
Absorption in atomic wires

Jose M. Cerveró* and Alberto Rodríguez
Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain

(Received 16 June 2004; published 15 November 2004)

The transfer matrix formalism is implemented in the form of the multiple collision technique to account for
dissipative transmission processes by using complex potentials in several models of atomic chains. The ab-
sorption term is rigorously treated to recover unitarity for the non-Hermitian Hamiltonians. In contrast to other
models of parametrized scatterers we assemble explicit potentials profiles in the form of delta arrays, Pöschl-
Teller holes, and complex Scarf potentials. The techniques developed provide analytical expressions for the
scattering and absorption probabilities of arbitrarily long wires. The approach presented is suitable for mod-
eling molecular aggregate potentials and also supports new models of continuous disordered systems. The
results obtained also suggest the possibility of using these complex potentials within disordered wires to study
the loss of coherence in the electronic localization regime due to phase-breaking inelastic processes.
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I. INTRODUCTION

The inelastic scattering processes occurring in mesoscopic
samples as a consequence of a finite nonzero temperature can
noticeably change the coherent transport fingerprints of these
structures. The worsening of electronic transmission due to
such effects is expected but in some situations the competi-
tion between the phase-breaking mechanisms and the quan-
tum coherent interferences can improve conductance in cer-
tain energetic regimes. This is the case, for example, of
disordered structures. This fact has attracted much attention
in the study and modeling of dissipative transport in one-
dimensional structures. Interest is also prompted by experi-
ments currently being carried out on real atomic chains[1].

A model of parametrized scatterers coupled through addi-
tional side channels to electron reservoirs incorporating in-
elastic events was initially proposed by Büttiker[2], and
much work has been done along this line[3]. On the other
hand, inelastic processes can be modeled by small absorp-
tions which in turn can be described by extending the nature
of the quantum potentials to the complex domain. The main
purpose of this work is to include absorptive processes by
performing these complex extensions on previous quantum
wire models developed by the authors[4] and also on other
atomic potentials.

The use of complex site energies and frequencies has al-
ready been considered in the study of electronic conductivity
through one-dimensional chains[5,6], but non-Hermitian
Hamiltonians have also been used to account for a large va-
riety of phenomena, ranging from wave transport in absorb-
ing media[7], violation of the single parameter scaling in
one-dimensional absorbing systems[8], appearance of ex-
ceptional points in scattering theory[9] and quantum chaol-
ogy [10], description of vortex delocalization in supercon-
ductors with a transverse Meissner effect[11], and more
phenomenologically with nuclear optical potentials. Special

mention is required for the framework ofPT-symmetry[12],
where it is possible to consider periodic wires under complex
potentials showing real band spectra[13,14]. There is noth-
ing wrong in principle with the use of non-Hermitian Hamil-
tonians as long as their properties are controlled by a
sufficient knowledge of the full spectrum. Indeed, renormal-
ization group calculations have been carried out giving rise
to imaginary couplings as a result of quantum dressing of the
classical real potentials[15]. An interesting modern review
on absorption in quantum mechanics has appeared recently
[16] and we address the interested reader to this publication
and references therein.

The paper is organized as follows. In Sec. II we briefly
review the multiple collision technique based on the transfer
matrix method, and in Sec. III we show how unitarity can be
easily restored in the presence of absorption and how the
general unitarity condition can be generalized accordingly.
We then turn our attention to arrays of delta potentials and
calculate and draw the scattering and absorption probabilities
in Sec. IV. In Sec. V, the Pöschl-Teller potential is used to
build atomic chains, and its complex extension, the complex
Scarf potential, is fully developed in Sec. VI. The analytical
scattering probabilities are shown for a variety of composite
potential profiles and the effect of the imaginary parts on the
transmission is analyzed. The calculations concerning exact
wave functions and analytical conditions are offered in two
appendixes. The paper ends with several concluding re-
marks.

II. THE MULTIPLE COLLISION TECHNIQUE

The time-independent scattering process in one dimension
can be described using the well-known continuous transfer
matrix method[17],

SAR

BR
D = SM11 M12

M21 M22
DSAL

BL
D , s1d

whereAL ,BL sAR,BRd mean the amplitudes of the asymptotic
traveling plane waveseikx,e−ikx at the left(right) side of the
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potential. Whatever the nature of the potential is, real or
complex, the transmission matrix always verifies detM =1
as a consequence of the constant Wronskian of the solutions
of the Schrödinger equation. The transmission and reflection
amplitudes then read

t =
1

M22
, rL = −

M21

M22
, rR =

M12

M22
, s2d

where the superscriptsL ,R stand for left and right incidence.
The insensitivity of the transmission amplitude to the inci-
dence direction is a universal property that holds for all kind
of potentials. However, the reflectivity, although symmetric
for real potentials, changes with the incidence side for a
complex one unless it is symmetric[18]. The effect of a
composition ofn different potentials can then be considered
as the product of their transmission matrices,

M = M n ¯ M 2M 1. s3d

The transmission matrix formalism is an important tool for
the numerical treatment of different problems. An intuitive
and general interpretation of the composition procedure can
be given in the following form. Consider two potentials
V1sxd ,V2sxd characterized by the scattering amplitudes
t1,r1

L ,r1
R,t2,r2

L ,r2
R and joined at a certain point. Then, the

scattering amplitudes of the composite potential can be ob-
tained by considering the coherent sum of all the multiple
reflection processes that might occur at the connection re-
gion,

t ; t1Ho
n=0

`

sr2
Lr1

RdnJt2 =
t1t2

1 − r2
Lr1

R , s4ad

rL ; r1
L + t1r2

LHo
n=0

`

sr2
Lr1

RdnJt1 = r1
L +

r2
Lt1

2

1 − r2
Lr1

R , s4bd

rR ; r2
R + t2r1

RHo
n=0

`

sr2
Lr1

RdnJt2 = r2
R +

r1
Rt2

2

1 − r2
Lr1

R . s4cd

Replacing the scattering amplitudes with the elements of the
corresponding transmission matricesM 1,M 2, one can trivi-
ally check that in fact these last formulas are the equations of
the productM 2M 1. Thus the composition rules given by Eq.
(4) are not restricted to the convergence interval of the series
on=0

` sr2
Lr1

Rdn. They provide an explicit relation of the global
scattering amplitudes in terms of the individual former ones
and can be easily used recurrently for numerical purposes.
This composition technique was first derived for a potential
barrier [19] and has been used for designing absorbing po-
tentials[20].

