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A connectivity analysis of controlled quantum systems assesses the feasibility of a field existing that can
transfer at least some amplitude between any specified pair of states. Although Hamiltonians with special
structure or symmetry may not produce full connectivity, it is argued and demonstrated that virtually any
Hamiltonian is expected to be connected. The connectivity of any particular system is generally revealed in the
quantum evolution over a single or at most a few time steps. A connectivity analysis is inexpensive to perform
and it can also identify statistically significant intermediate states linking a specified initial and final state.
These points are illustrated with several simple systems. The likelihood of an arbitrary system being connected
implies that at least some product yield can be expected in the laboratory for virtually all systems subjected to
a suitable control.
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I. INTRODUCTION

Quantum control studies generally utilize a laser field for
manipulating the system dynamics to achieve a desired
physical objective, often consisting of maximizing the prob-
ability of transition between specified states of the system
[1–4]. Many quantum optimal control simulations have pro-
duced excellent results, and increasing numbers of successful
closed-loop learning control laboratory realizations are being
reported[5–12]. Recent theoretical analysis[14,15] revealed
that the origin of these positive findings lies in there being no
false suboptimal search outcomes, provided that the system
is controllable such that some field exists which may drive
the amplitude from the initial to the final state. Underlying
the concept of controllability is connectivity, which aims to
establish that at least some pathway exists to connect the
initial and final states. This paper presents the means to de-
termine connectivity and then argues that virtually all quan-
tum systems are expected to be connected. It will also be
shown that a connectivity analysis can identify the interme-
diate states that are statistically likely to be more important
in the dynamics. Section II defines the notion of quantum
system connectivity and presents a very simple algorithm to
test for its presence. Section III presents several simple illus-
trations, and some conclusions are drawn in Sec. IV.

II. CONNECTIVITY ANALYSIS

The quantum system under control is described by the
Schrödinger equation:

i"
ducstdl

dt
= fH0 − Estdmgucstdl, s1d

whereucstdl is the time-dependent state of the system,H0 is
the field-free Hamiltonian,m is the dipole moment, andEstd
is the laser control electric field. The quantum system is rep-
resented in terms ofN basis stateshucllj, l =1,2, . . . ,N, im-
plying thatucstdl is a vector of lengthN and correspondingly
H0 and m are N3N matrices. The basis is conventionally
chosen as the eigenstates ofH0, although any other basis
may just as well be employed in the connectivity analysis.
The connectivity analysis is in reference to the chosen basis.
Section IV will generalize the analysis to other consider-
ations of connectivity in controlled dynamics, including de-
scriptions best formulated in coordinate space.

Two basis statesucil and uc jl are said to be connected if
some control fieldEstd, 0, tøT exists creating a nonzero
amplitudeUji =kc juUsT,0ducil relating the two states. Here
UsT,0d is the time evolution operator driven by the Hamil-
tonian H0−Estdm. The solution of the Schrödinger equation
may be built up from a sequence of short time evolution
operatorsUst ,t−Dtd,

Ust,t − Dtd < expH−
iDt

"
FH0 − ESt −

Dt

2
DmGJ s2d

for Dt being sufficiently small such thatEstd is nearly con-
stant overft−Dt ,tg. Thus, the total propagation over the in-
terval 0, tøT may be carried out as follows[13]:

ucsTdl ; UsT,0ducil = UsT,T − Dtd 3 Ust − Dt,t − 2Dtd

3 ¯ 3 UsDt,0ducil. s3d

Two statesucil and uc jl are connected ifuUji uÞ0, and the

*Electronic address: hrabitz@princeton.edu
†Also at CERMICS-ENPC, Champs sur Marne, 77455 Marne la

Vallée Cedex, France

PHYSICAL REVIEW A 70, 052507(2004)

