
Improved simulation of stabilizer circuits

Scott Aaronson*
Computer Science Department, University of California, Berkeley, California 94720, USA

Daniel Gottesman†

Perimeter Institute, Waterloo, Canada N2L 2Y5
(Received 25 June 2004; published 30 November 2004)

The Gottesman-Knill theorem says that a stabilizer circuit—that is, a quantum circuit consisting solely of
controlled-NOT (CNOT), Hadamard, and phase gates—can be simulated efficiently on a classical computer. This
paper improves that theorem in several directions. First, by removing the need for Gaussian elimination, we
make the simulation algorithm much faster at the cost of a factor of 2 increase in the number of bits needed to
represent a state. We have implemented the improved algorithm in a freely available program calledCHP

(CNOT-Hadamard-phase), which can handle thousands of qubits easily. Second, we show that the problem of
simulating stabilizer circuits is complete for the classical complexity class%L, which means that stabilizer
circuits are probably not even universal forclassical computation. Third, we give efficient algorithms for
computing the inner product between two stabilizer states, putting anyn-qubit stabilizer circuit into a “canoni-
cal form” that requires at mostOsn2/ log nd gates, and other useful tasks. Fourth, we extend our simulation
algorithm to circuits acting on mixed states, circuits containing a limited number of nonstabilizer gates, and
circuits acting on general tensor-product initial states but containing only a limited number of measurements.

DOI: 10.1103/PhysRevA.70.052328 PACS number(s): 03.67.Lx, 03.67.Pp, 02.70.2c

I. INTRODUCTION

Among the many difficulties that quantum computer ar-
chitects face, one of them is almost intrinsic to the task at
hand: how do you design and debug circuits that you cannot
even simulate efficiently with existing tools¿ Obviously, if a
quantum computer output the factors of a 3000-digit number,
then you would not need to simulate it to verify its correct-
ness, since multiplying is easier than factoring. But what if
the quantum computer did not work? Ordinarily architects
might debug a computer by adding test conditions, monitor-
ing registers, halting at intermediate steps, and so on. But for
a quantum computer, all of these standard techniques would
probably entail measurements that destroy coherence. Be-
sides, it would be nice to design and debug a quantum com-
puter using classical computer-aided design(CAD) tools,be-
fore trying to implement it.

Quantum architecture is one motivation for studying clas-
sical algorithms to simulate and manipulate quantum cir-
cuits, but it is not the only motivation. Chemists and physi-
cists have long needed to simulate quantum systems, and
they have not had the patience to wait for a quantum com-
puter to be built. Instead, they have developed limited tech-
niques such as the quantum Monte Carlo(QMC) method[1]
for computing properties of certain ground states. More re-
cently, several general-purpose quantum computer simulators
have appeared, including Oemer’s quantum programming
languageQCL [2], the QUIDD (quantum information decision
diagrams) package of Viamonteset al. [3,4], and the parallel

quantum computer simulator of Obenland and Despain[5].
The drawback of such simulators, of course, is that their
running time grows exponentially in the number of qubits.
With a general-purpose package, then, simulating hundreds
or thousands of qubits is out of the question.

A different direction of research has sought to find non-
trivial classes of quantum circuits thatcan be simulated ef-
ficiently on a classical computer. For example, Vidal[6]
showed that, so long as a quantum computer’s state at every
time step has polynomially bounded entanglement under a
measure related to Schmidt rank, the computer can be simu-
lated classically in polynomial time. Notably, in a follow-up
paper[7], Vidal actually implemented his algorithm and used
it to simulate one-dimensional quantum spin chains consist-
ing of hundreds of spins. A second example is a result of
Valiant [8], which reduces the problem of simulating a re-
stricted class of quantum computers to that of computing the
Pfaffian of a matrix. The latter is known to be solvable in
classical polynomial time. However, Valiant’s model has thus
far not found any application, although Terhal and DiVin-
cenzo have shown that it applies to a model of noninteracting
fermions[9].

There is one class of quantum circuits that is known to be
simulable in classical polynomial time, that does not impose
any limit on entanglement, and that arises naturally in sev-
eral applications. This is the class ofstabilizer circuitsintro-
duced to analyze quantum error-correcting codes[10–13]. A
stabilizer circuit is simply a quantum circuit in which every
gate is a controlled-NOT (CNOT), Hadamard, phase, or one-
qubit measurement gate(Fig. 1). We call a stabilizer circuit
unitary if it does not contain measurement gates. Unitary
stabilizer circuits are also known as Clifford group circuits.

Stabilizer circuits will almost certainly be used to perform
the encoding and decoding steps for a quantum error-
correcting code, and they play an important role in fault-

*Present address: Institute for Advanced Study, Princeton, NY
08540, USA. Electronic address: aaronson@ias.edu

†Electronic address: dgottesman@perimeterinstitute.ca

PHYSICAL REVIEW A 70, 052328(2004)

1050-2947/2004/70(5)/052328(14)/$22.50 ©2004 The American Physical Society70 052328-1

tolerant circuits. However, it was soon realized that thesta-
bilizer formalismused to describe these circuits has many
other applications. The stabilizer formalism is rich enough to
encompass most of the “paradoxes” of quantum mechanics,
including the Greenberger-Horne-Zeilinger(GHZ) experi-
ment[14], dense quantum coding[15], and quantum telepor-
tation [16]. On the other hand, it is not so rich as to preclude
efficient simulation by a classical computer. That conclusion,
sometimes known as theGottesman-Knill theorem, is the
starting point for the contributions of this paper.

Our results are as follows. In Sec. III we give atableau
algorithm for simulating stabilizer circuits that is faster than
the algorithm directly implied by the Gottesman-Knill theo-
rem. By removing the need for Gaussian elimination, this
algorithm enables measurements to be simulated inOsn2d
steps instead ofOsn3d (wheren is the number of qubits), at a
cost of a factor of 2 increase in the number of bits needed to
represent a quantum state.