III. THE SCHRÖDINGER EQUATION
FOR A COMPLEX POTENTIAL

Let us consider a one-dimensional complex potential of
finite supportVsxd=Vrsxd+ iVisxd fVs±`d=0g. For the sta-
tionary scattering states, the density of the current flux is

proportional to the imaginary part of the potential

dJ

dx
=

2

"
VisxduCsxdu2, s5d

whereJsxd is defined as

Jsxd =
"

2mi
SC*sxd

dCsxd
dx

− Csxd
dC*sxd

dx
D . s6d

Therefore, in the presence of a nonvanishingVisxd the uni-
tarity relation regarding the transmission and reflection prob-
abilities TsEd+RsEd=1 is no longer valid. One can still re-
cover a pseudounitarity relation by defining a quantity that
accounts for the loss of flux in the scattering process. Deal-
ing with the asymptotic stateCk

Ls−`d=eikx+rLskde−ikx,
Ck

Ls+`d= tskdeikx, one can write the asymptotic values of the
flux as

J−` =
"k

m
f1 − RLskdg, s7d

J` =
"k

m
Tskd, s8d

yielding the relation

Tskd + RLskd +
m

"k
sJ−` − J`d = 1. s9d

This latter equation remains the same for the right incidence
case[with RRskd] when the asymptotic state takes the form
Ck

Rs−`d= tskde−ikx,Ck
Rs+`d=e−ikx+rRskdeikx.

Using Eq.(5) the flux term reads

AL,Rskd ; −
2m

"2k
E

−`

`

VisxduCk
L,Rsxdu2dx= 1 −RL,Rskd − Tskd,

s10d

and it is usually understood as the probability of absorption
[18]. But Askd must be a positive defined quantity in order to
be strictly considered as a probability and this is not ensured
by the definition[unlessVisxd,0 ∀ x]. The sign ofAskd
depends on both the changes in sign of the imaginary part of
the potential and the spatial distribution of the state. Al-
though a negative value forAskd could be viewed as emis-
sion (because it means a gain in the flux current) it also leads
the transmittivity and the reflectivity to attain anomalous val-
uesTskd.1,Rskd.1, which are difficult to interpret. Let us
also note that the integral representation of the absorption
term is useless for practical purposes because to build the
correct expression of the stateCk

L,Rsxd one needs to impose
the given asymptotic forms to the general solution of the
Schrödinger equation, therefore obtaining the scattering am-
plitudes, so one cannot calculate the absorption probability
without knowingRskd andTskd.

IV. SCATTERING OF A CHAIN OF DELTA POTENTIALS

Let us consider a potential constituted by a finite array of
Dirac delta distributions, each one with its own couplingai
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and equally spaced at a distancea. This is probably the sim-
plest one-dimensional model imaginable, but in spite of its
apparently simplicity it supports an unexpected physical
richness. It has been successfully used to model band struc-
ture in a periodic quantum wire[4] and has proved its use-
fulness when considering uncorrelated and correlated disor-
der structures[4,21], showing interesting effects such as the
fractality of the density of states and the different localiza-
tion regimes for the electronic states.

The global potential will be characterized by the arranged
sequence of the parameterssa/aid, whereai ="2/mai means
the “effective range” of theith delta, in the order they appear
from left to right. The transmission matrix for a delta poten-
tial preceded by a zero potential zone of lengtha reads

M jskd = Ss1 − i
kaj

deika − i
kaj

e−ika

i
kaj

eika s1 + i
kaj

de−ikaD . s11d

Considering a chain ofN different deltas and applying the
composition rules to this type of matrices one finds that it is
possible to write a closed expression for the scattering am-
plitudes. They are given by

tsk;a1,…,aNd =
eiNka

fsk;a1,…,aNd
, s12ad

rLsk;a1,…,aNd = −
gsk;a1,…,aNd
fsk;a1,…,aNd

, s12bd

with the definitions

fsk;a1,…,aNd = 1 +
i

ka
o
j=1

N S a

aj
D + o

j=2

N S i

ka
D jHo

s
FS a

as1

D
3S a

as2

D¯ S a

as j

Dp
r=1

j−1

s1 − e2ikassr+1−srddGJ ,

s13ad

gsk;a1,…,aNd =
i

ka
o
j=1

N

e2ikajS a

aj
D + o

j=2

N S i

ka
D j

3Ho
s
Fe2ikas1S a

as1

D¯ S a

as j

D
3p

r=1

j−1

s1 − e2ikassr+1−srddGJ , s13bd

where for eachj theos means we are summing over thes N
j
d

combinations of size j from the set h1,2,… ,Nj s
=hs1,s2,… ,s jj with s1,s2, ¯ ,s j. The rR amplitude
up to a phase is obtained fromrL for the reverse chain. These
latter formulas resemble the equations for the band structure
and eigenenergies of the closed system[4]. In spite of their
formidable aspect, Eqs.(13) are easy to program for sequen-
tial calculations, providing the transmittivity and reflectivity
of the system with exact analytical expressions.

Let us now incorporate the dissipative processes that are
always present in real wires, causing energy losses. We have

modeled that effect by including an imaginary part in the
potential. In this case the natural complex extension of our
system consists in promoting the delta couplings from real to
complex, thus writingsa/ajd=r j − isj. We also takesj .0 for
all j in order to avoid anomalous scattering. The effect of
including complex couplings on the spectrum of an infinite
periodic delta chain has recently been studied in detail[13].
Let us see what happens in a chain with open boundaries. In
Fig. 1 the usual scattering diagram is shown for a short pe-
riodic chain with real potentials. Including a small imaginary
part in the couplings we see how the transmission pattern is
altered with a non-negligible absorption that peaks at the
incoming band edges while the reflectivity is not noticeably
changed. This tendency of the absorption term also appears
when several species are included in the periodic array, and
its pattern does not change much if only some of the cou-
plings are complexified.

