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The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in
a configuration interaction approach with a semiempirical model potential for the core. Among the properties
determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths,
and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the
core on the dispersion parameters is described.
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I. INTRODUCTION

The low-lying triplet metastable states of alkaline-earth-
metal atoms have been generating increasing interest in the
area of cold-atom physics for a number of reasons. One ap-
plication is to use the1S0

e→3P1
o transition in calcium as a

new optical frequency standard[1]. The use of the1S0
e

→3P0
o transitions for fermionic87Sr stored in an optical lat-

tice is expected to further result in an improved standard[2].
Another possible application is in the formation of Bose-
Einstein condensates(BEC) consisting of alkaline-earth-
metal atoms[3,4] in their metastable triplet states. The sta-
bility, size and excitation modes of BECs depends on the
sign (and magnitude) of the scattering length, and the scat-
tering length depends sensitively on the precise values of the
dispersion constants[5,6].

Taken in conjunction, the desirability of obtaining precise
values of the static and dynamic properties of the low-lying
nsnp 3Po metastable state has greatly increased in impor-
tance. In this article, properties of these states are computed
from valence electron configuration interaction calculations
that use a semiempirical model potential to describe the core-
valence interaction[7–11]. Among the data computed are the
oscillator strengths for some of the low-lying transitions, the
scalar and tensor polarizabilities, the quadrupole moments,
and the dispersion coefficients for the van der Waals interac-
tion between two atoms.

II. RESULTS OF THE CALCULATIONS

A. Methodology

The properties of these states are computed using configu-
ration interaction(CI) calculations that treat the correlations
between the valence particles in anab initio manner while
using a semiempirical model potential to describe the core-
valence interaction[7–11]. The details of this calculation are
very similar to those reported in[9,11,12] apart from some
minor changes in the cutoff parameters and the use of an
orbital basis of larger dimension. The polarization potentials
were initially defined by tuning the potential to reproduce the

ns, np, nd and nf binding energies of the respective singly
ionized atom. The Hamiltonian was then diagonalized in a
basis consisting of all the two-electron basis states that could
be formed from a set of about 140–150 single particle orbit-
als. The basis set contained orbitals up to and including,
ø8 and the two-electron basis dimensions ranged from 1000
to 4000. For all practical purposes the basis for the two-
valence electrons can be regarded as saturated. The initial
binding energies obtained by this procedure were not in per-
fect agreement with experiment with discrepancies for the
ground and excited state energies of the order of 0.1–2.0 %
(refer to [9,12] to get an indication of the accuracy). Some
further tuning of the cutoff parameters was done to improve
the accuracy of the energy differences which directly impact
on the accuracy of expectation values. Expectation values for
multipole operators were computed with a modified operator
that allowed for polarization corrections[11,13,14].

The model potential is quite realistic since the direct and
exchange interactions with the core were computed without
approximation from a Hartree-Fock(HF) wave function,
only the core polarization potential was described with a
model potential. The resulting polarizabilities, and dispersion
parameters for homonuclear pairs of atoms were generally
within 0.1% of the best variational calculations for Li or Be,
and for heavier atoms they were generally within 1–2 % of
results coming from large fully relativistic calculations com-
bining configuration interaction and many-body perturbation
theory techniques[11].

The most likely source of error in the present calculations
for the heavier species, Ca and Sr, is the neglect of relativ-
istic effects. However, the use of a polarization potential
tuned to the experimental binding energy will implicitly take
into account the influence of relativistic effects upon the core
electron distribution. Further, Greene and Aymar have shown
that the spin-orbit interaction does not have major effect on
the structure of the alkaline-earth-metal wave functions[15].

B. Energy levels

The energy levels of the present calculations are given in
Table I and compared with experiment. The polarization cut-
off parameters were fine-tuned to reproduce the experimental
binding energy of the lowest states of each symmetry. In the
case for states withL.0 the parameters were tuned to re-
produce the center-of-gravity of the spin-orbit triplets. The
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spin-orbit splitting of the triplet states is largest for strontium
and its magnitude is about 0.001 Hartree.