1050-2947/2004/70(5)/052507(7)/$22.50 ©2004 The American Physical Society70 052507-1



ultimate control goal is taken to be the maximization of
uUji u2. The maximum value ofuUji u2 generally builds up in-
crementally over the long sequence of the time evolution
operations in Eq.(3). Yet, each incremental operatorUst ,t
−Dtd contains similar physical coupling information with the
only difference being the valueEstd involved. Except for the
special case ofEstd=0, it is reasonable to expect that the
basic assessment of connectivity resides in whether
ukc juUst ,t−DtduciluÞ0 for a value ofEstdÞ0 andDtÞ0. For
numerical reasons, it is often prudent when performing a
connectivity analysis with the operator in Eq.(2) to choose
Estd sufficiently large to assure thatiH0i,imiuEstdu and also
haveDt larger than normally required in the time integration
steps of Eq.(3). The algorithm below for assessing connec-
tivity also allows for the prospect that a product of two or
more propagation steps may be needed to properly assess
connectivity in cases whenH0 andm have special structure
or symmetry, but the numerical results from large ensembles
of randomly chosen Hamiltonians supports the point that
Ust ,t−Dtd alone usually reveals the system connectivity. The
connectivity information is collected into a real symmetric
matrix C whose elementsCji are either 0 or 1, corresponding
to whether stateucil and uc jl are connected(i.e., Cji =1, if
ucil and uc jl are connected) by some non-zero amplitude. In
some applications the connectivity of a particular pairs of
statesucil and uc jl is the focus, while in other cases the goal
is to assess ifCji =1, for all j , i.

It is important to distinguish a connectivity analysis from
performing a fully engaged optimal control calculation. The
criterionCji =1 is necessary for optimization, butCji =1 does
not guarantee thatukc juUsT,0ducilu=1. This point will be evi-
dent in the simulations and the discussion in Sec. III. It is
also important to distinguish a connectivity analysis from a
controllability analysis, which aims to answer whether the
control goal can be exactly met. Controllability is a strong
requirement, while connectivity only asks if a non-zero am-
plitude exists between a pair of states. Thus, controllability
implies connectivity, but connectivity does not guarantee
controllability. Quantum controllability ofU may be as-
sessed using Lie algebra techniques[16], which may be dif-
ficult to apply for systems of large dimensionN. The strict
assessment of 100% yield in the target state is often overly
demanding for many applications where less than perfect
control would still be acceptable. The connectivity analysis
proposed in this paper is both conceptually and computation-
ally simple while providing practically useful information.

The connectivity analysis is carried out with the following
four algorithmic steps.

(i) Initialize the integer connectivity indexK by setting
K=1.

(ii ) Choose random constant field valuesEk, over a physi-
cally acceptable domain, −EøEkøE and choose a set of
random timestk.0, sampled on the interval 0, tkøT, k
=1,… ,K.

(iii ) ComputeU=pk=1
K expf−isH0−Ekmdtk/"g and derive

theK-th level connectivity mapCK by enumerating the non-
zero elements ofU :Cji

K=1 if uU ji
KuÞ0 andCji

K=0 otherwise.
(iv) If all the elements ofC are 1, then full connectivity is

assured and one may exit the algorithm. IfCji =1 for a speci-

fied pairs of states for assessment, then again connectivity is
assured between these two states and one may exit. If the
portion of CK of interest is not connected, then a further test
may be performed by settingK→K+1 and returning to step
(ii ).

This algorithm builds on representation results of the dy-
namical Lie group of the system. This group, that determines
all controllability properties, is shown[17] to be generated
by all products in(iii ) with arbitraryK.

For most cases, simply operating atK=1 is sufficient to
reliably assess connectivity. ConsideringK=1, one may fur-
ther expandU as follows:

expF−
i

"
sH0 − E1mdt1G = I + sH0 − E1mdS−

i

"
t1D +

1

2!
sH0

− E1md2S−
i

"
t1D2

+ ¯ . s4d

As E1 and t1 are random, we may conclude thatCji
1 =1 as

soon as at least one of the matricessH0−E1mdl, l =1, 2,…,
has an(j , i) matrix element whose magnitude is nonzero. By
virtue of the Caley-Hamilton theorem[18], it suffices to
check the matricessH0−E1mdl for l =1,2, . . . ,sN−1d. Find-
ing connectivity by checking the matricessH0−E1mdl,
l =1,2, . . . ,sN−1d, for matrix elements of nonzero magni-
tude reveals the lowest order ofl at which a connection
between two states is first established. Furthermore, the sta-
tistics can be established for all intermediate states involved
in the connected pathways at this level, which gives kine-
matic insight into the mechanism of the control. The statis-
tical role of the intermediate states based on Eq.(4) may also
be readily extended toK.1, if necessary. In practice, the
connectivity analysis is most conveniently carried out via the
simple algorithmic steps(i)–(iv) above, and the further term-
for-term assessment in Eq.(4) is only used if additional de-
tailed kinematic coupling insight is sought.

