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We study the structure of vacuum entanglement for two complimentary segments of a linear harmonic chain,
applying the modewise decomposition of entangled Gaussian states discussed by Boteno and Reznik[Phys.
Rev. A 67, 052311(2003)]. We find that the resulting entangled mode-shape hierarchy shows a distinctive
layered structure with well-defined relations between the depth of the modes, their characteristic wavelength,
and their entanglement contribution. We rederive in the strong coupling(diverging correlation length) regime,
the logarithmic dependence of entanglement on the segment size predicted by conformal field theory for the
boson universality class and discuss its relation with the mode structure. We conjecture that the persistence of
vacuum entanglement between arbitrarily separated finite-size regions is connected with the localization of the
highest-frequency innermost modes.
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I. INTRODUCTION

The study of the entanglement properties of a number of
physical models including spin chains, coupled fermions,
and harmonic oscillators[1–10] has revealed interesting as-
pects of entanglement in spatially extended many-body sys-
tems.

On the one hand, a number of universal aspects connected
to the behavior of the two-point correlation function have
been verified. For instance, it has been shown that one-
dimensionalXY and Heisenberg spin chains near a critical
point [3] lead to the same scaling behavior for massless bo-
son and fermion universality classes as predicted by confor-
mal field theory[11–13]. In the massless case, the entangle-
ment between a region of sizeL and the remainder of the
system increases either as, 1

3ln L (bosons) or , 1
6ln L (fer-

mions). These characteristic behaviors relate to a one-
dimensional version of the black-hole entropy “area law”
[14–16].

In contrast to these universal results, other aspects of
many-body entanglement have proven to be model depen-
dent and not entirely captured by the behavior of the corre-
lation functions. For example, the entanglement length de-
fined in [17], as an analog of the correlation length, has been
shown for a family of models to be infinite while the corre-
lation length is finite[18,19]. The converse situation has also
been demonstrated for spin chains[1,2] and harmonic chains
[20]. In these cases, while the correlation length can be infi-
nite or large, the entanglement between two sites truncates to
zero for a relatively small separation. It is therefore fair to
say that we still lack a generic characterization of entangle-
ment in many-body systems.

In this paper we concentrate on an aspect that has re-
ceived relatively little attention, but which could potentially
sharpen the emerging picture. This is theentanglement struc-
ture dictated by many-body interactions—the connection be-
tween the form of the Hamiltonian, the quantum-state en-
tanglement structure, and the spatial distributions associated
with the quantum states. Our aim is to provide a detailed
analysis of the bipartite ground-state entanglement structure
of the linear harmonic chain.

In general the determination of the entanglement structure
of a given quantum state is a complicated problem; however,
things are greatly simplified for the vacuum state of an os-
cillator chain, which is a pure state of the Gaussian family
[21]. An important feature of multimode pure Gaussian states
is their fundamentally simple structure with respect to bipar-
tite entanglement: it can be shown that pure Gaussian-state
entanglement is equivalent to products of entangled pairs of
single modes[22–24], so that the total entanglement is the
sum of the 131 modewise entanglement contributions;
therefore, the canonical structure of Gaussian bipartite en-
tanglement is s131d-mode Gaussian entanglement. We
therefore aim to characterize the spatial structure of the en-
tangled modes within each of two complementary regions of
the harmonic chain and connect this spatial structure to the
corresponding entanglement contributions. This analysis is
performed for both the weak and strong coupling regimes.

An extrapolation of our results to the continuum limit
shows agreement with previously known results, such as the
1
3ln L entanglement behavior for bosons, as well as provides
new insight into the entanglement characteristics of the
vacuum. In particular, it shows that the inclusion of an ultra-
violet cutoff—in any way necessary to regulate the corre-
sponding massless relativistic quantum field theory in the
presence of interactions—gives rise to a localization of the
highest-frequency modes around the midpoint of the block.
Thus, it appears that contrary to the behavior of correlations,
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the long-distance behavior of entanglement between local-
ized regions is directly connected with the high-frequency
modes. This somewhat paradoxical feature of field entangle-
ment was noticed earlier in connection with the extraction of
entanglement from the vacuum[25] and violation of Bell’s
inequalities in the vacuum[26].

The article is organized as follows. In Sec. II, we begin
with a short review of Gaussian states and the modewise
structure of entanglement. We then study the structure of the
local mode shapes within a block and their form by introduc-
ing a mode “participation function.” In Sec. III, we specialize
to the case of the linear harmonic chain ground state and
study in some detail the dependence of the correlation func-
tions on the coupling strength and size of the chain. We show
that three regimes of behavior can be identified for a chain of
fixed size and varying coupling strength. In Sec. IV, we
present a simple application of the mode mapping for the
case of a single oscillator with respect to the rest of the chain
and demonstrate how, in this simple case, the properties of
the correlation function show up in the behavior of the en-
tanglement entropy. Section V surveys the main results of
this paper on a qualitative level based on a numerical analy-
sis of the modewise structure in the weak and strong cou-
pling limits. This survey is complemented in Sec. VI with an
analytic study of the spatial modewise structure as well as
the derivation of the1

3ln L “area law”. Our results are com-
pared with previous related work in Sec. VII. Finally we
conclude in Sec. VIII. In the Appendixes we provide trans-
formations that connect between modes at the two regions
and the relations between discrete and continuum correlation
functions.

II. GAUSSIAN-STATE MODEWISE ENTANGLEMENT

The ground state of a linear chain of oscillators is a pure
Gaussian state[21]. Gaussian entanglement is characterized
by the following simplifying property[22] : If uclAB is any
Gaussian pure state ofN modes entangling modes in two
regionsA and modes inB, thenucl may always be written as
a product of two-mode and one-mode states:

uclAB = uc̃1lÃ1B̃1
uc̃2lÃ2B̃2

¯ uc̃slÃsB̃s
u0lÃF

u0lB̃F
, s2.1d

where theuc̃ilÃiB̃i
are entangled states of one mode from setA

and one mode from setB and u0lÃF
and u0lB̃F

are products of
vacuum states for the remaining modes.(See also an alterna-
tive proof in [23] and a modewise decomposition for Fer-
mion Gaussian states in[24].) The fact that any pure Gauss-
ian state can be decomposed according to Eq.(2.1) implies
that the bipartite entanglement of the state is the sum of the
entanglements from each one of the participating pairs. In
turn, the entanglement of each pair is the von Neumann en-
tropy of the reduced density matrix obtained from the pair-

wise stateuc̃ilÃiB̃i
. In addition to the quantification of the total

amount of entanglement, it also becomes relevant to investi-
gate the relative contribution of the individual entangled
modes, together with the relationship that may exist between
the “shape” of these modes and their entanglement contribu-
tion. We use this section therefore to review and introduce

some general technical aspects of pure entangled Gaussian
state analysis.

A. Review of Gaussian states

We begin by reviewing some basic facts about Gaussian
(pure or mixed) states. Let us represent the canonical vari-
ables of anN-mode system by the vector

h = sq,pdT, s2.2d

whereq=sq1,q2, . . . ,qNdT andp=sp1,p2, . . . ,pNdT. The com-
mutation relations may thus be expressed as

fha,hbg = iJab, s2.3d

whereJ is the so-calledsymplectic matrix:

J = S 0 1

− 1 0
D . s2.4d

A Gaussian quantum stater for a set ofN modes is uniquely
characterized by the first and second moments ofh. In deal-
ing with entanglement aspects of Gaussian states, a shift in
the expectation value of the canonical variables corresponds
to a local operation. Thus, it may be assumed throughout that
khl=0. In such a case, the state is entirely characterized by
the matrix of second moments, the so-called phase-space
2N32N covariance matrix(CM):

M = RekhhTl. s2.5d

Of particular interest is the group of transformations preserv-
ing the Gaussian character of the state. Within the family of
states withkhl=0, the group is the homogeneous group of
linear symplectic transformations,SPSps2N,Rd, preserving
the commutation relations underh̃=Sh or, equivalently, pre-
serving the symplectic matrix under the similarity transfor-
mationSJST=J. Under a symplectic transformation, a Gauss-
ian state characterized by a covariance matrixM gets
mapped to a Gaussian state characterized by the covariance

matrix M̃ =SMST.
Somewhat analogous to the construction of normal modes

for a linear system is the construction of modes in which the
covariance matrix takes a particularly simple form. A theo-
rem due to Williamson[27,28] states that a certain symplec-
tic transformationSW always exists that bringsM to the nor-
mal form (“Williamson normal form”)

W= SWMSW
T = diagsl1,l2, . . . ,lN,l1,l2, . . . ,lNd,

s2.6d

where the diagonal elementsl1,l2, . . . ,lN are referred to as
the symplectic eigenvalues and must be greater than or equal
to 1/2 according to the uncertainty principle. The transfor-
mationSW defines a new set of modes(“Williamson modes”)
h̃smd, with corresponding annihilation operatorsãm=sq̃m

+ ip̃md /Î2. In terms of these modes, the stater may be writ-
ten as a product of oscillator “thermal” states[29]

r = ^
m

s1 − e−bmde−bmñm, s2.7d

where ñm= ãm
† ãm is the Williamson number operator associ-

ated with the creation and annihilation operators. The aver-
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age number operator obeys a Bose-Einstein distribution.
Since the covariance matrix is now diagonal withksqmd2l
=kspmd2l=kñml+ 1

2, the symplectic eigenvalues can be related
to the average number operator according tolm=kñml+ 1

2 and
connected with the Boltzmann factorbm by the relation

lm =
1

2
cothS1

2
bmD . s2.8d

In the case oflm=1/2, thethermal state reduces to a projec-
tor onto the vacuum stateu0lm annihilated by the destruction
operatorãwi

. Otherwise, the state is a mixed state, with a von
Neumann entropySslmd, where

Ssld = sl + 1/2dlnsl + 1/2d − sl − 1/2dlnsl − 1/2d.

s2.9d

Throughout the paper, we shall measure entropy and the en-
tanglement measure derived from it in natural units. Our re-
sults can be converted toe-bit units by multiplying by
1/ ln 2.1.44.

