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Spatial structures and localization of vacuum entanglement in the linear harmonic chain
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We study the structure of vacuum entanglement for two complimentary segments of a linear harmonic chain,
applying the modewise decomposition of entangled Gaussian states discussed by Boteno anfPRgznik
Rev. A 67, 052311(2003]. We find that the resulting entangled mode-shape hierarchy shows a distinctive
layered structure with well-defined relations between the depth of the modes, their characteristic wavelength,
and their entanglement contribution. We rederive in the strong coulingrging correlation lengdregime,
the logarithmic dependence of entanglement on the segment size predicted by conformal field theory for the
boson universality class and discuss its relation with the mode structure. We conjecture that the persistence of
vacuum entanglement between arbitrarily separated finite-size regions is connected with the localization of the
highest-frequency innermost modes.
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[. INTRODUCTION In this paper we concentrate on an aspect that has re-
) ceived relatively little attention, but which could potentially
The study of the entanglement properties of a number 0fp4 hen the emerging picture. This is #r@anglement struc-
physical models including spin chains, coupled fermionsy e gictated by many-body interactions—the connection be-
and harmonic oscillatorgl-10 has revealed interesting as- yeen the form of the Hamiltonian, the quantum-state en-
pects of entanglement in spatially extended many-body Sysznglement structure, and the spatial distributions associated

tems. . wijth the quantum states. Our aim is to provide a detailed
On the one hand, a number of universal aspects connectega\ysis of the bipartite ground-state entanglement structure

to the behavior of the two-point correlation function have ¢ ihe linear harmonic chain.
been verified. For instance, it has been shown that one- |, general the determination of the entanglement structure
dimensionalXY and Heisenberg spin chains near a critical ;¢ 5 given quantum state is a complicated problem; however,
point [3] lead to the same scaling behavior for massless bot‘hings are greatly simplified for the vacuum state of an os-
son and fermion universality classes as predicted by confOrgjator chain, which is a pure state of the Gaussian family
mal field theory[11-13. In the massless case, the entangle{51; an important feature of multimode pure Gaussian states
ment between a region of sizeand the remallnder of the s their fundamentally simple structure with respect to bipar-
system increases either a%ln L (bosong or ~gln L (fer-  tjte entanglement: it can be shown that pure Gaussian-state
mions. These characteristic behaviors relate t0 a onegntanglement is equivalent to products of entangled pairs of
dimensional version of the black-hole entropy “area |aW"singIe modeg22-24, so that the total entanglement is the
[14-1§. ) sum of the Ix1 modewise entanglement contributions;
In contrast to these universal results, other aspects Gherefore, the canonical structure of Gaussian bipartite en-
many-body entanglement have proven to be model depeRanglement is(1x 1)-mode Gaussian entanglement. We
dent and not entirely captured by the behavior of the corre,erefore aim to characterize the spatial structure of the en-
lation functions. For example, the entanglement length degyngied modes within each of two complementary regions of
fined in[17], as an analog of the correlation length, has beefne harmonic chain and connect this spatial structure to the
shown for a family of models to be infinite while the corre- ¢, regnonding entanglement contributions. This analysis is
lation length is f|n|te[18,1q.. The converse S|tuat|on has glso performed for both the weak and strong coupling regimes.
been demonstrated for spin cha[ds?] and harmonic chains  * an extrapolation of our results to the continuum limit

[20]. In these cases, while the correlation length can be infigpows agreement with previously known results, such as the

nite or large, ”‘? entanglement bet\_/veen two sites truncates %‘?n L entanglement behavior for bosons, as well as provides
zero for a relatively small separation. It is therefore fair to

. ! o new insight into the entanglement characteristics of the
say that we still lack a generic characterization of entangley, ., ym_ in particular, it shows that the inclusion of an ultra-
ment in many-body systems.

violet cutoff—in any way necessary to regulate the corre-
sponding massless relativistic quantum field theory in the
presence of interactions—gives rise to a localization of the
*Electronic address: abotero@uniandes.edu.co highest-frequency modes around the midpoint of the block.
TElectronic address: reznik@post.tau.ac.il Thus, it appears that contrary to the behavior of correlations,
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the long-distance behavior of entanglement between locakome general technical aspects of pure entangled Gaussian
ized regions is directly connected with the high-frequencystate analysis.
modes. This somewhat paradoxical feature of field entangle-

ment was noticed earlier in connection with the extraction of A. Review of Gaussian states
entanglement from the vacuuf5] and violation of Bell's We begin by reviewing some basic facts about Gaussian
inequalities in the vacuurj26]. (pure or mixed states. Let us represent the canonical vari-

The article is organized as follows. In Sec. Il, we beginables of arlN-mode system by the vector
with a short review of Gaussian states and the modewise —.p)T 2.2
structure of entanglement. We then study the structure of the 7=a.p) '
local mode shapes within a block and their form by introduc-whereq=(q;,ds, ... ,ay) " andp=(py,p,, ...,pn) " The com-
ing a mode “participation function.” In Sec. Ill, we specialize mutation relations may thus be expressed as
to the case of the linear harmonic chain ground state and

study in some detail the dependence of the correlation func- [ 220 161 = 1 (2.3
tions on the coupling strength and size of the chain. We showhereJ is the so-calledsymplectic matrix

that three regimes of behavior can be identified for a chain of 0 1

fixed size and varying coupling strength. In Sec. IV, we J:( ) (2.4)
present a simple application of the mode mapping for the -1 0

case of a single oscillator with respect to the rest of the chai Gaussian quantum stagefor a set ofN modes is uniquel

and demonstrate how, in this simple case, the properties characterizeg by the first and second momentg.dh (;qeal—y

the correlation function show up in the behavior of the en-, . y : A -
g with entanglement aspects of Gaussian states, a shift in

tanglement entropy. Section V surveys the main results Oﬁ]we expectation value of the canonical variables corresponds

this paper on a qualitative level based on a numerical analy- . .
sis of the modewise structure in the weak and strong Cout_o a local operation. Thus, it may be assumed throughout that

pling limits. This survey is complemented in Sec. VI with an {7)=0. Ip such a case, the state is entirely characterized by
analytic study of the spatial modewise structure as well a he matrix of second moments, the so-called phase-space

the derivation of th%ln L “area law”. Our results are com- N 2N covariance matrixCM):
pared with previous related work in Sec. VII. Finally we M =Renn"). (2.5

conclude in Sec. VIII. In the Appendixes we provide trans- f varticular int tis th ft f i
formations that connect between modes at the two regiong particuiar interest 1S the group of transformations preserv-

and the relations between discrete and continuum correlatio'ﬂg the Qaussian character O.f the state. Within the family of

functions. states with(#)=0, the group is the homogeneous group of

linear symplectic transformationS,e Sp(2N,R), preserving

the commutation relations und&r= Sy or, equivalently, pre-

serving the symplectic matrix under the similarity transfor-
The ground state of a linear chain of oscillators is a puremationSJS=J. Under a symplectic transformation, a Gauss-

Gaussian statf21]. Gaussian entanglement is characterizedan state characterized by a covariance matiix gets

by the following simplifying property22] : If |¢)ag is any  mapped to a Gaussian state characterized by the covariance

Gaussian pure state & modes entangling modes in two matrix M=SMS.

regionsA and modes irB, then|y) may always be written as  Somewhat analogous to the construction of normal modes
a product of two-mode and one-mode states: for a linear system is the construction of modes in which the
~ ~ ~ covariance matrix takes a particularly simple form. A theo-
[Was=ag | ¥2as,  [¥aB/0AI08., (2. rem due to Williamsori27,29 states that a certain symplec-

~ tic transformatiorS,, always exists that bringsl to the nor-
where the )z are entangled states of one mode fromfet 5] form (“Williamson normal form’)

and one mode from s& and|0>;F and|0>g;F are products of _
vacuum states for the remaining mode3ee also an alterna- W=SyMSy = diaghs Az, - AniAs g, - AN,

tive proof in [23] and a modewise decomposition for Fer- (2.6
mion Gaussian states [24].) The fact that any pure Gauss-

ian state can be decomposed according to(Bd) implies S
) . . the symplectic eigenvalues and must be greater than or equal
that the bipartite entanglement of the state is the sum of th . . N
0 1/2 according to the uncertainty principle. The transfor-

entanglements from each one of the participating pairs. In__". X -
turn, the entanglement of each pair is the von Neumann enrvpatlonswdefmes a new set of modewilliamson modes}

tropy of the reduced density matrix obtained from the pair—"(m)’ with corresponding annihilation operatoB,= (G

, ~ adit h ificati £th | +iPpy)/V2. In terms of these modes, the statenay be writ-
wise statégbi)AiBi. In addition to the quantification of the total .\ s 5 product of oscillator “thermal” stati@g]

amount of entanglement, it also becomes relevant to investi- -

gate the relative contribution of the individual entangled p=®(1-ePme i, 2.7
modes, together with the relationship that may exist between m

the “shape” of these modes and their entanglement contriblwhereﬁmzagqam is the Williamson number operator associ-
tion. We use this section therefore to review and introduceated with the creation and annihilation operators. The aver-

Il. GAUSSIAN-STATE MODEWISE ENTANGLEMENT

where the diagonal elementg,\,, ... Ay are referred to as
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age number operator obeys a Bose-Einstein distributiorp|ectic transformation that brindé to a form connecting the
Since the covariance matrix is now diagonal wiifay,,)?%) degenerate modes in a pairwise fashion.