III. ILLUSTRATIONS

In this section, the information revealed by a connectivity
analysis and its ability to provide kinematic mechanism in-
sights will be illustrated through three simple examples. The
first example will make clear the distinction between connec-
tivity and controllability. The second example will test con-
nectivity for a large ensemble of randomly chosen Hamilto-
nians and examine the appropriateness of using justK=1 in
the analysis steps(i)–(iv). Finally, the last example will show
that the connectivity analysis tools may be extended to multi-
polarization fields and this case will also illustrate the extrac-
tion of kinematic mechanism information from Eq.(4).

A. Connectivity and controllability

Consider the four-level system as in Fig. 1 where states 3
and 4 are degenerate. The field-free HamiltonianH0 of this
system is assumed to have the diagonal form
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H0 = 3
1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 3
4 , s5d

and the dipole matrixm is chosen to be

m = 3
1 1 0 0

1 1 1 1

0 1 1 0

0 1 0 1
4 . s6d

The connectivity analysis in steps(i)–(iv) was complete at
index K=1, producing the connectivity matrix:

C = 3
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
4 . s7d

The fact that all four states are mutually connected is imme-
diately evident from a simple examination of Fig. 1. How-
ever, this example was specifically chosen for illustration as
the system is not fully controllable[16,19,20]. The reason for
this behavior is easily understood, as states 3 and 4 are de-
generate and they are linked to state 2 by a transition dipole
element of the same value. For example, if initially the popu-
lation is in state 1, then no more than 50% of the population
can be transferred to either state 3 or 4. However, if the
symmetry is broken by the slightest amount such thatum32u
Þ um42u, then the system remains connected and is now fully
controllable.

B. Connectivity with arbitrary Hamiltonians and those
with special structure

This section addresses the nature of connectivity likely to
be found for arbitrary Hamiltonians as well as connectivity
arising with Hamiltonians of special structure. In addition,
the convergence of the algorithm in steps(i)–(iv) with re-
spect to the indexK will be demonstrated. First, a set of
more than 104 random HamiltoniansH0, m of dimensionsN
up to 30 were examined by the algorithm. It was invariably
found that the algorithm converged to a final matrixC at

index K=1, and furthermore all the cases were fully con-
nected(i.e., Cji =1 for ∀ j , i). These results demonstrate that
the connectivity information is fully contained in an arbitrary
incremental propagation stepUst ,t−Dtd for a random field
valueEÞ0. Indeed, to find exceptions to this general behav-
ior requires the creation of special cases. One special cat-
egory occurs whenH0 andm are increasingly sparse. Natu-
rally, this circumstance can lead to some particular states
being disconnected. But, in no case wasK.1 required to
assess this matter whenH0 andm are randomly chosen while
containing some degree of imposed sparseness. Finally, the
presence of special symmetries or extreme sparseness inH0
and m can lead to requiringK.1 to achieve convergence.
Specially engineered examples were found that requiredK
=2 to reveal the true converged connectivity matrixC. The
need forK.1 arises as the lack of commutation between
H1=H0−E1m and H2=H0−E2m with E1ÞE2 introduces the
possibility of new linkages occurring for the casekc j uexp
f−isH0−E1mdDt /"gexpf−isH0−E2mdDt /"g ucil, which does
not show up in eitherkc j uexpf−isH0−E1mdDt /"gucil or
kc j uexpf−isH0−E2mdDt /"g ucil. A similar argument would
apply to the potential need for even higherK values.

The general conclusions from analyzing a large ensemble
of random Hamiltonians are that(a) connectivity is easy to
assess and(b) under most circumstances the connectivity is
likely to be full, implying that at least some amplitude can be
expected in the target state with a suitable field. Regarding
the latter point, it was found that when considering sparse
Hamiltonians, those of higher dimensions were generally
more likely to exhibit full connectivity. These findings are
illustrated by Fig. 2, where the average fraction of connected
states for Hamiltonians of different dimensionN is plotted
versus the probabilityp of any element of the Hamiltonian
matricesH0 or m being zero. For Hamiltonians of each di-
mension, the fraction of connected states is calculated by
averaging the results from 20 000 runs, where the fraction at
each run is the number of connected matrix elements in the
upper triangular part ofC divided by the total number of
pairs of statessN2−Nd /2. It can be seen from the figure that

FIG. 1. The system used in exampleA.