When the array presents no ordering at all, the graph is
quite unpredictable and different configurations can be ob-
tained. In Fig. 2(a) a peaky spectrum with very sharp absorp-
tion resonances is shown. The scattering process in this case
is strongly dependent on the direction incidence, as can be
seen. On the other hand, smoother diagrams are also possible
in which the effect of the complex potential manifests
through an almost constant absorption background and a
small change depending upon the colliding side, like the one
in Fig. 2(b). This naive potential, apart from being exactly
solvable, is powerful enough to account for very different
physical schemes, which makes it a very useful bench-proof
structure.

V. ATOMIC QUANTUM WELLS

Let us go one step further and consider a potential that
resembles the profile of an atomic quantum well with ana-

FIG. 1. (Color online) Scattering and absorption probabilities
for one-species delta chains with lengthN=15 and parameters
sa/a1d=1.0 (dashed lines) and sa/a1d=1.0−0.015i (solid lines).
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lytical solutions, the well-known Pöschl-Teller potential
hole. It reads,

Vsxd = −
"2

2m
a2 lsl − 1d

cosh2saxd
, l . 1, s14d

and it is shown in Fig. 3.
The probability of asymptotic transmission is well known

[22],

TPTskd =
1

1 + p2, p =
sinspld

sinhskp/ad
. s15d

One characteristic feature of the Pöschl-Teller hole is that it
behaves as an absolute transparent potential for integer val-
ues of l, as can be seen from Eq.(15). From the wave
functions one can also obtain the asymptotic transmission
matrix,

M PTskd = SieigÎ1 + p2 − ip

ip − ie−igÎ1 + p2D , s16d

where g=2 argGsik /ad−arghGsl+ ik /adGs1−l+ ik /adj.
Let us try to build a chain with these atomic units. In order to
do so, one has to include a sensible cutoff in the potentials to
ensure first that the wave function takes a proper form at the
junction regions and second that the resulting potential hole
can still be described by a handy transmission matrix, so that
Eqs.(4) can be applied easily. The cutoff will be placed at a
distanced from the center of the potential(Fig. 3). The wave
function in the intervalf−d,dg is C2sxd=A2esxd+B2osxd,
whereesxd ,osxd are the even and odd solutions, respectively,
of the Schrödinger equation. Outside that interval the wave
function is assumed to be a superposition of the free particle
solutions, regions 1 and 3 in Fig. 3. The connection equa-
tions at the cutoff points lead to a relationship between the
amplitudes of the wave function in sectors 1 and 3 in terms
of the values ofesxd ,osxd and their spatial derivatives at ±d.
Therefore the distanced must be such that the asymptotic
form of the solutions of the Schrödinger equation can be
used at that point in order to ensure a sensible transition to
the free particle state and to obtain a transmission matrix as
simple as possible. The solutionsesxd ,osxd as well as their
asymptotic forms are found in Ref.[22]; nevertheless they
are also reproduced in Appendix A.

After some algebra one finds the transmission matrix for
the cutoff version of the potential hole,

M skd = Sieisg+2kddÎ1 + p2 − ip

ip − ie−isg+2kddÎ1 + p2D . s17d

The matrix is the same as for the asymptotic case in Eq.(16)
plus an extra phase term in the diagonal elements that ac-
counts for the distance 2d during which the particle feels the
effect of the potential. These phases are the key quantities for
the composition procedure since they will be responsible for
the interference processes that produce the transmission pat-
terns. Due to the rapid decay of the Pöschl-Teller potential,
the distanced admits very reasonable values. In fact, we
have seen that for a sensibly wide range of the parameters

FIG. 2. (Color online) Scattering process for disordered arrays
of 15 deltas with complex couplings. The sequences of the real
parts of the characteristic parameters are(a)
Resa/ajd : 3,1,2,0.5,3,2,1,3,0.5,4,5,1,2,2,3 and(b) Resa/ajd :−1,
−4,−3,−1,−2,−3,−4,−1,−2,−3,−1,−4,−4,−2,−3. The imagi-
nary part of each coupling has been chosen as Imsa/ajd=
−0.01uResa/ajdu. The arrows in the legends mark the direction of
incidence.

FIG. 3. Pöschl-Teller potential(arbitrary units).
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aP f0.1,3g ,lP f1,5g one can take as a minimum value for
the cutoff distanced0.2d1/2=3.5/a, whered1/2 is the half-
width (Fig. 3). Takingdùd0 the connection procedure works
really well, as we have checked in all cases by comparing the
analytical composition technique versus a high precision nu-

merical integration of the Schrödinger equation, obtaining an
excellent degree of agreement.

Composing two potential holes and applying Eqs.(4) to-
gether with Eq.(17) one finds for the transmission probabil-
ity, using the previously defined quantitiesp,g

T2PTskd =
1

p1
2p2

2 + s1 + p1
2ds1 + p2

2d − 2p1p2
Î1 + p1

2Î1 + p2
2cosfg1 + g2 + 2ksd1 + d2dg

, s18d

which is a handy expression that can hardly be obtained by
trying to solve the Schrödinger equation for the double po-
tential hole. To our knowledge this calculation has not been
made before. Equation(18) clearly shows the interference
effect depending on the distanced1+d2 between the centers
of the holes. An example of transmission is shown in Fig. 4.

The composition procedure can be applied with a small
number of atoms to study the transmittivity of different po-
tential profiles resembling molecular structures such as those
in Fig. 5. The transmission matrix(17) can also be used to
consider a continuous disordered model in the form of a
large chain of these potential holes with random parameters.
So far, in the literature only two kinds of potentials have
been used to build continuous disordered models, namely the
Dirac delta potential and the square well(barrier), due to
their well-known and easy to manipulate transmission matri-
ces. We recall the fact that handy transmission matrices can
be obtained for other potential profiles using reasonable ap-
proximations, such as the one described here.

The next step for our purpose is to consider dissipation in
these one-dimensional composite potentials.