The agreement between the theoretical and experimental
energy levels is sufficiently close to discount the possibility
that energy level considerations might make a significant
contribution to the uncertainty in the oscillator strengths and
polarizabilities.

C. Quadrupole moments

The quadrupole moment of the3P2
o state is a static prop-

erty of the state. An exact knowledge of its value is impor-
tant since the quadrupole-quadrupole interaction has a big
impact of the cold collision physics in metastable alkaline-
earth metal atoms[4,18]. Defining theLS coupled reduced
matrix element as

QsLd = kCs3Podio
i

r i
2C2sr̂ idiCs3Podl, s1d

the quadrupole moment for a triplet state is usually defined
as the moment of3PJ

0 state withMJ=J. In the expression
aboveC2sr̂ d is the spherical tensor of rank 2. The quadrupole
moment is defined as

Q = KCs3PJ
od; MJ = Juo

i

r i
2C0

2sr iduCs3PJ
od; MJ = JL . s2d

This can be written[19]

Q =Î 4Js2J − 1d
sJ + 1ds2J + 1ds2J + 3d

s2J + 1ds− 1d2+S+L+J

3HS L J

2 J L
JQsLd, s3d

where the Wigner-Eckart theorem has been used twice to
collapse the angular factors. The quadrupole moment for a
3P level is often given for theJ=2 state. The quadrupole
momentQ for the J=2 state is equal to 2kQzzl.

Some older calculations ofkQzzl exist [20,21]. The finite
element multiconfiguration Hartree-Fock(MCHF) calcula-
tion of Sundholm and Olsen for Be gave 4.53 a.u. which is in
excellent agreement with the present value of 4.54 a.u. The
CI calculations of Ceraulo and Berry[20] consistently under-

estimated the present quadrupole moments(e.g., 7.944 a.u.
for Mg) and are not listed in Table II.

The quadrupole moments are compared with the recent
calculations by other groups in Table II. The CI+MBPT cal-
culation[4] is a fully relativistic calculation with the post-HF
interactions between the valence electrons and the core
treated with perturbation theory while the interaction be-
tween the two valence electrons are treated with the CI an-
satz.

The calculation of Santra and Greene[22] (SG-CI) treated
the two active electrons within a CI framework while using a
model potential to represent the core-valence interaction. The
model potential did include a spin-orbit interaction. One
limitation with the SG-CI calculation is that it does not in-
clude the dielectronic part of the polarization potential.

The noticeable feature of Table II is that all three calcu-
lations agree with each other with a total variation of less
than 2%. The present results generally lie closer to the CI
+MBPT calculation than the SG-CI calculation. The high
level of agreement between three completely independent
calculations suggests that the uncertainty ascribed by Derevi-
anko et al. to their quadrupole moment was too big by a
factor of 2.

D. Oscillator strengths of low-lying transitions

The oscillator strengths for the transitions to the lowest
lying 3Se, 3Pe and 3De states are given in Table II. The ab-
sorption oscillator strength from statec0 is calculated ac-
cording to the identity

f0n =
2ukc0;L0Sioi

r iC
1sr̂ idicn;LnSlu2e0n

3s2L0 + 1d
. s4d

The oscillator strengths for the Be triplet transitions are prob-
ably as accurate as any that have previously been published.
The basis for the valence electrons is effectively saturated
and the semiempirical approach to core polarization is ca-
pable of high accuracy[11]. For example, the present meth-
odology reproduces the dipole and quadrupole polarizability
of Be given by a close to exact calculation[23] to an accu-
racy of 0.2%. The present oscillator strengths agree very well
with the experimental values given in Table II. Not shown in

TABLE I. Theoretical and experimental energy levels(in Hartree) of some of the low-lying metastable states of the alkaline-earth-metal
atoms. The energies are given relative to the energy of the doubly ionized core. The experimental energies for the triplet states are averages
with the usuals2J+1d weighting factors. The experimental data are taken from[16,17]. The md level is the 3d level for Be, Mg, and Ca
while for Sr it is the 4d level.