B. Modewise entanglement

Turning now to the entanglement of pure Gaussian states,
suppose theN modes are partitioned into two setshA andhB.
Then, the particular set of modes in terms of which the de-
composition(2.1) is achieved is composed of modes which,
under local symplectic transformations, bring the local cova-
riance matricesMA=RekhAhA

Tl andMB=RekhBhB
Tl into Wil-

liamson normal form. The decomposition is related to a gen-
eral property of covariance matrices which satisfy the
“isotropic condition”

− sJMd2 = l0
21, s2.10d

a condition that is satisfied by the covariance matrix of any
pure Gaussian state withl0=1/2. Partitioning the vector of
all the modes ash=hA % hB, the full covariance matrix of the
pure state may be written in block form as

M = RekhhTl = SMA K

KT MB
D , s2.11d

whereK=khAhBl. It is then possible to show[22] that as a
consequence of the isotropic condition,MA andMB share the
samesymplectic spectrum in the respective sectors where the
symplectic eigenvalues are larger than 1/2. By performing
local symplectic transformationsh̃A=SAhA and h̃B=SBhB
bringing MA and MB to Williamson normal form, it is then

possible to show that the obtained correlation matrixK̃
=SAKSB

T connects only the sectors inA andB with the same
symplectic eigenvalue and vanishes on the elements with
symplectic eigenvalue 1/2. This means that if the local sym-
plectic spectrum is not degenerate(apart from the sector with
symplectic eigenvalue 1/2), the transformed correlation ma-

trix K̃ connects only those pairs of modes inA andB with the
same local symplectic eigenvalue. On the other hand, if there
are degeneracies in the local symplectic spectrum, one can
still perform an additional one-sided local orthogonal sym-

plectic transformation that bringsK̃ to a form connecting the
degenerate modes in a pairwise fashion.

In this paper, we will only be dealing with Gaussian states
for which the correlations between theq’s and p’s vanish.
This affords a particular simplification in the investigation of
the entangled mode structure. For this we introduce the fol-
lowing notation for the coordinate and momentum covari-
ance matrices:

G = kqqTl, H = kppTl. s2.12d

In the absence ofq-p correlations, the local covariance ma-
trices may thus be written in block diagonal form as

MA = RekhAhA
Tl = SGA 0

0 HA
D . s2.13d

The local symplectic spectrum can then be obtained from the
square root of the doubly degenerate spectrum of the matrix
−sJAMAd2 (where JA is the symplectic matrix of theA
modes), a matrix which is

− sJAMAd2 = SHAGA 0

0 GAHA
D . s2.14d

Thus, the symplectic eigenvalues are given by the square
root of the eigenvalues ofHAGA (or GAHA). Therefore we
can express a certain two-mode state in the decomposition
(2.1) as

uc̃mlÃmB̃m
= Î1 − e−bmo

n

e−bmn/2uñlÃm
umlB̃m

. s2.15d

The total bipartite entanglementE is then given by the sum
of two-mode contributions:

E = o
lm

Sslmd. s2.16d

C. Mode shapes

The number statesuñlÃm
in the above two-mode Gaussian

state are eigenstates of the Williamson modes number opera-

tor ÑAm
, which in turn can be expressed as a combination of

the local modesh̃A. The question is then, how do the local
modes contribute to each of the collective Williamson
modes? This can be answered by studying the symplectic
transformation h̃A=SAhA between the local and global
modes. Particularly, we now wish to directly relate the sym-
plectic transformation to the eigenvectors ofHAGA and
GAHA. First note that in the absence ofq-p correlations, the
symplectic transformation will not mix theq’s andp’s, so we
may write it as

q̃A = XqA, p̃A = YpA, XYT = 1, s2.17d

where the last condition guarantees that the transformation is
symplectic. Now defineL to be the diagonal matrix with the
symplectic eigenvalues ofMA. ThusL may be written as
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L = XGAXT = YHAYT. s2.18d

Now, let usmd and vsmd be right eigenvectors ofHAGA and
GAHA, respectively, corresponding to the symplectic eigen-
value (the mth entry inL) lm, so that

sHAGAdusmd = lm
2 usmd, sGAHAdvsmd = lm

2 vsmd, s2.19d

and for simplicity introduce a normalization so that

susmd ·vsmdd = 1. s2.20d

It is then possible to see that

vsmd = cmGAusmd, usmd = dmHAvsmd, s2.21d

where the proportionality constantscm, dm must satisfy the
condition

cmdm = lm
−2. s2.22d

A convenient choice to make iscm=dm=lm
−1, implying that

usmd andvsmd must be normalized so that

svsmd ·HAvsmdd = susmd ·GAusmdd = lm. s2.23d

Next, we note that sinceGA andHA are symmetric,usmd and
vsmd are the right and left eigenvectors ofHAGA, respectively.
This implies, together with our normalization convention, the
orthogonality condition

susmd ·vsndd = dmn, s2.24d

as well as the spectral decomposition

HAGA = o
m

lm
2 usmdvsmdT. s2.25d

Using Eqs.(2.21) and (2.24), we finally arrive at the condi-
tion that

svsmd ·HAvsndd = susmd ·GAusndd = lmdmn. s2.26d

It is now straightforward to set up the symplectic transfor-
mation matrix X: Letting fi be a column vector with all
entries set to zero except theith one, one verifies by direct
substitution that the matrices

X = o
m

fmusmdT, Y = o
m

fmvsmdT, s2.27d

indeed satisfy Eq.(2.18). Finally, we can now express the
relation between the local and collective phase-space modes
as

q̃A
smd = o

iPA

ui
smdqi, p̃A

smd = o
iPA

vi
smdpi . s2.28d

D. Mode participation function

Generically, the transformation connecting the initial
modes to the Williamson normal modes is not an orthogonal
transformation. This means that in general the mode func-
tionsusmd andvsmd for theq’s andp’s may be very different in
shape.(For instance, it could be the case that the newq’s
may be fairly “localized,” with significant amplitude contri-
butions from only a small number of the oldq’s, while the

new p’s may show more a “collective” shape, with more or
less equal contributions from the oldp’s). Thus, it becomes
convenient to define a function taking into account, on an
equal footing, the contribution from both the oldq’s andq’s
in a given Williamson mode.

To this end, we note the expansion of a given Williamson-
mode creation operator in terms of local mode creation and
annihilation operators. If the local site creation operator is
defined as

ai =
1

2
fjiqi + ji

−1pig, s2.29d

where j is some arbitrary dimensional parameter, the cre-
ation operator for a given Williamson modem on one side
can be expanded as

am =
1

2o
i

sji
−1ui

smd + jivi
smddai + sji

−1ui
smd − jivi

smddai
†.

s2.30d

In turn, this expression can be recast in the form

am = o
i

ÎPsmdsidfcoshti
smdai + sinhti

smdai
†g, s2.31d

where

Psmdsid ; ui
smdvi

smd s2.32d

and

tsmdsid ; tanh−1Sui
smd − ji

2vi
smd

ui
smd + ji

2vi
smdD . s2.33d

We also note from the definition of the modes that
susmd ·vsmdd=1 so thatoiPsmdsid=1. We see that the function
Psmdsid captures the weight of the local site participation,
invariant under local rescalings and phase space rotations.
We term it themode participation function.

III. HARMONIC CHAIN

A linear harmonic chain ofN local oscillators laid out on
a circular topology may be modeled by canonical variables
sqi ,pid with i =1, . . . ,N, with the dynamics given by a Hamil-
tonian of the form

H =
E0

2 o
i=1

N

fpi
2 + qi

2 − aqiqi+1g, s3.1d

where we identifyqN+1;q1 and q0=qN and the dimension-
less parametera characterizing the strength of the coupling
between adjacent neighbor sites is strictly less than unity.
Note that such a Hamiltonian can be obtained from the stan-
dard Hamiltonian of a chain with springlike nearest-neighbor
harmonic couplings,

H =
1

2o
i=1

N Fpi
2

M
+ Mv2ji

2 + Ksji − ji−1d2G , s3.2d

by means of the canonical variable rescaling

A. BOTERO AND B. REZNIK PHYSICAL REVIEW A70, 052329(2004)

052329-4



qi =ÎMvÎ1 +
2K

Mv2
ji, pi =

pi

ÎMvÎ1 +
2K

Mv2

s3.3d

and the identification

E0 = vÎ1 +
2K

Mv2 , s3.4d

a =

2K

Mv2

1 +
2K

Mv2

. s3.5d

The last relation provides a restriction 0,a,1 to the pos-
sible values of the coupling constant in Eq.(3.1). The limit
of strong coupling between neighboring oscillators,
2K /Mv2→`, corresponds toa→1 and the weak coupling
limit to a→0.

The Hamiltonian(3.1) can be brought to a normal form
by introducing a set of annihilation[creation] operators
asukd fa†sukdg satisfying the commutation relations

fasukd,a†suldg = dkl, s3.6d

with the indexing angular variableuk playing the role of a
dimensionless wave number or pseudomomentum and taking
the values

uk =
2pk

N
sk = 0,1, . . . ,N − 1d. s3.7d

Defining the dispersion relation(in units of E0)

nsukd ; Î1 − a cosuk s3.8d

and expressingqn andpn in the form

qn =
1

ÎN
o

k

1
Î2nsukd

fasukdeiukn + H.c.g, s3.9d

pn =
− i
ÎN

o
k

Însukd
2

fasukdeiukn − H.c.g, s3.10d

the Hamiltonian(3.1) achieves the normal form

H = E0o
k

nsukdFa†sukdasukd +
1

2
G , s3.11d

which is then diagonalized by the Fock states of the creation
and annihilation operators.