VI. DISSIPATIVE ATOMIC QUANTUM WELLS/BARRIERS

We shall consider the extension of the Pöschl-Teller po-
tential given by the complexified Scarf potential,

Vsxd =
"2a2

2m
S V1

cosh2saxd
+ iV2

sinhsaxd
cosh2saxdD s19d

with V1,V2PR. It is a proper complex extension for two
reasons: it admits analytical solutions[23] and its imaginary
part is somehow proportional to the derivative of the real
potential. This latter criterion has been considered in nuclear
optical potentials to choose adequate complex extensions. It
seems reasonable to measure the strength of the dissipation
processes in terms of the “density” of the real interaction and
therefore writing an imaginary potential that is proportional
to the spatial derivative of the real one. The potential profile
is shown in Fig. 6.

The Scarf potential has been extensively considered in the
literature, mainly dealing with its discrete spectrum, either in
its real and complex forms, from the point of view of SUSY

FIG. 4. (Color online) Transmission through a double Pöschl-
Teller hole with parametersa1=a2=2sx−1unitsd , l1=l2=2.4, d1

=d2=5sx unitsd. The dashed line corresponds to a single potential
hole. The inset shows the composite potential profile(arbitrary
units).

FIG. 5. (Color online) Transmission patterns for two symmetric
composite potentials of ten units each. Their profiles are shown in
the insets(arbitrary units). Parameters for the first five potentials of
the sequences: (solid line) a=1,1,0.5,1,1(x−1 units),
l=1.66,2.19,5.01,2.33,2.16, andd=4, 4,7,4,4(x units) and (dashed
line) a=2,2,1,1,1(x−1 units), l=1.66,1.66,2.03,2.03,2.03, and
d=2,2,4,4,4(x units).
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quantum mechanics[24] or focusing on itsPT-symmetric
form [25].

First, a detailed mathematical analysis of the potential,
regarding its scattering properties, must be made to discuss
some new features and some assertions that have been made.

The left scattering amplitudes of the real Scarf potential
have been obtained in terms of complex gamma functions
[23]. Recently, a considerable simplification has been
pointed out by Ahmed[25]. In fact, the asymptotic transmit-
tivity and reflectivity for the complex Scarf can be written as

Tskd =
sinh2s2pk/ad

sinh2s2pk/ad + 2 coshs2pk/adcoshspg+dcoshspg−d + cosh2spg+d + cosh2spg−d
, s20d

RLskd =
cosh2spg+de−2pk/a + cosh2spg−de2pk/a + 2 coshspg+dcoshspg−d

sinh2s2pk/ad + 2 coshs2pk/adcoshspg+dcoshspg−d + cosh2spg+d + cosh2spg−d
, s21d

whereg±=ÎV1±V2−1/4 andRRskd is recovered fromRLskd
by interchangingg+ andg− (which is equivalent to substitut-
ing V2→−V2 and therefore changing the direction of inci-
dence). These expressions derive from the asymptotic trans-
mission matrix, which is obtained here using the asymptotic
form of the Schrödinger equation solutions(Appendix B),

MScarfskd = SieiwÎ1 + ss̄ − is

is̄ − ie−iwÎ1 + ss̄
D , s22d

where

s=
coshspg+depk/a + coshspg−de−pk/a

sinhs2pk/ad
, s23d

s̄= ssg+� g−d, s24d

and w=2 arghGsik /adGs1/2+ik /adj−arghGsc+ ik /adGsb
+ ik /adGs1−c+ ik /adGs1−b+ ik /adj with the definitions

c =
1

2
−

i

2
sg+ − g−d, b =

1

2
−

i

2
sg+ + g−d. s25d

It immediately follows from the transmission matrix that the
absorption probabilities read

ALskd =
ss̄− s̄2

1 + ss̄
, ARskd =

ss̄− s2

1 + ss̄
. s26d

Unlike the complex delta potentials example this potential
has some drawbacks that must be carefully solved. Its imagi-
nary part is non-negative defined in its domain, which might
cause anomalous scattering. Only some values ofV2 will be
physically acceptable. To ensure thatTskdø1∀k, it is clear
from Eq. (20) that the necessary and sufficient condition is
coshspg+dcoshspg−dù0. The functionsg+,g− can be real or
pure imaginary depending on the values ofV1 and V2. A
detailed analysis of the conditions for physical transmission
is presented in Appendix B. As a summary, let us say that for
V1.0 (barriers), the evaluation of the condition translates
into

uV2u P f0,V1g ø f2ns2n − 1d + V1,2ns2n + 1d + V1g, n P Z+.

s27d

For V1,0 (wells) the situation becomes more complicated
and the result can only be expressed through several in-
equalities, each one adding a certain allowed range forV2
(see Appendix B). As an example, in Table I we show the
compatible ranges ofV2 for a few negative values ofV1. One
can trivially check the compatibility of the intervals pre-
sented forV2 with the conditionTskdø1∀k by plotting Eq.

TABLE I. Ranges ofV2 compatible with the conditionTskd
ø1∀k for the complex Scarf potential for certain negative values
of V1. The last column includes the intervals providing physical
scattering from the emissive side of the potential.

V1 uV2u uV2u emissive

−0.5 f0,0.5gø f1.5,5.5gø f11.5,19.5g ¯ [0,0.5]

−1 f0,5gø f11,19gø f29,41g ¯ x

−2.4 f0,0.4gø f2.4,3.6gø f9.6,17.6g ¯ f0,0.4gø f2.4,2.569g
−3 f0,1gø h3jø f9,17g ¯ [0,1]

−4 f0,4gø f8,16gø f26,38g ¯ [3.606,4]

−5 f0,1gø f3,5gø f7,15g ¯ f3,4.123gø f4.472,5gFIG. 6. Real and imaginary parts of the complex Scarf potential
(arbitrary units).
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(20). In a two-dimensional plot ofuV2u vs V1, the physical
ranges for the transmission distribute as alternating fringes
and a funny chessboardlike pattern(Fig. 9).

