PHYSICAL REVIEW A 70, 052507(2004)
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A connectivity analysis of controlled quantum systems assesses the feasibility of a field existing that can
transfer at least some amplitude between any specified pair of states. Although Hamiltonians with special
structure or symmetry may not produce full connectivity, it is argued and demonstrated that virtually any
Hamiltonian is expected to be connected. The connectivity of any particular system is generally revealed in the
guantum evolution over a single or at most a few time steps. A connectivity analysis is inexpensive to perform
and it can also identify statistically significant intermediate states linking a specified initial and final state.
These points are illustrated with several simple systems. The likelihood of an arbitrary system being connected
implies that at least some product yield can be expected in the laboratory for virtually all systems subjected to
a suitable control.
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l. INTRODUCTION dly(t)
: . . i =[Ho—~ EQul[(1)), (1)
Quantum control studies generally utilize a laser field for dt

manipulating the system dynamics to achieve a desired . —_— .
physical objective, often consisting of maximizing the prob—WhereW(t)) Is the time-dependent state of the systéty,s

ability of transition between specified states of the systen%he field-free Hamlltonlar?,u IS the dipole moment, anﬁ(?)
[1-4]. Many quantum optimal control simulations have pro- is the Iasgr control electrlc_: field. The quantum system is rep-
duced excellent results, and increasing numbers of successﬁﬂs_ented n terms dW basis stateg|yp)}, 1=1,2, ... N, |-m-
closed-loop learning control laboratory realizations are beinﬂy'ng that|y(1)) is a vector of lengtN and correspondingly
reported[5-12]. Recent theoretical analysig4,15 revealed Mo and u are NXN matrices. The basis is conventionally
that the origin of these positive findings lies in there being nfhosen as the eigenstates k9§, although any other basis
false suboptimal search outcomes, provided that the systef@y just as well be employed in the connectivity analysis.
is controllable such that some field exists which may drivel & connectivity analysis is in reference to the chosen basis.
the amplitude from the initial to the final state. Underlying S€ction IV will generalize the analysis to other consider-
the concept of controllability is connectivity, which aims to ations of connectivity in controlled dynamics, including de-
establish that at least some pathway exists to connect tHeTiptions best formulated in coordinate space. .
initial and final states. This paper presents the means to de- TWO basis statefy;) and|y;) are said to be connected if
termine connectivity and then argues that virtually all quan-S0me control field(t), 0<t<T exists creating a nonzero
tum systems are expected to be connected. It will also b@mplitude U;;=(y;|U(T,0)[y) relating the two states. Here
shown that a connectivity analysis can identify the intermeJ(T,0) is the time evolution operator driven by the Hamil-
diate states that are statistically likely to be more importantonian Ho—£(t) 1. The solution of the Schrédinger equation
in the dynamics. Section Il defines the notion of quantummay be built up from a sequence of short time evolution
system connectivity and presents a very simple algorithm t@peratorsU(t,t—At),

test for its presence. Section Il presents several simple illus-

trations, and some conclusions are drawn in Sec. IV. U(tt— At) = exp{— %[Ho_ 8('[— E)MH )

Il. CONNECTIVITY ANALYSIS 2

for At being sufficiently small such tha(t) is nearly con-
Qtant ovet-At,t]. Thus, the total propagation over the in-
terval 0<t=T may be carried out as followd 3]:

The quantum system under control is described by th
Schradinger equation:

|(T)) = U(T,0)|ik) = U(T, T = At) X U(t - At,t — 2At)

*Electronic address: hrabitz@princeton.edu X oo X U(AL,0)|4). (3
TAlso at CERMICS-ENPC, Champs sur Marne, 77455 Marne la ’ '
Vallée Cedex, France Two states|;) and |y;) are connected ifU;|#0, and the
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ultimate control goal is taken to be the maximization offied pairs of states for assessment, then again connectivity is

|U;i|% The maximum value ofU;|? generally builds up in- assured between these two states and one may exit. If the

crementally over the long sequence of the time evolutiorportion of CK of interest is not connected, then a further test

operations in Eq(3). Yet, each incremental operatbl(t,t  may be performed by setting— K+1 and returning to step

—At) contains similar physical coupling information with the ).