Section IV describesCHP, a high-performance stabilizer
circuit simulator that implements our tableau algorithm. We
present the results of an experiment designed to test how
CHP’s performance is affected by properties of the stabilizer
circuit being simulated.CHP has already found application in
simulations of quantum fault-tolerance circuits[39].

Section V proves that the problem of simulating stabilizer
circuits is complete for the classical complexity class%L.
Informally, this means that any stabilizer circuit can be simu-
lated usingCNOT gates alone; the availability of Hadamard
and phase gates provides at most a polynomial advantage.
This result removes some of the mystery about the
Gottesman-Knill theorem by showing that stabilizer circuits
are unlikely to be capable even of universal classical com-
putation.

In Sec. VI we prove acanonical form theoremthat we
expect will have many applications to the study of stabilizer
circuits. The theorem says that given any stabilizer circuit,
there exists an equivalent stabilizer circuit that applies a
round of Hadamard gates, followed by a round of phase
gates, followed by a round ofCNOT gates, and so on in the
sequence H-C-P-C-P-C-H-P-C-P-C(where H, C, P stand for
Hadamard,CNOT, phase, respectively). One immediate cor-
ollary, building on a result by Patel, Markov, and Hayes[17]
and improving one by Dehaene and De Moor[18], is that
any stabilizer circuit onn qubits has an equivalent circuit
with only Osn2/ log nd gates.

Finally, Sec. VII extends our simulation algorithm to situ-
ations beyond the usual one considered in the Gottesman-

Knill theorem. For example, we show how to handle mixed
states,without keeping track of pure states from which the
mixed states are obtainable by discarding qubits. We also
show how to simulate circuits involving a small number of
nonstabilizer gates; or involving arbitrary tensor-product ini-
tial states, but only a small number of measurements. Both of
these latter two simulations take time that is polynomial in
the number of qubits, but exponential in the number of non-
stabilizer gates or measurements. Presumably this exponen-
tial dependence is necessary, since otherwise we could simu-
late arbitrary quantum computations in classical
subexponential time.

We conclude in Sec. VIII with some directions for further
research.

II. PRELIMINARIES

We assume familiarity with quantum computing. This sec-
tion provides a crash course on the stabilizer formalism, con-
fining attention to those aspects we will need. See Sec.
10.5.1 of Nielsen and Chuang[19] for more details.

Throughout this paper we will use the following four
Pauli matrices:

I = S1 0

0 1
D, X = S0 1

1 0
D ,

Y = S0 − i

i 0
D, Z = S1 0

0 − 1
D .

These matrices satisfy the following identities:

X2 = Y2 = Z2 = I ,

XY= iZ, YZ= iX, ZX= iY,

YX= − iZ, ZY= − iX, XZ= − iY.

In particular, every two Pauli matrices either commute or
anticommute. The rule for whether to include a minus sign is
the same as that for quaternions, if we replacesI ,X,Y,Zd by
s1,i , j ,kd.

We define the groupPn of n-qubit Pauli operators to
consist of all tensor products ofn Pauli matrices, together
with a multiplicative factor of ±1 or ±i (so the total number
of operators isuPnu=4n+1). We omit tensor-product signs for
brevity; thus −YZZI should be read −Y^ Z^ Z^ I (we will
use 1 to represent the Pauli group operation). Given two
Pauli operatorsP= ikP1¯Pn and Q= i lQ1¯Qn, it is imme-
diate thatP commutes withQ if and only if the number of
indices j P h1, . . . ,nj such thatPj anticommutes withQj is
even; otherwiseP anticommutes withQ. Also, for all P
PPn, if P has a phase of ±1 thenP+P= I¯ I, whereas ifP
has a phase of ±i thenP+P=−I¯ I.

Given a pure quantum stateucl, we say a unitary matrixU
stabilizesucl if ucl is an eigenvector ofU with eigenvalue 1,
or equivalently ifUucl= ucl where we do not ignore global
phase. To illustrate, the following table lists the Pauli matri-
ces and their opposites, together with the unique one-qubit
states that they stabilize:

FIG. 1. The four types of gate allowed in the stabilizer
formalism.

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-2

X: u0l + u1l, − X: u0l − u1l,

Y: u0l + i u1l, − Y: u0l − i u1l,

Z: u0l, − Z: u1l.

The identity matrixI stabilizes all states, whereas −I stabi-
lizes no states.

The key idea of the stabilizer formalism is to represent a
quantum stateucl, not by a vector of amplitudes, but by a
stabilizer group, consisting of unitary matrices that stabilize
ucl. Notice that ifU andV both stabilizeucl then so doUV
andU−1, and thus the set Stabsucld of stabilizers ofucl is a
group. Also, it is not hard to show that ifuclÞ uwl then
StabsucldÞStabsuwld. But why does this strange representa-
tion buy us anything? To write down generators for Stabsucld
(even approximately) still takes exponentially many bits in
general by an information-theoretic argument. Indeed stabi-
lizers seemworsethan amplitude vectors, since they require
about 22n parameters to specify instead of about 2n.

Remarkably, though, a large and interesting class of quan-
tum states can be specified uniquely by much smaller stabi-
lizer groups—specifically, the intersection of Stabsucld with
the Pauli group[11–13]. This class of states, which arises in
quantum error correction and many other settings, is charac-
terized by the following theorem.

Theorem 1. Given ann-qubit stateucl, the following are
equivalent.

(i) ucl can be obtained fromu0l^n by CNOT, Hadamard,
and phase gates only.

(ii) ucl can be obtained fromu0l^n by CNOT, Hadamard,
phase, and measurement gates only.

(iii) ucl is stabilized by exactly 2n Pauli operators.
(iv) ucl is uniquely determined bySsucld=StabsucldùPn,

or the group of Pauli operators that stabilizeucl.
Because of Theorem 1, we call any circuit consisting en-

tirely of CNOT, Hadamard, phase, and measurement gates a
stabilizer circuit, and any state obtainable by applying a sta-
bilizer circuit to u0l^n a stabilizer state. As a warmup to our
later results, the following proposition counts the number of
stabilizer states.