In particular, we will be interested in the ground stateu0l,
satisfying

asukdu0l = 0, s3.12d

for all uk. For this state, the wave functions in the coordinate
and momentum representations assume the Gaussian form

c0sqd ~ expF−
1

4
qTG−1qG , s3.13d

c0spd ~ expF−
1

4
pTH−1pG , s3.14d

where the covariance matricesG andH, for Q andP, respec-
tively, satisfy the generalized uncertainty relationGH=1 /4,
with the entries defined by the two-point vacuum correlation
functions:

Gij = k0uqiqju0l ; gsi−jd, s3.15d

Hij = k0upipju0l ; hsi−jd. s3.16d

Furthermore, since the state is Gaussian, higher moments of
the oscillator coordinates or momenta are expressible in
terms of the two-point correlation functions. Thus, the rel-
evant physical information associated with the vacuum is
contained in the correlation functionsgsi−jd andhsi−jd, which
we now study.

Vacuum correlation functions and three regimes
of behavior

The general entanglement behavior of the partitioned har-
monic chain is dictated by the behavior of the correlation
functionsgl and hl defined in Eqs.(3.15) and (3.16). Their
explicit form is given in terms of the dispersion relation(3.8)
by

gl
sNd ;

1

2No
k

1

nsukd
cosslukd, s3.17d

hl
sNd ;

1

2No
k

nsukdcosslukd, s3.18d

and consistent with the translational invariance of the Hamil-
tonian, we note their dependence only on the separationl
=si − jdmod N. In the limit N→` with a fixed, these expres-
sions yield the Riemann sum for the integral of the argument
as a function of a continuousu ranging from 0 to 2p, with
the replacement of the factor ofN−1 in front by s2pd−1. The
correspondence with the continuum one-dimensional scalar
field theory can also be obtained from these expressions by
taking appropriate limits, as discussed in Appendix B.

Now, for a fixed value of the strength parametera and for
sufficiently large values of the chain sizeN, the behavior of
these functions in terms ofl becomes independent ofN and
reproduces theN→` behavior, which can be expressed ex-
actly in terms of hypergeometric functions as

gl
s`d =

zl

2m1l −
1

2

l
2 2F1S1

2
,l +

1

2
,l + 1,z2D , s3.19d
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hl
s`d =

mzl

2 1l −
3

2

l
2 2F1S−

1

2
,l −

1

2
,l + 1,z2D , s3.20d

where s a
b

d are binomial coefficients expressed in terms of
gamma functions andz andm are given by

z;
1 −Î1 − a2

a
, m =

1
Î1 + z2

. s3.21d

This behavior in the large-N limit will serve as a reference
in analyzing the behavior for finiteN.

The shape of the correlationsgl andhl as a function of the
separationl and the coupling strength is depicted in Figs. 1
and 2 for a fixed value ofN. Similarly, we have plotted in
Fig. 3 the behavior of their values atl =0 as a function of the
coupling strength for different values ofN. For these plots,
we have found it convenient to introduce an ancillary hyper-
bolic anglej, implicitly defined by its relation to the vari-
ablesa andz:

z= tanhj, a = tanh 2j. s3.22d

This becomes a convenient parameter as, for small values of
a, the appropriate expansion parameter isz itself, in which
casez.j for j!1; similarly, asa approaches unity,j pro-

vides a logarithmic scale for this approach, withj. 1
4lns1

−ad /2.
Let us first analyze the caseN=`. For weak couplinga

,z!1, the hypergeometric functions behave as 1+osz2d;
thus, with the Stirling approximation for the binomial, we
obtain the weak coupling behavior

gl .
1

2Îp
l−1/2zl, hl . −

1

4Îp
l−3/2zl , s3.23d

for l @1. The weak coupling correlation functions are there-
fore of short-ranged, exponential behavior and characterized
by the correlation length

lc =
1

− lnszd
. s3.24d

On the other hand, in the limita.z→1 with fixed l, thegl
s`d

correlation function diverges and is determined by the
asymptotic behavior of the hypergeometric function

2F1S1

2
,l +

1

2
,l + 1,z2D → −

Gsl + 1d
Gs1/2dGsl + 1/2dFlnS1 − z2

4
D

+ cSl +
1

2
D + gGf1 + Os1 − zdg,

s3.25d

where g is the Euler-Mascheroni constant andcsnd is the
digamma function. With the asymptotic expansioncsl

FIG. 1. The vacuumgl =kq0qll correlation function as a function
of l for different strength parameters wherea=tanh 2j.

FIG. 2. The negative of the vacuum correlation functionhl

=kp0pll as a function ofl sl ù1d for different strength parameters.

FIG. 3. Variances inq andp as a function of coupling strength
for different values ofN.
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+1/2d. ln l for large lc@ l @1, this yields, forz.1,

gl . −
1

Î2p
lnS1 − z

2
lD; s3.26d

in the case of the correlation functionhl, one finds the
a-independent limit

lim
a→1

hl = −
Î2

p

1

4l2 − 1
. s3.27d

Next we consider finite-size effects. The first consider-
ation has to do with the range the above limiting expressions
given a finite size of the chain. In this respect, the exponen-
tially decaying behavior is not expected to hold once the
correlation length becomes of the order of half the chain size;
similarly, the strong coupling expansion forgl is valid when-
ever the function is positive. For sufficiently largeN, one
should expect these conditions to be met at values ofa
which are close to unity, in which case 1−z.Î2s1−ad.
Then the conditionslc,N/2 and lnfs1−zdN/4g,0 lead es-
sentially to the same transitional condition between short-
range and long-range correlations; the transition from short-
ranged to long-ranged behavior then happens when a
transitional correlation size scale, which we define as

Ntsad =Î 2

1 − a
, s3.28d

becomes of the order ofN. Note incidentally that forNt@1,
the plotting parameterj is related toNt according to

j .
1

2
ln Nt. s3.29d

The second consideration has to do with the magnitude of
the correlations fora close to unity, which is set by the
divergingqq correlation function and specifically its behav-
ior at l =0. For finite but largeN, the value ofgl can be
approximated by theN=` expression plus corrections in
powers ofN−1 arising from the error between the sum(3.17)
and the corresponding Riemann integral obtained whenN
→`. The relevant correction comes from the contribution of
the uk=0 mode in Eq.(3.17), which is not accounted for in
the Riemann integral when the limita→1 is taken first. This
contribution yields anOsN−1d additional term, so that fora
→1, the finite sizegl is approximated by

gl
sNd . gl

s`d +
1

2NÎ1 − a
. s3.30d

Since the correction arises from the contribution to the sum
from theuk=0 eigenmode, it accounts for a strong collective
effect due the finite size of the chain. This correction domi-
nates the coupling strength behavior of thegl correlation
functions above a critical value ofa or, for fixeda, below a
critical value ofN. This critical value is determined by re-
quiring that the correction term should become of the mag-
nitude of the logarithmic term depending on the coupling
strength in the strong couplingN=` correlation function—
i.e.,

1

2NÎ1 − a
= −

1
Î2p

lnS1 − zsad
2

D . s3.31d

Taking a close to unity yields finally a critical chain size
valueNc:

Ncsad ,
Ntsad

ln Ntsad
. s3.32d

The above considerations allow us to distinguish three
regimes of behavior for a chain size of a large and fixed
value of N, for convenience to be referred to as the type-I,
-II, or -III regimes: the type-I, weak coupling regime, is de-
termined by the conditionN@Ntsad.Ncsad and is charac-
terized by short-ranged correlations; when the condition
Ntsad,N is met, we enter the intermediate, type-II long-
range regime, in which the scale of correlations is of order
and lnNtsad and the correlations decay logarithmically as a
function of l; finally, the conditionNcsad.N determines the
long-range, type-III regime, with the same logarithmic decay
as a function of the distance but in which the scale of the
correlations behaves asNtsad /N. The distinction between
these three regimes will serve a guideline for the character-
ization of the different regimes of entanglement as well.

IV. ILLUSTRATIVE EXACTLY SOLUBLE CASE

Before proceeding with the numerical results in our paper,
it may be useful to consider a simple example that is easy to
solve and shows very general qualitative features of the
dominant entanglement structure between two complemen-
tary regions of a chain. In this case we wish to understand
the entanglement of one oscillator of the chain versus the rest
of the chain. For such a partition, it is quite easy to obtain the
degree of entanglement by looking at the local covariance
matrix of the single mode, which is given by

MA = Sg0 0

0 h0
D . s4.1d

The single symplectic eigenvalue of the matrix isl=Îg0h0
and thus the degree of entanglement between the oscillator
and the remainder of the chain is given bySsÎg0h0d whereS
is defined by Eq.(2.9).

To understand the behavior of the degree of entanglement
we look at the relevant approximations for the three regimes
discussed in Sec. III. First, expanding the hypergeometric
functions in Eqs.(3.19) and(3.20) in a power series inz, we
obtain for the symplectic eigenvalue the weak, type-I regime

lI =
1

2
+

z2

8
+ Osz4d. s4.2d

Next, for strong coupling,Ntsad.N, and assumingN@1,
we approximateh0 andg0 by their limiting behaviors fora
→0. Forh0 the limiting value isÎ2/p, while for g0 we can
use the asymptotic(3.25) to show that
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g0sad .
1

Î2p
lnf4Ntsadg, s4.3d

where Ntsad=Î2/s1−ad as defined previously. Thus the
symplectic eigenvalue becomes

lII .
1

p
Îlnf4Ntsadg; s4.4d

this accounts for the type-II, long-range regime with a loga-
rithmic scale of the correlations. Finally, if, we takea large
enough so thatNcsad@N, then theg0 correlation function
can be approximated by the single contribution of the collec-
tive uk=0 of the whole chain:

g0sad .
1

2NÎ1 − a
=

1

2Î2
SNtsad

N
D . s4.5d

This yields the symplectic eigenvalue

lIII .ÎNtsad
2pN

s4.6d

characterizing the strong long-range(type-III) regime.
With these approximations we use the following expan-

sions for the von Neumann entropy(2.9) as a function ofl:

Ssld . 5Sl −
1

2
DF1 − lnSl −

1

2
DG , l −

1

2
! 1,

1 + ln l, l @ 1.

s4.7d

This yields, for the characteristic behavior of the degree of
entanglement in the three regimes, the expressions

E .5
z2

8
F1 − ln

z2

8
G , I: Ntsad ! N,

1 +
1

2
ln

ln 4Ntsad
p2 , II: Ntsad , N * Nc,

1 +
1

2
ln

Ntsad
2pN

, III: Ncsad @ N.

s4.8d

These three approximations compared quite well with nu-
merical computations of the entropy as a function of cou-
pling strength in Fig. 4 for a chain size ofN=104. We note
that the only importance dependence on the chain size for
fixed coupling strength comes in the very strong regime, in
which case the entanglement decreases logarithmically with
N.