:<(pm)2>:<'ﬁm>+%, the symplectic eigenvalues can be related In this paper, we will only be dealing with Gaussian states
to the average number operator accordinggc(ﬁm)ﬁ and for which the correlations between tligs and p's vanish.

connected with the Boltzmann factgy, by the relation This affords a particular simplification in the investigation of
the entangled mode structure. For this we introduce the fol-
1 1 i i i i-
Am:—cotr<—ﬂm). (2.8 lowing no'gatlo!w for the coordinate and momentum covari
2 2 ance matrices:

In the case oh,=1/2, thethermal state reduces to a projec- G=(qq", H=(pp". (2.12
tor onto the vacuum stat),,, annihilated by the destruction

operatord,,. Otherwise, the state is a mixed state, with a vonin the absence ofi-p correlations, the local covariance ma-
Neumann Ientrop§:§()\m), where trices may thus be written in block diagonal form as

Ga o)
(2.9 0 Hp/

Throughout the paper, we shall measure entropy and the efrhe |ocal symplectic spectrum can then be obtained from the
tanglement measure derived from it in natural units. Our résquare root of the doubly degenerate spectrum of the matrix
sults can be converted te-bit units by multiplying by —(JaMp)? (where J, is the symplectic matrix of theA

1/in 2=1.44. modes, a matrix which is

SIN) =(N+1/2In(\ + 1/2) = (N = 1/2)In(A = 1/2).

M= Re<77A77D=< (2.13

S 0 )

B. Modewise entanglement —(J.M 2:(
g (IaMp) 0 GuH,

Turning now to the entanglement of pure Gaussian states,
suppose th&l modes are partitioned into two sejg and 7. Thus, the symplectic eigenvalues are given by the square
Then, the particular set of modes in terms of which the deroot of the eigenvalues dfi,G, (or G4H,). Therefore we
composition(2.1) is achieved is composed of modes which, can express a certain two-mode state in the decomposition
under local symplectic transformations, bring the local cova{2.1) as
riance matriceM=Re(7,75) andMg=Re 775 into Wil-
liamson normal form. The decomposition is related to a gen- [z 5 =1 —-ePn> ePa2ry: [myg . (2.15
eral property of covariance matrices which satisfy the mm n meom

“isotropic condition” o ) )
The total bipartite entanglemekgtis then given by the sum

- (IM)? =231, (2.10  of two-mode contributions:
a condition that is satisfied by the covariance matrix of any _
pure Gaussian state witty=1/2. Partitioning the vector of E—%‘, S (2.1
m

all the modes ag=7,® 7g, the full covariance matrix of the
pure state may be written in block form as

M,y K ) C. Mode shapes

MzRe(W?T):(KT My (2.1

The number statdﬁ);m in the above two-mode Gaussian
state are eigenstates of the Williamson modes number opera-

consequence of the isotropic conditidti, andMg share the tor N , which |n~turn can be gxprgssed as a combination of
samesymplectic spectrum in the respective sectors where thi1e 10cal modesy,. The question is then, how do the local

symplectic eigenvalues are larger than 1/2. By performind“Odes Con_tribute to each of the coIIe_ctive Williamson_
local symplectic transformation®,=Sx7x and 7s=Sa7s modes? This can be answered by studying the symplectic

bringing M, and Mg to Williamson normal form, it is then {ransformation 7,=S,7, between the local and global
ible to sh that the obtained lati i?& modes. Particularly, we now wish to directly relate the sym-

EOSSPS(' Te 0'S ?W Iath e Ot aln;.; c(:joBrre '?hlc:ﬂ MmaXx plectic transformation to the eigenvectors Bf,G, and

A ISB Sonqec S OT y e;ec OFSh an t"r\]" | € sartne _tGAHA. First note that in the absence @fp correlations, the

Sympieclic eigenvalue and vanishes on the elements wi mplectic transformation will not mix thg's andp’s, so we

symplectic eigenvalue 1/2. This means that if the local Sym'may write it as

plectic spectrum is not degeneraspart from the sector with

symPIect|c eigenvalue 1j2the transformed correlation ma- Ga= X0 Pa=Yps XYT=1, (2.17

trix K connects only those pairs of modesArandB with the

same local symplectic eigenvalue. On the other hand, if therevhere the last condition guarantees that the transformation is
are degeneracies in the local symplectic spectrum, one caymplectic. Now define\ to be the diagonal matrix with the
still perform an additional one-sided local orthogonal sym-symplectic eigenvalues dfl. ThusA may be written as

whereK=(7,7g). It is then possible to sho22] that as a
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A =XGpXT= YH,YT. (2.18 new p's may show more a “collective” shape, with more or
less equal contributions from the ofik). Thus, it becomes

Now, let u™ and v™ be right eigenvectors ofiaGa and  conyenient to define a function taking into account, on an
GaHa, respectively, corresponding to the symplectic eigengqya| footing, the contribution from both the aj andq's
value (the mth entry inA) A, so that in a given Williamson mode.

(HAGA)u(m) - )\ﬁqu(m)’ (GAHA)v(m) - )\rznv(m)' (2.19 To this er_1d, we note the expansion of a given WiIIia_mson-
mode creation operator in terms of local mode creation and
and for simplicity introduce a normalization so that annihilation operators. If the local site creation operator is
fin
U™ .pm)y=1, (2.20 ~definedas
. . 1 _
It is then possible to see that a = E[fiQi +&1p], (2.29
o™ =c, Gau™, u™=d Hu™, (2.21)

_ _ _ where ¢ is some arbitrary dimensional parameter, the cre-
where the proportionality constants, d, must satisfy the ation operator for a given Williamson mode on one side

condition can be expanded as
Crlm = A2 (2.22 1y )
. T PR an= 22 (67U + &o{™)a + (§7u™ - o™l
A convenient choice to make ig,=d,=\,;, implying that 25
u™ andv™ must be normalized so that (2.30
@™ Hao™) = (U™ - Guu™) = Ay (2.23 In turn, this expression can be recast in the form

Next, we note that sinc€, andH, are symmetricu™ and
v'™ are the right and left eigenvectorsldiG,, respectively.

am= >, VP™(i)[coshn™a +sinh #™al], (2.31)
This implies, together with our normalization convention, the I

orthogonality condition where
U™ v ™) = 5y, (2.24 PO (0) = uf™of™ (2.32
as well as the spectral decomposition and
HaGa= > A2uMy(mT, (2.25 (U™ — (™
aba = Am AM(i) = tanht —u:(m) " g:zv:(m) ) (2.33

Using Eqgs.(2.21) and(2.24), we finally arrive at the condi-

- We also note from the definition of the modes that
tion that

(uMm.pMy=1 so thats;P™(i)=1. We see that the function
O™ Hpo™) = (U™ . Gu™) =\, 6n (2.2  P™(0) captures the weight of the local site participation,
i . i invariant under local rescalings and phase space rotations.
It is now straightforward to set up the symplectic transfor-\ye term it themode participation function
mation matrix X: Letting ¢; be a column vector with all
entries set to zero except thida one, one verifies by direct Il HARMONIC CHAIN
substitution that the matrices '
A linear harmonic chain oN local oscillators laid out on
X=2 g™, Y=2 o™, (2.27)  a circular topology may be modeled by canonical variables
m m (gi,p) withi=1, ... N, with the dynamics given by a Hamil-
indeed satisfy Eq(2.18). Finally, we can now express the tonian of the form
relation between the local and collective phase-space modes £ N
as H =222 [pf + of - aggial, (3.1)
=Sy, Br=SoMp. (228 o -
icA icA where we identifyqy:1=0q; andgy=qy and the dimension-
less parametes characterizing the strength of the coupling
between adjacent neighbor sites is strictly less than unity.
Note that such a Hamiltonian can be obtained from the stan-
Generically, the transformation connecting the initial dard Hamiltonian of a chain with springlike nearest-neighbor
modes to the Williamson normal modes is not an orthogonaharmonic couplings,
transformation. This means that in general the mode func-
tionsu™ andv™ for theq's andp’s may be very different in
shape.(For instance, it could be the case that the rggsv
may be fairly “localized,” with significant amplitude contri-
butions from only a small number of the olfs, while the by means of the canonical variable rescaling

D. Mode participation function

N 2

1 :
H=2Z |t Mo oKGE-627) 32
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2K T _1iaa
g = Mw~ /1 +W§i’ ;= : Po(q) = eXp|: 4q G q]- (3.13

1
(3.3 ¢dmxem{—ZNH*4, (3.19

and the identification where the covariance matric€sandH, for Q andP, respec-

2K tively, satisfy the generalized uncertainty relati@t=1/4,
Ep=wy\/1+—, (3.4  with the entries defined by the two-point vacuum correlation
Mo functions:
2K Gj; =(0a0;|0) = gi-j). (3.19
M w?
a= 7 (3.5)
1+-— Hj; =(0lpip;|0) = h_j). (3.16
Mw

Furthermore, since the state is Gaussian, higher moments of
the oscillator coordinates or momenta are expressible in
terms of the two-point correlation functions. Thus, the rel-
evant physical information associated with the vacuum is
contained in the correlation functiomg_;, andh;;_;), which

we now study.

The last relation provides a restrictionQxr<<1 to the pos-
sible values of the coupling constant in E§.1). The limit
of strong coupling between neighboring oscillators,
2K/Mw?— o, corresponds tax— 1 and the weak coupling
limit to a— 0.