Proposition 1. Let N be the number of pure stabilizer
states onn qubits. Then

N = 2np
k=0

n−1

s2n−k + 1d = 2f1/2+os1dgn2
.

Proof. We haveN=G/A, where G is the total number of
generating sets andA is the number of equivalent generating
sets for a given stabilizerS. To find G, note that there are
4n−1 choices for the first generatorM1 (ignoring overall
sign), because it can be anything but the identity. The second
generator must commute withM1 and cannot beI or M1, so
there are 4n/2−2 choices forM2. Similarly, M3 must com-
mute withM1 andM2, but cannot be in the group generated
by them, so there are 4n/4−4 choices for it, and so on.
Hence, including overall signs,

G = 2np
k=0

n−1 S4n

2k − 2kD = 2nsn+1d/2p
k=0

n−1

s4n−k − 1d.

Similarly, to findA, note that givenS, there are 2n−1 choices
for M1, 2n−2 choices forM2, 2n−4 choices forM3, and so
on. Thus

A = p
k=0

n−1

s2n − 2kd = 2nsn−1d/2p
k=0

n−1

s2n−k − 1d.

Therefore

N =
G

A
= 2np

k=0

n−1 S4n−k − 1

2n−k − 1
D = 2np

k=0

n−1

s2n−k + 1d.

j

III. EFFICIENT SIMULATION OF STABILIZER
CIRCUITS

Theorem 1 immediately suggests a way to simulate stabi-
lizer circuits efficiently on a classical computer. A well-
known fact from group theory says that any finite groupG
has a generating set of size at most log2uGu. So if ucl is a
stabilizer state onn qubits, then the groupSsucld of Pauli
operators that stabilizeucl has a generating set of sizen
=log2 2n. Each generator takes 2n+1 bits to specify: 2 bits
for each of then Pauli matrices, and 1 bit for the phase.1 So
the total number of bits needed to specifyucl is ns2n+1d.
What Gottesman and Knill showed, furthermore, is that these
bits can be updated in polynomial time after aCNOT, Had-
amard, phase, or measurement gate is applied toucl. The
updates corresponding to unitary gates are very efficient, re-
quiring only Osnd time for each gate.

However, the updates corresponding to measurements are
not so efficient. We can decide inOsnd time whether a mea-
surement of qubita will yield a deterministic or random
outcome. If the outcome is random, then updating the state
after the measurement takesOsn2d time, but if the outcome is
deterministic, then deciding whether the outcome isu0l or u1l
seems to require inverting ann3n matrix, which takes
Osn2.376d time in theory[20] but ordern3 time in practice.
What thatn3 complexity means is that simulations of, say,
2000-qubit systems would already be prohibitive on a desk-
top PC, given that measurements are frequent.

This section describes a simulation algorithm by which
both deterministic and random measurements can be per-
formed inOsn2d time. The cost is a factor of 2 increase in the
number of bits needed to specify a state. For, in addition to
the n stabilizer generators, we now storen “destabilizer”
generators, which are Pauli operators that together with the
stabilizer generators generate the full Pauli groupPn. So the
number of bits needed is 2ns2n+1d<4n2.

The algorithm represents a state by atableauconsisting of

1If PPSsucld, thenP can only have a phase of ±1, not ±i; for in
the latter caseP2=−I¯ I would be inSsucld, but we saw that −I
does not stabilize anything.

IMPROVED SIMULATION OF STABILIZER CIRCUITS PHYSICAL REVIEW A70, 052328(2004)

052328-3

binary variablesxij , zij for all i P h1, . . . ,2nj, j P h1, . . . ,nj,
and r i for all i P h1, . . . ,2nj:2

Rows 1 ton of the tableau represent the destabilizer genera-
tors R1, . . . ,Rn, and rowsn+1 to 2n represent the stabilizer
generatorsRn+1, . . . ,R2n. If Ri = ±P1¯Pn, then bitsxij , zij
determine thej th Pauli matrixPj: 00 meansI, 01 meansX,
01 meansY, and 10 meansZ. Finally, r i is 1 if Ri has nega-
tive phase and 0 ifr i has positive phase. As an example, the
2-qubit stateu00l is stabilized by the Pauli operators +ZI and
+IZ, so a possible tableau foru00l is

Indeed, we will take the obvious generalization of the above
“identity matrix” to be the standard initial tableau.

The algorithm uses a subroutine called rowsumsh, id,
which sets generatorh equal toi +h. Its purpose is to keep
track, in particular, of the phase bitrh, including all the fac-
tors of i that appear when multiplying Pauli matrices. The
subroutine is implemented as follows.

rowsumsh, id. Let gsx1,z1,x2,z2d be a function that takes
4 bits as input, and that returns the exponent to whichi is
raised (either 0, 1, or −1) when the Pauli matrices repre-
sented byx1z1 and x2z2 are multiplied. More explicitly, if
x1=z1=0 theng=0; if x1=z1=1 theng=z2−x2; if x1=1 and
z1=0 then g=z2s2x2−1d; and if x1=0 and z1=1 then g
=x2s1−2z2d. Then setrhª0 if

2rh + 2r i + o
j=1

n

gsxij ,zij ,xhj,zhjd ; 0 smod 4d,

and setrhª1 if the sum is congruent to 2 mod4(it will never
be congruent to 1 or 3). Next, for all j P h1, . . . ,nj, set xhj

ªxij % xhj and setzhjªzij % zhj (here and throughout,% de-
notes exclusive-OR).