FIG. 2. The average fraction of connected pairs of states versus
the probabilityp of any element ofH0 or m being zero for Hamil-
tonian matrices of different dimensionN.
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for increasing Hamiltonian sparseness(i.e., as the probability
of any element ofH0 or m being zero increases), the fraction
of connected pairs of states initially is unaffected but even-
tually decreases. The clear trend shows that as the dimension
N of the Hamiltonian matrices increases, the drop in the frac-
tion of connected states is significantly delayed. A larger
fraction of states on the average are connected for Hamilto-
nians of higher dimension, given the same degree of sparse-
ness. This behavior evidently arises as the added states
present with Hamiltonians of increasing dimension typically
opens up new couplings that can overcome those that might
be restricted in lower dimensional cases. Realistic physical
systems typically have very large dimensions, and thus are
expected to be fully connected in most cases. This latter
point is also supported by a mathematical theorem in random
graph theory[22]. In a random graph ofN vertices the pres-
ence of an edge between any two vertices is assigned a prob-
ability p8. The random graph in turn can be represented by
random matrices where the probabilityp8 of the (i, j) matrix
element being nonzero corresponds to the likelihood of there
being an edge between vertexi and vertexj . The theorem
states that there exists a threshold functionp8sNd
=sln Nd /N2 such that a random graph isalmost always[23]
connected whenp8sNdù sln Nd /N2. The Hamiltonian H0

−Estdm studied in this section is a linear combination of two
independent Hermitian random matrices:H0 and m. The al-
gorithm in steps(i)–(iv) operating atK=1 [i.e., the expan-
sion in Eq.(4) can be carried out] is equivalent to analyzing
the connectivity of a graph represented by the matrixH0
−Estdm, i.e., the resultant connectivity information of this
graph is stored in the matrixC. Let p8 be the probability of
any matrix element ofH0 or m being nonzero,p8=1−p. The
corresponding threshold function for the full connectivity of
this Hamiltonian system as a graph isp8sNd=Îln N/N. Ex-
pressed in terms ofpsNd, the threshold function ispsNd=1
−Îln N/N. For N=30, p,0.94. That is, a connected system
at N=30 can tolerate approximately 94% zeroes in the ma-
tricesH0 andm. LargerN leads to better tolerance. Realistic
physical systems typically have large dimensionN and thus
are expected to be fully connected. Figure 3 shows the sta-
tistical distribution of the connectivity outcomes from a
simulation of 43 500 random Hamiltonians atN=30 andp
=0.94. A majority of the Hamiltonians produce full connec-
tivity, confirming the above graph theoretical prediction. The
distribution is evidentlydiscrete[24], and it was further ob-
served that as the dimensionN of the Hamiltonian increases,
this discretization pattern becomes even sharper. This behav-
ior implies that the connectivity of a physical system is
“quantized,” which may be attributed to the inherent proper-
ties of random graphs. To understand this, consider a random
graph withN=5. The graph has a total of 10 pairs of verti-
ces. Thus, there are 11 possible values for the fraction of
connected pairs of vertices: 0/10, 1/10,…, 9/10, 10/10.
However, only 7 values among them are actually admissible:
0/10, 1/10, 2/10, 3/10, 4/10, 6/10 and 10/10, as shown in Fig.
4. These are also all the possible outcomes ofC computed by
the algorithm in steps(i)–(iv) with random Hamiltonians of
dimensionN=5. The discretization occurs in the range of
high values of the fraction(i.e., the missing values are: 5/10,

7/10, 8/10 and 9/10). Intuitively, as the number of connected
pairs rises, the graph becomes so intertwined that isolating
unconnected pairs gradually becomes impossible; this point
is illustrated in Fig. 4 with the case of 2/10 where the addi-
tion of one particular connection led to 6/10. AsN rises, it is

FIG. 3. The distribution of outcomes from 43 500 runs versus
the fraction of connected pairs of states for a Hamiltonian of dimen-
sionN=30 and probabilityp=0.94 of any element ofH0 or m being
zero.