Correlated with the three regimes of behavior are the
shapes of theu andv mode functions for the entangled mode
on the complement of the chain. These are easily expressed
in terms of the correlation functionsgl and hl, using the
mode-mapping procedure discussed in Appendix A and sum-
marized in Fig. 19. Thelth components are simply given by

vl =
gl

Îg0h0 −
1

4

, s4.9d

ul = −
hl

Îg0h0 −
1

4

, l = 1, . . . ,N − 1. s4.10d

Thus, the shapes ofu andv are easily inferred from Figs. 1
and 2: in the weak regime, the mode functions exhibit rapid
exponential decay away from the two sites adjacent to the
singled-out oscillator; in the long-range transitional regime,
the ul mode, being proportional tohl, decays as the inverse
squared of the distance from the edge, while thevl mode
decays logarithmically; a similar behavior is exhibited in the
strongest long-range regime, in thevl mode except that the
logarithmic behavior is essentially suppressed. Thus we see
that in the strongest regime the entangled mode at the
complement shows a collective correlated behavior in the
oscillator momenta and a power-law correlation in the oscil-
lator displacements. Two distinct limiting behaviors ina
may then be inferred for the mode participation function of
this mode, based on the asymptotics of the correlation
functions—namely,

Pl , Hl−2z2l , a → 0,

l−2, a → 1.
s4.11d

V. STRUCTURE OF GROUND-STATE ENTANGLEMENT:
QUALITATIVE STUDY AND NUMERICAL

RESULTS

We turn then to a qualitative study of the entanglement
behavior of the harmonic chain vacuum and the underlying
modewise structure, based on numerical results. We shall be
interested in a system ofN oscillators, of which the first
contiguousNbøN/2 constitute a subsystem that we shall
refer to as the “block,” while the remainingN−Nb will con-
stitute what we shall refer to as the “complementary block.”
From the translational symmetry of the problem, the starting
point of the block on the chain is completely arbitrary.

Our first survey has to do with the overall behavior of the
degree of entanglement of the block and its complement as a

FIG. 4. Entanglement of a single oscillator versus the rest of the
chain as a function of coupling strength for a chain sizeN=104

(solid line). The dashed lines show the approximations of Eq.(4.8):
weak (I), strong transitional(II ), and strong(III ).
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function of the relevant properties: the size of the blockNb,
the size of the chainN, and the coupling strength. This over-
all behavior has been plotted in Fig. 5, for a chain of size
N=2048, sweeping the block size up toNb=N/2 and the
coupling strength so thatNc.N. As was seen in the previous
section, the behavior of the degree of entanglement as a
function of the coupling bears the signature of the three re-
gimes outlined in Sec. III A. This signature is also evident
from Fig. 5 when we look at slices of constantNb: As a
function of j= 1

2tanh−1sad, the entanglement rises from zero
in the weak coupling regime to the characteristic plateau of
the type-II regime, which is more or less centered around the
value for which the transitional scale is of the order of the
chain size(in our case aroundj.3.2); as j is further in-
creased, we see again the characteristic,ln Nt (i.e., linear in
j) behavior of the degree of entanglement for the type-III
regime. As we sweep thenNb and look at the entanglement
as a function ofj, it then becomes possible to create an
analog of a phase diagram on thej–Nb plane for the quali-
tative behavior of the degree of entanglement; such a dia-
gram is show in Fig. 6 and was constructed on the basis of
the level curves of equal entanglement obtained to Fig. 5.

Continuing with the behavior of the total entanglement as
a function of the block size, we again find distinct character-
istic behaviors depending on the specific regime probed in
the “phase diagram”: for the type-I regime, the total degree
of entanglement remains essentially constant asNb is varied.
Clearly, this is a manifestation of the short-ranged correla-
tions characteristic of this regime and suggests that entangle-
ment between the block and its complement in this regime is
due essentially to edge effects. More interesting, however, is
the behavior in the strong type-II and type-III regimes, where
long-range correlations are present and where therefore one
should expect significant contributions from the bulk of the
block. Indeed, one finds that in both of these regimes the
degree of entanglement shows a logarithmic dependence on
the size of the block—the one-dimensional analog of the
black-hole area theorem. As shown in Fig. 7, for sufficiently

large values of the coupling andN and for Nb!N, the de-
pendence takes the form

E . E0sa,Nd +
1

3
ln Nb, s5.1d

reproducing the predictions of conformal field theory for the
boson universality class[4,13]. It is also interesting to note
the behavior of the valueE0sa ,Nd as a function of the chain
sizeN for fixed a, which shows a similar behavior to that of
the entanglement of the single oscillator mentioned in the
previous section. As shown in Fig. 8, for large fixed value of
a, the~ln Nb curves decrease in height withN until a critical
value ofN; below this value, the~ln Nb behavior saturates at
a value that is independent of the chain size.

We turn then to the question of where the entanglement
comes from, from the point of view of the modewise en-
tanglement structure of the harmonic chain vacuum. In con-

FIG. 5. Total entanglement as a function of coupling strength(in
terms ofj) andNb (log2 scale) for a chain of sizeN=2048.

FIG. 6. The three different qualitative regimes of entanglement
as inferred from level curves of total entanglement in Fig. 5.

FIG. 7. Entanglement as a function of lnNb for N=2048, j
=12 fitted to a straight line of slope 1/3.
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formity with the different regimes of behavior entailed by the
correlation functionsgl and hl, different behaviors are re-
flected in the shapes of the Williamson modes, as we illus-
trate in Fig. 9, which shows the site participation function for
all the entangled Williamson normal modes of both the block
and its complement. Figure 10 also shows a small sample of
the mode shapes for theusmd and vsmd modes, for various
values ofm and at two different coupling strengths. A num-
ber of general features may then be identified regarding the
mode structure.

The first feature, which is evident from Fig. 10, has to do
with the parity of the mode functionsusmd andvsmd, due to a
parity selection rule to be discussed in Sec. VI A. Indexing
the modes asm=1, . . . ,Nb, in increasing order of their con-
tribution to the total entanglement, we find that in all circum-
stances entangled modes of either the chain or its comple-
ment have a definite paritys−1dm+1, under reflections with
respect to the center of the respective block. Thus, for each
entangled-mode pair, the modes on both sides of the chain
have the same parity, and the mode pair that contributes the
most amount of entanglement always involves even-mode
functions on both sides of the chain. This feature shows that
while it may be argued that the entanglement between two
regions of the chain is primarily due to edge effects, it nev-
ertheless involves nonlocal behavior within each region.

A second feature of the mode structure that is present in
all circumstances is the existence of a characteristic turning
point, henceforth denoted byl t

smd, which we define as the
location (measured from the center of the block) of the os-
cillator for which the participation functionPi

smd is maximal
for themth mode. The general behavior of this turning point
as a function of the mode number and coupling strength is
shown in Fig. 11. What is observed is thatl t

smd is quite similar
to the turning point of semiclassical solution to a wave equa-
tion: generally, the mode participation shows an exponential-
like decay beyond the turning point, so that all the mode
activity becomes effectively confined to site distances up to
l t
smd from the block midpoint; furthermore, inside this region,

we find a less dramatic decay of the mode amplitudes from
the turning point, achieving the minimum amplitude at the
midpoint. However, in contrast to semiclassical solutions,
what we find is an anticorrelation between the amplitude and

local wavelength: the longest wavelengths are present at the
midpoint, whereas the oscillations become of the order of the
lattice spacing at the turning point.

The last general feature that we shall discuss is observed
more prominently as the coupling strength increases and has
to do with the typical wavelength of oscillation of the mode
over the majority of the interior region bounded by the turn-
ing points. This characteristic wavelength decreases with the
depth (m) from around the order of the chain size, for the
outer mode, to the lattice spacing, for the innermost modes.
Interestingly, we also find a “dual” structure to the mode
shape oscillations if theui

smd andvi
smd mode entries are mul-

tiplied by the alternating factors−1di (corresponding to a
shift of u=p in their discrete Fourier transform) and the
modes are ordered from the inside out. Using the index con-
vention n=Nb−m, we find that as the coupling strength in-
creases, the mode shapes for the lowest values ofn in this
hierarchy of “demodulated” modes become virtually indis-

FIG. 8. Entanglement as a function of block size for different
values of the chain sizeN sj.3.5d.

FIG. 9. Site participation function for the entangled Williamson
normal modes in a chain ofN=32+48 contiguous oscillators, at
four values of the coupling strength parameter(from top to bottom):
a=0.1, 0.6, 0.9, 1–10−6. The mode shapes are ordered front to back
according to the symplectic eigenvalue of the respective mode, with
the dominant mode at the front.
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tinguishable from harmonic oscillator wave functions of the
corresponding value ofn, with a variance of orderÎNb (Fig.
12). More generally, for the whole hierarchy the indexn
labels the number of nodes in the demodulated mode func-
tions.

With these considerations in mind, we turn next to the
characterization of the regimes of behavior discussed earlier
from the standpoint of the mode structure. Beginning with

the weak regime, we find that the modes for both the block
and complement fall into pairs of even and odd combinations
of oscillator sites that are precisely localized in increasing
distance from the edge of the block(Fig. 11), so that a mode
involving a certain oscillator pair of the block is entangled
with a mode of the complement involving the two oscilla-
tors’ specular images with respect to reflections about the
interface. This “wedgelike” structure in the mode distribution
of both sides of the chain observed in Fig. 9 can be under-
stood in thea→0 limit, where the basis of localized oscil-
lator sites serves as an eigenbasis for the whole chain; then,
the leading effect of any infinitesimal coupling between con-
tiguous oscillators is to recombine the localized modes so as
to produce a mode basis consistent with the parity selection
rules. We refer the reader to Sec. VI A for a more careful
analysis discussion in this respect.