We now give the algorithm. It will be convenient to add
an additionals2n+1dst row for “scratch space.” The initial
stateu0l^n hasr i =0 for all i P h1, . . . ,2n+1j, andxij =di j and
zij =dsi−nd j for all i P h1, . . . ,2n+1j and j P h1, . . . ,nj, where

di j is 1 if i = j and 0 otherwise. The algorithm proceeds
through the gates in order; for each one it does one of the
following depending on the gate type.

CNOT gate from control a to target b. For all i
P h1, . . . ,2nj, set r iª r i % xiazibsxib % zia % 1d, xibªxib % xia,
andziaªzia % zib.

Hadamard gate on qubit a. For all i P h1, . . . ,2nj, set r i

ª r i % xiazia and swapxia with zia.
Phase gate on qubit a. For all i P h1, . . . ,2nj, set r iª r i

% xiazia and then setziaªzia % xia.
Measurement gate of qubit a in standard basis. First

check whether there exists apP hn+1, . . . ,2nj such that
xpa=1.

Case I. Such ap exists(if more than one exists, then letp
be the smallest). In this case the measurement outcome is
random, so the state needs to be updated. This is done as
follows. First call rowsumsi ,pd for all i P h1, . . . ,2nj such
that i Þp and xia=1. Second, set entire thesp−ndth row
equal to thepth row. Third, set thepth row to be identically
0, except thatrp is 0 or 1 with equal probability, andzpa=1.
Finally, returnrp as the measurement outcome.

Case II. Such ap does not exist. In this case the outcome
is determinate, so measuring the state will not change it; the
only task is to determine whether 0 or 1 is observed. This is
done as follows. First set thes2n+1dst row to be identically
0. Second, call rowsums2n+1,i +nd for all i P h1, . . . ,nj such
thatxia=1. Finally, returnr2n+1 as the measurement outcome.

Once we interpret thexij , zij , and r i bits for i ùn+1 as
representing generators ofSsucld, and rowsum as represent-
ing the group operation inPn, the correctness of theCNOT,
Hadamard, phase, and random measurement procedures fol-
lows immediately from previous analyses by Gottesman
[13]. It remains only to explain why the determinate mea-
surement procedure is correct. Observe thatRh commutes
with Ri if the symplectic inner product

Rh ·Ri = xh1zi1 % ¯ % xhnzin % xi1zh1 % ¯ % xinzhn

equals 0, and anticommutes withRi if Rh·Ri =1. Using that
fact it is not hard to show the following.

Proposition 2. The following are invariants of the tableau
algorithm.

(i) Rn+1, . . . ,R2n generateSsucld, andR1, . . . ,R2n generate
Pn.

(ii) R1, . . . ,Rn commute.
(iii) For all hP h1, . . . ,nj, Rh anticommutes withRh+n.
(iv) For all i, hP h1, . . . ,nj such thati Þh, Ri commutes

with Rh+n.
Now suppose that a measurement of qubita yields a de-

terminate outcome. Then theZa operator must commute with
all elements of the stabilizer, so

o
h=1

n

chRh+n = ± Za

for a unique choice ofc1, . . . ,cnP h0,1j. Our goal is to de-
termine thech’s, since then by summing the appropriate
Rh+n’s we can learn whether the phase representing the out-

2Dehaene and De Moor[18] came up with something like this
tableau representation independently, though they did not use it to
simulate measurements inOsn2d time.

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-4

come is positive or negative. Notice that for alli
P h1, . . . ,nj,

ci ; o
h=1

n

chsRi ·Rh+nd ; Ri · o
h=1

n

chRh+n ; Ri ·Za smod 2d

by Proposition 2. Therefore by checking whetherRi anticom-
mutes withZa—which it does if and only ifxia=1—we learn
whetherci =1 and thus whether rowsums2n+1,i +nd needs to
be called.

We end this section by explaining how to compute the
inner productbetween two stabilizer statesucl anduwl, given
their full tableaus. The inner product is 0 if the stabilizers
contain the same Pauli operator with opposite signs. Other-
wise it equals 2−s/2, wheres is the minimum, over all sets of
generatorshG1, . . . ,Gnj for Stab sucld and hH1, . . . ,Hnj for
Stab suwld, of the number ofi for which Gi ÞHi. For ex-
ample,kXX,ZZl andkZI ,IZl have inner product 1/Î2, since
kZI ,IZl=kZI ,ZZl. The proof is easy: it suffices to observe
that neither the inner product nors is affected if we trans-
form ucl and uwl to Uucl and Uuwl, respectively, for some

unitaryU such thatUucl= u0l^n has the trivial stabilizer. This
same observation yields an algorithm to compute the inner
product: first transform the tableau ofucl to that of Uucl
= u0l^n using Theorem 3 below; then perform Gaussian
elimination on the tableau ofUuwl to obtains. Unfortunately,
this algorithm takes ordern3 steps.

IV. IMPLEMENTATION AND EXPERIMENTS

We have implemented the tableau algorithm of Sec. III in
a C program calledCHP (CNOT-Hadamard-phase), which is
available for download.3

CHP takes as input a program in a
simple “quantum assembly language,” consisting of four in-
structions:c a b (apply CNOT gate from controla to target
b), h a (apply Hadamard gate toa), p a (apply phase gate to
a), andma (measurea in the standard basis, output the re-
sult, and update the state accordingly). Here a and b are
nonnegative integers indexing qubits; the maximuma or b
that occurs in any instruction is assumed to ben−1, wheren
is the number of qubits. As an example, the following pro-
gram demonstrates the famous quantum teleportation proto-
col of Bennettet al. [16]:

Hh 1

c 1 2
J EPR pair is preparedsqubit 1 is Alice’s half; qubit 2 is Bob’s halfd

5
c 0 1

h 0

m 0

m 1
6 Alice interacts qubit 0sthe state to be teleportedd with her half of the EPR pair

Hc 0 3

c 1 4
J Alice sends 2 classical bits to Bob

5
c 4 2

h 2

c 3 2

h 2
6 Bob uses the bits from Alice to recover the teleported state.