Systems
Level

Be Mg Ca Sr

Theory Expt. Theory Expt. Theory Expt. Theory Expt.

ns2 1Se −1.011842 −1.011850 −0.833533 −0.833530 −0.660944 −0.660932 −0.614598 −0.614602

nsnp3Po −0.911710 −0.911701 −0.733378 −0.733788 −0.591387 −0.591388 −0.547611 −0.547612

nssn+1ds 3Se −0.774561 −0.774552 −0.645827 −0.645821 −0.517230 −0.517228 −0.482289 −0.482292

np2 3Pe −0.739862 −0.739855 −0.569906 −0.569929 −0.485477 −0.485478 −0.452720 −0.452717

nsmd3De −0.729118 −0.729113 −0.615041 −0.615022 −0.568193 −0.568180 −0.531359 −0.531367
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the table are the3Po→3Pe oscillator strengths of CI calcula-
tion of Weiss[24] and the MCHF calculation of Jonssonet
al. [25]. Both of these calculations were very large and in-
corporated both core and valence excitations. The Weiss
f-value was 0.447, while the Jonssonet al. result was
0.4463. These could hardly be any closer to the present value
of 0.4467.

The present oscillator strength for the transition to the3Se

state in Mg, namely 0.138 is in excellent agreement with that
obtained from the low uncertainty experiment of Andraet al.
[26], 0.139±0.003. Agreement with the large basis CI calcu-
lation of Moccia and Spizzo(MS-CI) is also good[27]. The
MS-CI calculation is similar to the present calculation in that
excitations are only permitted for the valence electrons. It
does not allow for core-valence correlations so the present
approach, which does, should be regarded as being more
reliable.

In the case of Ca, good agreement is achieved with the
model potential calculations of Hansenet al. [28] for the

transitions to the3Se and3Pe states. A 7% discrepancy occurs
for the transition of the 4s3d 3De state. The larger difference
here is expected since the 3d orbital does have a tendency to
penetrate into the core and therefore degrade the accuracy
associated with model potential methods. The bestab initio
calculation is the MCHF calculation by Froese-Fischer and
Tachiev[29]. The MCHF calculation allows for core-valence
correlations and also includes relativistic effects using the
Breit-Pauli Hamiltonian. The MCHF oscillator strengths
listed in Table II are a weighted average of the individual
lines in the multiplet. The largest difference between the
present and MCHF oscillator strengths is less than 4%.

The multichannel quantum defect theory(MQDT) calcu-
lations of Werjiet al. [30] which use anR-matrix calculation
to determine the short-range parameters. Their transition rate
data was converted to oscillator strengths using experimental
energy differences and lie within 2–3 % of the present oscil-
lator strengths.

TABLE II. Properties of the metastable3Po levels of the alkaline-earth-metal atoms and He(note the lowest3Po level is not metastable
in He). The oscillator strengths to the lowest3Se, 3Pe, and3De states are given asfs3Led. The scalar and tensor dipole polarizabilities area0

anda2,L0L0
, respectively. The quadrupole momentQ is given for the3P2

o state while the dispersion parameterC6 is that for two3P0
o states.

The He “Other Theory” row reports the results of close to exact calculations with the exception ofa2,L0L0
. The present oscillator strength to

the He3De state is not to a physical state, rather it is to the lowest energy pseudostate. All quantities are in atomic units and the numbers in
brackets are the uncertainties in the last digits.

Method fs3Sed fs3Ped fs3Ded Q a0 a2,L0L0
C6

He
Present −0.1797 0.6251 10.264 46.66 69.62 5102
Other Theory −0.1797[33] 0.6102[33] 10.265[34] 46.71[35] 67.09[36]

Be
Present 0.08187 0.4467 0.2948 4.54 39.02 0.558 220.3
MCHF [37] 39.33 0.47
TDGI [38] 0.026 0.154 36.08 1.04
B-spline CI [39] 0.0823 0.453 0.295
Experiment 0.089(3) [40] 0.44(2) [41] 0.29(1) [40]