only difference being the valug(7) involved. Except for the This algorithm builds on representation results of the dy-

special case of(7)=0, it is reasonable to expect that the namical Lie group of the system. This group, that determines

basic assessment of connectivity resides in whethesll controllability properties, is showfil7] to be generated

(| U(t,t=At)[y3)|#0 for a value off(7) # 0 andAt#0. For by all products in(iii ) with arbitraryK.

numerical reasons, it is often prudent when performing a For most cases, simply operatingkat1 is sufficient to

connectivity analysis with the operator in EQ) to choose reliably assess connectivity. Consideriig 1, one may fur-

&(7) sufficiently large to assure thitlg| ~ ||«/||€(7)| and also  ther expand/ as follows:

haveAt larger than normally required in the time integration

steps of Eq(3). The algorithm below for assessing connec- i i 1

tivity also allows for the prospect that a product of two or exp[— %(HO—El,u)tl] =1+ (Hy- Sl,u)(— gtl) + E(HO

more propagation steps may be needed to properly assess :

connectivity in cases wheH, and i have special structure i \2

or symmetry, but the numerical results from large ensembles —51M)2(— %h) +oee (4)

of randomly chosen Hamiltonians supports the point that

U(t,t—At) alone usually reveals the system connectivity. The

connectivity information is collected into a real symmetric AS &1 andt; are random, we may CO”C|Ud? trﬁﬁ:l as

matrix C whose element§; are either 0 or 1, corresponding S00N as at least one of the matridét,~&1u), 1=1, 2,..,

to whether statéy;) and|y;) are connectedi.e., C;=1, if ~ has an(, i) matrix element whose magnitude is nonzero. By

|¢I> and|¢]> are Connecte(by some non-zero amp"tude_ In Virtue of the C'aley'Ham”ton theorerﬁlS], it SUff|Ce.S to

some applications the connectivity of a particular pairs ofcheck the matrice$H,—&1)' for 1=1,2, ... (N-1). Find-

statesy;) and|y;) is the focus, while in other cases the goaling connectivity by checking the matricetHo-&1u)',

is to assess i€;=1, for all j <i. 1=1,2,...(N-1), for matrix elements of nonzero magni-
It is important to distinguish a connectivity analysis from tude reveals the lowest order dfat which a connection

performing a fully engaged optimal control calculation. Thebetween two states is first established. Furthermore, the sta-

criterionC;; =1 is necessary for optimization, b@;=1 does tistics can be established for all intermediate states involved

not guarantee tha¢y;|U(T,0)|#)|=1. This point will be evi- in the connected pathways at this level, which gives kine-

dent in the simulations and the discussion in Sec. Ill. It ismatic insight into the mechanism of the control. The statis-

also important to distinguish a connectivity analysis from atical role of the intermediate states based on@&gmay also

controllability analysis, which aims to answer whether thebe readily extended t&>1, if necessary. In practice, the

control goal can be exactly met. Controllability is a strongconnectivity analysis is most conveniently carried out via the

requirement, while connectivity only asks if a non-zero am-simple algorithmic stepg)—(iv) above, and the further term-

plitude exists between a pair of states. Thus, controllabilitfor-term assessment in E@) is only used if additional de-

implies connectivity, but connectivity does not guaranteetailed kinematic coupling insight is sought.

controllability. Quantum controllability ofU may be as-

sessed using Lie algebra techniq(i#6], which may be dif-

ficult to apply for systems of large dimensidh The strict I ILLUSTRATIONS

assessment of 100% vyield in the target state is often overly . , , ) .

demanding for many applications where less than perfect In this section, the information revealed by a connectivity

control would still be acceptable. The connectivity analysis®"@/ysis and its ability to provide kinematic mechanism in-

proposed in this paper is both conceptually and computations—_ights will be iII_ustrated through th_re_e si_mple examples. The
ally simple while providing practically useful information. first example will make clear the distinction between connec-

The connectivity analysis is carried out with the following tiVity and controllability. The second example will test con-
four algorithmic steps. nectivity for a Iarge ensemble o_f randomly chpsen Hamlto—

(i) Initialize the integer connectivity indeK by setting "ians and examine the appropriateness of usingest in
K=1. the analysis step$)—iv). Finally, the last example will show
that the connectivity analysis tools may be extended to multi-
polarization fields and this case will also illustrate the extrac-
tion of kinematic mechanism information from Eg}).