We also have availableCHPprograms that demonstrate the
Bennett-Wiesner dense quantum coding protocol[15], the
GHZ experiment[14], Simon’s algorithm[21], and the Shor
9-qubit quantum error-correcting code[22].

Our main design goal forCHP was high performance with
a large number of qubits and frequent measurements. The
only reason to useCHP instead of a general-purpose quantum
computer simulator such asQUIDD [3] or QCL [2] is perfor-
mance, so we wanted to leverage that advantage and make
thousands of qubits easily simulable rather than just hun-
dreds. Also, the results of Sec. V suggest that classical post-
processing is unavoidable for stabilizer circuits, since stabi-

lizer circuits are not even universal for classical computation.
So if we want to simulate(for example) Simon’s algorithm,
then one measurement is needed for each bit of the first
register.CHP’s execution time will be dominated by these
measurements, since as discussed in Sec. III each unitary
gate takes onlyOsnd time to simulate.

Our experimental results, summarized in Fig. 2, show that
CHP makes practical the simulation of arbitrary stabilizer cir-
cuits on up to about 3000 qubits. Since the number of bits

3At www.cs.berkeley.edu/;aaronson/chp.html

IMPROVED SIMULATION OF STABILIZER CIRCUITS PHYSICAL REVIEW A70, 052328(2004)

052328-5

needed to representn qubits grows quadratically inn, the
main limitation is available memory. On a machine with
256 Mbytes of random access memory(RAM), CHP can
handle up to about 20 000 qubits before virtual memory is
needed, in which case thrashing makes its performance in-
tolerable. The original version ofCHP required,8n2 bits for
memory; we were able to reduce this to,4n2 bits, enabling
a 41% increase in the number of qubits for a fixed memory
size. More trivially, we obtained an eightfold improvement in
memory by storing 8 bits to each byte instead of 1. Not only
did that change increase the number of storable qubits by
183%, but it also madeCHP about 50% faster—presumably
because(1) the rowsum subroutine now needed to exclusive-
OR only 1/8 as many bytes, and(2) the memory penalty was
reduced. Storing the bits in 32-bit words yielded a further
10% performance gain, presumably because of(1) rather
than (2) (since even with byte addressing, a whole memory
line is loaded into the cache on a cache miss).

As expected, the experimentally measured execution time
per unitary gate grows linearly inn, whereas the time per
measurement grows somewhere between linearly and qua-
dratically, depending on the states being measured. Thus the
time needed for measurements generally dominates execu-
tion time. So the key question is this: what properties of a
circuit determine whether the time per measurement is linear,
quadratic, or somewhere in between? To investigate this
question we performed the following experiment.

We randomly generated stabilizer circuits onn qubits, for
n ranging from 200 to 3200 in increments of 200. For eachn,
we used the following distribution over circuits: Fix a param-
eter b.0; then choosebbn log2nc random unitary gates: a
CNOT gate from controla to targetb, a Hadamard gate on
qubit a, or a phase gate on qubita, each with probability
1/3, wherea and b are drawn uniformly at random from
h1, . . . ,nj subject toaÞb. Then measure qubita for each
aP h1, . . . ,nj in sequence.

We simulated the resulting circuits inCHP. For each cir-
cuit, we counted the number of seconds needed for alln
measurement steps(ignoring the time for unitary gates), then
divided byn to obtain the number of seconds per measure-

ment. We repeated the whole procedure forb ranging from
0.6 to 1.2 in increments of 0.1.

There were several reasons for placing measurements at
the end of a circuit rather than interspersing them with uni-
tary gates. First, doing so models how many quantum algo-
rithms actually work(apply unitary gates, then measure, then
perform classical postprocessing); second, it allowed us to
ignore the effect of measurements on subsequent computa-
tion; third, it “standardized” the measurement stage, making
comparisons between different circuits more meaningful; and
fourth, it made simulation harder by increasing the propen-
sity for the measurements to be nontrivially correlated.

The decision to make the number of unitary gates propor-
tional to n logn was based on the following heuristic argu-
ment. The time needed to simulate a measurement is deter-
mined by how many times the rowsum procedure is called,
which in turn is determined by how manyi ’s there are such
that xia=1 (wherea is the qubit being measured). Initially
xia=1 if and only if a= i, so a measurement takesOsnd time.
For a random state, by contrast, the expected number ofi ’s
such thatxia=1 is n by symmetry, so a measurement takes
ordern2 time. In general, the more 1’s there are in the tab-
leau, the longer measurements take. But where does the tran-
sition from linear to quadratic time occur, and how sharp is
it?

Considern people, each of whom initially knows one se-
cret(with no two people knowing the same secret). Each day,
two people chosen uniformly at random meet and exchange
all the secrets they know. What is the expected number of
days until everyone knows everyone else’s secrets? Intu-
itively, the answer isQsn lognd, because any given person
has to waitQsnd days between meetings, and at each meet-
ing, the number of secrets he knows approximately doubles
(or toward the end, the number of secrets he does not know
is approximately halved). Replacing people by qubits and
meetings byCNOT gates, one can see why a “phase transi-
tion” from a sparse to a dense tableau might occur after
Qsn lognd random unitary gates are applied. However, this
argument does not pin down the proportionality constantb,
so that is what we varied in the experiment.

The results of the experiment are presented in Fig. 2.
When b=0.6, the time per measurement appears to grow
roughly linearly inn, whereas whenb=1.2(meaning that the
number of unitary gates has only doubled), the time per mea-
surement appears to grow roughly quadratically, so that run-
ning the simulations took 4 h of computing time.4 Thus, Fig.
2 gives striking evidence for a “phase transition” in simula-
tion time, as increasing the number of unitary gates by only
a constant factor shifts us from a regime of simple states that
are easy to measure, to a regime of complicated states that
are hard to measure. This result demonstrates thatCHP’s per-
formance depends strongly on the circuit being simulated.
Without knowing what sort of tableaus a circuit will produce,
all we can say is that the time per measurement will be

4Based on our heuristic analysis, we conjecture that for interme-
diateb, the time per measurement grows asnc for some 1,c,2.
However, we do not have enough data to confirm or refute this
conjecture.