The Hamiltonian(3.1) can be brought to a normal form
by introducing a set of annihilatioricreatior] operators
a(6y) [a'(6y] satisfying the commutation relations Vacuum correlation functions and three regimes

of behavior
[a(6y),a"(6)]= b« (3.9
, . . . . The general entanglement behavior of the partitioned har-
with the indexing angular variablé playing the role of a = qhic chain is dictated by the behavior of the correlation
dimensionless wave number or pseudomomentum and tak'rfgnctionsg and h, defined in Egs(3.15 and (3.16. Their

the values explicit form is given in terms of the dispersion relati¢h8)
27k by
@:{% (k=0,1, ... N-1). (3.7)
1 1
N) — —
Defining the dispersion relatiofin units of Ep) 9= ZNEK V(gk)cos(lak), (3.1
v(6) = V1 - a cosf, (3.8
. . 1
and expressing,, andp,, in the form hiN = ﬁz v(6)cod16y), (3.18
k
1 1 )
== — %"+ H.c. . . . . . . .
n N \,'zy(gk)[a(ek)el Hcl 3.9 and consistent with the translational invariance of the Hamil-
tonian, we note their dependence only on the separation
. @) =(i—j)modN. In the limit N— o with « fixed, these expres-
P = —_' V—k[a(glaeiakn -H.cl, (3.10 sions yield the Riemann sum for the integral of the argument
VN« 2 as a function of a continuou& ranging from 0 to zr, with

the replacement of the factor df* in front by (27)". The
correspondence with the continuum one-dimensional scalar
1 field theory can also be obtained from these expressions by
H=Ep> V(ak)|:aT(0k)a(0k) + 5} (3.1)  taking appropriate limits, as discussed in Appendix B.
K Now, for a fixed value of the strength parameteand for
which is then diagonalized by the Fock states of the creatiogufficiently large values of the chain sikg the behavior of

the Hamiltonian(3.1) achieves the normal form

and annihilation operators. these functions in terms dfbecomes independent bf and
In particular, we will be interested in the ground stile ~ eproduces thél— o behavior, which can be expressed ex-
satisfying actly in terms of hypergeometric functions as
a(6,)0)=0, (3.12
ol w_ 215 1.1
for all 4,. For this state, the wave functions in the coordinate g = Z 2 |F, EJ + EJ +1,7), (3.19

and momentum representations assume the Gaussian form
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FIG. 1. The vacuung =(qqq,) correlation function as a function 049
of | for different strength parameters wheretanh Z. )
0.48
3 h
-2 0
‘ z| | 1 1
h=E5" 2 za(——J——J+L£) (3.20 047
2 2 2
! 0.46
Where(g) are binomial coefficients expressed in terms of N>=100
gamma functions and and w are given by 045 N=10 N=Z0
1- \1 _ CYZ 1 (3 21) 0 1 2 3 4 5
Z=——, u=- . :
a V1+2 3
This behavior in the largeN limit will serve as a reference FIG. 3. Variances irg andp as a function of coupling strength
in analyzing the behavior for finithl. for different values oiN.

The shape of the correlatiogsandh, as a function of the
separatiorl and the coupling strength is depicted in Figs. 1 ides a logarithmic scale for this approach. with: Lin(1
and 2 for a fixed value oN. Similarly, we have plotted in Xla)/z ganthmi IS app , Wik In(
Fig. 3 the behavior of their values lat 0 as a function of the Let.us first analvze the cadé=s. For weak couplin
coupling strength for different values of. For these plots, Y ' pingx

. . : i ~z<1, the hypergeometric functions behave aso(z?);
we have found it convenient to introduce an ancillary hyper—thus with the Stirling aporoximation for the binomial. we
bolic angle¢, implicitly defined by its relation to the vari- ! g app ’

ablesa andz obtain the weak coupling behavior

z=tanh¢, a=tanh Z%. (3.22 g = érllzzl, hy = - i_|—3/zz|, (3.23

. . 2\ AN
This becomes a convenient parameter as, for small values of A K

«a, the appropriate expansion parameter isself, in which  for I>1. The weak coupling correlation functions are there-
casez= ¢ for {<1; similarly, asa approaches unity pro-  fore of short-ranged, exponential behavior and characterized
by the correlation length

1

| = 1
" —In(2)°
On the other hand, in the limit=z— 1 with fixed|, theg™

correlation function diverges and is determined by the
asymptotic behavior of the hypergeometric function

1 1 _ T(+ 1—22>
2F1<2"+2"+1’22)_’ r(1/2)r(|+1/2)['”( 4

(3.29

10-%
10-%

10-%

10-120

cfi+2)+ 2] oa-an.
I (3.29

FIG. 2. The negative of the vacuum correlation functign ~ where y is the Euler-Mascheroni constant agdn) is the
=(popy) as a function of (I=1) for different strength parameters. digamma function. With the asymptotic expansiof|

10-1%
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+1/2)=In | for largel,>1> 1, this yields, forz=1, 1 1 1-7a)
, =——1n (3.3)
1 1-7 2NVl -« V2w 2
g=-—1In|l—1I}; (3.2
N2 2

Taking a close to unity yields finally a critical chain size
in the case of the correlation functiom, one finds the valueN:
a-independent limit

A Ni(a)
V2 1 (3.27 Ne(a) In N(a)’
_ o ] _ The above considerations allow us to distinguish three
Next we consider finite-size effects. The first consider-regimes of behavior for a chain size of a large and fixed
ation has to do with the range the above limiting expressiongajye of N, for convenience to be referred to as the type-I,
given a finite size of the chain. In this respect, the exponen:|| or .|| regimes: the type-I, weak coupling regime, is de-
tially decaying behavior is not expected to hold once thgermined by the conditiom> N,(e)>N(a) and is charac-
correlation length becomes of the order of half the chain sizejg(izeq by short-ranged correlations; when the condition
similarly, the s'grong coup]ipg expansior_1 fgqris valid when- N.(a)~Nis met, we enter the intermediate, type-Il long-
ever the function is positive. For sufficiently largé one  anqe regime, in which the scale of correlations is of order
should expect these conditions to be met at valuestof ,,4'|nN () and the correlations decay logarithmically as a

which are close to unity, in which case 2=y2(1-a).  fnction ofl; finally, the conditionN.(a) >N determines the
Then the conditions, <N/2 and Iri(1-2)N/4] <0 lead es- |5, range, type-Iil regime, with the same logarithmic decay

sentially to the same transitional condition between short:c 5 function of the distance but in which the scale of the
range and long-range correlatlons; the transition from shortzq relations behaves as(a)/N. The distinction between
ranggq to Iong—ranged_ behavior then happ?”s when fhese three regimes will serve a guideline for the character-
transitional correlation size scale, which we define as ization of the different regimes of entanglement as well

(3.32

limh=-— .

Ni(a@) = \/i, (3.28
l-a IV. ILLUSTRATIVE EXACTLY SOLUBLE CASE
becomes of the order ¢d. Note incidentally that foN,> 1, Before proceeding with the numerical results in our paper,
the plotting parametef is related toN, according to it may be useful to consider a simple example that is easy to
1 solve and shows very general qualitative features of the
£=ZInN,. (3.29  dominant entanglement structure between two complemen-
2 tary regions of a chain. In this case we wish to understand

0tpe entanglement of one oscillator of the chain versus the rest
of the chain. For such a partition, it is quite easy to obtain the

degree of entanglement by looking at the local covariance

matrix of the single mode, which is given by

The second consideration has to do with the magnitude
the correlations fora close to unity, which is set by the
diverging qq correlation function and specifically its behav-
ior at 1=0. For finite but largeN, the value ofg, can be
approximated by theéN=« expression plus corrections in
powers ofN™* arising from the error between the sy8117) M, = (90 0 ) (4.1)
and the corresponding Riemann integral obtained wNen A7\ o hy/ '

— o, The relevant correction comes from the contribution of
the 6,=0 mode in Eq(3.17), which is not accounted for in The single symplectic eigenvalue of the matrix\is Vgoho
the Riemann integral when the limit— 1 is taken first. This and thus the degree of entanglement between the oscillator
contribution yields arD(N™) additional term, so that for ~ and the remainder of the chain is given $gohy) WhereS
— 1, the finite sizey, is approximated by is defined by Eq(2.9).

1 To understand the behavior of the degree of entanglement
e (3.30  Wwe look at the relevant approximations for the three regimes
2NV1 -« discussed in Sec. lll. First, expanding the hypergeometric

functions in Eqs(3.19 and(3.20 in a power series ig, we

Since the correction arises from the contribution to the su . . .
. . ; in for th mplectic eigenval he weak -l regim
from the 6,=0 eigenmode, it accounts for a strong coIIectlvg?)bta or the symplectic eigenvalue the weak, type-l regime

N o0
gV =g+

effect due the finite size of the chain. This correction domi- 1 2
nates the coupling strength behavior of thecorrelation N==+=+0(D. (4.2)
functions above a critical value af or, for fixed «, below a 2 8

critical value ofN. This critical value is determined by re-

quiring that the correction term should become of the magNext, for strong couplingNy(«) >N, and assumindgN>1,
nitude of the logarithmic term depending on the couplingwe approximaten, and gy by their limiting behaviors for
strength in the strong coupling=« correlation function— —0. Forh, the limiting value isy2/, while for g, we can
ie., use the asymptoti€3.25 to show that
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35
Oola) = —In[4Nt(a)] (4.3
N2 3
where N(a)=+2/(1-a) as defined previously. Thus the 25
symplectic eigenvalue becomes 2
1 E
M = ~In[aN@)]; (4.9 "
1
this accounts for the type-Il, long-range regime with a loga- 05
rithmic scale of the correlations. Finally, if, we takelarge )
enough so thalN.(e)>N, then theg, correlation function
can be approximated by the single contribution of the collec- 0 2 4 6 8
tive 6,=0 of the whole chain: £
Gole) = 1 1 (Nt(a) ) (4.5) FIG. 4. Entanglement of a single oscillator versus the rest of the
0 2N\ﬁ1 -« 2\2 N chain as a function of coupling strength for a chain dize10*
(solid line). The dashed lines show the approximations of @®):
This yields the symplectic eigenvalue weak (1), strong transitiona{ll), and strongll).
Nt(a’) h
M = 27N (4.6 u|:——'1, l=1,...N-1. (4.10
- _ hy——
characterizing the strong long-ranggpe-Ill) regime. Holo 4

With these approximations we use the following expan- - .
sions for the von Neumann entrogg.9) as a function ofx: Thus, t_he shapes mfandv are easily mferrgd from Elgs. 1.
and 2: in the weak regime, the mode functions exhibit rapid