Mg
Present 0.1383 0.6167 0.6287 8.44 101.9 −14.24 1004
CI+MBPT [4] 8.46(8)
SG-CI [22] 8.38 980(30)
TDGI [42] 0.136 0.625 90.7 −19.64
MS-CI [27] 0.1354 0.6383 0.6336
Experimental 0.139(3) [26] 0.55(4) [43] 0.62(4) [44]

Ca
Present 0.1582 0.5071 0.08136 12.96 295.3 −28.36 3363
CI+MBPT [4] 12.9(4)
SG-CI [22] 12.7 3020(200)
TDGI [45] 0.163 0.051 276 −50.0
CI+model[28] 0.1526 0.5030 0.0873
MCHF [29] 0.161 0.525 0.0806
Experimental 0.12(2) [46] 0.522(13) [47]

Sr
Present 0.1788 0.4727 0.08254 15.51 494.8 −53.84 6074
CI+MBPT [4] 15.6(5)
SG-CI [22] 15.4 5260(500)
MQDT [30] 0.173 0.0849
Experimental 0.188(10) [48] 0.438(4) [31]
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The most precise experiment for Sr is that of Andraet al.
[31] which gave a lifetime of 7.89±0.05 ns for the 5p2 3P2

e

state. This state can decay to the both the 5s5p and 5s6p
levels and the lifetime was converted to an oscillator strength
by neglecting the transition to the 5s6p state. This assump-
tion is justified since the dipole matrix element will be small
due to thek5pu6pl overlap, and the 5s6p2 3Po→5p2 3Pe

energy difference of 0.0073 Hartree is also small.
The comparison with the time-dependent gauge indepen-

dent (TDGI) calculations of Merewaet al. [32] is mainly of
interest because these authors also give estimates of the sca-
lar and tensor polarizabilities. A quick comparison of TDGI
f-values with other results in Table II reveals that their os-
cillator strengths do not have the same level of accuracy as
the other calculations. The underlying atomic structure infor-
mation entering the TDGI formalism comes from CI calcu-
lations.

E. The polarizabilities

1. Theoretical treatment of polarizabilities

This analysis is done under the premise that spin-orbit
effects are small and the radial parts of the wave functions
are the same for the states with differentJ.

The Stark energy shifts for the differentL0 levels in an
electric fieldF are written as[49]

DE = −
1

2
aL0M0

F2. s5d

The Stark shifts for the differentM0 states of the3Po level
are different and the polarizability is written as

aL0M0
= a0 +

3M0
2 − L0sL0 + 1d

L0s2L0 − 1d
a2. s6d

wherea2 is taken from the state withM0=L0. The total po-
larizability is written in terms of both a scalar and tensor
polarizability. The scalar polarizability represents the aver-
age shift of the differentM levels while the tensor polariz-
ability gives the differential shift.

In terms of second order perturbation theory, the energy
shift from an electric field,F pointing in thez direction is

DE =
1

2o
n

2kc0;L0M0uo
i

r iC0
1sr̂ iducn;LnMnlkcn;LnMnuo

i

r iC0
1sr̂ iduc0;L0M0lF2

sE0 − End
. s7d

The polarizability can therefore be written

aL0M0
= o

n
S L0 1 Ln

− M0 0 Mn
D2

2ukc0;L0io
i

r iC
1sr̂ idicn;Lnlu2

sE0 − End
,

s8d

where the Wigner-Eckart theorem has been used to isolate
the M-dependent terms. Using the definition of the oscillator
strength, Eq.(4), and taking the average of the energy shifts
leads to the usual definition as a sum rule over the oscillator
strengths. It is

a0 = o
M0=−L0

L0

aL0M0
/s2L0 + 1d = o

n

f0n

e0n
2 , s9d

where the sum includes both valence and core excitations
ande0n=sE0−End. The f-value distribution for the core was
estimated using a semiempirical method[11]. In this ap-
proach one writes

acore= o
iPcore

Ni

sei + Dd2 , s10d

whereNi is the number of electrons in a core orbital,ei is the
Koopman energy, andD is an energy shift parameter chosen

so that Eq.(10) reproduces an accurate estimate of the core
polarizability determined my other, independent means.