As we increase the coupling strength and, hence, the cor-
relation lengthlcsad, the mode shapes become distorted to
the same extent that the two participating sites lie within a
distance from each other that is less than or equal tolcsad.
Thus the distortion of the modes proceeds from the inside
modes of the block and then outwards as the coupling
strength is increased. This distortion involves a gradual dif-
fusion of the mode participation towards the interior region
bounded by the modes, as well as the establishment of a
characteristic wavelength of oscillation within this region. As
the frequency spectrum of the modes becomes sharper, the
width of the interior region of the mode becomes broadened,
thus accounting for the gradual outward curving of the turn-
ing point location seen in Fig. 11.

Together with this mode-shape distortion, we also find the
behavior of the entanglement contribution of the modes to be
dictated by the correlation length in the weak regime. In Fig.
13 we have plotted on a logarithmic scale the dependence of
the entanglement on the mode number in the weak regime.
As stated earlier, in this regime the modes come in pairs of
definite-parity combinations of oscillator sites at a precise
distance from the edge; lettingdm be this distance[dm
=m/2 for m even,sm+1d /2 for m odd], we have found that
the entanglement is to leading order degenerate between
modes of opposite parity and the samedm, independent ofNb
(for Nb.2) and of the exponential falloff withdm according
to

FIG. 10. A sample of Williamson mode shapes(solid for usmd,
dashed forvsmd) for a chain of sizeNb=74 sN=500d, and for weak
and strong coupling. Mode ordering is according to the decreasing
contribution to the total entanglement.

FIG. 11. Turning point location as a function of mode number,
for three values of the coupling strength(Nb=64, N=160).

FIG. 12. Mode shapes for the first three innermost modes for the
strong regime case depicted in Fig. 12, demodulated by the oscil-
lating factors−1di. Heren=Nb−m.
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Emsad . Szsad
4

D2s2dm−1dF1 – 2s2dm − 1dlnS z

4
DG , s5.2d

wherezsad is as defined in Eq.(3.21); from the definition
(3.23) of the correlation lengthlc, the characteristic decay
distance for the entanglement is thenlc/4. As the coupling
strength is then increased, the degeneracy is lifted, with the
innermost modes showing the greatest relative splitting.

This “wave” of mode distortion and degeneracy lifting
continues from the inside of the chain out as the coupling
increases until the correlation length becomes comparable to
the size of the block and the outermost modes are distorted.
As the coupling strength is increased beyond this point, no
appreciable change in the shape of the modes is detected.
Thus a critical value ofa determined by

lcsad . Nb s5.3d

sets a threshold beyond which the mode-shape structure be-
comes frozen in its strong coupling configuration. It is this
condition that underlies the transition between the type-I and
type-II transitions in Fig. 6.

The onset of this transition and the ensuing behavior of
entanglement thereafter are best appreciated from Fig. 14,
where we plot, as a function of the coupling, the total en-
tanglement and the partial entanglement from the first four
dominant modes. The main signature of the transition is the
lifting of the degeneracy involving the first(even) and sec-
ond (odd) modes, which together up to that point are the
predominant contributors to the total entanglement. Beyond
that point, however, a clear decoupling occurs between the
first mode and the remaining modes: the first mode accounts
for the behavior of the entanglement as a function of cou-
pling, reproducing the three-regime curve(Fig. 4) observed
in Sec. IV for the case of the single entangled oscillator; on
the other hand, the remaining modes become frozen in their
coupling strength behavior. That this “freezing out” indeed
occurs whenlcsad.Nb is best seen from Fig. 15, which
shows the level curves on thej-Nb plane for the entangle-
ment of the first and second modes, together with a graph of
the line lcsad=Nb.

In this way we find that for strong coupling, the behavior
of entanglement as a function ofa, particularly with respect
to the type-II to type-III transition, is entirely due to the
single outermostsm=1d Williamson mode of the block. As
observed from the mode-shape profiles(Fig. 10), this mode
involves an essentially constant participation away from its
turning points(located at the edge of the block) and may
therefore be interpreted as a remnant of theuk=0 collective
normal eigenmode of the whole chain. In the context of the
strong regimes, we shall therefore refer to this mode as the
collective mode; similarly, we shall use the termresidual

FIG. 13. Entanglement as a function of mode number in the
weak regime, for different values of the coupling constant. Here
Nb=12, N=500.

FIG. 14. Contribution of the first four dominant modes(thin
lines) to the total entanglement(thick line) as a function of coupling
strengthNb for different values of the block sizesN=2048d.

FIG. 15. Level curves of entanglement contribution from first
(left) and second(right) Williamson modes to the total entangle-
ment depicted in Figs. 5 and 6. The dotted line shows the correla-
tion lengthlc, Eq. (3.23), as a function of coupling strength.
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modesfor the remaining Williamson modes of the block. The
reader is referred to Secs. VI B and VI C, respectively, for
further analysis of the collective and residual behaviors.

Addressing finally the large block size and chain size be-
havior of entanglement, we find that in contrast to the large
coupling behavior, the responsible modes for the,ln Nb be-
havior are the residual modes. This can be seen from Fig. 16,
which shows both the total entanglement and the contribu-
tion from the first four dominant modes as a function of
ln Nb for various coupling strengths. For large enough cou-
pling, we find that the collective mode shows a “freezing” in
its Nb behavior, while the greatest variation withNb is shown
by the first couple residual modes. A more careful examina-
tion of the large-Nb behavior, however, indicates that the
entanglement contribution of the outermost modes grows
slower than lnNb—rather like ln lnNb. Thus, the lnNb be-
havior of the total entanglement has to be attributed to a
cumulative effect from a certain number of residual modes
that contribute significantly in the large-Nb limit, which turns
out to be of order lnNb. If the modes are labeled by their
characteristic frequencies, this phenomenon translates into an

enhancement by a factor lnNb of the density of states at zero
frequency[30], and corresponds in the black-hole analogy to
the divergence of the density of states outside the horizon in
the absence of a UV cutoff[11].

In this respect, it is instructive to look at the entanglement
contribution of all the residual modes, for whichNb!N/2 in
the limit a→1. As shown in Fig. 17, the logarithm of the
entanglement of themth mode shows in this limit a scaling
behavior

ln EmsNbd , − NbfS m

Nb
D , s5.4d

where fsxd is some nonlinear function proportional to the
central frequency of oscillation of the mode. Now, the sig-
nificant contribution to the entropy comes from modes for
which ln Em is of magnitude unity or smaller—that is,f
&1/Nb. As we then show in Sec. VI C, the functionf be-
haves for small values of its argument like

− fsxdln fsxd , x. s5.5d

This behavior implies that an outer layer of residual modes,
with mode numbersm& ln Nb, yields the relevant contribu-
tions to the entropy.

To summarize the results of our qualitative survey of the
bipartite entanglement of the harmonic chain, we emphasize
again the three-regime framework depicted in Fig. 6. We
observe a weak coupling regime(type I), characterized by
short-range correlations, well-localized modes of definite
parity, and degenerate entanglement contribution from even
and odd combinations of oscillator sites at the same distance
from the edge. When the correlation length becomes of the
order of the chain size, the mode shapes acquire a more
collective behavior, a characteristic wavelength is established
for each mode, and the degeneracy between contiguous
modes of opposite parity is lifted. A distinction also emerges
between the outermost, or “collective,” mode and the re-
maining (“residual”) modes. The collective mode shows a

FIG. 16. Contribution of the first four dominant modes(thin
lines) to the total entanglement(thick line) as a function ofNb for
different values of the coupling strengthsN=2048d.

FIG. 17. Scaling curve of entanglement versus mode number for
the strong regimes, forNb!N/2. The plot includes data taken from
a chain of sizeN=256(Nb ranging from 4 to 32) and chains of size
N=1024 andN=4096 (Nb ranging from 4 to 64), all using j=10
sNc,107d.
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minimal contribution to the large-chain-size entanglement;
however, it accounts for all the strong coupling constant be-
havior thereafter, including the transition between the type-II
and type-III regimes. Conversely, the residual modes become
frozen in their large coupling entanglement contribution, but
are responsible for the large-chain behavior. This behavior is
conjectured to come from a cumulative effect from a layer of
the first,ln Nb residual modes.

VI. MODE STRUCTURE: ANALYTIC RESULTS

We complement in this section the qualitative survey of
the previous section with a more careful treatment of some of
the results presented there. Our main aim is to produce
simple analytic models that capture the essential elements of
the modewise entanglement structure in weak and strong
coupling.

A. Entanglement in weak coupling

As shown in our qualitative survey, entanglement for
weak coupling involves modes that are definite-parity super-
positions of local oscillator-site modes. It will therefore be
convenient to briefly discuss the role of parity in our prob-
lem.

Parity selection rules follow from the fact that while the
local correlation matricessGA,HAd and sGB,HBd lose the
translational symmetry of the corresponding matrices for the
whole chain, they still possess a symmetry with respect to
reflections about the central indices—i.e.,GNb+1−l,Nb+1−l

=GNb+1−l,Nb+1−l. Thus, theG andH matrices can be written in
block-diagonal form asGA=GA

+
% GA

− and HA=HA
+

% HA
−,

in terms of blocks acting on subspaces of definite parity.
Similarly, it is easy to show that with respect to the mode
mapping between the Williamson modes of the block and
those of its complement, it is also possible to show that the
matricesGAB andHAB map modes of a given definite parity
in the block to modes of the same parity in the complement.
Thus, the whole problem of finding the Williamson modes in
the size-Nb block and their correlated counterparts in the
complement can be reduced to two separate problems of
finding Williamson modes for the sectors of sizeNb/2 in-
volving covariance matrices of definite parity.