1 1 1 exponential decay away from the two sites adjacent to the
_ <>\ - 5)[ In<>\ - —)] y A- > <1, singled-out oscillator; in the long-range transitional regime,
SN = 4.7 the u;, mode, being proportional th,, decays as the inverse
1+InA\, A>1. squared of the distance from the edge, while thenode

ecays logarithmically; a similar behavior is exhibited in the
trongest long-range regime, in thbemode except that the
logarithmic behavior is essentially suppressed. Thus we see

This yields, for the characteristic behavior of the degree o
entanglement in the three regimes, the expressions

’22 that in the strongest regime the entangled mode at the
—[ In—] I: Ny(@) <N, complement shows a collective correlated behavior in the
8 oscillator momenta and a power-law correlation in the oscil-
1 In4N(a) lator displacements. Two distinct limiting behaviors in
EZ{ 1 +_|”T’ Il: N(«) ~N=N,, (4.8 may then be inferred for the mode participation function of
this mode, based on the asymptotics of the correlation
1+ Ni(a) Ng(@) > N. functions—namely,
2 27N’ ¢ )
\ 122 a4 —0,
These three approximations compared quite well with nu- P~ |2, a—1. (4.19

merical computations of the entropy as a function of cou-
pling strength in Fig. 4 for a chain size df=10". We note V. STRUCTURE OF GROUND-STATE ENTANGLEMENT:

that the on.Iy importance dependence on the chain size for QUALITATIVE STUDY AND NUMERICAL

fixed coupling strength comes in the very strong regime, in RESULTS

which case the entanglement decreases logarithmically with

N. We turn then to a qualitative study of the entanglement

Correlated with the three regimes of behavior are théehavior of the harmonic chain vacuum and the underlying
shapes of thet andv mode functions for the entangled mode modewise structure, based on numerical results. We shall be
on the complement of the chain. These are easily expresséaterested in a system dfl oscillators, of which the first
in terms of the correlation functiong, and h,, using the contiguousN,<N/2 constitute a subsystem that we shall
mode-mapping procedure discussed in Appendix A and sunfefer to as the “block,” while the remaining—N, will con-

marized in Fig. 19. Théth components are simply given by stitute what we shall refer to as the “complementary block.”
From the translational symmetry of the problem, the starting

point of the block on the chain is completely arbitrary.
(4.9 Ouir first survey has to do with the overall behavior of the

U= y
/ 1
Ooho — 1 degree of entanglement of the block and its complement as a
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FIG. 5. Total entanglement as a function of coupling streigigth
terms of¢) andNy, (log2 scal¢ for a chain of size\=2048. £
function of the relevant properties: the size of the bldgk FIG. 6. The three different qualitative regimes of entanglement

the size of the chaiiN, and the coupling strength. This over- as inferred from level curves of total entanglement in Fig. 5.
all behavior has been plotted in Fig. 5, for a chain of size

N=2048, sweeping the block size up My=N/2 and the 5,46 values of the coupling ard and for N,<N, the de-
coupling strength so th@d.> N. As was seen in the previous pendence takes the form

section, the behavior of the degree of entanglement as a
function of the coupling bears the signature of the three re-
gimes outlined in Sec. Il A. This signature is also evident
from Fig. 5 when we look at slices of constaNt: As a ) o ]
function of ¢= %tanh—l(ax the entanglement rises from zero reproducmg the_predlct|ons of cpnforma}l field theory for the
in the weak coupling regime to the characteristic plateau Oposon umyersallty clasgt,13. It is also Interesting to note
the type-Il regime, which is more or less centered around thg‘e behavior of the valuBo(a,N) as a function of the chain

value for which the transitional scale is of the order of theSiZeN for fixed @, which shows a similar behavior to that of
chain size(in our case around=3.2); as ¢ is further in- the entanglement of the single oscillator mentioned in the
creased, we see again the characteristic N, (i.e., linear in previous section. As shown in 'Flg. 8 for large flxed .v.alue of
¢) behavior of the degree of entanglement for the type-IlI% thexIn Ny curves decrease in height Withgntll a critical
regime. As we sweep theN, and look at the entanglement value ofN; below this value, the<In N, behavior saturates at
as a function ofé, it then becomes possible to create an@ value that is independent of the chain size.
analog of a phase diagram on theN, plane for the quali- We turn then to the question c_>f where the entan.glement
tative behavior of the degree of entanglement; such a dig€®mes from, from the point of view of the modewise en-
gram is show in Fig. 6 and was constructed on the basis danglement structure of the harmonic chain vacuum. In con-
the level curves of equal entanglement obtained to Fig. 5.
Continuing with the behavior of the total entanglement as
a function of the block size, we again find distinct character-
istic behaviors depending on the specific regime probed in 1025
the “phase diagram”: for the type-I regime, the total degree
of entanglement remains essentially constari¥ias varied.

1
E = Eg(aN)+2In N, (5.1)

10.5

10

Clearly, this is a manifestation of the short-ranged correla- 0.75

tions characteristic of this regime and suggests that entangle

ment between the block and its complement in this regime is 9.5

due essentially to edge effects. More interesting, however, is 9.95

the behavior in the strong type-Il and type-Ill regimes, where

long-range correlations are present and where therefore on 9

should expect significant contributions from the bulk of the 2 3 4 5 6 7
block. Indeed, one finds that in both of these regimes the InN,

degree of entanglement shows a logarithmic dependence on
the size of the block—the one-dimensional analog of the FIG. 7. Entanglement as a function of Ny, for N=2048, ¢
black-hole area theorem. As shown in Fig. 7, for sufficiently=12 fitted to a straight line of slope 1/3.
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FIG. 8. Entanglement as a function of block size for different ﬂ,"“‘“'“——u_;_ ““
values of the chain sizN (§=3.5). ®

formity with the different regimes of behavior entailed by the
correlation functionsg, and h;, different behaviors are re-
flected in the shapes of the Williamson modes, as we illus-
trate in Fig. 9, which shows the site participation function for az
all the entangled Williamson normal modes of both the block fese
and its complement. Figure 10 also shows a small sample o 0~——=2" =~
the mode shapes for thd™ and v™ modes, for various '
values ofm and at two different coupling strengths. A num-
ber of general features may then be identified regarding the
mode structure.

The first feature, which is evident from Fig. 10, has to do
with the parity of the mode functiong™ andv™, due to a
parity selection rule to be discussed in Sec. VI A. Indexing
the modes am=1, ... Ny, in increasing order of their con-
tribution to the total entanglement, we find that in all circum-
stances entangled modes of either the chain or its comple
ment have a definite paritg-1)™?, under reflections with
respect to the centgr of the respective bloc'_(' Thus, for eac,h FIG. 9. Site participation function for the entangled Williamson
entangled-mode pair, the modes on both sides of the Cha'ﬁbrmal modes in a chain dii=32+48 contiguous oscillators, at

have the same parity, and the mode pair that contributes thgy values of the coupling strength parametesm top to botton:

most amount of entanglement always involves even-modg=0.1, 0.6, 0.9, 1—16. The mode shapes are ordered front to back
functions on both sides of the chain. This feature shows thadccording to the symplectic eigenvalue of the respective mode, with

while it may be argued that the entanglement between twghe dominant mode at the front.
regions of the chain is primarily due to edge effects, it nev-
ertheless involves nonlocal behavior within each region. local Wave|ength: the |Ongest Wave|engths are present at the
A second feature of the mode structure that is present ifnidpoint, whereas the oscillations become of the order of the
all circumstances is the existence of a characteristic turningyttice spacing at the turning point.
point, henceforth denoted bif™, which we define as the  The last general feature that we shall discuss is observed
location (measured from the center of the bloak the os-  more prominently as the coupling strength increases and has
cillator for which the participation functioﬂPi(m) is maximal to do with the typical wavelength of oscillation of the mode
for themth mode. The general behavior of this turning pointover the majority of the interior region bounded by the turn-
as a function of the mode number and coupling strength isng points. This characteristic wavelength decreases with the
shown in Fig. 11. What is observed is tH\{:ﬂP is quite similar  depth(m) from around the order of the chain size, for the
to the turning point of semiclassical solution to a wave equaouter mode, to the lattice spacing, for the innermost modes.
tion: generally, the mode participation shows an exponentialinterestingly, we also find a “dual” structure to the mode
like decay beyond the turning point, so that all the modeshape oscillations if thai(m) andvi(m) mode entries are mul-
activity becomes effectively confined to site distances up tdiplied by the alternating factof-1)' (corresponding to a
Iim) from the block midpoint; furthermore, inside this region, shift of == in their discrete Fourier transfopmand the
we find a less dramatic decay of the mode amplitudes fronmodes are ordered from the inside out. Using the index con-
the turning point, achieving the minimum amplitude at theventionn=N,—m, we find that as the coupling strength in-
midpoint. However, in contrast to semiclassical solutionscreases, the mode shapes for the lowest valuesiofthis
what we find is an anticorrelation between the amplitude andhierarchy of “demodulated” modes become virtually indis-
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m=1 \ j n=0 /\
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m=24 ¥ v v Y
p— A AN
—_— AVA /\R, “%AVAVAVAVAVBV% FIG. 12. Mode shapes for the first three innermost modes for the
v V ) strong regime case depicted in Fig. 12, demodulated by the oscil-
tM‘ MMM lating factor(-1)'. Heren=Ny-m.
m=73 A
the weak regime, we find that the modes for both the block
m=74 %‘ «A&M&u and complement fall into pairs of even and odd combinations
of oscillator sites that are precisely localized in increasing
a=02 l-2=5.0x10" distance from the edge of the blogkig. 11), so that a mode
(=44) involving a certain oscillator pair of the block is entangled

- _ with a mode of the complement involving the two oscilla-

FIG. 10. A sample of Williamson mode shapeslid for u™. ors? specular images with respect to reflections about the
dashed fow ™) for a chain of sizeN,=74 (N=500), and for weak jnterface. This “wedgelike” structure in the mode distribution
and strong coupling. Mode ordering is according to the decreasing¢ 1 )th sides of the chain observed in Fig. 9 can be under-
contribution to the total entanglement. stood in thea— 0 limit, where the basis of localized oscil-
lator sites serves as an eigenbasis for the whole chain; then,
the leading effect of any infinitesimal coupling between con-
tiguous oscillators is to recombine the localized modes so as
to produce a mode basis consistent with the parity selection
Yules. We refer the reader to Sec. VI A for a more careful
analysis discussion in this respect.