Since theM-dependent part of the polarizability is a ten-
sor of rank 2 and it is easiest to define it in terms ofa2,L0L0

,

a2,L0M0
= a2,L0L0

3s− 1dL0−M0S L0 2 L0

− M0 0 M0
DYS L0 2 L0

− L0 0 L0
D

s11d

=a2,L0L0

3M0
2 − L0sL0 + 1d

L0s2L0 − 1d
, s12d

wherea2,L0L0
is

a2,L0L0
= o

n
FS L0 1 Ln

− L0 0 L0
D2

−
1

3s2L0 + 1dG
3

2ukc0;L0ioi
r iC

1sr̂ idicn;Lnlu2

sE0 − End
. s13d

In terms of anf-value sum, this reduces to
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a2,L0L0
= − S o

n,Ln=0

f0n

e0n
2 −

1

2 o
n,Ln=1

f0n

e0n
2 +

1

10 o
n,Ln=2

f0n

e0n
2 D .

s14d

The core does not make a contribution to the tensor polariz-
ability since it has an equal impact on all the different
M-levels.

The development above is forLS coupled states, but it is
common to give the tensor polarizability forLSJ states.
These can be related to theLS states by geometric factors
arising from the application of Racah algebra. The polariz-
ability can be expanded

aJ0M0
= a0 +

3M0
2 − J0sJ0 + 1d
J0sJ0 − 1d

a2,J0J0
, s15d

where a2,J0J0
is the tensor polarizability of the state with

M0=J0. The scalar polarizability for the differentJ levels are
the same and equal to the scalar polarizability in theL rep-
resentation. The tensor polarizability between theL and J
representations can be related by

a2,J0J0
= a2,L0L0

s2J0 + 1ds− 1dS+L0+J0+2HS L0 J0

2 J0 L0
J

3

S J0 2 J0

− J0 0 J0
D

S L0 2 L0

− L0 0 L0
D . s16d

When J=1 this reduces toa2,J0J0
=−a2,L0L0

/2. (This result
has been checked by converting ourLScoupledf-values into
LSJcoupled values and then using the standard expression in
terms of theukJ0ir iJnlu2 matrix elements[49].)

2. Results of calculations

The program logic and associated numerics were initially
tested by estimating the polarizabilities of the 1s2p 3Po level
of He. The presenta0 of 46.66a0

3 is within 0.12% of the
close to exact calculation of Yanet al. [35]. Agreement with
the TDGI a2,L0L0

of Rerat and Pouchan[36] is not as good,
but it should be noted that the TDGI calculation obtains an
a0 of 49.5a0

3, indicating that the Rerat-Pouchan calculation
is not quite converged.

The present estimates of the Be polarizabilities are the
most accurate that have been published. The agreement with
the Themelis and Nicolaides MCHF calculation[37] for a0
is reasonable, but they give ana2,L0L0

that is about 20%
smaller. This level of agreement is acceptable given that the
MCHF calculation was much smaller, the 2s2p 3Po state was
represented by a 3 configuration MCHF wave function while
14 configurations were used to represent the excited states.

Only a moderate level of agreement is achieved with the
TDGI polarizabilities for Be, Mg and Ca[38,42,45]. The
static polarizabilities agree at the 10% level while the TDGI
estimates of the tensor polarizability are up to 50% different.
The lower level of accuracy achieved by the TDGI calcula-
tions is consistent with the earlier discussion concerning the
accuracy of the oscillator strengths.