FIG. 4. All 7 possible connectivity pictures of a random graph
with N=5. Note that verticesi andk will be connected if vertexi
connects to vertexj and vertexj connects to vertexk. For example,
adding an edge at the position shown by the dashed line in the
picture “2/10” would induce more connections and transform the
picture into “6/10.”
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expected that the graph will become even more entangled,
and that an even wider range of values of the fraction will
vanish, resulting in a highly discretized distribution pattern.

Although full connectivity does not assure full controlla-
bility, again it would take special structure or accidental val-
ues of the Hamiltonian matrix elements to forbid this from
happening. In conclusion, it is expected that a null measured
set of Hamiltonians will be either disconnected or uncontrol-
lable. Those that violate this “rule” are likely to have special
structure or symmetry, and a case related to this point is
given in Sec. III C. The physical consequences of full con-
nectivity and controllability likely being the rule will be dis-
cussed in Sec. IV.

C. Connectivity with multipolarization fields

There is much interest in utilizing multipolarization con-
trol fields to manipulate the dynamics of molecules contain-
ing special symmetries(e.g., the control of optical enanti-
omers [25–27]). As an illustration of the role of
multipolarization fields, consider the simple model system
[28] of a three-dimensional harmonic oscillator having a cu-
bic coupling term(with k1=5310−5),

H0 = o
i=1,2,3

Spi
2

2
+

v2qi
2

2
D + k1q1q2q3, s8d

where theqi’s are the coordinates andpi’s the corresponding
momenta, with the frequencyv=0.02. All variables are in
atomic units. The coupling term models the presence of an-
harmonicity. We assume that the system is oriented such that
the dipole moment components coincide with the polariza-
tion directions of the laser field. A simple model is also as-
sumed with each dipole componentmi varying linearly inqi,
such that

mW ·EWstd = k2fq1 ·E1std + q2 ·E2std + q3 ·E3stdg, s9d

wherek2=1.0310−2.
The Hamiltonian is represented in the first 84 harmonic

oscillator eigenstates ofoi=1,2,3spi
2/2+v2qi

2/2d. There can be
three different types of 1D control pulses, each of which
corresponds to one of the three polarization components
E1std, E2std andE3std. For control with 2D pulses, there can
also be three different types of pulses, where each corre-
sponds to a different combination of two polarization com-
ponents. Together with the case of control using a full 3D
pulse, there are seven cases. The goal is to assess connectiv-
ity between the pair of statesu0,0,0l and u1,2,3l. This situ-
ation has component Hamiltonian matricesH0 and m1, m2,
m3 corresponding to the three dipole components. The con-
stant fieldsE1, E2 and E3, were randomly chosen andK=1
level analysis gave a converged connectivity assessment. The
connectivity results found from the algorithm are listed in
Table I. For control with 1D polarization fields, the selected
target state is only accessible from the initial state(i.e., they
are connected) by the second polarization componentE2std.
This case with the single fieldsE1std or E3std alone is an
example where the special symmetry in the Hamiltonian and
the choice of initial and final states for assessment leads to

disconnected situations. However, for controls with 2D and
3D polarization fields in this example, the target state is al-
ways accessible, including with combined fieldsE1 and E3
where acting alone they did not connect the specified initial
and final states. These results were also confirmed[28] with
analogous optimal control calculations.

Based on the connectivity analysis using Eq.(4), a statis-
tical count was also made on the number of times a particular
intermediate state is involved in the shortest pathway con-
necting the initial stateu0,0,0l to the target stateu1,2,3l for
simulation case 2 and cases 4 to 7 in Table I. The shortest
connectivity linkage showed up with three intermediate
states, and the statistical analysis is applied at this level. For
the 1D polarization pulse in case 2, there are some 19 short-
est pathways at this level, whereas the number is 1600 for
the 3D polarization pulse. Cases 4 to 6 have varying numbers
of shortest pathways between these extrema. A few interme-
diate states showed up consistently as playing central roles.
Most important is stateu1,1,1l which appeared twice as fre-
quently as the next most visited statesu0,1,2l, u1,2,1l and
u2,1,2l. The plethora of potential control pathways offers
rich opportunities for achieving excellent control outcomes,
as confirmed by optimal control calculations[28]. A full
mechanistic pathways analysis[21] would be required to re-
veal the actual amplitude associated with any possible con-
nected pathway between the initial and final states.