, As we increase the coupling strength and, hence, the cor-
elation lengthl («), the mode shapes become distorted to
the same extent that the two participating sites lie within a
distance from each other that is less than or equadl(i9.
Thus the distortion of the modes proceeds from the inside
modes of the block and then outwards as the coupling
strength is increased. This distortion involves a gradual dif-
fusion of the mode participation towards the interior region
bounded by the modes, as well as the establishment of a
characteristic wavelength of oscillation within this region. As
the frequency spectrum of the modes becomes sharper, the
width of the interior region of the mode becomes broadened,
thus accounting for the gradual outward curving of the turn-
ing point location seen in Fig. 11.

Together with this mode-shape distortion, we also find the
behavior of the entanglement contribution of the modes to be
dictated by the correlation length in the weak regime. In Fig.
13 we have plotted on a logarithmic scale the dependence of
the entanglement on the mode number in the weak regime.
As stated earlier, in this regime the modes come in pairs of
definite-parity combinations of oscillator sites at a precise
distance from the edge; lettind,, be this distanced,,

0 10 2 % 4 50 60 =m/2 for m even,(m+1)/2 for m odd], we have found that
Mode (m) the entanglement is to leading order degenerate between
modes of opposite parity and the sadyg independent o,

FIG. 11. Turning point location as a function of mode number, (for N,>2) and of the exponential falloff witld,,, according

for three values of the coupling strengtk,=64, N=160). to

tinguishable from harmonic oscillator wave functions of the
corresponding value af, with a variance of ordetN, (Fig.
12). More generally, for the whole hierarchy the indax
labels the number of nodes in the demodulated mode fun
tions.

With these considerations in mind, we turn next to the
characterization of the regimes of behavior discussed earlier
from the standpoint of the mode structure. Beginning with
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FIG. 13. Entanglement as a function of mode number in the
weak regime, for different values of the coupling constant. Here
Np=12, N=500.

o)\ 220D
Em(a)z<z( )> {1—2(2dm—1)ln<§)] (5.2)

4
wherez(«@) is as defined in Eq(3.21); from the definition
(3.23 of the correlation length,, the characteristic decay
distance for the entanglement is thieh4. As the coupling : , . :
strength is then increased, the degeneracy is lifted, with the 1 2 3 4 5 6
innermost modes showing the greatest relative splitting.
This “wave” of mode distortion and degeneracy lifting §

continues from the inside of the chain out as the coupling
increases until the correlation length becomes comparable §
the size of the block and the outermost modes are distorte
As the coupling strength is increased beyond this point, no
appreciable change in the shape of the modes is detected.
Thus a critical value ofr determined by

FIG. 14. Contribution of the first four dominant modékin
%es) to the total entanglemeithick line) as a function of coupling
trengthN, for different values of the block size&N=2048.

In this way we find that for strong coupling, the behavior
of entanglement as a function af particularly with respect
l (@) =N, (5.3 to the type-Il to type-lll transition, is entirely due to the
single outermostm=1) Williamson mode of the block. As
sets a threshold beyond which the mode-shape structure bebserved from the mode-shape profil€sg. 10), this mode
comes frozen in its strong coupling configuration. It is thisinvolves an essentially constant participation away from its
condition that underlies the transition between the type-l andurning points(located at the edge of the blocknd may
type-Il transitions in Fig. 6. therefore be interpreted as a remnant of éhe0 collective
The onset of this transition and the ensuing behavior ohormal eigenmode of the whole chain. In the context of the
entanglement thereafter are best appreciated from Fig. 14trong regimes, we shall therefore refer to this mode as the

where we plot, as a function of the coupling, the total en-collective modg similarly, we shall use the termesidual
tanglement and the partial entanglement from the first four

dominant modes. The main signature of the transition is the 1024 7
lifting of the degeneracy involving the firgeven and sec- 512 ! ‘ 512 ‘UI
ond (odd) modes, which together up to that point are the 2 K 256
predominant contributors to the total entanglement. Beyond 1z 128
that point, however, a clear decoupling occurs between thé¥p 4 N Ny o
first mode and the remaining modes: the first mode account: / 2
for the behavior of the entanglement as a function of cou- | | |# M
pling, reproducing the three-regime curgi@g. 4) observed 4 |

in Sec. IV for the case of the single entangled oscillator; on
the other hand, the remaining modes become frozen in thei
coupling strength behavior. That this “freezing out” indeed
occurs whenl(e@)=N, is best seen from Fig. 15, which FIG. 15. Level curves of entanglement contribution from first
shows the level curves on theN, plane for the entangle- (left) and secondright) Williamson modes to the total entangle-
ment of the first and second modes, together with a graph afient depicted in Figs. 5 and 6. The dotted line shows the correla-
the linel(a)=N,,. tion lengthl,, Eqg.(3.23, as a function of coupling strength.

M.~

£ ¢
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FIG. 17. Scaling curve of entanglement versus mode number for

B ! the strong regimes, fdd,<N/2. The plot includes data taken from
05 a chain of sizeN=256 (N, ranging from 4 to 32and chains of size

W N=1024 andN=4096 (N, ranging from 4 to 6% all using é=10

25f ' ' (Ng~ 10").

2 /

15 enhancement by a factor M, of the density of states at zero

1 frequency[30], and corresponds in the black-hole analogy to
05 /// the divergence of the density of states outside the horizon in

T the absence of a UV cutoffL1].

‘ In this respect, it is instructive to look at the entanglement
3 i contribution of all the residual modes, for whiblg<<N/2 in

— the limit «— 1. As shown in Fig. 17, the logarithm of the
entanglement of theith mode shows in this limit a scaling

d - behavior

4 8 16 32 64 128 256 512 1024 In Em(Nb) ~ = Nbf(Nm) , (5.9
b

FIG. 16. Contribution of the first four dominant modétin where f(x) is some nonl?negr function proportional to the
lines) to the total entanglemerithick line) as a function ol for ~ central frequency of oscillation of the mode. Now, the sig-
different values of the coupling strengtN=2048. nificant contribution to the entropy comes from modes for
which In E, is of magnitude unity or smaller—that is,
=<1/Np. As we then show in Sec. VI C, the functidnbe-

modesdfor the remaining Williamson modes of the block. The . .
haves for small values of its argument like

reader is referred to Secs. VI B and VI C, respectively, for
further analysis of the collective and residual behaviors. —£(x)In f(x) ~ x. (5.5)
Addressing finally the large block size and chain size be-
havior of entanglement, we find that in contrast to the largerhis behavior implies that an outer layer of residual modes,
coupling behavior, the responsible modes for tHa N, be-  with mode numbers=In N,, yields the relevant contribu-
havior are the residual modes. This can be seen from Fig. 1@ions to the entropy.
which shows both the total entanglement and the contribu- To summarize the results of our qualitative survey of the
tion from the first four dominant modes as a function of bipartite entanglement of the harmonic chain, we emphasize
In N, for various coupling strengths. For large enough cou-again the three-regime framework depicted in Fig. 6. We
pling, we find that the collective mode shows a “freezing” in observe a weak coupling reginig/pe I), characterized by
its N, behavior, while the greatest variation witly is shown  short-range correlations, well-localized modes of definite
by the first couple residual modes. A more careful examinaparity, and degenerate entanglement contribution from even
tion of the largeN, behavior, however, indicates that the and odd combinations of oscillator sites at the same distance
entanglement contribution of the outermost modes grows$rom the edge. When the correlation length becomes of the
slower than InNy—rather like In InNy,. Thus, the InN, be-  order of the chain size, the mode shapes acquire a more
havior of the total entanglement has to be attributed to aollective behavior, a characteristic wavelength is established
cumulative effect from a certain number of residual modedor each mode, and the degeneracy between contiguous
that contribute significantly in the lardé limit, which turns  modes of opposite parity is lifted. A distinction also emerges
out to be of order IrlN,. If the modes are labeled by their between the outermost, or “collective,” mode and the re-
characteristic frequencies, this phenomenon translates into anaining (“residual”y modes. The collective mode shows a
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minimal contribution to the large-chain-size entanglement; , 1 T B (BT -

however, it accounts for all the strong coupling constant be- An=73 = 2 vV Hagv g G (6.2
havior thereafter, including the transition between the type-Ii B

and type-lll regimes. Conversely, the residual modes becomgowever, as is shown in Appendix g mapsugm) to U(Bm),

frozen in their large coupling entanglement contribution, butmeaning that the only term surviving in the sum is the one in
are responsible for the large-chain behavior. This behavior ig/hich s=m. Thus we have that

conjectured to come from a cumulative effect from a layer of

the first~In N, residual modes. 1
b Ny = 1 v THagv Ul "Gty . (6.3

Now, in the weak coupling regime, we approximate thi&
even- or odd-mode functions in the weak regime by symmet-

We complement in this section the qualitative survey off1C Or antisymmetric combinations of localized site positions

. : . ?f depthd,,, whered,,=m/2 for m even andm+1)/2 for m
the previous section with a more careful treatment of some o dd ted bv Fia. 9-
the results presented there. Our main aim is to produ08 , as suggested by Fg. =