From Fig. 13 it is evident that for small values ofa the
entanglement contribution decays exponentially with mode
number. This leading-order exponential behavior may be un-
derstood from simple arguments based on the “wedge” shape
in Fig. 9. If for a given entangled mode pair the(properly
normalized) mode functionsuA

smd, vA
smd, uB

smd, and vB
smd are

known, then the respective symplectic eigenvalue satisfies

lm
2 = vA

smdTHAGAuA
smd =

1

4
− vA

smdTHABGBAuA
smd. s6.1d

Using the resolution of the identity1B=obvB
sbduB

sbd this yields

lm
2 =

1

4
− o

b

vA
smdTHABvB

sbduB
sbdTGBAuA

smd. s6.2d

However, as is shown in Appendix A,GBA mapsuA
smd to vB

smd,
meaning that the only term surviving in the sum is the one in
which b=m. Thus we have that

lm
2 =

1

4
− vA

smdTHABvB
smduB

smdTGBAuA
smd. s6.3d

Now, in the weak coupling regime, we approximate themth
even- or odd-mode functions in the weak regime by symmet-
ric or antisymmetric combinations of localized site positions
of depthdm, wheredm=m/2 for m even andsm+1d /2 for m
odd, as suggested by Fig. 9:

uA
sm ± di = vA

sm ± di =
1
Î2

fdi,dm
± di,Nb−dm+1g, s6.4d

uB
sm ± di = vB

sm ± di =
1
Î2

fdi,Nb+dm
± di,N−dm+1g. s6.5d

Then, using the symmetries of the correlation functions Eq.
(6.3) yields

la
2 =

1

4
− fhNb

sNd ± h2dm−1
sNd gfgNb

sNd ± g2dm−1
sNd g. s6.6d

Next, we make use of the weak limit expressions for the
correlation functions—namely, that bothgl andhl behave as
,zl, with hl negative forl ù1. Since 2dm−1,Nb always,
then the leading-order expansion ofl− 1

2 is expected to be-
have asz2s2dm−1d. Thus, in this approximation, the symplectic
eigenvalue is seen as being due to correlations between a site
in the block at a depthdm from the interface and a “mirror
image” site in the complement at the same distance to the
interface.

A careful symbolic computation of this leading-order be-
havior for smallNb and assumingN=` shows that in fact the
leading-order behavior of the symplectic spectrum is given
by

lmszd −
1

2
= S z

4
D2s2dm−1d

+ osz4dm−1d. s6.7d

This leads to a mainly exponential dependence with logarith-
mic corrections expressed in Eq.(5.2) for the entanglement
per mode in the weak coupling regime and yields the solid
lines in Fig. 13, showing excellent agreement for weak cou-
pling up to values ofz.0.7. Our simple argument also leads
us to expect from Eq.(6.6) that the degeneracy between even
and odd states in Eq.(6.7) should be lifted by an eigenvalue
splitting of orderzNb+2m−1, thus becoming more significant as
the mode depth increases and with the even-parity modes
having the slightly larger symplectic eigenvalue. This quali-
tative behavior is in fact verified in Fig. 13.

B. Strong coupling: The collective mode

We turn next to the emergence of the collective mode in
the strong coupling limit and its entanglement behavior. This
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has to do with the fact that the scale of the correlation func-
tion glsad diverges asa→1, together with the fact that the
function behaves logarithmically as a function ofl. Thus, the
correlation functiongl can be separated as

gl = g0sad + Dl , s6.8d

whereg0 is the diverging ina self-correlation function and
Dl tends to a fixed limit independent ofa. In turn, the cor-
relation matrixGA of the block takes the form

GA → Nbg0xxT + DG, s6.9d

whereDG,Os1d and is independent ofa, and

x ;
1

ÎNb

s1 1¯ 1 1dT. s6.10d

Note that since, for fixedNb,

lim
go→`

GAx → Nbg0fx + osg0
−1dg, s6.11d

the vectorx becomes an eigenvector ofGA in that limit with
eigenvalueNbg0.

Similarly, since the momentum correlation functions are
regular and tend to a fixed value asa→1, the productHAGA
is also split into diverging and finite parts:

HAGA = Nbg0sHAxdsxTd + HADG. s6.12d

We now construct the vectors

uc ~ HAx, vc ~ x, s6.13d

with normalization set so thatucvc=1, and define

gx ; xTHAx = Nbg0, hx ; xTHAx. s6.14d

Then, we have that

lim
g0→`

HAGAuc → gxhxfuc + osg0
−1dg, s6.15d

lim
g0→`

vc
THAGA → gxhxfvc

T + osg0
−1dg, s6.16d

showing thatuc andvc become the right and left eigenvectors
of GAHA in the strong coupling limit with symplectic eigen-
value

lc
2 = gxhx. s6.17d

Next, we compute the value ofhx:

hx = xTHx =
1

Nb
o
i=1

Nb

o
j=1

Nb F−
Î2

p

1

4si − jd2 − 1
G

=
1

Î2Nbp
FcSNb +

1

2
D + lns4d + gG , s6.18d

wherec is the digamma function. For largeNb, we approxi-
mate

hx .
1

Î2Nbp
lns4 Nbd, s6.19d

so that

lc
2 .

g0

Î2p
lns4 Nbd s6.20d

becomes the symplectic eigenvalue in the approximation.
The behavior of the collective mode entanglement for the

type-II and type-III regimes follows the same analysis per-
formed in Sec. IV for the single entangled oscillator, based
on the two regimes of strong coupling behavior ofg0 deter-
mined byNtsad andNcsad. Asymptotically, we find that

E ,5
1

2
ln ln Nb +

1

2
ln ln Ntsad, Ntsad , N * Nc,

1

2
ln ln Nb +

1

2
ln Ntsad/N, Ncsad @ N.

s6.21d

Thus, the entanglement curve of the collective mode is es-
sentially that of the single entangled oscillator, except for
sublogarithmic corrections dependent on the chain sizeNb.

C. Strong coupling: Residual modes

General qualitative and quantitative aspects of residual
mode entanglement in the strong regime can be illustrated
through a simple analytical model in the continuum, along
the lines of similar models discussed in the context of geo-
metric entropy in black-hole physics[11] and reduced den-
sity matrices for free-electron chains[30]. Such models are
useful in deriving the correlation between mode number,
wavelength, and turning point location and thus can account
for the scaling relation depicted in Fig. 17 and the density of
states determining the lnNb behavior.

As is shown in Appendix A, an eigenvalue problem
equivalent toHGu=l2u for a given regionA is the eigen-
value problem

Cusmd = − km
2 uA

smd, C ; HABGAB
T , s6.22d

whereHAB andGAB are the matrices containing correlations
between the two complementary regionsA andB and where
the eigenvaluekm is related to the symplectic eigenvaluelm

according tolm
2 = 1

4 +km
2 . We assume henceforth an infinite

chain and for the block adopt an index convention centered
at the block midpoint—i.e., so that indices run from −sNb

−1d /2 to sNb−1d /2; no loss of generality is entailed by as-
sumingNb odd so that indices are integers. With these as-
sumptions, the matrix elements ofG are given by the sums to
infinity over both regions of the complement bordering the
block:

Cij = o
k=sNb+1d/2

`

hk−igk−j + o
k=sNb+1d/2

`

hk+igk+j . s6.23d

We base our computation ofC on the asymptotic expressions
for the correlation functions(3.25), retaining the terms yield-
ing the leading-order behavior inNb upon converting the
above sums to integrals. Thus we use

gi−j . g0 −
1

Î2p
ln ui − j u,
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hi−j . −
1

2Î2p

1

ui − j u2
, s6.24d

where we include the diverging partg0 corresponding to the
collective mode. Replacing the sums in Eq.(6.23) by inte-
grals ink from Nb/2 to infinity and defining the scaled vari-
ablesx; i /Nb andy; i /Nb, we finally obtain the continuum
eigenvalue problem

E
−1/2

1/2

dyGsx,ydcsyd = − k2csxd, s6.25d

whereGsx,yd=NbCsNbx,Nbyd. To proceed, it is convenient
to perform a change of variables, mapping the interval
s−1/2,1/2d to the real line,

u = lnS1 + 2x

1 – 2x
D, v = lnS1 + 2y

1 – 2y
D , s6.26d

and to rescale the wave function accordingly:

c̃sud =
1

4
cosh−2Su

2
Dcsud. s6.27d

The new eigenvalue equation then reads

E
−`

`

dvG̃su,vdcsvd = − k2csud, s6.28d

where the new kernelG̃su,vd is split in the formG̃CS+G̃CA

+G̃R, with the respective terms given by

G̃CS= −
Î2

4p
g0 −

1

4p23ln1 Nb

2 coshSv
2
D2 −

u

2
tanhSu

2
D4 ,

G̃CA =
v

4p2tanhSu

2
D ,

G̃R =
1

8p2

u − v

tanhSu − v
2

D . s6.29d

In this kernel,G̃CS andG̃CA are associated with the outermost
long-wavelength modes for the symmetric and antisymmet-
ric sectors, respectively, and may therefore be neglected

when discussing the inner modes. TakingG̃=G̃R, we can

show that the plane-wave functionc̃sud=expsivud is an

eigenfunction ofG̃R; the resulting integral for the eigenvalues
can be performed by contour methods and yields

kR
2 = −

1

8p2E
−`

`

dv
veivv

tanhSv
2
D =

1

4
sinh−2spvd. s6.30d

Finally, reverting to the variablesx, y and taking even-odd
combinations of the plane-wave solutions, we find, as finite-
wavelength eigenfunctions of the continuum eigenvalue
problem(6.25), the solutions

csxd =
1

1 – 4x2HcosfSvsxdg
sinfSvsxdg J , s6.31d

where

Svsxd = v ln S1 + 2x

1 – 2x
D . s6.32d

The local wave number of these solutions,Sv8 sxd, increases
from the value 4v as one moves away from the midpoint and
diverges at the boundariessx= ±1/2d. Similar mode func-
tions were obtained in[30] for the eigenmodes of the re-
duced density matrix of the free-electron chain. Note that the
symplectic eigenvalues are

l =Î1

4
+

1

4
sinh−2spvd =

1

2
cothspvd, s6.33d

so the Boltzmann-likebm factors associated with each
Williamson mode according to Eq.(2.8) are given byb
=2pv. For largeb, this yields an asymptotic expansion of
the entropyE,e−2pv, from which the scaling relation de-
picted in Fig. 17 should then be expected to follow.

