13) are easy to program for sequen-
tial calculations, providing the transmittivity and reflectivity

of the system with exact analytical expressions.

structure.

V. ATOMIC QUANTUM WELLS

Let us now incorporate the dissipative processes that are Let us go one step further and consider a potential that
always present in real wires, causing energy losses. We havesembles the profile of an atomic quantum well with ana-
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-0.5

V(x)

FIG. 3. Pdschl-Teller potentighrbitrary units.

ieiVVr'1+p2 _|p

ip —ie7"1 +p?

Mpr(k) = ( ) (16)

where  y=2 argl'(ik/ ) —argI'(\ +ik/ )" (1L -\ +ik/ a)}.
Let us try to build a chain with these atomic units. In order to
do so, one has to include a sensible cutoff in the potentials to
ensure first that the wave function takes a proper form at the
junction regions and second that the resulting potential hole
can still be described by a handy transmission matrix, so that
Egs.(4) can be applied easily. The cutoff will be placed at a
distanced from the center of the potentiéFig. 3). The wave
function in the interval[-d,d] is W¥,(x)=Ae(x)+B,0(X),
wheree(x),0(x) are the even and odd solutions, respectively,
5 of the Schrédinger equation. Outside that interval the wave
®) : . & . function is assumed to be a superposition of the free particle
solutions, regions 1 and 3 in Fig. 3. The connection equa-
FIG. 2. (Color onling Scattering process for disordered arrays tions at the cutoff points lead to a relationship between the
of 15 deltas with complex couplings. The sequences of the reahmplitudes of the wave function in sectors 1 and 3 in terms
parts ~ of the  characteristic ~ parameters  are(@  of the values of(x),0(x) and their spatial derivatives atl+
Re(a/ay): 3,1,2,0.5,3,2,1,3,05,4,51,2,23 ant) Rea/a):-1,  Therefore the distancd must be such that the asymptotic
-4,-3,-1,-2,-3,-4,-1,-2,-3,-1,-4,-4,-2,-3. The imagi- form of the solutions of the Schrédinger equation can be
nary part of each coupling has been chosen asale)=  5e( at that point in order to ensure a sensible transition to
~0.04Re(a/a))|. The arrows in the legends mark the direction of yhe free particle state and to obtain a transmission matrix as
incidence. simple as possible. The solutior&),o0(x) as well as their

) ) ~asymptotic forms are found in Reff22]; nevertheless they
lytical solutions, the well-known P&schl-Teller potential gre also reproduced in Appendix A.

hole. It reads, After some algebra one finds the transmission matrix for
52 , A1) the cutoff version of the potential hole,
VX) == ——a’————, \>1, (14)
2m  cost(ax) i) [T 5 .
_ vli+p p
and it is shown in Fig. 3. M (k) —< ip _ ie‘i(“ZKd)\’lTpF) (17
The probability of asymptotic transmission is well known
22, The matrix is the same as for the asymptotic case in(Eg).
. sin(m\) plus an extra phase term in the diagonal elements that ac-
Ter(k) = 1+p? p= sinh(kmla) (15 counts for the distanced2uring which the particle feels the

effect of the potential. These phases are the key quantities for
One characteristic feature of the Pdschl-Teller hole is that ithe composition procedure since they will be responsible for
behaves as an absolute transparent potential for integer vdhe interference processes that produce the transmission pat-
ues of A, as can be seen from E@L5). From the wave terns. Due to the rapid decay of the Pdschl-Teller potential,
functions one can also obtain the asymptotic transmissiothe distanced admits very reasonable values. In fact, we
matrix, have seen that for a sensibly wide range of the parameters
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a<[0.1,3],A €[1,5] one can take as a minimum value for merical integration of the Schrédinger equation, obtaining an
the cutoff distancel,=2d,,,=3.5/a, whered,;, is the half-  excellent degree of agreement.

width (Fig. 3). Takingd=d, the connection procedure works =~ Composing two potential holes and applying E@.to-
really well, as we have checked in all cases by comparing thgether with Eq(17) one finds for the transmission probabil-
analytical composition technique versus a high precision nuity, using the previously defined quantitipsy

1
22 2 2 T 2 2 '
p1ps + (1 +p) (1 +p3) — 2p1pp V1 + pIVL +pscog yp + v, + 2K(dy + dy) ]