A recent measurement of the tensor polarizability for the
3P1

o state of Ca using an atomic polarization interferometer
gave 2.623±0.015 kHz/skV/cmd2 or 10.54±0.06a0

3 [50].
The tensor polarizability of theJ=1 state is determined from
the Ca entry in Table II by multiplying by −12 according to
Eq. (16). The present calculation givesa2,J0J0

=14.2a0
3 for

the 3P1
o state. A very early estimate of the tensor polarizabil-

ity for this state was 12.9±3.2a0
3 [51] and another indepen-

dent experiment gavea2,J0J0
=12.1±0.8a0

3 [52].
The scaler polarizability of the3Po state has not been

measured directly, but there have been measurements of the
difference between the polarizabilities of the 4s2 1S0

e ground
state and the3P1

o sm=0d ground state. Morinagaet al. [53]
obtained 90.4±13.5a0

3 for the difference in the polarizabil-
ities. Using the polarizability of 159.4a0

3 for the Ca ground
state [11], and the present3P1

o sm=0d polarizability of
295.3−2314.2=266.9a0

3 gives 107.5a0
3 for the difference

in the polarizability.
The Stark frequency shift of Li and van Wijngaarden of

12.314±0.041 kHz/skV/cmd2 for the 4s2 1S0
e→3P1

o sm=0d
transition [54] converts to a polarizability difference of
98.98±0.33a0

3.
Taken together, present estimates ofa2,J0J0

are larger than
experiment by about 20% while estimates of the
a0s4s2 1Sed−a0s4s4p 3P1

od polarizability difference are about
10% too large. Rectifying the situation in a nonrelativistic
calculation could be problematic since an improvement in
a2,J0,J0

will result in the theoretical polarizability difference
drifting further away from the experimental polarizability
difference.

The obvious improvement that could eliminate this prob-
lem would be the inclusion of the spin-orbit interaction. The
largest contribution to the polarizability comes from the tran-
sitions to the3De levels. The spin-orbit splitting leads to the
excitation energies for 4s3d states with differingJ fluctuat-
ing by about ±2%. Given the cancellations that occur in the
evaluation of Eq.(13) it is possible that introduction of spin-
orbit splitting could lead to a Ca tensor polarizability in bet-
ter agreement with experiment.

There have been no measurements of the tensor polariz-
ability for the other alkaline-earth-metal atoms. This should
be rectified since it would be a very useful diagnostic with
which to assess the accuracy of the structure models of the
metastable states.

3. Alternate treatment of core

It is desirable to partition the coref-value some into con-
tributions that arise from excitations to final states with dif-
ferent core1valence angular momentum,LT. Therefore, it is
possible to write symbolically

acore= o
LT

acore,LT
, s17d

whereacore,LT
will include all the contributions from the dif-

ferent magnetic sublevels, i.e.,
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acore,LT
= o

MT

acore,LTMT
. s18d

For any of the core dipole excited magnetic sublevels one
can write

acore,LTMT
= o

n

fs00:LM → n;LTMTd
e0n

2 . s19d

The final states,uLTMTl can be expanded in terms of un-
coupled states, e.g.,

uLTMTl = o
mM

k1mLMuLTMTlu1mLMl, s20d

where 1m refers to the angular momentum of the excited
core andLM refers to the angular momentum of the3Po

metastable state which is acting as a spectator. Therefore, it
is possible to decompose the oscillator strength as

fs0;00LM → n;LTMTd = o
mM

uk1mLMuLTMTluLTMTlu2

3fs0;00LM → n;1mLMd.

s21d

The polarizability can also be expanded in terms of un-
coupled states

aLTMT
= o

mM

uk1mLMuLTMTluLTMTlu2acore,mM/s2L + 1d.

s22d

The factor ofs2L+1d in the denominator arises due to the
sum over spectator states. We now assume that the excita-
tions for the core occur independently of the state of valence
electrons which act as spectators. Therefore, the contribution
to the polarizability is independent ofM. Further, the core
initially has a net angular momentum of zero and therefore
the different magnetic sublevels of the core excitations
should give equal contributions to the polarizability, hence

acore,mM =
acore

3
. s23d

The final result is

aLTMT
= o

mM

uk1mLMuLTMTluLTMTlu2
acore

3s2L + 1d
, s24d

which can be simplified by summing the Clebsch-Gordan
coefficients to give

acore,LT
=

s2LT + 1dacore

3s2L + 1d
. s25d

When particular values are substituted into Eq.(25) the
distribution of the coref-value sum into the3So, 3Po and3Do

manifolds is given in the proportion19 : 3
9 : 5

9. This is of course
just the statistical weighting associated with thes2LT+1d de-
generacy factor. It is simple to verify that such a proportion
means the net contribution of the core to the tensor polariz-
ability as defined by Eq.(14) is zero.