One feature to emphasize according to the conditions
given for acceptable transmission is the fact that the number
of permitted intervals forV2 is infinite for any V1, either
positive(barrier) or negative(well), and therefore there is no
mathematical upper bound onuV2u suV2

criticalud above which the
transmission probability always becomes unphysical, con-
trary to what has been reported recently[25]. From a physi-
cal viewpoint of course, a sensible limitation must also be
imposed onV2, usually uV2u! uV1u.

Let us see now what happens with the reflectivity. We
assert that for the values ofV1 andV2 preserving a physical
transmission, one of the reflectivities of the system remains
physical[i.e., Rskdø1−Tskd∀k], left or right, depending on
the particular values ofV1,V2 (or equivalently, one of the
absorptions takes positive values for allk). The statement is
easy to prove from Eqs.(26) and more specifically reads:
whenTskdø1∀k [i.e., coshspg+dcoshspg−dù0], then

ucoshspg−du , ucoshspg+du ⇒ ALskd ù 0 ∀ k,

ucoshspg−du . ucoshspg+du ⇒ ARskd ù 0 ∀ k. s28d

ConsideringV1.0 andV2.0 it is not hard to see that the
first of the above inequalities always holds. Therefore in the
case of a potential barrier the scattering is always physical
from the absorptive side(trough of the imaginary part), as
has already been stressed[25]. More interesting is the fact
that this conclusion cannot be extended to the caseV1,0
(well). In this case the physical scattering sometimes occurs
from the emissive side(peak of the imaginary part), produc-
ing smaller absorption terms. In Table I a few examples ofV2
intervals providing physical scattering from the emissive side
for some potential wells are shown.

Another interesting feature that must be observed is that
there exists a set of correlated values ofV1,V2 for which the
complex Scarf potential behaves as fully transparent. The
condition for this to happen is from Eq.(20), coshspg+d

=coshspg−d=0. Thus the main requirement is thatg+,g−

must be purely imaginary, yielding in this case the transpar-
ency equations

cosSpÎ1

4
− V1 ± V2D = 0, s29d

whose solutions are

V1 =
1

4
−

1

8
fs2m+ 1d2 + s2n + 1d2g, s30ad

V2 =
1

8
fs2m+ 1d2 − s2n + 1d2g, m,n P Z. s30bd

It is worth noting that the transparencies only appear for
potential wellssV1,0d. Considering the particular casen
=m one recovers the Pöschl-Teller resonancesslPZd. In
Table II the first values of Eqs.(30) are listed explicitly.

The absorption obviously vanishes for allk when consid-
ering these special resonant values of the potential ampli-
tudes. Surprisingly, there also exists another set of nontrivial
correlated values ofV1,V2 for which the potential is nondis-
sipative fAskd=0∀ kg without being fully transparent. This
set of values satisfies coshspg+d=coshspg−dÞ0, as can be
seen from Eqs.(26). Nontrivial solutions exist wheng+,g−
PC, yielding

uV2u = nÎ1 − 4V1 − 4n2, n P Z+. s31d

Let us also notice from Eqs.(28) that these solutions are also
the borders where the physical scattering changes from the
absorptive side to the emissive side or vice versa. We shall
refer to these borders as inversion points(IP). Therefore,
whenever we encounter an IP we can sayAskd=0∀ k with-
out a fully transparent behavior, and hence a nondissipative
scattering process for all energies with a nonvanishing imagi-
nary part of the potential. Let us note that from Eq.(31) the
IP only appears in the case of Scarf potential wells and only
for uV2uø1/4−V1. In Fig. 7 the characteristic scattering
probabilities are shown for a Scarf barrier and a Scarf well,
and in Fig. 8 the maximum value of the physical absorption
is plotted versusuV2u for different values ofV1. WhenV1 is
positive the absorption grows with the amplitude of the
imaginary part of the potential. On the other hand, for nega-
tive V1 a strikingly different pattern arises, with transparen-
ciessTd and inversion points(IP) and the absorption does not
increase monotonically withuV2u. The whole behavior of the

FIG. 9. Scattering diagram for the complex Scarf potential in
terms of the potential amplitudes. The physically acceptable ranges
for V1,V2 correspond to the shaded zones. The curves are the in-
version lines given by Eq.(31). The black points mark the corre-
lated values of the amplitudes[Eqs.(30)] generating a fully trans-
parent behavior.

TABLE II. Some correlated values ofV1,V2 producing the fully
resonant behavior of the complex Scarf potential. The particular
Pöschl-Teller resonances are in square brackets.

s−V1, uV2ud

(1,1) (3,3) (6,6) (10,10) (15,15)

[2,0] (4,2) (7,5) (11,9) (16,14)

[6,0] (9,3) (13,7) (18,12) (24,18)

[12,0] (16,4) (21,9) (27,15) (34,22)
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scattering can be clearly understood by building a two-
dimensional diagramuV2u vs V1 (Fig. 9), including physically
permitted ranges, inversion lines, and the points of transmis-
sion resonance. The complex Scarf potential shows two op-
posite faces to scattering, namely barrier and well, and a
much richer structure in the latter case.

After this detailed analysis of the peculiarities of the com-
plex Scarf, that to our knowledge have not been reported
before, let us continue with our work on connecting several
potentials to model dissipative atomic chains. The procedure
is the same as the one described for the Pöschl-Teller poten-
tial hole in Sec. V. Only the portion of the potential included
in the intervalf−d,dg is taken(Fig. 6). Making use of the
asymptotic forms of the wave functions, and after some al-
gebra, one finds the transmission matrix for the complex
Scarf potential with a symmetrical cutoff,

Mskd = Sieisw+2kddÎ1 + ss̄ − is

is̄ − ie−isw+2kddÎ1 + ss̄
D . s32d

The matrix proves to be the same as for the asymptotic case
[Eq. (22)], but with the extra phase 2kd in the diagonal
terms. It can be checked that the half-widthsd1/2 of both the
real and imaginary parts coincide and that the decay of the
imaginary part of the potential is always slower than that of
the real part(Fig. 6). This causes an increase in the minimum

value of the cutoff distanced0 with regard to the Pöschl-
Teller case. For sensible values of the potential amplitudes
we have found that consideringd0.3d1/2=5.3/a is enough
in most cases. In fact, this minimum value can be relaxed in
the case of potential barrierssV1.0d, whereas for potential
wells takingd below this value to apply the connection equa-
tions may sometimes distort the results. The correct behavior
of the connection procedure fordùd0 can be observed in
Fig. 10 where the scattering probabilities obtained upon in-
tegrating the Schrödinger equation numerically are compared
with those given by the analytical composition technique, for
two potential barriers and two potential wells with different
choices of the cutoff distance and with high values foruV2u.
Notice how in the barrier example convergence between the
methods is completely reached ford.2d1/2 whereas for po-
tential wells a further step is needed because the convergence
is much slower.