Topr(K) = (18)

which is a handy expression that can hardly be obtained by!I. DISSIPATIVE ATOMIC QUANTUM WELLS/BARRIERS
trying to solve the Schrodinger equation for the double po-
tential hole. To our knowledge this calculation has not beerEe
made before. Equatio(il8) clearly shows the interference
effect depending on the distande+d, between the centers f2a? vV, .. sinh(ax)
of the holes. An t_axample of transmission is _show_n in Fig. 4. V(x) = cosi(ax) +l 2cosR(ax)
The composition procedure can be applied with a small
number of atoms to study the transmittivity of different po- with V;,V, e R. It is a proper complex extension for two
tential profiles resembling molecular structures such as thos@asons: it admits analytical solutiof3] and its imaginary
in Fig. 5. The transmission matrigd7) can also be used to part is somehow proportional to the derivative of the real
consider a continuous disordered model in the form of gotential. This latter criterion has been considered in nuclear
large chain of these potential holes with random parametergptical potentials to choose adequate complex extensions. It
So far, in the literature only two kinds of potentials have seems reasonable to measure the strength of the dissipation
been used to build continuous disordered models, namely thgrocesses in terms of the “density” of the real interaction and
Dirac delta potential and the square wédarrien, due to  therefore writing an imaginary potential that is proportional
their well-known and easy to manipulate transmission matrito the spatial derivative of the real one. The potential profile
ces. We recall the fact that handy transmission matrices cals shown in Fig. 6.
be obtained for other potential profiles using reasonable ap- The Scarf potential has been extensively considered in the
proximations, such as the one described here. literature, mainly dealing with its discrete spectrum, either in
The next step for our purpose is to consider dissipation irits real and complex forms, from the point of view of SUSY
these one-dimensional composite potentials.

We shall consider the extension of the Pdschl-Teller po-
ntial given by the complexified Scarf potential,

) (19

2m

- : | T I . T
1
. . I . . VT
1 L
r i 0.8
— T double well

0.8 — - T single well — r V VV V

o . 0.6 —

e | ab |

B ' i n [ R B R

i i 04 40 20 0 20 40
0.4 1 L

1 021 d

" T |

02 1 - i | | | |
' L 1, M 20 0 20
0 L L . ! . 1 ;
L 2 5 1 0 1 15 2 2.5
k ()(l units)
ols 1 i L ) | i | . | i
0 0.5 1 1.5 2 2:5 3 . L .
k (<" units) FIG. 5. (Color onling Transmission patterns for two symmetric

composite potentials of ten units each. Their profiles are shown in
FIG. 4. (Color online Transmission through a double Pdschl- the insetqarbitrary unit§. Parameters for the first five potentials of
Teller hole with parameters;=a,=2(x"tunits), \;=\,=2.4, d; the sequences: (solid line «@=1,1,0.51,1x1 units),
=d,=5(x units). The dashed line corresponds to a single potentiah=1.66,2.19,5.01,2.33,2.16, add-4, 4,7,4,4x units) and (dashed
hole. The inset shows the composite potential profdebitrary line) «=2,2,1,1,1x* units, \=1.66,1.66,2.03,2.03,2.03, and
units). d=2,2,4,4,4x units).
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quantum mechanicf4] or focusing on itsPZ-symmetric The left scattering amplitudes of the real Scarf potential
form [25]. have been obtained in terms of complex gamma functions
First, a detailed mathematical analysis of the potential[23]. Recently, a considerable simplification has been
regarding its scattering properties, must be made to discugminted out by Ahmed25]. In fact, the asymptotic transmit-
some new features and some assertions that have been matidty and reflectivity for the complex Scarf can be written as

Tk = sinkf(27kl ) 20
" sintA(2mkl @) + 2 costi2mk/a)cosiwg,)coshmg_) + cosi(mg,) + cosi(mg.)’
R(K) = cost(mg,)e 2™ + cosH(mg_)e?™« + 2 costimg,)cosh 7g.) 1)
~ sintA(2mk/a) + 2 costi2mkl/a)cosKwg,)cosig.) + cosK(rg,) + cosi(mg.)’
|
whereg, =\V;+V,—-1/4 andRR(k) is recovered fronR-(k) . Ss-F2 5 Ss— &2
by interchangingy, andg- (which is equivalent to substitut- A (k) = 1+ss A™(K) = 1+ss (26)

ing V,— -V, and therefore changing the direction of inci-
dence. These expressions derive from the asymptotic trans- Unlike the complex delta potentials example this potential
mission matrix, which is obtained here using the asymptotidhias some drawbacks that must be carefully solved. Its imagi-
form of the Schrodinger equation solutio@sppendix B), nary part is non-negative defined in its domain, which might
= . cause anomalous scattering. Only some valueg,afill be
Mo (K) = ie¥\V1+ss -Is (22) physically acceptable. To ensure thdk) <10k, it is clear
Sca is —je7i*\1 +ss/’ from Eq. (20) that the necessary and sufficient condition is
coshmg,)coshi{mg_) = 0. The functionsy, ,g_ can be real or
where pure imaginary depending on the values\¢f and V,. A
detailed analysis of the conditions for physical transmission