(ii) Choose random constant field valugs over a physi-
cally acceptable domain,&<&=<¢& and choose a set of
random timest, >0, sampled on the interval Ot <T, k
=1,...,K.

(iii ) ComputeU=IT, exd—i(Ho— &t /7] and derive
the K-th level connectivity majX by enumerating the non-
zero elements of{: Cjt=1 if |4 #0 andC{{=0 otherwise. Consider the four-level system as in Fig. 1 where states 3

(iv) If all the elements ofC are 1, then full connectivity is and 4 are degenerate. The field-free Hamiltortgnof this
assured and one may exit the algorithmCJf=1 for a speci-  system is assumed to have the diagonal form

A. Connectivity and controllability
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1 000 Probability p of any element of Hj or u being zero
Ho = 0200 (5) FIG. 2. The average fraction of connected pairs of states versus
0 0030/ the probabilityp of any element oH, or u being zero for Hamil-
000 3 tonian matrices of different dimensidw
and the dipole matriyu is chosen to be index K=1, and furthermore all the cases were fully con-
1100 nected(i.e., C; =1 for 0j, i). These results demonstrate that
the connectivity information is fully contained in an arbitrary
_ 1111 (6) incremental propagation stap(t,t—At) for a random field
1o 1 1 ol value& # 0. Indeed, to find exceptions to this general behav-
0101 ior requires the creation of special cases. One special cat-

The connectivity analysis in stegp—(iv) was complete at

index K=1, producing

the connectivity matrix:

egory occurs whet, and u are increasingly sparse. Natu-
rally, this circumstance can lead to some particular states
being disconnected. But, in no case was 1 required to
assess this matter whéty and i are randomly chosen while

1111 > . .
containing some degree of imposed sparseness. Finally, the
1111 (77  Presence of special symmetries or extreme sparsendss in
1111 and u can lead to requirind>1 to achieve convergence.
111 1 Specially engineered examples were found that requited

=2 to reveal the true converged connectivity mattixThe
The fact that all four states are mutually connected is immeneed forK>1 arises as the lack of commutation between
diately evident from a simple examination of Fig. 1. How- H;=Hy—-&;u and H,=Hy— &, with £;# &, introduces the
ever, this example was specifically chosen for illustration agpossibility of new linkages occurring for the caég|exp
the system is not fully controllabld 6,19,2Q. The reason for  [-i(Hy—&,u)At/Alexd —i(Ho—Ew)At/A]] ), which does
this behavior is easily understood, as states 3 and 4 are dfot show up in either(y; | exd—i(Ho—E ) At/A]|¢) or

generate and they are linked to state 2 by a transition dipo'@pj|ex;{—i(H0—€2M)At/h]| ). A similar argument would

element of the same value. For example, if initially the pOpu'appIy to the potential need for even highenalues.

lation is in state 1, then no more than 50% of the popul_ation The general conclusions from analyzing a large ensemble
can be transferred to either state 3 or 4. However, if they ran4om Hamiltonians are thas) connectivity is easy to
symmetry is broken by the slightest amount such {paj|  as5ess andh) under most circumstances the connectivity is
# |42, then the system remains connected and is now fully ey 1o be full, implying that at least some amplitude can be
controliable. expected in the target state with a suitable field. Regarding
the latter point, it was found that when considering sparse
Hamiltonians, those of higher dimensions were generally
more likely to exhibit full connectivity. These findings are
illustrated by Fig. 2, where the average fraction of connected
This section addresses the nature of connectivity likely tostates for Hamiltonians of different dimensidhis plotted

be found for arbitrary Hamiltonians as well as connectivity versus the probabilitp of any element of the Hamiltonian
arising with Hamiltonians of special structure. In addition, matricesH, or u being zero. For Hamiltonians of each di-
the convergence of the algorithm in stefs<iv) with re-  mension, the fraction of connected states is calculated by
spect to the indeXX will be demonstrated. First, a set of averaging the results from 20 000 runs, where the fraction at
more than 16 random Hamiltonian#l,, « of dimensionsN  each run is the number of connected matrix elements in the
up to 30 were examined by the algorithm. It was invariablyupper triangular part oC divided by the total number of
found that the algorithm converged to a final mat@xat  pairs of state$N?—N)/2. It can be seen from the figure that