Once the connection of potentials has been successfully
made, one should ask which are the ranges of the potential
amplitudes that provide an acceptable physical scattering in
this new framework. Analysis of this issue is very nontrivial
and quite complex analytically, but also very important be-
cause it determines whether this model remains useful when
considering atomic chains. First, in the case of two potentials
we have observed that choosing each individual pair of am-
plitudessV1,V2d belonging to a physical range, and selecting

FIG. 7. (Color online) Characteristic scatter-
ing patterns for (a) a complex Scarf wella
=1sx−1unitsd , V1=−0.5, V2=−0.4 and(b) a com-
plex Scarf barrier a=1sx−1unitsd , V1=2, V2

=0.1.

FIG. 8. Maximum value of the absorption
probabilityAmax vs uV2u for different values ofV1.
For each graph the upper(lower) curve corre-
sponds to a barrier(well). A dotted line is used in
the forbidden values ofuV2u, nevertheless the
whole curve is shown for continuity. The allowed
ranges ofuV2u and the position of the IP can be
compared with the values in Table I.

J. M. CERVERÓ AND A. RODRÍGUEZ PHYSICAL REVIEW A70, 052705(2004)

052705-8



the signs of the imaginary parts so that the physical faces of
both potentials point in the same direction, then an accept-
able scattering for the composite potential can always be
recovered at least from one of the two possible orientations
(both physical faces to the right or to the left). In other
words, considering that the incident particle always collides
with the left side(it comes from −̀ ) and therefore orientat-
ing the individual physical faces to the left, then at least one
of the sequencesVIsxd−VIIsxd or VIIsxd−VIsxd gives an ac-
ceptable scattering for all energies. We have checked this
assertion for a broad variety of Scarf couples. For a higher
number of potentials the situation becomes more complex
but a few pseudorules to obtain physical scattering can be
deduced. For an arbitrary chain we have found that in many
cases the left scattering remains physical as long as the left
scattering of each individual potential is physical and the left

scattering of each couple of contiguous potentials is physical.
This recipe seems completely true when composing potential
barriers only, whereas when wells are included it fails in
some situations, especially when several contiguous wells
are surrounded by barriers. Although at the beginning it may
appear almost random to recover a physical scattering from a
large composition of Scarfs, following the given advices it
turns out to be more systematic.

Let us remember that the composition procedure, apart
from being a powerful tool for numerical calculations also
provides analytical expressions for the scattering probabili-
ties, which of course adopt cumbersome forms for a large
number of potentials but are useful for obtaining simple ex-
pansions for certain energetic regimes. Just as an example,
the transmittivity and left reflectivity for the double Scarf
read

T2Scarfskd =
1

s1
2s̄2

2 + s1 + s1s̄1ds1 + s2s̄2d − 2s1s̄2
Î1 + s1s̄1

Î1 + s2s̄2cosfw1 + w2 + 2ksd1 + d2dg
, s33d

R2Scarf
L skd =

s̄1
2s1 + s2s̄2d + s̄2

2s1 + s1s̄1d − 2s̄1s̄2
Î1 + s1s̄1

Î1 + s2s̄2cosfw1 + w2 + 2ksd1 + d2dg

s1
2s̄2

2 + s1 + s1s̄1ds1 + s2s̄2d − 2s1s̄2
Î1 + s1s̄1

Î1 + s2s̄2cosfw1 + w2 + 2ksd1 + d2dg
, s34d

FIG. 10. (Color online) Scattering probabilities for double Scarf potentials with parametersa=1sx−1unitsd , V1=2, V2=1 for barriers and
a=1sx−1unitsd , V1=−4, V2=3.1 for wells. The solid lines were obtained from the analytical composition technique and the dashed lines
correspond to the exact numerical integration of the Schrödinger equation. The insets show the potential profile(in arbitrary units) for each
case: a solid line for the real part and a dashed for the imaginary part. The vertical lines limit the portion of the potential that the composition
technique takes into account. For numerical integration the whole potential profile was considered. Notice that for lowd the exact integration
may lead to unphysical scattering because the conditions obtained for physical scattering are not valid for suchd values. Asd is increased
an acceptable scattering is recovered and both methods start converging. Convergence is reached faster in the case of potential barriers where
the analytical composition technique works impressively well even for very low values ofd.
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making use of the previously defined termss, s̄, andw. One
important feature of the formulas for the composite scatter-
ing probabilities is the fact that they analytically account for
the fully transparent behavior of the whole structure as long
as there is resonant forward scattering of the individual po-
tential units, as can be seen from the latter equations and also
from Eq. (18) for the double Pöschl-Teller. Another curious
feature arises when composing different potentials whose
amplitudes describe an IP. In this case the whole structure
remains nondissipative(Fig. 11). Moreover, the complex
Scarfs at these points behave completely as real potentials,
providing an acceptable scattering for the composition that is
independent of the incidence direction for any sequence of
the individual Scarfs.

Considering larger Scarf chains with small imaginary
parts of the potentials, in the case of a periodic array we
observe that the absorption term remains flat over a wide
range of forbidden bands and oscillates inside the permitted
ones. The variations in the absorption are entirely balanced
by the reflectivity while the transmittivity is surprisingly not
affected by the presence of a small complex potential(Fig.
12). This behavior contrasts strongly with the complex delta
potentials periodic chain where the absorption was com-
pletely different and it was the reflectivity that was little
affected by the dissipation. For an aperiodic sequence the
situation is quite different, as expected. In Fig. 13 a type of
molecular aggregate is modeled with complex Scarfs. It ex-
hibits a peaky absorption spectrum and a strongly oscillating
transmittivity with sharp resonances. In Fig. 14 a symmetric
atomic cluster has been considered in which the dissipation
only occurs at both ends. Different transmission and absorp-
tion configurations can be obtained by building different
structures. This shows the usefulness and versatility of this
model for being able to account for a variety of possible
experimental observations.