7kl a -kl
o} e™“+ co _)e . ; .
=< stmg.) costimg.) (23 is presented in Appendix B. As a summary, let us say that for

sinh(2mk/ @) ’ V;>0 (barrierg, the evaluation of the condition translates
into
s=s(g: = g.), (24 N
V| € [0,Vi]JU[2n(2n-1) +Vy,2n(2n+ 1) +V,], neZ'.
and =2 ardI'(ik/ a)I'(1/2+ik/ o)} —ardI'(c+ik/a)'(b 27)
+ik/ a)I'(1-c+ik/ a)I'(1-b+ik/a)} with the definitions
1 i 1 i For V, <0 (wells) the situation becomes more complicated
c==- I—(g+ -g), b=>- I—(g++ 9.). (25)  and the result can only be expressed through several in-
2 2 2 2 equalities, each one adding a certain allowed rangevfor

(see Appendix B As an example, in Table | we show the
compatible ranges df, for a few negative values &f;. One
can trivially check the compatibility of the intervals pre-
sented forV, with the conditionT(k) <10k by plotting Eqg.

It immediately follows from the transmission matrix that the
absorption probabilities read

T T T T T T T

TABLE |. Ranges ofV, compatible with the conditionT(k)
<10k for the complex Scarf potential for certain negative values
of V;. The last column includes the intervals providing physical
scattering from the emissive side of the potential.

|
=N

|
8]

§

L
IN
=N

A [Vl [V, emissive
-0.5 [0,0.5U[1.5,5.5U[11.5,19.5--- [0,0.5
o -1 [0,5]U[11,19U[29,4]--- %)
“o4r . . sl . L] -2.4 [0,04U[2.4,3.dU[9.6,17.4--- [0,0.4uU[2.4,2.569
4 -3 [0,1Ju{3tu[9,17] - [0,1
-4 [0,4]U[8,16]1U[26,3] - [3.606,4
FIG. 6. Real and imaginary parts of the complex Scarf potential_g [0,1]U[3,5]U[7,15]-- [3,4.123U[4.472,5

(arbitrary units.
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40 TABLE II. Some correlated values &f;,V, producing the fully
resonant behavior of the complex Scarf potential. The particular
30 Péschl-Teller resonances are in square brackets.
— =V, |V.
T 2 (=V1,V3))
11 (33 (6,6 (10,10 (15,15
10
[2,0 4.2 (7,9 (11,9 (16,19
(6,01 9.3 (13,7 (18,12 (24,19
0 ' ¢ :
i 0 o » w120 164 (219 (2715 (3422
Vi

FIG. 9. Scattering diagram for the complex Scarf potential in=cosi{7g_)=0. Thus the main requirement is thgt,g_

terms of the potential amplitudes. The physically acceptable ranges, st be purely imaginary, yielding in this case the transpar-
for V4,V correspond to the shaded zones. The curves are the iréncy equations

version lines given by Eq31). The black points mark the corre-

lated values of the amplitud¢&qgs. (30)] generating a fully trans- 1
parent behavior. coq T\, ~ ViV, =0, (29

(20). In a two-dimensional plot of\V,| vs V;, the physical Whose solutions are

ranges for the transmission distribute as alternating fringes 1 1 ) 5

and a funny chessboardlike pattefig. 9). Vi=7 - é[(Zm +1)%+(2n+ 1), (308
One feature to emphasize according to the conditions

given for acceptable transmission is the fact that the number 1

of permitted intervals forV, is infinite for anyV,, either Vo==[(2m+1)2-(2n+1)?%, mneZ. (30b

positive(barrien or negative(well), and tlherefore there is no 8

mathematical upper bound ;| ([V3"“?]) above which the i is \orth noting that the transparencies only appear for

transmission probability always becomes unphysical, CONpotential wells(V, < 0). Considering the particular case

trary to what has been reported receri@$]. From a physi-  _, one recovers the Péschl-Teller resonantes 7). In

pal viewpoint of course, a sensible limitation must also beTabIe Il the first values of Eq€30) are listed explicitly.
imposed orl5, usually V3| <[V, The absorption obviously vanishes for kiwhen consid-