FIG. 2. Average time needed to simulate a measurement after
applyingbn log2n unitary gates ton qubits, on a 650 MHz Pentium
III with 256 Mbytes RAM.

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-6

somewhere between linear and quadratic inn.

V. COMPLEXITY OF SIMULATING STABILIZER
CIRCUITS

The Gottesman-Knill theorem shows that stabilizer cir-
cuits are not universal for quantum computation, unless
quantum computers can be simulated efficiently by classical
ones. To a computer scientist, this theorem immediately
raises a question: wheredo stabilizer circuits sit in the hier-
archy of computational complexity theory? In this section we
resolve that question, by proving that the problem of simu-
lating stabilizer circuits is complete for a classical complex-
ity class known as%L (pronounced “parity-L”).5 The usual
definition of %L is as the class of all problems that are solv-
able by a nondeterministic logarithmic-space Turing ma-
chine, that accepts if and only if the total number of accept-
ing paths is odd. But there is an alternate definition that is
probably more intuitive to non-computer-scientists. This is
that %L is the class of problems that reduce to simulating a
polynomial-sizeCNOT circuit, i.e., a circuit composed en-
tirely of NOT and CNOT gates, acting on the initial state
u0¯0l. (It is easy to show that the two definitions are
equivalent, but this would require us first to explain what the
usual definition means.)

From the second definition, it is clear that%L#P; in
other words, any problem reducible to simulatingCNOT cir-
cuits is also solvable in polynomial time on a classical com-
puter. But this raises a question: what do we mean by “re-
ducible”? ProblemA is reducible to problemB is any
instance of problemA can be transformed into an instance of
problemB; this means that problemB is “harder” than prob-
lem A in the sense that the ability to answer an arbitrary
instance of problemB implies the ability to answer an arbi-
trary instance of problemA (but not necessarily vice versa).

We must, however, insist that the reduction transforming
instances of problemA into instances of problemB not be
too difficult to perform. Otherwise, we could reduce hard
problems to easy ones by doing all the difficult work in the
reduction itself. In the case of%L, we cannotmean “reduc-
ible in polynomial time,” which is a common restriction,
since then the reduction would be at least as powerful as the
problem it reduces to. Instead we require the reduction to be
performed in the complexity classL, or logarithmic space—
that is, by a Turing machineM that is given a read-only input
of sizen, and a write-only output tape, but onlyOslog nd bits
of read/write memory. The reduction works as follows: first
M specifies aCNOT circuit on its output tape; then an
“oracle” tells M the circuit’s output(which we can take to
be, say, the value of the first qubit after the circuit is applied);
thenM specifies anotherCNOT circuit on its output tape; and
so on. A useful result of Hertrampf, Reith, and Vollmer[24]
says that this seemingly powerful kind of reduction, in which
M can make multiple calls to theCNOT oracle, is actually no
more powerful than the kind with only one oracle call.(In

complexity language, what[24] showed is that%L=L%L:
any problem inL with %L oracle is also in%L itself.)

It is conjectured thatLÞ % L; in other words, that an
oracle for simulatingCNOT circuits would let anL machine
compute more functions than it could otherwise. Intuitively,
this is because writing down the intermediate states of such a
circuit requires more than a logarithmic number of read/write
bits. Indeed,%L contains some surprisingly “hard” prob-
lems, such as inverting matrices overGF2 [23]. On the other
hand, it is also conjectured that%LÞP, meaning that even
with an oracle for simulatingCNOT circuits, anL machine
could not simulate more general circuits withAND and OR

gates. As usual in complexity theory, neither conjecture has
been proved.

Now define the Gottesman-Knill problem as follows. We
are given a stabilizer circuitC as a sequence of gates of the
form CNOT a→b, Hadamarda, phasea, or measurea, where
a, bP h1, . . . ,nj are indices of qubits. The problem is to de-
cide whether qubit 1 will beu1l with certainty afterC is
applied to the initial stateu0l^n. (If not, then qubit 1 will be
u1l with probability either 1/2 or 0.)

Since stabilizer circuits are a generalization ofCNOT cir-
cuits, it is obvious that the Gottesman-Knill problem is
%L-hard (i.e., any %L problem can be reduced to it). Our
result says that the Gottesman-Knill problem isin %L. Intu-
itively, this means that any stabilizer circuit can be simulated
efficiently usingCNOT gates alone—the additional availabil-
ity of Hadamard and phase gates gives stabilizer circuits at
most a polynomial advantage. In our view, this surprising
fact helps to explain the Gottesman-Knill theorem, by pro-
viding strong evidence that stabilizer circuits are not even
universal for classical computation(assuming, of course, that
classical postprocessing is forbidden).

Theorem 2. Gottesman-Knill problemis in %L.
Proof. We will show how to solve the Gottesman-Knill

problem using a logarithmic-space machineM with an oracle
for simulating CNOT circuits. By the result of Hertrampf,
Reith, and Vollmer[24] described above, this will suffice to
prove the theorem.

By the principle of deferred measurement, we can assume
that the stabilizer circuitC has only a single measurement
gate at the end(say of qubit 1), with all other measurements
replaced byCNOT gates into ancilla qubits. In the tableau
algorithm of Sec. III, letxij

std, zij
std, r i

std be the values of the
variablesxij , zij , r i after t gates ofC have been applied. Then
M will simulate C by computing these values. The first task
of M is to decide whether the measurement has a determinate
outcome—or, equivalently, whetherxi1

sTd=0 for every i P hn
+1, . . . ,2nj, whereT is the number of unitary gates. Observe
that in theCNOT, Hadamard, and phase procedures, every
update to anxij or zij variable replaces it by the sum modulo
2 of one or two otherxij or zij variables. Also, iterating over-
all all tPh0, . . . ,Tj and iPh1, . . . ,2nj takes onlyOslog nd
bits of memory. Therefore, despite its memory restriction,M
can easily write on its output tape a description of aCNOT

circuit that simulates the tableau algorithm using 4n2 bits
(the r i’s being omitted), and that returnsxi1

sTd for any desired
i. Then to decide whether the measurement outcome is de-
terminate,M simply iterates over alli from n+1 to 2n.