F. The van der Waals coefficients

The van der Waals coefficients given in Table II are those
for a pair of 3P0

o states. The dispersion parameter,C6 is
simple to compute since both of the atoms have a net angular
momentum of zero. The expression is

C6 =
3

2 o
n1,n2

f0,n1
f0,n2

e0n1
e0n2

se0n1
+ e0n2

d
. s26d

The present dispersion parameters are slightly larger than
those of the SG-CI calculation of Santra and Greene[22].
Taking the case of Sr, the difference here is about 15%.
About half of this difference can be attributed to the core
sinceC6=5668 a.u. when core excitations are omitted from
Eq. (26). So part of the discrepancy arises from the neglect
of the core in the SG-CI calculation. One cautionary note
should be made. Santra and Greene reportedC6 for the 3P0

o

state. Since the3P0
o state is the most tightly bound state of the

5s5p multiplet one expects the presentLS coupled calcula-
tion to have a slightly largerC6. The quantitative impact of
spin-orbit splitting can best be determined by separate evalu-
ations ofC6 for the J=0, 1 and 2 states.

The van der Waals coefficients that are relevant to BEC
studies are those between two3P2

o states. The algebra related
to this is somewhat messy and the coefficients are presented
in the formalism of Santra and Greene[19,22]. The interme-
diate dispersion coefficient between two3PJ

o states is defined
as

BJ1,J2
= s− 1dJ1−J2+1 o

n1,n2

f0,n1
f0,n2

e0n1
e0n2

se0n1
+ e0n2

d
, s27d

wheren1 has angular momentumJ1 andn2 has angular mo-
mentumJ2.

This LS coupled oscillator strengths were converted into
the LSJcoupling scheme using the identity

fsJ0 → Jnd = fsL0 → Lnds2L0 + 1ds2Jn + 1dHS L0 J0

1 Jn Ln
J2

.

s28d

When the sum, Eq.(27), was evaluated, the coref-value
distribution was included using Eq.(25) to partition it into
3Se, 3Pe and3De excitations.

The results of our calculations are presented in Table III
and compared with earlier CI+MBPT calculations of Der-
eviankoet al. [4] and the SG-CI calculations[22]. There is
no apparent experimental activity on the metastable states of
Be and the present data in the table were only included for
reasons of completeness.

The present calculation and the CI+MBPT calculation
could hardly be in any better agreement for magnesium. The
largest disagreement for any of theBJ1,J2

coefficients was
1.2% for theB2,2 coefficient. Agreement with the SG-CI cal-
culation is not as good with the occasional discrepancy of
5% and it is noticeable that the present and CI+MBPT re-
sults do tend to be larger in magnitude.
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For calcium there is a tendency for the present results to
be from 1% to 5% larger in magnitude with the differences
being smaller for the larger values ofJ1 andJ2. The present
dispersion coefficients all lie within the 10% uncertainty that
Dereviankoet al. associate with their results. Agreement
with the SG-CI calculations is not so good with discrepan-
cies exceeding 10% being common.

The pattern for strontium is similar to that seen for cal-
cium. The presentBJ1,J2

coefficients are larger than the CI
+MBPT data forB1,1 and smaller forB3,3. The differences
with the SG−CI calculation are generally larger than those
with the CI+MBPT calculation.