asé:rtt ;Jhsatsfeoe; t%%wv;\llggé hagr;%n\j W:rsé?\inref;ecﬂv'géa\fveering these special resonant values of the potential ampli-
o 2 P g aphy tudes. Surprisingly, there also exists another set of nontrivial

transmission, one of the reflectivities of the system remainé : - ;
Y - . . orrelated values d¥,,V, for which the potential is nondis-

physwal.[l.e., R(k)=1-T(K) DK], left or right, depending on sipative[A(k)=00 k] without being fully transparent. This

the particular values o¥;,V, (or equivalently, one of the 1" co0) o (e o casty,)=cosh{wg.) # 0, as can be

absorptions takes positive values for lgll The statement is o : .
easy to prove from Eq926) and more specifically reads: Z?gny];recl’g?ngqs(%)' Nontrivial solutions exist whew...g-

whenT(k) <10k [i.e., coslirg,)cosiHwg_) =0], then
Vol =nV1 -4V, -4n?, neZ*. (32)

|cosHmg_)| < |cosi{mg,)| O A-(k) =00k,
Let us also notice from Eq$28) that these solutions are also
|cosi(mg_)| > |cosi(mg,)| 0 ARK)=00k. (28) the borders yvhere the physi_cal spattering changes from the
absorptive side to the emissive side or vice versa. We shall
ConsideringV; >0 andV,>0 it is not hard to see that the refer to these borders as inversion poiqit8). Therefore,
first of the above inequalities always holds. Therefore in thevhenever we encounter an IP we can #dl) =00 k with-
case of a potential barrier the scattering is always physicabut a fully transparent behavior, and hence a nondissipative
from the absorptive sidérough of the imaginary paktas  scattering process for all energies with a nonvanishing imagi-
has already been stressgzb]. More interesting is the fact nary part of the potential. Let us note that from Eg{l) the
that this conclusion cannot be extended to the ¢4s€0 IP only appears in the case of Scarf potential wells and only
(well). In this case the physical scattering sometimes occurfor |V,|<1/4-V,. In Fig. 7 the characteristic scattering
from the emissive sidépeak of the imaginary partproduc-  probabilities are shown for a Scarf barrier and a Scarf well,
ing smaller absorption terms. In Tabla few examples d¥,  and in Fig. 8 the maximum value of the physical absorption
intervals providing physical scattering from the emissive sidds plotted versusV,| for different values ofV;. WhenV; is
for some potential wells are shown. positive the absorption grows with the amplitude of the
Another interesting feature that must be observed is thaitmaginary part of the potential. On the other hand, for nega-
there exists a set of correlated values/@fV, for which the  tive V; a strikingly different pattern arises, with transparen-
complex Scarf potential behaves as fully transparent. Theies(T) and inversion pointélP) and the absorption does not
condition for this to happen is from Eq20), coshwg,) increase monotonically witf/,|. The whole behavior of the
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0.8 — T 08 — T
o RL — RL
0.6 AL 0.6 F AL FIG. 7. (Color online Characteristic scatter-
ing patterns for(a) a complex Scarf wella
04 0.4 =1(x"tunity), V;=-0.5, V,=-0.4 andb) a com-
plex Scarf barrier a=1(x"tunits), V;=2, V,
0.2F 02F =0.1.
O 1 L L 0 L 1 1
0 02 04 06 08 1 0 05 1 15 2 25 3
(a) k (x-1 units) (b) k (x-1 units)

scattering can be clearly understood by building a two-value of the cutoff distancel, with regard to the Pdschl-
dimensional diagrarV,| vs V; (Fig. 9), including physically ~ Teller case. For sensible values of the potential amplitudes
permitted ranges, inversion lines, and the points of transmisae have found that considerirdy=3d,,,=5.3/a is enough
sion resonance. The complex Scarf potential shows two opn most cases. In fact, this minimum value can be relaxed in
posite faces to scattering, namely barrier and well, and #he case of potential barrief¥;>0), whereas for potential
much richer structure in the latter case. wells takingd below this value to apply the connection equa-
After this detailed analysis of the peculiarities of the com-tions may sometimes distort the results. The correct behavior
plex Scarf, that to our knowledge have not been reportedf the connection procedure fa=d, can be observed in
before, let us continue with our work on connecting severaFig. 10 where the scattering probabilities obtained upon in-
potentials to model dissipative atomic chains. The proceduréegrating the Schrodinger equation numerically are compared
is the same as the one described for the Poschl-Teller potemth those given by the analytical composition technique, for
tial hole in Sec. V. Only the portion of the potential included two potential barriers and two potential wells with different
in the interval[-d,d] is taken(Fig. 6). Making use of the choices of the cutoff distance and with high values [f6j.
asymptotic forms of the wave functions, and after some aliNotice how in the barrier example convergence between the
gebra, one finds the transmission matrix for the complexnethods is completely reached fi+ 2d,,, whereas for po-