5See www.complexityzoo.com for definitions of%L and several
hundred other complexity classes.

IMPROVED SIMULATION OF STABILIZER CIRCUITS PHYSICAL REVIEW A70, 052328(2004)

052328-7

The hard part is to decide whetheru0l or u1l is measured
in case the measurement outcomeis determinate, for this
problem involves ther i variables, which do not evolve in a
linear way as thexij ’s and zij ’s do. Even worse, it involves
the complicated-looking and nonlinear rowsum procedure.
Fortunately, though, it turns out that the measurement out-
come r2n+1

sT+1d can be computed by keeping track of a single
complex numbera. Thisa is a product of phases of the form
±1 or ±i, and therefore takes only 2 bits to specify. Further-
more, although the “obvious” ways to computea use more
than Oslog nd bits of memory,M can get around that by
making liberal use of the oracle.

First M computes whatr2n+1
sT+1d would be if theCNOT, Had-

amard, and phase procedures did not modify ther i’s. Let P
be a Pauli matrix with a phase of ±1 or ±i, which therefore
takes 4 bits to specify. Also, letPij

sTd be the Pauli matrix
represented by the bitsxij

sTd, zij
sTd in the usual way:I =00, X

=10, Y=11, Z=01. Then the procedure is as follows.
aª1
for jª1 to n

PªI
for iªn+1 to 2n

ask oracle forxsi−nd1
sTd , xij

sTd, zij
sTd

if xsi−nd1
sTd =1 thenPªPij

sTdP

next i
multiply a by the phase ofP (±1 or ±i)

next j
The “answer” is 1 ifa=−1 and 0 ifa=1 (note thata will

never be ±i at the end). However,M also needs to account
for the r i’s, as follows.

for iªn+1 to 2n
ask oracle forxsi−nd1

sTd

if xsi−nd1
sTd =1

for tª0 to T−1
if st+1dst gate is a Hadamard or phase gate ona

ask oracle forxia
std, zia

std

if xia
stdzia

std=1 thenaª−a
end if
if st+1dst gate is aCNOT gate froma to b

ask oracle forxia
std, zia

std, xib
std, zib

std

if xia
stdzib

std sxib
std

% zia
std

% 1d=1 thenaª−a
end if

next t
end if

next i
The measurement outcomer2n+1

sT+1d is then 1 ifa=−1 and 0
if a=1. As described above, the machineM needs only
Oslog nd bits to keep track of the loop indicesi, j , t, and
Os1d additional bits to keep track of other variables. Its cor-
rectness follows straightforwardly from the correctness of
the tableau algorithm. j

For a problem to be%L-complete simply means that it is
%L-hardand in %L. Thus, a corollary of Theorem 2 is that
the Gottesman-Knill problem is%L-complete.

VI. CANONICAL FORM

Having studied the simulation of stabilizer circuits, in this
section we turn our attention to manipulating those circuits.

This task is of direct relevance to quantum computer archi-
tecture: because the effects of decoherence build up over
time, it is imperative(even more so than for classical cir-
cuits) to minimize the number of gates as well as wires and
other resources. Even if fault-tolerant techniques will even-
tually be used to tame decoherence, there remains the boot-
strapping problem of building the fault-tolerance hardware.
In that regard we should point out that fault-tolerance hard-
ware is likely to consist mainly ofCNOT, Hadamard, and
phase gates, since the known fault-tolerant constructions(for
example, that of Aharonov and Ben-Or[25]) are based on
stabilizer codes.

Although there has been some previous work on synthe-
sizing CNOT circuits [17,26,27] and general classical revers-
ible circuits [28,29], to our knowledge there has not been
work on synthesizing stabilizer circuits. In this section we
prove acanonical form theoremthat is extremely useful for
stabilizer circuit synthesis. The theorem says that given any
circuit consisting ofCNOT, Hadamard, and phase gates, there
exists an equivalent circuit that applies a round of Hadamard
gates only, then a round ofCNOT gates only, and so on in the
sequence H-C-P-C-P-C-H-P-C-P-C. One easy corollary of
the theorem is that any tableau satisfying the commutativity
conditions of Proposition 2 can be generated by some stabi-
lizer circuit. Another corollary is that any unitary stabilizer
circuit has an equivalent circuit with onlyOsn2/ log nd gates.

Given twon-qubit unitary stabilizer circuitsC1, C2, we say
thatC1 andC2 areequivalentif C1sucld=C2sucld for all stabi-
lizer statesucl, whereCisucld is the final state whenCi is
applied toucl.6 By linearity, it is easy to see that equivalent
stabilizer circuits will behave identically onall states, not
just stabilizer states. Furthermore, there exists a one-to-one
correspondence between circuits and tableaus.

Lemma 1. Let C1, C2 be unitary stabilizer circuits, and let
T1, T2 be their respective final tableaus when we run them on
the standard initial tableau. ThenC1 andC2 are equivalent if
and only if T1=T2.

Proof. ClearlyT1=T2 if C1 andC2 are equivalent. For the
other direction, it suffices to observe that a unitary stabilizer
circuit acts linearly on Pauli operators(that is, rows of the
tableau): if it maps P1 to Q1 and P2 to Q2, then it maps
P1+P2 to Q1+Q2. Since the rows of the standard initial tab-
leau form a basis forPn, the lemma follows. j

Our proof of the canonical form theorem will use the
following two lemmas.