We next connect these solutions to the corresponding so-
lutions of the discrete chain. The first thing to note is that in
the continuum approximation, the discrete modes correspond
to averages of the continuum modes over the lattice spacing.
Thus, the diverging oscillatory behavior of the continuum
modes as the block edge is approached holds only up to a
certain distance from the edge in the discrete approximation,
corresponding to the point where the local oscillation wave
number becomes of the order of the cutoff imposed by the
lattice spacing. As one moves towards the edges beyond this
point, the oscillations are washed out in the average and thus
the mode amplitude decays. This is consistent with the fact,
noted in Sec. V, that at the turning points each Williamson
mode shows oscillations of the maximum wave number. The
turning points are therefore fixed by the condition that

zUdS

dx
U

x=±xt

= pNb, s6.34d

wherez is number of order unity. With the definition(6.32),
this yields the relation between the turuning point andv:

xt =
1

2
Î1 − z

4v

pNb
. s6.35d

Once the turning point is identified as a function ofv, we
can work out the quantization of the modes. For this use the
fact observed from our numerical calculations in Sec. V, that
when the interior modes are modulated by the oscillating
factor s−1di—corresponding to frequency shift by the cutoff
frequency—the modes show a hierarchy in which each mode
can be labeled by the number of nodes,n+Nb−m. Writing
the modulated functions like
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cmodsxd = s− 1dicsxd =
1

1 – 4x2cosfpNbx − Svsxdg,

s6.36d

and similarly for the antisymmetric mode, we demand that
cmodsxd shownn nodes between the turning points; in this
way we obtain the quantization condition

pNbxtsvd − Sv„xtsvd… =
np

2
. s6.37d

The resulting equation forv is best cast in a form that can
easily be interpreted from the scaling relation of the entropy
(5.4). For this define the dimensionless parameters

f ;
4v

pNb
, m =

m

nb
, s6.38d

wherem=Nb−n labels the modes from the outside in andf
measures the central wavelength of the mode relative to the
cutoff wavelengthpNb; for largev, the entanglement of the
mode is therefore given by

Nb
−1ln E =

p2

2
fsmd, s6.39d

in accordance with Eq.(5.4). From the quantization condi-
tion (6.37), the functionfsmd is then the solution to the equa-
tion

1 −Î1 − zf +
f

2
lnS1 +Î1 − zf

1 −Î1 − zf
D = m. s6.40d

For the outermost modes, corresponding to smallm, small f,
the relation becomes independent ofz to leading order and
reduces to

f ln f = − 2m, s6.41d

as mentioned earlier. On the other hand, the fit for the inner-
most modes is sensitive to the precise value ofz. We have
found that a value ofz.0.45 yields a remarkably good fit to
the numerical data(Fig. 18), as well as the turning point
location depicted in Fig. 11.

It is worth mentioning that in the present approach, the
role of a cutoff frequency for the continuum is not only re-
flected in a cutoff of the resulting frequency spectrum of the
reduced density matrix, but also entails alocalizationof the
mode functions away from the interface between the block
and complement. The condition determining the turning
point can only be approximately estimated from the con-
tinuum model and therefore fails to account for the exponen-
tial falloff of the amplitude beyond the turning point. The
method also fails to account for theDx,Nb

−1/2 scaled width
of the innermost mode functions, which is sensitive to the
falloff details.

D. Residual mode contribution to the entropy

To obtain the asymptotic lnNb behavior forNb!N, we
note that the significant contributions to the entropy will
come from modes for whichv is of order unity or smaller,

since the entanglement is suppressed exponentially forv.1;
since this implies thatf will be of order 1/Nb or smaller, the
approximation (6.41) becomes more accurate for these
modes asNb→`. Thus, discarding terms of order unity in
the logarithm, the eigenvalue equation forv can be cast in
the implicit form

vm =
mp

2 lnsNbdF1 −
ln v

ln Nb
G . s6.42d

Next, we can argue that asNb→`, the term in brackets in
the denominator of Eq.(6.42) can be neglected for the cal-
culation of the entanglement; this term becomes important
whenNb

−1,v!1 in the lower(sincev*1, the approxima-
tion is already warranted in the upper end). For the lower
end, we consider the smallest possible value ofv, for m=2;
according to Eq.(6.42), this value is of order of 1/ lnNb and
is therefore of an orderNb/ ln Nb greater than the scale at
which Eq.(6.42) deviates from linearity. Hence we find the
approximate linear expression forv,

vm .
mp

2 lnsNbd
, s6.43d

for the range of modes yielding relevant contributions to the
entanglement asNb→`. Using the approximationEsbd.1
−ln b for b!1, the entanglement of the modes for which
ln Nb@mù2 can then be estimated to be

Em . − ln S p2m

ln Nb
D . s6.44d

Consequently, the outermost residual modes yield a contri-
bution of order ln lnNb, in the same way that the collective
mode behaves for largeNb.

To obtain the leading term in the asymptotic expansion of
the total residual mode entanglement, we note that forNb
@m@ ln Nb the entanglement contribution is suppressed, the
total residual entanglement can be estimated to be

FIG. 18. Comparison between analytical and numerical results
for the scaled central wavelengthf as a function of the scaled mode
number, usingz=0.45.
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ER . USdm

db
DU

0
E

0

`

db Ssbd, s6.45d

where

Ssbd =
b

eb − 1
− lns1 − e−bd s6.46d

and where we evaluate the density of states assuming a linear
relation atb=v=0 [note that this approximation entails ne-
glecting terms of orderosln ln Nbd and lower]. With an inte-
gration by parts, the entropy can expressed as

ER = 2Sdm

db
DE

0

`

db
b

eb − 1
+ Osln ln Nbd, s6.47d

and from Eq.(6.43), the density of states is given by

dm

db
=

1

2p

dm

dv
=

1

p2ln Nb. s6.48d

The integral is standard in statistical mechanics and is given
by p2/6. Thus we find that asNb→`, the residual mode
entropy is given by

ER =
1

3
ln Nb + Osln ln Nbd, s6.49d

as expected.

VII. COMPARISON WITH PREVIOUS RESULTS

In this section we comment on the relation of our results
with earlier work. Audenaertet al. [8] have studied the en-
tanglement in the circular linear chain model for various
choices of bipartite divisions. In this work, the logarithmic
negativity[31] has been used as a measure for entanglement.
Interestingly, we find that the von Neumann entanglement
seems to be, in the present problem, a more sensitive quan-
tifier of the connection between entanglement and correla-
tions. In Sec. III we showed that the behavior of vacuum
correlation functions quantifies three regimes: a weak cou-
pling regime characterized by short-ranged correlations, an
intermediate regime that is reached when the correlation
length is of the order of the whole chain, and finally, a long-
range correlation regime. The transition between these re-
gimes is clearly manifested in the behavior of the von Neu-
mann entropy(see Figs. 5, 7, and 15), but is absent in the
behavior of the logarithmic negativity. The difference also
shows up when comparing the dependence of the two mea-
sures on the total chain sizeN. In the particular case where
Nb=N/2 ([8], corollary 1), the logarithmic negativity shows
no N dependence. The von Neumann entropy, on the other
hand, decreases as a function ofN like lnsNt /Nd [see Eqs.
(4.8) and (6.21) and Fig. 9]. This dependence onN can be
physically understood as due to the contribution of the col-
lective mode to the entanglement, which reduces with in-
creasingN. Thus is seems that the logarithmic negativity is
not sensitive to the contribution of the collective mode.

The entanglement of a finite region for a one-dimensional
field bosonic and fermionic fields has been previously inves-

tigated in connection with the black-hole entropy “area law”
[14–16]. By employing methods of conformal field theory it
has been shown[11–13] that in the massless case entangle-
ment behaves like

c + c̄

6
ln

L

e
, s7.1d

wheree plays the role of the UV cutoff andc and c̄ are the
holomorphic and antiholomorphic central charges of the con-
formal field theory, withc= c̄=1 for bosons andc= c̄=1/2
for fermions. Thus the overall coefficient is given by either
1/3 for bosons or 1/6 for fermions. The same type of uni-
versal behavior has been recently derived theXY and
Heisenberg spin-chain models[3].

In the present work, we obtained a logarithmic depen-
dence of the entanglement1

3ln N, corresponding as expected
to a bosonic field(Fig. 7). Furthermore, we have seen that
the logarithmic increase of the entanglement can be under-
stood as an increase in the number of relevant contributing
modes while the coefficient 1/3 can be obtained from the
density of the modes. As in previous results, these modes can
be identified to be in a layer that becomes infinitesimally
narrow in the limit of largeN. However, no attention has so
far been given to the structure of the inner modes. A central
outcome of the present work is that the inclusion of an ultra-
violet cutoff, which is needed for the consistency of the one-
dimensional field theory, gives rise to a localization of the
highest-frequency modes around the midpoint of the region.
Although the contribution of these modes to the entangle-
ment is exponentially small, it is plausible that these inner
modes play an important role in the persistence of vacuum
entanglement between separated regions as we suggest in the
next section.

A number of results presented in this paper can also be
related to previously obtained results for both fermions and
bosons in the context of the density matrix renormalization
group(DMRG) [30,32–36]. In particular, the factorized ther-
mal form of the reduced density matrices, the shape of the
corresponding mode functions in the continuum limit, and
the approximately linear behavior of the frequency spectrum
for the outermost modes have been studied extensively in
that context. It is possible that the method used in Sec. VI C,
whereby the cutoff imposed by the lattice spacing is used to
establish the turning points and quantization condition of the
mode functions, may prove useful for the DMRG scheme.