Scarf potential with a symmetrical cutoff, tential wells a further step is needed because the convergence
k) T _ is much slower. . _

M(K) = it N1 +s8 -Is (32) Once the connection of potentials has been successfully

is —jeilerkd 1 455/ made, one should ask which are the ranges of the potential

amplitudes that provide an acceptable physical scattering in
The matrix proves to be the same as for the asymptotic cagblis new framework. Analysis of this issue is very nontrivial
[Eqg. (22)], but with the extra phasekd in the diagonal and quite complex analytically, but also very important be-
terms. It can be checked that the half-widthg of both the  cause it determines whether this model remains useful when
real and imaginary parts coincide and that the decay of theonsidering atomic chains. First, in the case of two potentials
imaginary part of the potential is always slower than that ofwe have observed that choosing each individual pair of am-
the real par{Fig. 6). This causes an increase in the minimumplitudes(V,,V,) belonging to a physical range, and selecting

1 1

Vi
0.8 V=1 0.8 !
Vlz—l
. 0.6 06 /
- I N AR ——
< 04 04
0.2 } 02 FIG. 8. Maximum value of the absorption
ol N R R ol 1 probability Ay,a VS |V, for different values of/;.
0 1 2 3 4 0 1 2 For each graph the uppélower) curve corre-
| | sponds to a barrigwell). A dotted line is used in
V1= the forbidden values ofV,|, nevertheless the
08— Vi= 08— whole curve is shown for continuity. The allowed
ranges offV,| and the position of the IP can be
g 06 0.6 d with th | : bl
g V=5 compared with the values in Table I.
< 04l 0.4 L
0.2 T V1=_4 P 02 P If/
O 1 I 1 1 | I¢ O 1 I 1 I 1 I 1 \1'
0 1 2 3 4 0 1 2 3 4 5
[V |V
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FIG. 10. (Color onling Scattering probabilities for double Scarf potentials with parameterix units), V;=2, V,=1 for barriers and
a=1(x"units), V;=-4, V,=3.1 for wells. The solid lines were obtained from the analytical composition technique and the dashed lines
correspond to the exact numerical integration of the Schrédinger equation. The insets show the potentiéhpadfiteary unit3 for each
case: a solid line for the real part and a dashed for the imaginary part. The vertical lines limit the portion of the potential that the composition
technique takes into account. For numerical integration the whole potential profile was considered. Notice thad fbelewact integration
may lead to unphysical scattering because the conditions obtained for physical scattering are not validdorawes. Asd is increased
an acceptable scattering is recovered and both methods start converging. Convergence is reached faster in the case of potential barriers wher
the analytical composition technique works impressively well even for very low valuds of

the signs of the imaginary parts so that the physical faces dcattering of each couple of contiguous potentials is physical.
both potentials point in the same direction, then an accepfthis recipe seems completely true when composing potential
able scattering for the composite potential can always béarriers only, whereas when wells are included it fails in
recovered at least from one of the two possible orientationsome situations, especially when several contiguous wells
(both physical faces to the right or to the beftn other are surrounded by barriers. Although at the beginning it may
words, considering that the incident particle always collidesappear almost random to recover a physical scattering from a
with the left side(it comes from <c) and therefore orientat- large composition of Scarfs, following the given advices it
ing the individual physical faces to the left, then at least ondurns out to be more systematic.

of the sequence¥,(x)—V;(x) or V;;(x)—V,(x) gives an ac- Let us remember that the composition procedure, apart
ceptable scattering for all energies. We have checked thisom being a powerful tool for numerical calculations also
assertion for a broad variety of Scarf couples. For a higheprovides analytical expressions for the scattering probabili-
number of potentials the situation becomes more complefies, which of course adopt cumbersome forms for a large
but a few pseudorules to obtain physical scattering can baumber of potentials but are useful for obtaining simple ex-
deduced. For an arbitrary chain we have found that in manypansions for certain energetic regimes. Just as an example,
cases the left scattering remains physical as long as the letfte transmittivity and left reflectivity for the double Scarf
scattering of each individual potential is physical and the leftread

1

ToscarkK) = — — — — , (33
T 224+ (1 +55)(1 +5,5) — 2555\ 1 + 5,511 +5,5,008 01 + 0 + 2K(dly + )]
L _ 5%(1 +5,S,) +_522(1 +5;5)) — 25;S;V1 + 551 V1 +5,5,C09 7 + ¢, + 2k(d; + dy) ]