B. Connectivity with arbitrary Hamiltonians and those
with special structure
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for increasing Hamiltonian sparsenéis., as the probability 20000 =
of any element oH, or u being zero increasgshe fraction

of connected pairs of states initially is unaffected but even-
tually decreases. The clear trend shows that as the dimensio 1seo
N of the Hamiltonian matrices increases, the drop in the frac- g
tion of connected states is significantly delayed. A larger g
fraction of states on the average are connected for Hamilto-s
nians of higher dimension, given the same degree of sparse-§
ness. This behavior evidently arises as the added stateg
present with Hamiltonians of increasing dimension typically =
opens up new couplings that can overcome those that migh
be restricted in lower dimensional cases. Realistic physical L
systems typically have very large dimensions, and thus are h
expected to be fully connected in most cases. This latter % oz s o5 e
point is also supported by a mathematical theorem in random Fraction of connected pairs of states

graph theory[22]. In a random graph df vertices the pres- FIG. 3. The distribution of outcomes from 43 500 runs versus
ence of an edge between any two vertices is assigned a profyg fraction of connected pairs of states for a Hamiltonian of dimen-

ability p’. The random graph in turn can be represented byjonN=30 and probabilityp=0.94 of any element dfl, or « being
random matrices where the probabilfiy of the (i, j) matrix gy,

element being nonzero corresponds to the likelihood of there

being an edge between vertexand vertexj. The theorem  7/10, 8/10 and 9/10 Intuitively, as the number of connected
states that there exists a threshold functi@i(N) pairs rises, the graph becomes so intertwined that isolating
=(In N)/N? such that a random graph @most alwayg23]  unconnected pairs gradually becomes impossible; this point
connected whenp’(N)=(In N)/N?. The HamiltonianH, is illustrated in Fig. 4 with the case of 2/10 where the addi-
—-&(t)u studied in this section is a linear combination of two tion of one particular connection led to 6/10. Ngises, it is
independent Hermitian random matricét; and u. The al-

gorithm in stepqi)—iv) operating atk=1 [i.e., the expan- O {
sion in Eq.(4) can be carried olifs equivalent to analyzing
the connectivity of a graph represented by the makiix O OO ]

-&(t)u, i.e., the resultant connectivity information of this
graph is stored in the matrig. Let p’ be the probability of
any matrix element of, or u being nonzerop’=1-p. The O O O O O
corresponding threshold function for the full connectivity of
this Hamiltonian system as a graphp&N)=yIn N/N. Ex- 0/10 1/10 2/10
pressed in terms gb(N), the threshold function ip(N)=1
—yIn N/N. ForN=30, p~0.94. That is, a connected system
at N=30 can tolerate approximately 94% zeroes in the ma-
tricesHy and u. LargerN leads to better tolerance. Realistic
physical systems typically have large dimensirand thus
are expected to be fully connected. Figure 3 shows the sta
tistical distribution of the connectivity outcomes from a 9 E)
simulation of 43 500 random Hamiltonians ldt=30 andp O O O
=0.94. A majority of the Hamiltonians produce full connec- 3/10 4/10 6/10
tivity, confirming the above graph theoretical prediction. The

distribution is evidentlydiscrete[24], and it was further ob-

served that as the dimensibhof the Hamiltonian increases,

this discretization pattern becomes even sharper. This beha\

ior implies that the connectivity of a physical system is
“quantized,” which may be attributed to the inherent proper-

ties of random graphs. To understand this, consider a randor

graph withN=5. The graph has a total of 10 pairs of verti-

ces. Thus, there are 11 possible values for the fraction of 10/10
connected pairs of vertices: 0/10, 1/10,, 9/10, 10/10.

However, only 7 values among them are actually admissible: FiG. 4. All 7 possible connectivity pictures of a random graph
0/10, 1/10, 2/10, 3/10, 4/10, 6/10 and 10/10, as shown in Figyith N=5. Note that vertices andk will be connected if vertex

4. These are also all the possible outcome& obmputed by  connects to vertekand vertex connects to vertek. For example,

the algorithm in stepsi)—(iv) with random Hamiltonians of adding an edge at the position shown by the dashed line in the
dimensionN=5. The discretization occurs in the range of picture “2/10” would induce more connections and transform the
high values of the fractiofi.e., the missing values are: 5/10, picture into “6/10.”