Some general trends are noticeable. The SG-CI calcula-
tion always gave the smallest result forB1,1, B2,1, B3,1, B3,2
andB3,3. Furthermore, the sumoJi,Jj

BJi,Jj
for the present cal-

culations and CI+MBPT calculations are consistently bigger
than the SG-CI calculations, with the difference becoming
larger as the atom gets heavier. This could be a manifestation
of the increasing importance of the core contribution to the
BJi,Jj

coefficients as the atom gets heavier.
It is also evident that some of the uncertainty estimates of

the SG-CI calculation were somewhat optimistic. For ex-
ample, they giveB1,1=139±7 a.u. for strontium. The contri-
bution of the coref-value sum to this dispersion parameter is
12.0 a.u. So the core contribution, which is not incorporated
in the SG-CI calculation, is larger than their estimated uncer-
tainty.

III. CONCLUSIONS

A systematic study of the properties of the alkaline-earth-
metal atoms reveals that the present nonrelativistic approach
reproduces the results of the CI+MBPT ansatz of Derevi-
ankoet al. [4] to better than 5%. Agreement with the model
potential CI calculation of Santra and Greene[22] is not so
good with discrepancies of 10–15 % occuring for the spheri-
cal part of theC6 dispersion coefficient. Due to the unknown

impact of the spin-orbit energy, splitting upon the polariz-
abilities and dispersion coefficients, it is not possible to make
a definitive statement about any reasons for the differing lev-
els of agreement with these two other calculations. However,
we do suspect that the omissions of the SG-CI model, i.e.,
the dielectronic two body polarization potential, the non-
usage of a dressed dipole transition operator, and the lack of
core excitation terms in the dispersion sum rules all contrib-
ute in part to the differences with the SG-CI model.

It should be noted that previous studies with the present
model for the alkali-metal atoms and singlet states of the
alkaline atoms demonstrated that the method could predict a
number of expectation values with an overall accuracy of
1–2 % or better[11]. The presence of spin-orbit energy split-
ting, and the existence of a3De state very close in energy to
the 3Po metastable level leads to a decrease in accuracy for
atomic properties such as the tensor polarizability that are
sensitive to these energy differences. Additional high preci-
sion measurements of the tensor polarizabilities for the Mg,
Ca and Sr would certainly be worthwhile since the sensitivity
of this parameter to the fine details of the wave function
should help in the refinement of the two-body potentials used
to characterize ultracold collisions.

It is interesting to speculate whether the better agreement
with the CI+MBPT calculations could be achieved by incor-
porating a spin-orbit potential into the Hamiltonian and using
j j coupling. Alternatively, a fully relativistic treatment, using
a relativistic HF wave function might be necessary. Resolu-
tion of these questions requires that explicit calculations be
made to determine the additional physics needed to eliminate
the anomalies between the present calculations and experi-
ment and between the present calculations and the CI
+MBPT calculations.
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TABLE III. The intermediate dispersion coefficients,BJ1,J2
for two alkaline-earth-metal atoms in the metastable3P2

o state. TheSuBJi,Jj
u

column sums the absolute value of all the entries in each row(with off-diagonal elements added twice). The numbers in brackets after the
data are the uncertainties ascribed to the CI+MBPT and SG-CI calculations.

Method B1,1 B2,1 B2,2 B3,1 B3,2 B3,3 SuBJi,Jj
u

Be
Present −6.901 11.29 −27.77 −13.52 22.31 −27.21 220.3

Mg
Present −37.46 43.90 −52.73 −76.49 90.76 −157.2 1004

CI+MBPT [4] −37.8s38d 43.9(44) −52.1s52d −76.7s77d 90.1(90) −156.4s156d 1002
SG-CI [22] −35.6s2d 42.5(2) −51.9s2d −73.4s7d 88.6(7) −152s2d 976

Ca
Present −96.95 130.7 −176.8 −233.5 317.5 −604.8 3363

CI+MBPT [4] −91.7s92d 123(12) −167s17d −225s23d 306(31) −600s60d 3250
SG-CI [22] −81s3d 119(5) −176s8d −203s10d 302(20) −553s70d 3087

Sr
Present −165.9 213.9 −278.9 −416.9 556.0 −1231 6074

CI+MBPT [4] −158s16d 203(20) −264s26d −415s42d 555(56) −1290s130d 6090
SG-CI [22] −139s7d 196(9) −280s10d −370s30d 546(50) −1210s200d 5780
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