R2Scar{k) - (34)

Eo+(1+55)(1 +55) - 25;5V1 +5;5V1 +5,5,009 @1 + o + 2k(dy + d,)]’
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FIG. 11. (Color onling Composition of Scarfs with different FIG. 12. (Color onling Periodic chain of 20 complex Scarfs
pair amplitudes describing IPs. Sequence vdtliL(x‘lunits) and  with amplitudesa=1(x"tunity), V;=2, V,=0.02(solid lines, and
(V1,V) (-4 ,413), (-4.5,J15), (-5,V17), (-6,y21), (-7,213). V,=0.05(dashed linesand cutoff distance=6(x units). The trans-

All the cutoff distances have been taken equalt®(x units). The mittivity is not changed much by the small imaginary part of the

inset shows the potential profile with a solidashedl line for the potentials.

real (imaginary part in arbitrary units. Notice that the composition

remains nondissipative. As a final exercise, two examples are included in Fig. 15
showing the evolution of the transmittivity of two different

X , Scarf compositions as a function of the imaginary part of the
important feature of the formulas for the composite scatterygtential. The transmission patterns are plotted for different
ing probabilities is the fact that they analytically account for,, 51 es of the parametes=|V,|/|V,|, which measures the

the fully transparent behavior of the whole structure as Iongstrength of the imaginary part. The transmission efficiency

as there is resonant forward scattering of the individual po;s  eyaluated using an averaged transmittivity
tential units, as can be seen from the latter equations and als—ofk2T(k)dk/(k2—k1) corresponding to the area enclosed by
from Eq. (18) for the double Pdschl-Teller. Another curious T(kk)l it h teristi |

feature arises when composing different potentials whos Per energy unitin a characteristic energy range, hamely

amplitudes describe an IP. In this case the whole structur € zone th:re"lt'_ ?\;OIVOTS tuntll I ?hegr?mtes satyra_ted. Ttrt'e
remains nondissipativéFig. 11). Moreover, the complex imaginary potential tends 1o Smoo € fransmission pattern

Scarfs at these points behave completely as real potential'.@ thg first ex.ampleecorrespolndmg to a sequence of b.a.r QQrs
providing an acceptable scattering for the composition that igausmg a slight decrease in the averaged transmittivity for
independent of the incidence direction for any sequence c*
the individual Scarfs. ! ! ' | {[ [ n’ VI” i \

making use of the previously defined ters)s, and¢. One

Considering larger Scarf chains with small imaginary
parts of the potentials, in the case of a periodic array we,,|
observe that the absorption term remains flat over a wid:

range of forbidden bands and oscillates inside the permitte [
ones. The variations in the absorption are entirely balanceo.s
by the reflectivity while the transmittivity is surprisingly not |
affected by the presence of a small complex poteriad.

12). This behavior contrasts strongly with the complex delta®+[

potentials periodic chain where the absorption was com
pletely different and it was the reflectivity that was little w2l
affected by the dissipation. For an aperiodic sequence th” L

0.

situation is quite different, as expected. In Fig. 13 a type ol I
molecular aggregate is modeled with complex Scarfs. It ex "
hibits a peaky absorption spectrum and a strongly oscillating
transmittivity with sharp resonances. In Fig. 14 a symmetric
atomic cluster has been considered in which the dissipation F|G. 13. (Color onling Scattering probabilities for a 10-Scarf
only occurs at both ends. Different transmission and absorpstructure with parametersy=1(x"lunits and (Vy,V,):(1,0),
tion configurations can be obtained by building different(-0.5,-0.00%, (-1.3,0.013, (1.8,0.03, (-1.3,0.013, (4,0.09,
structures. This shows the usefulness and versatility of this-2.4,-0.024, (3.5,0.04, (-3.1,0.03}, (-1.5,0.04. The cutoff
model for being able to account for a variety of possibledistance isd=6(x units equal for all of them. The inset shows the
experimental observations. real part of the potential profilearbitrary units.