10000

T

5000 —
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expected that the graph will become even more entangled, TABLE I. Connectivity results for the model in example C.
and that an even wider range of values of the fraction will
vanish, resulting in a highly discretized distribution pattern. Case Control |0,0,0 and|1,2,3 connected?

Although full connectivity does not assure full controlla-

bility, again it would take special structure or accidental val- L E1(D No
ues of the Hamiltonian matrix elements to forbid this from 2 &) Yes
happening. In conclusion, it is expected that a null measured 3 E3(t) No
set of Hamiltonians will be either disconnected or uncontrol- 4 E41(1),E,(1) Yes
lable. Those that violate this “rule” are likely to have special 5 E(1),E5(t) Yes
structure or symmetry, and a case related to this point is g £1(0),E5(1) Yes
given in Sec. Ill C. The physical consequences of full con- - £4(0), Ex(1), Ex(b) Yes

nectivity and controllability likely being the rule will be dis-
cussed in Sec. IV.

disconnected situations. However, for controls with 2D and
C. Connectivity with multipolarization fields 3D polarization fields in this example, the target state is al-
ways accessible, including with combined fielflsand &;
where acting alone they did not connect the specified initial
and final states. These results were also confirfagfwith

There is much interest in utilizing multipolarization con-
trol fields to manipulate the dynamics of molecules contain
ing special symmetriege.g., the control of optical enanti- ) .
omers [25-27). As an illustration of the role of analogous optimal contrql .calculauo_ns. . .
multipolarization fields, consider the simple model system. Based on the connectivity analysis using E@ a staus;
[28] of a three-dimensional harmonic oscillator having a cy-lical count was also made on the number of times a particular
bic coupling term(with k;=5X107°), lnter_medlate_: state is involved in the shortest pathway con-

necting the initial stat¢d, 0,0 to the target statgl, 2,3 for
pi2 quiz simulation case 2 and cases 4 to 7 in Table |. The shortest
Ho= > ot ) ks, (8)  connectivity linkage showed up with three intermediate
1=1,.2,3 states, and the statistical analysis is applied at this level. For
where theg;’s are the coordinates argfs the corresponding the 1D polarization pulse in case 2, there are some 19 short-
momenta, with the frequency=0.02. All variables are in est pathways at this level, whereas the number is 1600 for
atomic units. The coupling term models the presence of arnthe 3D polarization pulse. Cases 4 to 6 have varying numbers
harmonicity. We assume that the system is oriented such th@f shortest pathways between these extrema. A few interme-
the dipole moment components coincide with the polarizadiate states showed up consistently as playing central roles.
tion directions of the laser field. A simple model is also as-Most important is statél, 1, 1) which appeared twice as fre-
sumed with each dipole componemntvarying linearly ing,  quently as the next most visited statés1,2, [1,2,1 and
such that |2,1,2. The plethora of potential control pathways offers
R rich opportunities for achieving excellent control outcomes,
o E) =ko[qy - E1(t) +ay - Eo(t) +q - Ex(L)], (9) as confirmed by optimal control calculatiofigg]. A full
mechanistic pathways analy$§1] would be required to re-

wherek,=1.0x 1(_T2- _ , _ _veal the actual amplitude associated with any possible con-
The Hamiltonian is represented in the first 84 harmonicgcted pathway between the initial and final states.
oscillator eigenstates &i-; , p?/2+w?¢?/2). There can be

three different types of 1D control pulses, each of which
corresponds to one of the three polarization components
E4(t), E(1) and E;(t). For control with 2D pulses, there can  This paper presented a very simple algorithm for readily
also be three different types of pulses, where each corraesting the connectivity of controlled quantum systems hav-
sponds to a different combination of two polarization com-ing a discrete set oN states. Some applications are inher-
ponents. Together with the case of control using a full 3Dently discretely representege.g., coupled spin systems
pulse, there are seven cases. The goal is to assess connectifile others become so upon practical treatment. An ex-
ity between the pair of staté8,0,0 and|1,2,3. This situ- ample of the latter case was the coupled oscillator system in
ation has component Hamiltonian matrigdg and uq, uo,  Egs. (8) and (9) which was naturally represented in a har-
s corresponding to the three dipole components. The conmonic oscillator basis. However, this latter application and
stant fields&;, £, and &, were randomly chosen aril=1  others could just well be represented in coordinate space
level analysis gave a converged connectivity assessment. Th¢hich is discretized on some suitable grid. The connectivity
connectivity results found from the algorithm are listed in analysis algorithm in step§)—iv) could also be applied in
Table I. For control with 1D polarization fields, the selectedthis case. As noted in Sec. Il, the connectivity analysis is
target state is only accessible from the initial si@ie., they  performed in reference to a chosen basis, and special consid-
are connectedby the second polarization componéft).  erations arise regarding the basis used to assess connectivity
This case with the single field§,(t) or &(t) alone is an in this situation. In the case of the coordinate space represen-
example where the special symmetry in the Hamiltonian andation, one perspective would correspond to the fine grained
the choice of initial and final states for assessment leads taiew of assessing if some arbitrary pointsandr; in the