VI. MODE STRUCTURE: ANALYTIC RESULTS

simple analytic models that capture the essential elements of me)_ ey 1
the modewise entanglement structure in weak and strong Uy '=op t==[8 g * Oing-d, el (6.4)
i V2
coupling.
U= o= 6y L £ 1. (65
A. Entanglement in weak coupling B B 2 Nt = SNy L '

As shown in our qualitative survey, entanglement forThen, using the symmetries of the correlation functions Eq.
weak coupling involves modes that are definite-parity super¢6.3) yields
positions of local oscillator-site modes. It will therefore be 1
Ic(_}omnvement to briefly discuss the role of parity in our prob- A2 = 2" [hF\l’\,l)) + h%:ﬂ_l][gm) + 9%:,1—1 _ (6.6)

| Plarlty S?I?.Ct'on rutlgs fogowarom tgec_l“acf_'thalt Wh'lti the Next, we make use of the weak limit expressions for the
ocal correlation ma ricesGa, Ha) and ( B B) 0S€ € correlation functions—namely, that boghandh, behave as
translational symmetry of the corresponding matrices for the

_ : : *7, with h, negative forl=1. Since 2i,,—1<N, always,
Whole.chaln, they still possess a symme_try with respect Bhen the leading-order expansion)crf—l is expected to be-
reflections about the central |nd|ces—|.eGNb+l_|,Nb+1_, 2

_ \b*11  have ag??m~V, Thus, in this approximation, the symplectic
=Gp,r1-.n,+1-1- Thus, theG andH matrices can be written in - gjgenyalue is seen as being due to correlations between a site
block-diagonal form as&5,=G,"®G,~ andHa=H,"®H,",  in the block at a deptld,, from the interface and a “mirror

in terms of blocks acting on subspaces of definite parityjmage” site in the complement at the same distance to the
Similarly, it is easy to show that with respect to the modejnterface.

mapping between the Williamson modes of the block and A careful symbolic computation of this leading-order be-
those of its complement, it is also possible to show that theyayior for smallN, and assumingi== shows that in fact the

matricesGag andHag map modes of a given definite parity |eading-order behavior of the symplectic spectrum is given
in the block to modes of the same parity in the complementby

Thus, the whole problem of finding the Williamson modes in

the sizeN, block and their correlated counterparts in the N (z)—lz z Z(de_l)+0(z4dm_1) 6.7)
complement can be reduced to two separate problems of m 2 ' '
finding Williamson modes for the sectors of sikig/2 in- ) ) ) ) ]
volving covariance matrices of definite parity. This leads to a mainly exponential dependence with logarith-

From Fig. 13 it is evident that for small values afthe ~ MiC corrections expressed in E@.2) for the entanglement
entanglement contribution decays exponentially with modd?€" mode in the weak coupling regime and yields the solid
number. This leading-order exponential behavior may be unlines in Fig. 13, showing excellent agreement for weak cou-
derstood from simple arguments based on the “wedge” shagding up to values oz=0.7. Our simple argument also leads

in Fig. 9. If for a given entangled mode pair thgroperly ~ US 10 expect from Eq6.6) that the degeneracy between even
m (m (m) m) and odd states in E@6.7) should be lifted by an eigenvalue

normalized mode functionsu!”, v'™, u™, and v'™ are " ) e
known, thgn the respective sgmpléctic eBigenvalué‘3 satisfies splitting of OrderZN.bJrzm_l' thus becor_nmg more 5|gn|f|_cant as
the mode depth increases and with the even-parity modes
having the slightly larger symplectic eigenvalue. This quali-
A P ™ tative behavior is in fact verified in Fig. 13.
)\m:UA HAGAUA :Z_UA HABGBAUA . (61)
B. Strong coupling: The collective mode

We turn next to the emergence of the collective mode in
Using the resolution of the identiﬂgézEBu(Ef)uff) this yields  the strong coupling limit and its entanglement behavior. This
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has to do with the fact that the scale of the correlation func- do

tion g,(a) diverges asyr— 1, together with the fact that the o= ?In(4 Np) (6.20
function behaves logarithmically as a functionl oThus, the Ve
correlation functiong, can be separated as becomes the symplectic eigenvalue in the approximation.
The behavior of the collective mode entanglement for the
9 =0ole) + 4y, 6.8 type-Il and type-Illl regimes follows the same analysis per-

whereg is the diverging ina self-correlation function and formed in Sec. IV for the single entangled oscillator, based
A, tends to a fixed limit independent of In turn, the cor- ©on the two regimes of strong coupling behaviorggfdeter-

relation matrixG, of the block takes the form mined byN(a) andN(a). Asymptotically, we find that
T+ : 1 1
Ga— NeGoxx + AG, (6.9 ZInIn Np+ =In In Ny(@), Nya) ~N=Ng,
whereAG~0O(1) and is independent af, and E~ 2 2
1 1
1 T —In In Ny + =In Ny(a)/N, Ng(@)> N.
XEﬁ(l 1---11)". (6.10 2 2
A (6.21)
Note that since, for fixed,, Thus, the entanglement curve of the collective mode is es-
lim Gax — Nygolx + 0(ggh], (6.11)  sentially that of the single entangled oscillator, except for
9o sublogarithmic corrections dependent on the chain Nize
the vectory becomes an eigenvector G, in that limit with
eigenvalueNygo. C. Strong coupling: Residual modes

Similarly, since the momentum correlation functions are
regular and tend to a fixed value as- 1, the producH,G,
is also split into diverging and finite parts:

General qualitative and quantitative aspects of residual
mode entanglement in the strong regime can be illustrated
through a simple analytical model in the continuum, along

HaGA = NyGo(Hax) (x") + HAAG. (6.12)  the lines of similar models discussed in the context of geo-
ADAT TR0 A metric entropy in black-hole physid41] and reduced den-
We now construct the vectors sity matrices for free-electron chaifi30]. Such models are

(6.13 useful in deriving the correlation between mode number,

Uc < Hax, Ue® X, . . .
o TiaX ¢ X wavelength, and turning point location and thus can account

with normalization set so thaiw.=1, and define for the scaling relation depicted in Fig. 17 and the density of
_ T _ T states determining the IN, behavior.
9y =X Hax=NeGo. 1= x"Hax: (6.14 As is shown in Appendix A, an eigenvalue problem
Then, we have that equivalent toHGu=\?u for a given regionA is the eigen-
. 1 value problem
lim HAGAUC - g)(h)([uc + 0(g0 )]; (615) 5 T
G0 Cu™=-k2u™  C=HpgGhg, (6.22
lim vTHAGA — g.h.[v] +0(gah)] (6.16  WhereH,g andG,g are the matrices containing correlations
g | AETe 0 between the two complementary regiohsndB and where

the eigenvaluex,, is related to the symplectic eigenvalng
according tO)\,,Zn:‘-lﬁkﬁv We assume henceforth an infinite
chain and for the block adopt an index convention centered
at the block midpoint—i.e., so that indices run froniNg
A2= g,h,- (6.17  -1)/2 to (N,—1)/2; no loss of generality is entailed by as-
suming N, odd so that indices are integers. With these as-
sumptions, the matrix elementsbfare given by the sums to

showing thau, andv. become the right and left eigenvectors
of GaH, in the strong coupling limit with symplectic eigen-
value

Next, we compute the value of,:

1 Np Np \5 1 infinity over both regions of the complement bordering the
he=xHx="> > |-———5— block:
Nbi:l j=1 T 4(| - J) -1 . .
1 1 Ci= 2 hetj+t X2 heitkg. (623
=— = i k=iYk-j k+iYk+j * .
\"Zqu-r{l//< N, + 2) +1n(4) + y], (6.18 k(g 112 k(N )12

We base our computation &f on the asymptotic expressions

wherey is the digamma function. For lardd,, we approxi- X ) Y ;
v g g% PP for the correlation functiong3.25), retaining the terms yield-

mate
ing the leading-order behavior iN, upon converting the
1 .
h,~—=—1In(4 Ny), 6.19 above sums to integrals. Thus we use
so that 9i-j =%~ _V,,§W|” i=il,
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1 1 1 JcodS,(x)]
o 2\"577“ —j|2, (6.29 W) = 1 —4)(2{ sinS,(x)] }' (6.31
where we include the diverging pag§ corresponding to the where
collective mode. Replacing the sums in K§.23 by inte-
grals ink from N,/2 to infinity and defining the scaled vari-
ablesx=i/N, andy=i/N,, we finally obtain the continuum S, =wln (l + 2X>_ (6.32
eigenvalue problem Y 1-%

1/2
f dyl'(x,y) ly) = = K2¢(), (6.25

-1/2

whereI'(x,y) =N,C(Nyx,Npy). To proceed, it is convenient
to perform a change of variables, mapping the interva

(=1/2,1/2 to the real line,

1+ 1+ Zy)
=1 , v=Inl——], 6.26
u n(l—Zx) v n<1—2y (6.26)
and to rescale the wave function accordingly:
~ 1
) = —cosh‘2<9>¢(u). (6.27)
4 2
The new eigenvalue equation then reads
J doT (u,v)g(v) = - K2(U), (6.28

where the new kerndl'(u,v) is split in the formLcg+Lca
+I'g, with the respective terms given by

- V2 1 Ny, u r(u)
Fes=——0g— —5|In| ————|-—tanH = | |,
ST T BT g2 I{v) 2 2
2 cosh —

~ v u
FCA: —tan _) ,

412 2

Tr= (6.29

1 u-w
8ﬂ2tanl-(u;v>.
2

In this kernelfcs andfcA are associated with the outermost
long-wavelength modes for the symmetric and antisymmet-
ric sectors, respectively, and may therefore be neglecte

when discussing the inner modes. Takiﬁng, we can
show that the plane-wave functiof(u)=explimu) is an
eigenfunction of'g; the resulting integral for the eigenvalues

can be performed by contour methods and yields

1 © eiwl) 1
=1 dv% = sinfT%(7w). (6.30
tan >

The local wave number of these solutioi®5(x), increases
from the value 4 as one moves away from the midpoint and
diverges at the boundarigg=+1/2). Similar mode func-
tions were obtained ifi30] for the eigenmodes of the re-
|duced density matrix of the free-electron chain. Note that the
symplectic eigenvalues are

T 1
A= 4+4SInh (Ww)—zcotf’(ﬂ'w), (6.33

so the Boltzmann-likes,, factors associated with each
Williamson mode according to Eq2.8) are given bypg
=27w. For largep, this yields an asymptotic expansion of
the entropyE~ e 2™, from which the scaling relation de-
picted in Fig. 17 should then be expected to follow.