A

1.5
k (x'l units)

W
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FIG. 14. (Color onling Scattering probabilities for a 10-Scarf \~/ fi
structure with parameters  a=1(x"1units) and ; P {
(V1,V5):(1,0.04, (1,0.09, (-2,0), (-1.5,0, (-1,0), (-1,0), ( 08 b= e20as|/
-1.5,0, (-2,0, (1,0.9, (1,0.). The cutoff distance isd L — ifg-;s
=6(x units) equal for all of them. The inset shows the real part of bl— e=1
the potential profilgarbitrary units. T i
;V‘ L \ H
low &, although it is finally improved. For a double well a o4}
different effect occursT;,; is always enhanced with increas- |
ing & until it reaches a maximum, after which the transmit-
tivity falls with the imaginary potential. With these results in %2 | |
mind one could speculate that these models might also b L 1 15 2
useful to describe the phase-breaking inelastic scattering prt |
1.5 2

cesses in atomic chains. Especially when one treats diso 0
dered arrays where the break of the localization regime coul®
z(r)llsliiij:sa result of the loss of coherence due to inelastic FIG. 15. (Color onling Transmittivity for different strengths of

k (x'1 units)

the imaginary part of the potentials (&) a chain of 6-Scarf barriers
V,=4,2,2.5,3,3.5,4 and=1(x"units), (b) a double Scarf well with
V,=-1,-1 anda=2(x"tunits). The cutoff distances in all cases are
equal tod=6(x units. Each imaginary amplitude reads=g|V|,
In this work we have used the transfer matrix formalismeXcept the first barrier in exampla) which is maintained real. The
in the form of the multiple collision technique to model dis- iNSéts show the evolution dfiy vs the strength of the imaginary
sipative scattering processes by using complex potentials jmplitudes.
various models of atomic chains. The absorption probability,ny yseful for numerical calculations but also provides ana-
has been rigorously included to recover unitarity for the nonqytical formulas for the composite scattering probabilities,
Hermitian Hamiltonians. which have not been obtained by other methods, and whose
New exact analytical expressions are given for the scatsignificance has been checked by numerical integrations of
tering amplitudes of an arbitrary chain of delta potentials.the Schrédinger equation.
The absorption effects arising by promoting the delta cou- From a more mathematical view, a complete and rigorous
plings to the complex domain have been shown, revealingnalysis of the scattering properties of the complex Scarf
the flexibility of this simple model to account for very dif- potential has been carried out. The ranges of physical trans-
ferent physical schemes. mission have been obtained and a group of features have
Handy expressions for the transmission matrices of tharisen such as the presence of perfect transparencies and in-
Pdschl-Teller and the complex Scarf potential have been corversion points.
structed in their asymptotic as well as their cutoff versions. Apart from being able to include dissipation in the sys-
These latter matrices have made feasible, via the composiems in a tractable way, the tools and methods provided may
tion technique, the assembly of an arbitrary number ofhave direct applicability for considering molecular aggre-
potentials to build atomic one-dimensional wires that cangates[26] and other structures with explicit potential profiles
incorporate absorptive processes. Different absorption corand also to build a new kind of continuous disordered model.
figurations are presented in several examples that show the Future work seems promising since we are already in
versatility of the model to account for a variety of possible progress on the assembly of the one-dimensional structures
experimental observations. The procedure developed is ndd quantum dots in order to analyze the effect of dissipation

VIl. CONCLUDING REMARKS
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on the conductance. Our aim is also to treat long disordered i (b-1/2arctafisinha)] 1 . b-c
wires within this framework, and in particular to study the UY2(X) =€ “cosH(ax) > + Esmr(ax)
applicability of these potentials to account for the loss of
coherence due to the inelastic scattering process in the elec-

Kk, .k E
tronic localization regime. X F(b+ 'Z'b_ 1 +b—c,§ * Esmf(ax)).

o

(B1b)

F(a,b,c;z) being the hypergeometric function and using the
We thank E. Diez for several useful conversations. Web,c definitions in Eq.(25). The asymptotic limitx— oo
acknowledge financial support from DGICYT under Con-yields

tract No. BFM2002-02609. | |
uy(x) — 29sgn(x) - i]llz—b+c(Wle—|k|x\ + er.k\x\),

APPENDIX A: SOLUTIONS OF THE POSCHL-TELLER (B2a)
POTENTIAL

ACKNOWLEDGMENTS

- . Un(X) — = 2= sgr(X) - i]¥20*¢(q,e M + g,ek),
The elementary positive energy solutions of the

Schrddinger equation with potentigl4) read (B2b)
where
1
e(x) = cosﬁ‘(aX)F(a,b, == sinhz(aX)) . (Ala) 22WaP(1 ~b+ )l (- 2i% ) g S92 Wea
2 Wy = — e , (B33
I(c-i%)r(1-b-i¥)
. 1 13 . '
o(x) = smf(aX)cosﬁ(aX)F<a+ P55 sml"F(ax)) : 272D (1 —p + o)['(2i %) g0 72 Wa (B3b)
W, = .k < .k ’ B3
(A1b) F(c+if)r(1-b+ig)
wherea=\/2+i(k/2a),b=\/2-i(k/2), andF(a,b,c;2) is di=wy(b=c), (B3c)
the hypergeometric function. Their asymptotic forms can be
written as g, =wy(b=c). (B3d)
e(X) — meee kK 4 meegkk (A2a)