IV. CONCLUSIONS
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space are connected by the dynamics. However, this level dfey role can be easily found by a simple statistical analysis
fine detail is likely more than what is required for many of their frequency of appearance in the family of pathways
applications, and a reasonable assessment would consist @ to some specified order in E@). The detailed dynamics
asking if any of the points in a local volumé are connected  driven by a particular optimal field will finally weigh in to

to any of the points in the local volumé. HereV; andV;  determine the actual contributing pathwdg4], but the sim-
could, for example, correspond to the configuration spacgjicity of performing a connectivity assessment provides an
volumes that contain the main portions of the |n|t|a_l waveeasy way to attain an initial glimpse of what is taking place.
packet and the target one, respectively. An associated re- Fing|ly a significant finding in this paper is the observa-
duced dimensional connectivity matr& may be defined 10 o that virtually all Hamiltonians are expected to have fully
focus on the connectivity of; andV; or simultaneously with o, necteq dynamics. As commented earlier, establishing
other subvolumes in the configuration space. An <”malogou(‘i‘;onnectivity is a necessary criterion for a system to be con-

reduced dimensional conneciivity matrix concept could aISCfrollable. Although full controllability may not be concluded

be established for problems defined in terms of an eigenba}Fom full connectivity. it is reasonable to expect that at least
sis, such as fronH,. Connectivity between one subset of ~ " u IViLy, 1L 1S réaso Xxp - .
a high degree of controllability, if not full controllability, will

: h f i I - c2 : o .
statesiys} and another subset of statgg) is natural to as ﬁ)élst in cases showing full connectivity. Furthermore, in-

Sess in many circumstances. For example, in some cases tcreasin system complexity in terms of many coupled states
control interest may lie in transfer from one electronic stateg g sy piexity y P

to another, regardless of the underlying rovibrational state Eggepfii?;;rl:akig :ﬁ;”ra:glzr\/;?]?gsh;n?eir:nimlggt'On'
involved; here{ys} and{y;} would be the associated sets of P P y
shown that all controllable quantum systems only have per-

two rov!b_ran_onal states. The assessment of such rgduc% ct solutions for state-to-state population transfer under op-
connectivity issues would operate with the same alg;;orlthml%maI control(i.e., there are no suboptimal extrema
steps(i)~(iv) presented in Sec. Il, and a compression of the One attraction of performing a connectivity analysis is the

information into a reduced matri follows as an easy final ease of its execution relative to the information that can be

step. ; - . )
1F')here is much interest in the mechanisms by which Con_galned. Connectivity as a powerful tool is not confined to

) . . o > .~~~ ‘theoretical studies, and is playing into some laboratory con-
trol fields achieve their action in any particular apphcatlon.trol experiments. For example. an experiment reported a de-
Recent work[21] has defined the control mechanism in P . Pie, P P

e ) i o . sign for a quantum AND gate which was elegantly tested
terms of quantitatively identifying the significant multistate ™ 3._. L ; Iy
pathway amplitudes linking the initial and final statefs) utilizing the connectivity of graphg29]. It is anticipated that

- ; further insights will follow from applying connectivity as-
and |wj>' Th_e contribution of any partlcu_lar pathway can sessments in additional quantum control circumstances.
draw on delicate features of the control field. Nevertheless;,
connectivity is the basic criterion for any particular pathway
playing a role. The connectivity analysis provides a simple
way of identifying these kinematically allowed pathways. R. Wu, H. Rabitz, and I. Sola acknowledge support from

Importantly, those intermediate states that appear to havethe National Science Foundation and an ARO-MURI grant.
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