We next connect these solutions to the corresponding so-
lutions of the discrete chain. The first thing to note is that in
the continuum approximation, the discrete modes correspond
to averages of the continuum modes over the lattice spacing.
Thus, the diverging oscillatory behavior of the continuum
modes as the block edge is approached holds only up to a
certain distance from the edge in the discrete approximation,
corresponding to the point where the local oscillation wave
number becomes of the order of the cutoff imposed by the
lattice spacing. As one moves towards the edges beyond this
point, the oscillations are washed out in the average and thus
the mode amplitude decays. This is consistent with the fact,
noted in Sec. V, that at the turning points each Williamson
mode shows oscillations of the maximum wave number. The
turning points are therefore fixed by the condition that

ds
dx

{ (6.39

= 7TNb,
X:iXI

here is number of order unity. With the definitiai6.32),
this yields the relation between the turuning point and

1 4o (6.35

Once the turning point is identified as a function of we

can work out the quantization of the modes. For this use the
fact observed from our numerical calculations in Sec. V, that
when the interior modes are modulated by the oscillating

Finally, reverting to the variables, y and taking even-odd factor (-1)'—corresponding to frequency shift by the cutoff
combinations of the plane-wave solutions, we find, as finitefrequency—the modes show a hierarchy in which each mode
wavelength eigenfunctions of the continuum eigenvaluecan be labeled by the number of nodas,N,—m. Writing

problem(6.25), the solutions

the modulated functions like
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07 v

cog mNpx = S,(X)],
1— 42 b 06

(6.36

and similarly for the antisymmetric mode, we demand that
YmodX) shownn nodes between the turning points; in this f

YmodX) = (= 1)il#(X) =

0.5

way we obtain the quantization condition 03
nm 02
TNpX(@) = S, (X(w)) = > (6.37)
o1
The resulting equation foi is best cast in a form that can R
easily be interpreted from the scaling relation of the entropy 0 02 04 os 08 1
(5.4). For this define the dimensionless parameters H
0] _m 6.38 FIG. 18. Comparison between analytical and numerical results
= 77Nb, M= nb’ (6.39 for the scaled central wavelengttas a function of the scaled mode

number, using;=0.45.
wherem=N,-n labels the modes from the outside in ahd

measures the central wavelength of the mode relative to thg
cutoff wavelengthmN,; for large w, the entanglement of the
mode is therefore given by

nce the entanglement is suppressed exponentialky fot ;
since this implies that will be of order 1N,, or smaller, the
approximation (6.41) becomes more accurate for these
) modes adN,— . Thus, discarding terms of order unity in
Np'In E= ?f(,u), (6.39 the logarithm, the eigenvalue equation forcan be cast in
the implicit form
in accordance with Eq5.4). From the quantization condi-

tion (6.37), the functionf(w) is then the solution to the equa- _ mar
. on= . (6.42
tion In w
f 1+ '/1_é’f 2 |n(Nb)|:1_ :|
1—\r1—gf+—|n(%>:ﬂ. (6.40 "N
2 \1-\1-¢f

Next, we can argue that a¢,— o, the term in brackets in
For the outermost modes, corresponding to smakmall f, the denominator of Eq6.42 can be neglected for the cal-
the relation becomes independent/ofo leading order and culation of the entanglement; this term becomes important
reduces to whenN,*~ w<1 in the lower(sincew=1, the approxima-
tion is already warranted in the upper ¢néor the lower
finf=-2pu, (6.41) end, we consider the smallest possible valuapfor m=2;

as mentioned earlier. On the other hand, the fit for the innerdccording to Eq(6.42), this value is of order of 1/IMN, and
most modes is sensitive to the precise valug.oive have IS therefore of an ordeN,/In N, greater than the scale at
found that a value of = 0.45 yields a remarkably good fit to which Eq.(6.4@ deviates frgm linearity. Hence we find the
the numerical dataFig. 18, as well as the turning point @PProximate linear expression far,

location depicted in Fig. 11.

It is worth mentioning that in the present approach, the Op=——,
role of a cutoff frequency for the continuum is not only re- 2 In(Np)
flected in a cutoff of the resulting frequency spectrum of the, - I
reduced density matrix, but also entail$oaalization of the for the range of modes yle!dlng relevant gontr_lbutlons to the
mode functions away from the interface between the bloci€Nt@nglement abl, —c. Using the approximatio=(3) =1
and complement. The condition determining the turning” N B for 8<1, the entanglement of the modes for which

point can only be approximately estimated from the con.n Np>m=2 can then be estimated to be

mm (6.43

tinuum model and therefore fails to account for the exponen- 2m
tial falloff of the amplitude beyond the turning point. The E,=-In <—> (6.44)
method also fails to account for thex~ N,*? scaled width In Np

of the innermost mode functions, which is sensitive to the . . .
falloff details. Consequently, the outermost residual modes yield a contri-

bution of order In InNy, in the same way that the collective
mode behaves for larg,,.

To obtain the leading term in the asymptotic expansion of
To obtain the asymptotic IN, behavior forN,<N, we  the total residual mode entanglement, we note thatNipr
note that the significant contributions to the entropy will >m>In N, the entanglement contribution is suppressed, the

come from modes for whickv is of order unity or smaller, total residual entanglement can be estimated to be

D. Residual mode contribution to the entropy
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dm o tigated in connection with the black-hole entropy “area law”
Er= a8 f dg s(p), (6.45  [14-16. By employing methods of conformal field theory it
070 has been showfil1-13 that in the massless case entangle-
where ment behaves like
:8 -5 ﬂnk (7 1)
S(B)—m-h’](l—e ) (6.46 6 e’ .

and where we evaluate the density of states assuming a line&here e plays the role of the UV cutoff and andc are the
relation atB=w=0 [note that this approximation entails ne- holomorphic and antiholomgrphic central charges_of the con-

glecting terms of ordeo(In In N,,) and lowet. With an inte- ~ formal field theory, withc=c=1 for bosons ana=c=1/2
gration by parts, the entropy can expressed as for fermions. Thus the overall coefficient is given by either
g B 5 1/3 for bosons or 1/6 for fermions. The same type of uni-

_,[dm versal behavior has been recently derived K¥ and

Er= 2( d,(g)fo d'geﬁ— 1 +O(nIn Ny, (6.47 Heisenberg spin-chain mod€]3].

In the present work, we obtained a logarithmic depen-

and from Eq.(6.43), the density of states is given by dence of the entanglemehin N, corresponding as expected
dm  1dm 1 to a bosonic fieldFig. 7). Furthermore, we have seen that
—=——="nN,. (6.49  the logarithmic increase of the entanglement can be under-
dg 2mdeo 7 stood as an increase in the number of relevant contributing

The integral is standard in statistical mechanics and is giveffl0des while the coefficient 1/3 can be obtained from the
by w2/6. Thus we find that a®l,—, the residual mode density of the modes. As in previous results, these modes can
entropy is given by be identified to be in a layer that becomes infinitesimally
narrow in the limit of largeN. However, no attention has so
far been given to the structure of the inner modes. A central
outcome of the present work is that the inclusion of an ultra-
violet cutoff, which is needed for the consistency of the one-
as expected. dimensional field theory, gives rise to a localization of the
highest-frequency modes around the midpoint of the region.
VIl. COMPARISON WITH PREVIOUS RESULTS Although the contribution of these modes to the entangle-
ment is exponentially small, it is plausible that these inner
Smodes play an important role in the persistence of vacuum
entanglement between separated regions as we suggest in the
next section.
A number of results presented in this paper can also be

1
Er= éln N+ O(In In Np), (6.49

with earlier work. Audenaerét al. [8] have studied the en-
tanglement in the circular linear chain model for various
choices of bipartite divisions. In this work, the logarithmic

negativi.ty[?l] hasfp((ajenhuse(rj] asa msasure for entangllemer}telated to previously obtained results for both fermions and
Interestmgby, we hm that the vgln eumann entangiement,,qs in the context of the density matrix renormalization
Seems to be, in the .present problem, a more sensitive quaBfoup(DMRG) [30,32-36. In particular, the factorized ther-

tifier of the connection between entanglement and correlas, ., torm of the reduced density matrices, the shape of the
tions. In Sec. lll we showed that the behavior of Vacuumcorresponding mode functions in the continuum limit, and

correlation functions quantifies three regimes: a weak COUga approximately linear behavior of the frequency spectrum

pling reg.ime cha_racterized_ by short-ranged correlations,_aﬂ)r the outermost modes have been studied extensively in
|nterm§d|ate regime that is reached.when t.he CorrGIat'O'E'nat context. It is possible that the method used in Sec. VI C,
length is of the order of the whole chain, and finally, a Iong-Whereby the cutoff imposed by the lattice spacing is used to

range _correlation regime. T_he transition_ between these restablish the turning points and quantization condition of the
gimes is clearly manifested in the behavior of the von Neu-,

mann entropy(see Figs. 5, 7, and 15but is absent in the mode functions, may prove useful for the DMRG scheme.
behavior of the logarithmic negativity. The difference also
shows up when comparing the dependence of the two mea-
sures on the total chain si2¢ In the particular case where  Previous work on ground-state entanglement in chainlike
N,=N/2 ([8], corollary 1), the logarithmic negativity shows systems has mostly focused on the dependence of the amount
no N dependence. The von Neumann entropy, on the othesf entanglement on parameters such as the block size, the
hand, decreases as a functionMfiike In(N,/N) [see Egs. separation between sites, and the nature of the bipartite split-
(4.8) and (6.2D) and Fig. 9. This dependence oN can be ting. While in the present work we have reproduced several
physically understood as due to the contribution of the colearlier results, as discussed in the previous section, the em-
lective mode to the entanglement, which reduces with inphasis here has been on the study of the spatial entanglement
creasingN. Thus is seems that the logarithmic negativity is structure emerging from the modewise decomposition of the
not sensitive to the contribution of the collective mode. ground-state wave function.