IV. CONCLUSIONS

This paper presented a very simple algorithm for readily
testing the connectivity of controlled quantum systems hav-
ing a discrete set ofN states. Some applications are inher-
ently discretely represented(e.g., coupled spin systems),
while others become so upon practical treatment. An ex-
ample of the latter case was the coupled oscillator system in
Eqs. (8) and (9) which was naturally represented in a har-
monic oscillator basis. However, this latter application and
others could just well be represented in coordinate space
which is discretized on some suitable grid. The connectivity
analysis algorithm in steps(i)–(iv) could also be applied in
this case. As noted in Sec. II, the connectivity analysis is
performed in reference to a chosen basis, and special consid-
erations arise regarding the basis used to assess connectivity
in this situation. In the case of the coordinate space represen-
tation, one perspective would correspond to the fine grained
view of assessing if some arbitrary pointsr i and r j in the

TABLE I. Connectivity results for the model in example C.

Case Control u0,0,0l and u1,2,3l connected?

1 E1std No

2 E2std Yes

3 E3std No

4 E1std,E2std Yes

5 E2std,E3std Yes

6 E1std,E3std Yes

7 E1std, E2std, E3std Yes
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space are connected by the dynamics. However, this level of
fine detail is likely more than what is required for many
applications, and a reasonable assessment would consist of
asking if any of the points in a local volumeVi are connected
to any of the points in the local volumeVj. HereVi andVj
could, for example, correspond to the configuration space
volumes that contain the main portions of the initial wave
packet and the target one, respectively. An associated re-
duced dimensional connectivity matrixC may be defined to
focus on the connectivity ofVi andVj or simultaneously with
other subvolumes in the configuration space. An analogous
reduced dimensional connectivity matrix concept could also
be established for problems defined in terms of an eigenba-
sis, such as fromH0. Connectivity between one subset of
stateshcij and another subset of stateshc jj is natural to as-
sess in many circumstances. For example, in some cases the
control interest may lie in transfer from one electronic state
to another, regardless of the underlying rovibrational states
involved; herehcij and hc jj would be the associated sets of
two rovibrational states. The assessment of such reduced
connectivity issues would operate with the same algorithmic
steps(i)–(iv) presented in Sec. II, and a compression of the
information into a reduced matrixC follows as an easy final
step.

There is much interest in the mechanisms by which con-
trol fields achieve their action in any particular application.
Recent work [21] has defined the control mechanism in
terms of quantitatively identifying the significant multistate
pathway amplitudes linking the initial and final statesucil
and uc jl. The contribution of any particular pathway can
draw on delicate features of the control field. Nevertheless,
connectivity is the basic criterion for any particular pathway
playing a role. The connectivity analysis provides a simple
way of identifying these kinematically allowed pathways.
Importantly, those intermediate states that appear to have a

key role can be easily found by a simple statistical analysis
of their frequency of appearance in the family of pathways
up to some specified order in Eq.(4). The detailed dynamics
driven by a particular optimal field will finally weigh in to
determine the actual contributing pathways[21], but the sim-
plicity of performing a connectivity assessment provides an
easy way to attain an initial glimpse of what is taking place.

Finally a significant finding in this paper is the observa-
tion that virtually all Hamiltonians are expected to have fully
connected dynamics. As commented earlier, establishing
connectivity is a necessary criterion for a system to be con-
trollable. Although full controllability may not be concluded
from full connectivity, it is reasonable to expect that at least
a high degree of controllability, if not full controllability, will
exist in cases showing full connectivity. Furthermore, in-
creasing system complexity in terms of many coupled states
being present likely aids rather than hinders this situation.
These points are especially relevant as a recent work[14] has
shown that all controllable quantum systems only have per-
fect solutions for state-to-state population transfer under op-
timal control (i.e., there are no suboptimal extrema).

One attraction of performing a connectivity analysis is the
ease of its execution relative to the information that can be
gained. Connectivity as a powerful tool is not confined to
theoretical studies, and is playing into some laboratory con-
trol experiments. For example, an experiment reported a de-
sign for a quantum AND gate which was elegantly tested
utilizing the connectivity of graphs[29]. It is anticipated that
further insights will follow from applying connectivity as-
sessments in additional quantum control circumstances.