As a final exercise, two examples are included in Fig. 15
showing the evolution of the transmittivity of two different
Scarf compositions as a function of the imaginary part of the
potential. The transmission patterns are plotted for different
values of the parameter«= uV2u / uV1u, which measures the
strength of the imaginary part. The transmission efficiency
is evaluated using an averaged transmittivityTint
=ek1

k2Tskddk/ sk2−k1d corresponding to the area enclosed by
Tskd per energy unit in a characteristic energy range, namely
the zone whereT evolves until it becomes saturated. The
imaginary potential tends to smooth the transmission pattern
in the first example(corresponding to a sequence of barriers),
causing a slight decrease in the averaged transmittivity for

FIG. 11. (Color online) Composition of Scarfs with different
pair amplitudes describing IPs. Sequence witha=1sx−1unitsd and
sV1,V2d : s−4,Î13d , s−4.5,Î15d , s−5,Î17d , s−6,Î21d , s−7,2Î13d.
All the cutoff distances have been taken equal tod=6sx unitsd. The
inset shows the potential profile with a solid(dashed) line for the
real (imaginary) part in arbitrary units. Notice that the composition
remains nondissipative.

FIG. 12. (Color online) Periodic chain of 20 complex Scarfs
with amplitudesa=1sx−1unitsd , V1=2, V2=0.02 (solid lines), and
V2=0.05(dashed lines) and cutoff distanced=6sx unitsd. The trans-
mittivity is not changed much by the small imaginary part of the
potentials.

FIG. 13. (Color online) Scattering probabilities for a 10-Scarf
structure with parametersa=1sx−1unitsd and sV1,V2d : s1,0d,
s−0.5,−0.005d, s−1.3,0.013d, s1.8,0.01d, s−1.3,0.013d, s4,0.04d,
s−2.4,−0.024d, s3.5,0.04d, s−3.1,0.031d, s−1.5,0.04d. The cutoff
distance isd=6sx unitsd equal for all of them. The inset shows the
real part of the potential profile(arbitrary units).
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low «, although it is finally improved. For a double well a
different effect occurs.Tint is always enhanced with increas-
ing « until it reaches a maximum, after which the transmit-
tivity falls with the imaginary potential. With these results in
mind one could speculate that these models might also be
useful to describe the phase-breaking inelastic scattering pro-
cesses in atomic chains. Especially when one treats disor-
dered arrays where the break of the localization regime could
arise as a result of the loss of coherence due to inelastic
collisions.

VII. CONCLUDING REMARKS

In this work we have used the transfer matrix formalism
in the form of the multiple collision technique to model dis-
sipative scattering processes by using complex potentials in
various models of atomic chains. The absorption probability
has been rigorously included to recover unitarity for the non-
Hermitian Hamiltonians.

New exact analytical expressions are given for the scat-
tering amplitudes of an arbitrary chain of delta potentials.
The absorption effects arising by promoting the delta cou-
plings to the complex domain have been shown, revealing
the flexibility of this simple model to account for very dif-
ferent physical schemes.

Handy expressions for the transmission matrices of the
Pöschl-Teller and the complex Scarf potential have been con-
structed in their asymptotic as well as their cutoff versions.
These latter matrices have made feasible, via the composi-
tion technique, the assembly of an arbitrary number of
potentials to build atomic one-dimensional wires that can
incorporate absorptive processes. Different absorption con-
figurations are presented in several examples that show the
versatility of the model to account for a variety of possible
experimental observations. The procedure developed is not

only useful for numerical calculations but also provides ana-
lytical formulas for the composite scattering probabilities,
which have not been obtained by other methods, and whose
significance has been checked by numerical integrations of
the Schrödinger equation.

From a more mathematical view, a complete and rigorous
analysis of the scattering properties of the complex Scarf
potential has been carried out. The ranges of physical trans-
mission have been obtained and a group of features have
arisen such as the presence of perfect transparencies and in-
version points.

Apart from being able to include dissipation in the sys-
tems in a tractable way, the tools and methods provided may
have direct applicability for considering molecular aggre-
gates[26] and other structures with explicit potential profiles
and also to build a new kind of continuous disordered model.

Future work seems promising since we are already in
progress on the assembly of the one-dimensional structures
to quantum dots in order to analyze the effect of dissipation

FIG. 14. (Color online) Scattering probabilities for a 10-Scarf
structure with parameters a=1sx−1unitsd and
sV1,V2d : s1,0.04d , s1,0.05d , s−2,0d , s−1.5,0d , s−1,0d , s−1,0d , s
−1.5,0d , s−2,0d , s1,0.1d , s1,0.1d. The cutoff distance is d
=6sx unitsd equal for all of them. The inset shows the real part of
the potential profile(arbitrary units).

FIG. 15. (Color online) Transmittivity for different strengths of
the imaginary part of the potentials in(a) a chain of 6-Scarf barriers
V1=4,2,2.5,3,3.5,4 anda=1sx−1unitsd, (b) a double Scarf well with
V1=−1,−1 anda=2sx−1unitsd. The cutoff distances in all cases are
equal tod=6sx unitsd. Each imaginary amplitude readsV2=«uV1u,
except the first barrier in example(a) which is maintained real. The
insets show the evolution ofTint vs the strength of the imaginary
amplitudes.
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on the conductance. Our aim is also to treat long disordered
wires within this framework, and in particular to study the
applicability of these potentials to account for the loss of
coherence due to the inelastic scattering process in the elec-
tronic localization regime.
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APPENDIX A: SOLUTIONS OF THE PÖSCHL-TELLER
POTENTIAL