The entanglement of a finite region for a one-dimensional From this analysis, we have identified certain general
field bosonic and fermionic fields has been previously invesproperties of the mode structure and its relation to the en-

VIIl. SUMMARY AND DISCUSSION
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tanglement contribution. A first feature Iscalizationr—a  be obtained not only from the local covariance matribks
definite characteristic distance from the division interface foror Mg, but also from the correlation matrik. This in fact

the entangled modes at either side of the interface, thus eproves to be advantageous if the correlations between modes
tablishing a characteristic distance separating the entangledlandB are significant only for a small number of modes, as
mode functions. This in turn, serves to characterize thén the case of short-range interactions. Assuming again no
strength of the entanglement, which decays exponentiallg-p correlations, the correlation matrix betwe&randB can

with this distance. be expressed in the block-diagonal form

A second feature, which becomes sharper with increasing G 0
coupling strength, is a characteristic wavelength correlated K = Re(,]A.,@:( AB ) (A1)
with the degree of localization of the modes. This correlation 0 Hps

is in fact observed in two guises: on the one hand, it provide _ T _ T
an alternative characterizgtion of the modes in termé3 of thei?\lhereGA.E’_<G1AC1B> and Hag=(papg). Now, from.Eq.(2.1Q
central wavelength, with the innermost modes possessing Hae obtains the relations betwebf, Mg, andK:
shortest wavelength dictated by the lattice spacing; on the ) o1
other hand, the amplitude of each mode is correlated to the (JaMa)+ (JaK) (JeK') = Zl’ (A2)
local oscillation wavelength, with the largest amplitude oc-
curring when a the cutoff wavelength. 1

We have shown that the effect of the interaction strength (JgMp)? + (JgKT)(JAK) = Zl, (A3)

on the shape of the modes and their contribution to entangle-

ment is fundamentally connected with the correlation lengthwhereJ, andJg are the symplectic matrices in teand B

When the coupling is strong enough such as the correlatiogectors, respectively. Substituting in the forif&s13 and
length becomes comparable to the size of the system and thR1), we obtain the relations

system becomes effectively massless, scale-free behavior

emerges for the bulk of the modes. The shape of the mpde HAGA = 1 HABGXBa (A4)
functions can be connected to the scale-free continuum field 4
theory, and both the localization and characteristic wave-
length scale with the size of the block. 1
On a more speculative note, it is possible the results of HeGg = 4 HaeGae- (AS)

this paper may shed new light on several features of mixed-

state entanglement for separated noncomplementary regions Next, defining «7 to be the nonzero eigenvalues of
in vacuum. It has been shown that for arbitrarily separated-HagGag: the local symplectic eigenvalues can also be ex-
regions, vacuum entanglement persists and Bell inequalitiegressed as

are violated[26], with a lower bound of the entanglement 1

that goes like ex@-L2/D?) whereD andL denote the size of N2 ==+ k2 (AB)

the regions and their separation. It was shown that a large 4

probe energy gap is required in order to extract this entangleNow, label the mode functions corresponding to the sym-

ment. This seems to suggest that the localization of the inngjjectic eigenvaluam>% asu;m), Ugm and U<Bm>, U<Bm> for sides

modes and their short-wavelength characteristic are linked ta and B, respectively. According to EqgA4) and (2.19),
the persistence of vacuum entanglement at large distances.tﬁey are solutions to the eigenvalue equations

is possible that this persistence represents an effective shield-

. . . T — 2
ing of the entanglement content of the innermost modes. This HaeChgUn" = — kGus”, (AT)
qualitative argument could help explain the truncation effect . )
that takes place beyond a critical distance in the discrete GABHABU(Am):_KmU(Am) (A8)

version of this problem when the region sizes are kept fixed
and could explain the discrepancy between entanglement and
correlation lengths in other models. HAeGasus" = - k2ud”, (A9)

T — 2
ACKNOWLEDGMENTS GagHasv " = - kol (A10)
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procedure applied to all the above equations shows that
APPENDIX A: MODE MAPPING v o GRgul”, o o« Gpguld”, (A11)

We discuss in this appendix the relationship, in the mode- (m) T (m) (m) (m)
wise bipartite decomposition of Gaussian states, between the U™ o Hagua™s  Un" > Hagvs™ (A12)
modes in each mode pair. This can be done by noting tharhe choice of the proportionality factors involved here is
from the isotropic condition2.10), the mode structure can constrained by the normalization conditions imposed on the
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«m' Gad 1 « cogk.X)
L (y) = — n
m) m) V= : (B5)
uA W UB 2L n w(kn)
T |5 S |4 ~ 1
- L > " hb(x) = — ky)cogk-X). B6
| [ o s | = ()ZLEnw(n)S(n) (B6)
oA m) ' Hag > upm In the limit whenL — <, these expressions can be expressed
in terms of the modified Bessel functions:
e 4h
1 (" . cogkx
i §7x=—1] d B7
FIG. 19. Mode mapping. g (x) 47Tf_w I+ 2 (B7)
mode functions on both sides. A consistent choice preserving 1
the normalization on both sides is :Z—KO(M|X|), (B8)
aa
m_ Lot m  om_o Lo m
vg = Gpga's va = Gagls .  (Al3) 5 1 (”
Km Km h)(x) = o f dkyk2 + u2cogkx) (B9)
TJ
mo_Ltor om mo_ L m
Ug __K_HABUA Y)Y __K_HABUB . (Al4) u
" o _ =- 2—K1(,u|x|). (B10)
The above relations, together with the relatiq2s21), X
yield a systematic procedursummarized in Fig. 19by The asymptotic form of the correlation functions is given
which all the mode functions on both sides corresponding tq,, x<u T by
a given symplectic eigenvalue can be constructed once a "
single-mode function is found. This proves particularly ad- =(0) 1 <ﬂ
vantageous if the number of modes on one side is consider- G700 = 2 In 2 ds (B11)
ably smaller that on the other.
APPENDIX B: DISCRETIZATION OF THE MASSIVE (%) — - PyEr (B12)
CONTINUUM THEORY 7T|X|
s -1
In this appendix we connect our results for the discreteand forx> =, we have
chain with a continuum bosonic theory in one dimension. To () g HiX
this end, consider the Hamiltonian for the one-dimensional 97 — - ol (B13)
! ; : . V2mulX]
massive continuum theory on a circular topology:
1 ~
H=> J dX{m()?+[¢' (0P + p?p(x)%,  (BL) 00 = /5 ‘rx|3e‘“'*‘- (B14)
T
where we assume thatruns from /2 to L and that¢(x The theory at the continuum may be approximated by a
-L/2)=¢(x+L/2), and field configuration and momentum Iinegr chain _ofN sites in a ring _topology, introducing dis-
operators satisfying the commutation relations cretized variablesy, and p,, which up to scale changes
) samples the field and its conjugate momentum field at points
[p(x,0), m(y, )] =i8(x~y). (B2)  x =-L/2+(n/N)L. To obtain a Hamiltonian of the form

The Hamiltonian is diagonalized in terms of normal mode(3-1), we first approximate the field Hamiltonian by replac-
creation (annihilation operators a(k,) [a(k,)] with k, NG JdX—=(L/N)Zy, @' (X)) = (N/L)(dn—¢n-y). Then we
=(2w/L)n, neZ, and such thafa(k,),a(ky)']= 8, The Perform the transformation

fields are then given by N N
1 L | Pxn) = \/EA Yy, 7x) = \/EA”an. (B15)
P(x) = =2, ——=l[ak)e"*+H.c], (B3
VL V2w(ky) It can now be seen that with the choice
[ (N)Z 2} 1/2
m(X) = _,—EE @[a(kn)eiknx— H.cl, (B4) A=]2 L) T (B16)
A% n

we obtain a Hamiltonian of the forrf8.1) with
where w(k) is the usual dispersion relation(k) = u?+k?. E = A (B17)
The continuum field correlation functions can then be ob- 0~
tained, yielding and an effective coupling strength
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1 w2 ~ = [N)?
a(plIN) = ——F—5=1- (—) . (B19) h“(x) = V2 lim (—) 0 (i - (B20)
1+t ( ul ) A N—ee\ L
2\ N In finite massive chains, other useful limits are
The correlation functions in the continuum are character- 1
ized by the length scale 1/ As can be seen from Egs. ﬁm(x)=T§A|im gﬁ,:)xA,\s§|a(M/A), (B21)
\J‘ —00

(B11)«(B14), for separatiorx<<1/u, the theory behaves es-
sentially as massless, while fge>1/u, the correlations de- _ _
cay exponentially. This length scale can then be related to the h™(x) = V2 lim A2 hffi)xA,\fja(”,A) (B22)
correlation length obtained from the infinite harmonic chain A

by the relationua«— N (a)=+2/(1-a). We can then verify  or, equivalently,

that the following relations hold between the discrete and

- H H N ~o 1 H ®
continuum correlation functions: §°(x) = "_Elhm gl )|a:1—(p.x/|)2/21 (B23)
V21—
2
B0 = = lim g™ 00 = 2liml X ) 1 824
g (X)_’_Erym Iniunyla(uLiny (B19) ()= imy)n |a= 1t ?r2- (B24)
AY —00 — 00
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