VIII. SUMMARY AND DISCUSSION

Previous work on ground-state entanglement in chainlike
systems has mostly focused on the dependence of the amount
of entanglement on parameters such as the block size, the
separation between sites, and the nature of the bipartite split-
ting. While in the present work we have reproduced several
earlier results, as discussed in the previous section, the em-
phasis here has been on the study of the spatial entanglement
structure emerging from the modewise decomposition of the
ground-state wave function.

From this analysis, we have identified certain general
properties of the mode structure and its relation to the en-
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tanglement contribution. A first feature islocalization—a
definite characteristic distance from the division interface for
the entangled modes at either side of the interface, thus es-
tablishing a characteristic distance separating the entangled
mode functions. This in turn, serves to characterize the
strength of the entanglement, which decays exponentially
with this distance.

A second feature, which becomes sharper with increasing
coupling strength, is a characteristic wavelength correlated
with the degree of localization of the modes. This correlation
is in fact observed in two guises: on the one hand, it provides
an alternative characterization of the modes in terms of their
central wavelength, with the innermost modes possessing the
shortest wavelength dictated by the lattice spacing; on the
other hand, the amplitude of each mode is correlated to the
local oscillation wavelength, with the largest amplitude oc-
curring when a the cutoff wavelength.

We have shown that the effect of the interaction strength
on the shape of the modes and their contribution to entangle-
ment is fundamentally connected with the correlation length.
When the coupling is strong enough such as the correlation
length becomes comparable to the size of the system and the
system becomes effectively massless, scale-free behavior
emerges for the bulk of the modes. The shape of the mode
functions can be connected to the scale-free continuum field
theory, and both the localization and characteristic wave-
length scale with the size of the block.

On a more speculative note, it is possible the results of
this paper may shed new light on several features of mixed-
state entanglement for separated noncomplementary regions
in vacuum. It has been shown that for arbitrarily separated
regions, vacuum entanglement persists and Bell inequalities
are violated[26], with a lower bound of the entanglement
that goes like exps−L2/D2d whereD andL denote the size of
the regions and their separation. It was shown that a large
probe energy gap is required in order to extract this entangle-
ment. This seems to suggest that the localization of the inner
modes and their short-wavelength characteristic are linked to
the persistence of vacuum entanglement at large distances. It
is possible that this persistence represents an effective shield-
ing of the entanglement content of the innermost modes. This
qualitative argument could help explain the truncation effect
that takes place beyond a critical distance in the discrete
version of this problem when the region sizes are kept fixed
and could explain the discrepancy between entanglement and
correlation lengths in other models.
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APPENDIX A: MODE MAPPING

We discuss in this appendix the relationship, in the mode-
wise bipartite decomposition of Gaussian states, between the
modes in each mode pair. This can be done by noting that
from the isotropic condition(2.10), the mode structure can

be obtained not only from the local covariance matricesMA
or MB, but also from the correlation matrixK. This in fact
proves to be advantageous if the correlations between modes
A andB are significant only for a small number of modes, as
in the case of short-range interactions. Assuming again no
q-p correlations, the correlation matrix betweenA andB can
be expressed in the block-diagonal form

K = RekhAhB
Tl = SGAB 0

0 HAB
D , sA1d

whereGAB=kqAqB
Tl andHAB=kpApB

Tl. Now, from Eq.(2.10)
one obtains the relations betweenMA, MB, andK:

sJAMAd2 + sJAKdsJBKTd =
1

4
1, sA2d

sJBMBd2 + sJBKTdsJAKd =
1

4
1, sA3d

whereJA andJB are the symplectic matrices in theA andB
sectors, respectively. Substituting in the forms(2.13) and
(A1), we obtain the relations

HAGA =
1

4
− HABGAB

T , sA4d

HBGB =
1

4
− HAB

T GAB. sA5d

Next, defining km
2 to be the nonzero eigenvalues of

−HABGAB
T , the local symplectic eigenvalues can also be ex-

pressed as

lm
2 =

1

4
+ km

2 . sA6d

Now, label the mode functions corresponding to the sym-
plectic eigenvaluelm.

1
2 asuA

smd, vA
smd anduB

smd, vB
smd for sides

A and B, respectively. According to Eqs.(A4) and (2.19),
they are solutions to the eigenvalue equations

HABGAB
T uA

smd = − km
2 uA

smd, sA7d

GABHAB
T vA

smd = − km
2 vA

smd sA8d

and

HAB
T GABuB

smd = − km
2 uB

smd, sA9d

GAB
T HABvB

smd = − km
2 vB

smd. sA10d

Now, multiply both sides of Eq.(A7) on the left byGAB
T ,

to find from Eq. (A10) that GAB
T HABsGAB

T uA
smdd=

−km
2 sGAB

T uA
smdd, thus showing thatvB

smd~GAB
T uA

smd. A similar
procedure applied to all the above equations shows that

vB
smd ~ GAB

T uA
smd, vA

smd ~ GABuB
smd, sA11d

uB
smd ~ HAB

T vA
smd, uA

smd ~ HABvB
smd. sA12d

The choice of the proportionality factors involved here is
constrained by the normalization conditions imposed on the
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mode functions on both sides. A consistent choice preserving
the normalization on both sides is

vB
smd =

1

km
GAB

T uA
smd, vA

smd =
1

km
GABuB

smd, sA13d

uB
smd = −

1

km
HAB

T vA
smd, uA

smd = −
1

km
HABvB

smd. sA14d

The above relations, together with the relations(2.21),
yield a systematic procedure(summarized in Fig. 19) by
which all the mode functions on both sides corresponding to
a given symplectic eigenvalue can be constructed once a
single-mode function is found. This proves particularly ad-
vantageous if the number of modes on one side is consider-
ably smaller that on the other.

APPENDIX B: DISCRETIZATION OF THE MASSIVE
CONTINUUM THEORY

In this appendix we connect our results for the discrete
chain with a continuum bosonic theory in one dimension. To
this end, consider the Hamiltonian for the one-dimensional
massive continuum theory on a circular topology:

H =
1

2
E dxhpsxd2 + ff8sxdg2 + m2fsxd2j, sB1d

where we assume thatx runs from −L /2 to L and thatfsx
−L /2d=fsx+L /2d, and field configuration and momentum
operators satisfying the commutation relations

ffsx,td,psy,tdg = idsx − yd. sB2d

The Hamiltonian is diagonalized in terms of normal mode
creation (annihilation) operators asknd fasknd†g with kn

=s2p /Ldn, nPZ, and such thatfasknd ,askmd†g=dn,m. The
fields are then given by

fsxd =
1
ÎL

o
n

1
Î2vsknd

faskndeiknx + H.c.g, sB3d

psxd =
− i
ÎL

o
n

Îvsknd
2

faskndeiknx − H.c.g, sB4d

where vskd is the usual dispersion relationvskd=Îm2+k2.
The continuum field correlation functions can then be ob-
tained, yielding

g̃sLdsxd =
1

2Lo
n

cossknxd
vsknd

, sB5d

h̃sLdsxd =
1

2Lo
n

vskndcossknxd. sB6d

In the limit whenL→`, these expressions can be expressed
in terms of the modified Bessel functions:

g̃s`dsxd =
1

4p
E

−`

`

dk
cosskxd
Îk2 + m2

sB7d

=
1

2p
K0smuxud, sB8d

h̃s`dsxd =
1

4p
E

−`

`

dkÎk2 + m2cosskxd sB9d

=−
m

2px
K1smuxud. sB10d

The asymptotic form of the correlation functions is given
for x!m−1 by

g̃s`dsxd → −
1

2p
FlnSmuxu

2
D + gG , sB11d

h̃s`dsxd → −
1

2puxu2
, sB12d

and forx@m−1, we have

g̃s`dsxd → −
e−muxu

2Î2pmuxu
, sB13d

h̃s`dsxd →Î m

8puxu3
e−muxu. sB14d

The theory at the continuum may be approximated by a
linear chain ofN sites in a ring topology, introducing dis-
cretized variablesqn and pn, which up to scale changes
samples the field and its conjugate momentum field at points
xn=−L /2+sn/NdL. To obtain a Hamiltonian of the form
(3.1), we first approximate the field Hamiltonian by replac-
ing edx→ sL /Ndon, f8sxnd→ sN/Ldsfn−fn−1d. Then we
perform the transformation

fsxnd =ÎN

L
L−1/2qn, psxnd =ÎN

L
L1/2pn. sB15d

It can now be seen that with the choice

L = F2SN

L
D2

+ m2G1/2

, sB16d

we obtain a Hamiltonian of the form(3.1) with

E0 = L sB17d

and an effective coupling strength

FIG. 19. Mode mapping.
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asmL/Nd =
1

1 +
1

2
SmL

N
D2 = 1 −Sm

L
D2

. sB18d

The correlation functions in the continuum are character-
ized by the length scale 1/m. As can be seen from Eqs.
(B11)–(B14), for separationx,1/m, the theory behaves es-
sentially as massless, while forx.1/m, the correlations de-
cay exponentially. This length scale can then be related to the
correlation length obtained from the infinite harmonic chain
by the relationma↔Ncsad=Î2/s1−ad. We can then verify
that the following relations hold between the discrete and
continuum correlation functions:

g̃Lsxd =
1
Î2

lim
N→`

ugnsx,Nd
sNd uasmL/Nd, sB19d

h̃Lsxd = Î2 lim
N→`

SN

L
D2

uhnsx,Nd
sNd uasmL/Nd. sB20d

In finite massive chains, other useful limits are

g̃`sxd =
1
Î2

lim
L→`

ugn=xL/Î2
s`d uasm/Ld, sB21d

h̃`sxd = Î2 lim
L→`

L2uhn=xL/Î2
s`d uasm/Ld sB22d

or, equivalently,

g̃`sxd =
1
Î2

lim
l→`

ugl
s`dua=1−smx/ld2/2, sB23d

h̃`sxd = Î2lim
l→`

Sx

l
D2

uhl
s`dua=1−smx/ld2/2. sB24d
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