2. Physical transmission

The condition for physical transmission is
coshmg,)cosi{mg_)=0. V, can be considered positive with
no loss of generality since its change in sigmhich is

0(x) — sgn(x)(ne ek + nefeki) (A2b)

where . . . S
equivalent to changing the side of incidepdees not affect
FF('K)Z“(”“) the transmission. With the definition¥=|Vy|-V, and Y
mde= —— ' -~ (A3a)  =IVi[+V,, the study can be easily carried out. Considering
F(% + iz)l“(% + iz) V;>0 the inequality translates into the permitted regions
- Oy X>0,
- k) ~—i(Ka
i0_ VWF('Z)Z (e -2n(2n+1)<X=<-2n2n-1), neZt,
ne’= o« AR (A3b)
20 (5 +ig )T (1 -5 +is) (B4)
which is clearly a sequence of allowed vertical fringes in the
APPENDIX B: COMPLEX SCARF POTENTIAL negativeX quadrant and the whole positivequadrant. This

pattern will be same but rotatett/4 clockwise when the
change of variables is undone. More specifically, in terms of
the potential amplitudes the allowed intervals can be written
as

1. Scattering states

The elementary positive energy solutions of the
Schrddinger equation with the complex Scarf potertl®  |v,|  [0,v,]U[2n(2n-1) +V,2n(2n+1) +V,], ne Z*.

are
(BS)
Uy(x) = g7 (- 2arctasinlaXlcos f( ax) In the case oW/, <0 a careful analysis leads to the fol-
K K 1 i lowing cumbersome allowed sets:
><F<c+ i—c—i—,1-b+c;=+ —sinh(ax)>,
a a 2 2 X<0O 2n(2n-1)<Y=<2n(2n+1), n=1,2,3,..,
(Bla) (B6)
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X =00 {2n(2n-1) <X<2n2n+D}N{2m2m-1) <Y=<2m@2m+1)}, nm=1,2,..., &7
(221 +1) = X<2j(2j +3) + 2} N {2k(2k+ 1) < Y < 2k(2k+3) + 2}, k,j=0,1,2,..,

which are a set of allowed horizontal fringes in the negative m(2m+ 1) + n(2n- 1) < |V,| < m(2m+ 1) + n(2n+ 1)
X quadrant and a chessboardlike structure for posifve

Undoing the change of variables will meanra4 clockwise O [=2n(2n+ 1) + V], 2m(Zm+ 1) = [V4]], (B9)
rotation followed by a reflection around the vertical axis of ;4 forj,k=0,1,2,...k=],

this pattern to recover the negative axis\gf Solving these

inequalities in terms of the potential amplitudes gives rise 0 k(2k + 1) +j(2j + 1) < |V, < k(2k+ 1) +j(2j + 3) + 1
the following set of inequalities, each one assigning a certain o

allowed interval for|V,| when fulfilled: forn e 7Z*, 0 [2k(2k+1) = [V4|,= 2(2) + 1) + V4[],

Vil <n(2n-1) 0 [2n(2n - 1) = [V4],2n(2n + 1) = [V4]], KK+ 1)+ (2 +3) + 1= Vi < k(2k+3) + 1 +j(2] + 1)

n2n-1) <|Vy < n@n+1) 0 [|V4,2n2n+1) - |V4]], 0 [-2-2)(2) +3) +|Va|,— 2j(2] + 1) +[V4]],

(B8)
K(2K+3)+ 1+](2] + DIVy| < k(2k+3) +](2j + 3) + 2

O [-2-2(2) +3) +|V4],2 + K(2k + 3) — | V4]].
(B10)

for m,ne Z*,m=n,
m(2m-1)+n(2n-1) < |V;| = m2m-1) +n(2n+ 1)
0 [2m(2m=1) = [V4],=2n(2n = 1) +[V4[], . .
In the particular cases=n for Egs.(B9) andk=j for Egs.
_ _ (B10) only the positive part of the allowed intervals must be
m(2m= 1) +n(2n+ 1) < [Vy| < m(2m+ 1) + n(2n - 1) considered. The total physical range fas| comes from the
O [-2n(2n+ 1) + [V4|,— 2n(2n— 1) + [V4]], union of the different permitted intervals.
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