The elementary positive energy solutions of the
Schrödinger equation with potential(14) read

esxd = coshlsaxdFSa,b,
1

2
;− sinh2saxdD , sA1ad

osxd = sinhsaxdcoshlsaxdFSa +
1

2
,b +

1

2
,
3

2
;− sinh2saxdD ,

sA1bd

wherea=l /2+isk/2ad ,b=l /2−isk/2ad, andFsa,b,c;zd is
the hypergeometric function. Their asymptotic forms can be
written as

esxd → me−iwe−ikuxu + meiweikuxu, sA2ad

osxd → sgnsxdsne−iue−ikuxu + neiueikuxud , sA2bd

where

meiw =
ÎpGsi k

ad2−isk/ad

Gs l
2 + i k

2adGs 1−l
2 + i k

2ad , sA3ad

neiu =
ÎpGsi k

ad2−isk/ad

2Gs l+1
2 + i k

2adGs1 − l
2 + i k

2ad . sA3bd

APPENDIX B: COMPLEX SCARF POTENTIAL

1. Scattering states

The elementary positive energy solutions of the
Schrödinger equation with the complex Scarf potential(19)
are

u1sxd = e−isb−1/2darctanfsinhsaxdgcoshcsaxd

3FSc + i
k

a
,c − i

k

a
,1 −b + c;

1

2
+

i

2
sinhsaxdD ,

sB1ad

u2sxd = e−isb−1/2darctanfsinhsaxdgcoshcsaxdS1

2
+

i

2
sinhsaxdDb−c

3 FSb + i
k

a
,b − i

k

a
,1 +b − c;

1

2
+

i

2
sinhsaxdD .

sB1bd

Fsa,b,c;zd being the hypergeometric function and using the
b,c definitions in Eq.(25). The asymptotic limitx→ ±`
yields

u1sxd → 2cfsgnsxd · ig1/2−b+csw1e
−ikuxu + w2e

ikuxud ,

sB2ad

u2sxd → − 2cf− sgnsxd · ig3/2−b+csq1e
−ikuxu + q2e

ikuxud ,

sB2bd

where

w1 =
22isk/adGs1 − b + cdGs− 2i k

ade−sgnsxdp/2 k/a

Gsc − i k
adGs1 − b − i k

ad , sB3ad

w2 =
2−2isk/adGs1 − b + cdGs2i k

adesgnsxdp/2 k/a

Gsc + i k
adGs1 − b + i k

ad , sB3bd

q1 = w1sb� cd, sB3cd

q2 = w2sb� cd. sB3dd

2. Physical transmission

The condition for physical transmission is
coshspg+dcoshspg−dù0. V2 can be considered positive with
no loss of generality since its change in sign(which is
equivalent to changing the side of incidence) does not affect
the transmission. With the definitionsX= uV1u−V2 and Y
= uV1u+V2, the study can be easily carried out. Considering
V1.0 the inequality translates into the permitted regions

∀ YHX . 0,

− 2ns2n + 1d ø X ø − 2ns2n − 1d, n P Z+,J
sB4d

which is clearly a sequence of allowed vertical fringes in the
negativeX quadrant and the whole positiveX quadrant. This
pattern will be same but rotatedp /4 clockwise when the
change of variables is undone. More specifically, in terms of
the potential amplitudes the allowed intervals can be written
as

uV2u P f0,V1g ø f2ns2n − 1d + V1,2ns2n + 1d + V1g, n P Z+.

sB5d

In the case ofV1,0 a careful analysis leads to the fol-
lowing cumbersome allowed sets:

X , 0 ⇒ 2ns2n − 1d ø Y ø 2ns2n + 1d, n = 1,2,3,…,

sB6d
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X . 0 ⇒ Hh2ns2n − 1d ø X ø 2ns2n + 1dj ù h2ms2m− 1d ø Y ø 2ms2m+ 1dj, n,m= 1,2,…,

h2js2j + 1d ø X ø 2js2j + 3d + 2j ù h2ks2k + 1d ø Y ø 2ks2k + 3d + 2j, k, j = 0,1,2,…,
J sB7d

which are a set of allowed horizontal fringes in the negative
X quadrant and a chessboardlike structure for positiveX.
Undoing the change of variables will mean ap /4 clockwise
rotation followed by a reflection around the vertical axis of
this pattern to recover the negative axis ofV1. Solving these
inequalities in terms of the potential amplitudes gives rise to
the following set of inequalities, each one assigning a certain
allowed interval foruV2u when fulfilled: for nPZ+,

uV1u ø ns2n − 1d ⇒ f2ns2n − 1d − uV1u,2ns2n + 1d − uV1ug,

ns2n − 1d ø uV1u ø ns2n + 1d ⇒ fuV1u,2ns2n + 1d − uV1ug,

sB8d

for m,nPZ+,mùn,

ms2m− 1d + ns2n − 1d ø uV1u ø ms2m− 1d + ns2n + 1d

⇒ f2ms2m− 1d − uV1u,− 2ns2n − 1d + uV1ug,

ms2m− 1d + ns2n + 1d ø uV1u ø ms2m+ 1d + ns2n − 1d

⇒ f− 2ns2n + 1d + uV1u,− 2ns2n − 1d + uV1ug,

ms2m+ 1d + ns2n − 1d ø uV1u ø ms2m+ 1d + ns2n + 1d

⇒ f− 2ns2n + 1d + uV1u,2ms2m+ 1d − uV1ug, sB9d

and for j ,k=0,1,2,… ,kù j ,

ks2k + 1d + js2j + 1d ø uV1u ø ks2k + 1d + js2j + 3d + 1

⇒ f2ks2k + 1d − uV1u,− 2js2j + 1d + uV1ug,

ks2k + 1d + js2j + 3d + 1 ø uV1u ø ks2k + 3d + 1 + js2j + 1d

⇒ f− 2 − 2js2j + 3d + uV1u,− 2js2j + 1d + uV1ug,

ks2k + 3d + 1 + js2j + 1duV1u ø ks2k + 3d + js2j + 3d + 2

⇒ f− 2 − 2js2j + 3d + uV1u,2 + 2ks2k + 3d − uV1ug.

sB10d

In the particular casesm=n for Eqs. (B9) andk= j for Eqs.
(B10) only the positive part of the allowed intervals must be
considered. The total physical range foruV2u comes from the
union of the different permitted intervals.
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