ACKNOWLEDGMENTS

R. Wu, H. Rabitz, and I. Sola acknowledge support from
the National Science Foundation and an ARO-MURI grant.

[1] S. Shi, A. Woody, and H. Rabitz, J. Chem. Phys.88, 6870
(1988).

[2] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tan-
nor, Chem. Phys.139, 201 (1989).

[3] S. Shi, and H. Rabitz, Chem. Phys.97, 276 (1992).
[4] I. Walmsley, and H. Rabitz, Phys. Today56, 43 (2003).
[5] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V.

Seyfried, M. Strehle, and G. Gerber, Science282, 919(1998).
[6] T. Weinacht, J. Ahn, P. Bucksbaum, Nature(London) 397, 233

(1999).
[7] R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.

Christov, M. Murnane, and H. Kapteyn, Nature(London) 406,
164 (2000).

[8] R. Levis, G. Menkir, and H. Rabitz, Science292, 709 (2001).
[9] T. Brixner, N. Damrauer, P. Niklaus, and G. Gerber, Nature

(London) 414, 57 (2001).
[10] R. Bartels, T. Weinacht, H. Kapteyn, M. Motzkus, M. Mur-

nane, Phys. Rev. Lett.88, 033001-1(2002).
[11] J. Herek, W. Wohlleben, R. Cogdell, D. Zeidler, and M. Motz-

kus, Nature(London) 417, 533 (2002).

[12] C. Daniel, J. Full, L. Gonzalez, C. Lupulescu, J. Manz, A.
Merli, S. Vajda, and L. Woste, Science299, 536 (2003).

[13] F. Yip, D. Mazziotti, and H. Rabitz, J. Chem. Phys.118, 8168
(2003).

[14] H. Rabitz, M. Hsieh, and C. Rosenthal, Science303, 1998
(2004).

[15] H. Rabitz, C. L. Bris, and G. Turinici, Phys. Rev. E(to be
published).

[16] V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, and A.
Peirce, Phys. Rev. A51, 960 (1995).

[17] V. Jurdjevic and H. Sussmann J. Diff. Eqns.12, 313 (1972).
[18] F. Ayres, Jr.,Theory and Problems of Matrices(Schaum, New

York, 1962), p. 181.
[19] G. Turinici and H. Rabitz, Chem. Phys.267, 1 (2001).
[20] G. Turinici, http://www.rocq.inria.fr/Gabriel.Turnici/control/

criterion.html
[21] A. Mitra and H. Rabitz, Phys. Rev. A67, 033407-1(2003).
[22] R. Diestel,Graph Theory(Springer-Verlag, New York, 2000).
[23] Given a sequence of probability spaces, letqn be the probabil-

ity that propertyQ holds in thenth space. ProbabilityQ almost

WU et al. PHYSICAL REVIEW A 70, 052507(2004)

052507-6



alwaysholds if limn→`qn=1. Here, thenth space is a probabil-
ity distribution overn-vertex graphs. D. B. West,Introduction
to Graph Theory(Prentice Hall, Englewood Cliffs, NJ, 2001),
p. 430.

[24] For N=30, there are 435 pairs of states. Thus, the possible
values for the fraction of connected pairs of states are 0/435,
1/435, 2/435, 3/435,…, 434/435 and 435/435. However, the
discretization level shown in Fig. 3 evidently is even more
sparse than this inherent discreteness.

[25] L. Gonzalez, D. Kroner, and I. R. Sola, J. Chem. Phys.115,

2519 (2001).
[26] L. Gonzalez, K. Hoki, D. Kroner, A. S. Leal, J. Manz, and Y.

Ohtsuki, J. Chem. Phys.113, 11134(2002).
[27] Y. Fujimura, L. Gonzalez, D. Kroner, J. Manz, I. Mehdaoui,

and B. Schmidt, Chem. Phys. Lett.386, 248 (2004).
[28] R. Wu, I. Sola, and H. Rabitz, Chem. Phys. Lett.(to be pub-

lished).
[29] Z. Amitay, R. Kosloff, and S. R. Leone, Chem. Phys. Lett.

359, 8 (2002).

CONNECTIVITY ANALYSIS OF CONTROLLED QUANTUM… PHYSICAL REVIEW A 70, 052507(2004)

052507-7