Lemma 2. Given ann-qubit stabilizer state, it is always
possible to apply Hadamard gates to a subset of the qubits so
as to make theX matrix have full rank(or, equivalently,
make all 2n basis states have nonzero amplitude).

Proof. We can always perform row additions on then
32n stabilizer matrix without changing the state that it rep-
resents. Suppose theX matrix has rankk,n; then by Gauss-
ian elimination, we can put the stabilizer matrix in the form

6The reason we restrict attention to unitary circuits is simply that,
if measurements are included, then it is unclear what it even means
for two circuits to be equivalent. For example, does deferring all
measurements to the end of a computation preserve equivalence or
not?

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-8

SUA

0
UB

C
D

where A is k3n and has rankk. Then since the rows are
linearly independent,C must have rankn−k; therefore it has
an sn−kd3 sn−kd submatrixC2 of full rank. Let us permute
the columns of theX andZ matrices simultaneously to obtain

SUA1 A2

0 0
UB1 B2

C1 C2
D ,

and then perform Gaussian elimination on the bottomn−k
rows to obtain

SUA1 A2

0 0
UB1 B2

D I
D .

Now commutativity relations imply

sA1 A2 dSDT

I
D = 0

and thereforeA1D
T=A2. Notice that this implies that thek

3k matrix A1 has full rank, since otherwise theX matrix
would have column rank less thank. So applying Hadamard
gates to the rightmostn−k qubits yields a state

SUA1 B2

0 I
UB1 A2

D 0
D

whoseX matrix has full rank. j

Lemma 3. For any matrixAPZ2
n3n, there exists a diagonal

matrix L such thatA+L has full rank.
Proof. Consider using Gaussian elimination to reduceA

+L to an upper-triangular matrix. Initially setLª0. Then,
when the ith row is about to be used to zero out theith
column, if sA+Ldii =0 then setLiiª1 and continue. LetLfinal

be the diagonal matrix that results; then Gaussian elimination
reducesA+Lfinal to an upper-triangular matrix with all 1’s
along the diagonal. j

Say a unitary stabilizer circuit is in canonical form if it
consists of 11 rounds in the sequence H-C-P-C-P-C-H-P-C-
P-C.

Theorem 3. Any unitary stabilizer circuit has an equiva-
lent circuit in canonical form.

Proof. Divide a 2n32n tableau into fourn3n matrices
A=saijd, B=sbijd, C=scijd, andD=sdijd, containing the desta-
bilizer xij bits, destabilizerzij bits, stabilizerxij bits, and sta-
bilizer zij bits, respectively:

(we can ignore the phase bitsr i). Since unitary circuits are
reversible, by Lemma 1 it suffices to show how to obtain the
standard initial tableau starting from an arbitraryA, B, C, D.7

We cannot use row additions, since although they leave

states invariant they do not in general leave circuits invari-
ant.

The procedure is as follows.
(1) Use Hadamard gates to makeC have full rank(this is

possible by Lemma 2).
(2) UseCNOT gates to perform Gaussian elimination onC,

producing

(3) Use phase gates to makeD invertible (this is possible
by Lemma 3). Now commutativity of the stabilizer implies
that IDT is symmetric, thereforeD is symmetric, therefore
D=MMT for some invertibleM.

(4) UseCNOT gates to produce

Note that when we map I to IM , we also map
D to DsMTd−1=MMTsMTd−1=M.

(5) Apply phase gates to alln qubits to obtain

Since M is full rank, there exists some subsetS of qubits
such that applying two phase gates in succession to every
aPS will preserve the above tableau, but setrn+1=¯ =r2n
=0. Apply two phase gates to everyaPS.

(6) Use CNOT gates to perform Gaussian elimination on
M, producing

By commutativity relations,IBT=A0T+ I, thereforeB= I.
(7) Use Hadamard gates to produce

(8) Use phase gates to makeA invertible (here we again
appeal to Lemma 3). Now commutativity of the destabilizer
implies thatA is symmetric, thereforeA=NNT for some in-
vertible N.

(9) UseCNOT gates to produce

(10) Use phase gates to produce

then by commutativity relations,NCT= I. Next apply two
phase gates each to some subset of qubits in order to pre-
serve the above tableau, but setr1=¯ =rn=0.

(11) UseCNOT gates to produce

7Actually, this gives the canonical form for the inverse of the
circuit, but of course the same argument holds for the inverse circuit
too, which is also a stabilizer circuit.

IMPROVED SIMULATION OF STABILIZER CIRCUITS PHYSICAL REVIEW A70, 052328(2004)

052328-9

j
Since Theorem 3 relied only on a tableau satisfying the

commutativity conditions, not on its being generated by
some stabilizer circuit, an immediate corollary is that any
tableau satisfying the conditions is generated by some stabi-
lizer circuit. We can also use Theorem 3 to answer the fol-
lowing question: how many gates are needed for ann-qubit
stabilizer circuit in the worst case? Cleve and Gottesman
[30] showed thatOsn2d gates suffice for the special case of
state preparation, and Gottesman[31] and Dehaene and De
Moor [18] showed thatOsn2d gates suffice for stabilizer cir-
cuits more generally; even these results were not obviousa
priori . However, with the help of our canonical form theo-
rem we can show a stronger upper bound.

Corollary 1. Any unitary stabilizer circuit has an equiva-
lent circuit with onlyOsn2/ log nd gates.

Proof. Patel, Markov, and Hayes[17] showed that any
CNOT circuit has an equivalentCNOT circuit with only
Osn2/ log nd gates. So given a stabilizer circuitC, first putC
into canonical form, then minimize theCNOT segments.
Clearly the Hadamard and phase segments require onlyOsnd
gates each. j

Corollary 1 is easily seen to be optimal by a Shannon
counting argument: there are 2Qsn2d distinct stabilizer circuits
on n qubits, but at mostsn2dT with T gates.

A final remark: as noted by Moore and Nilsson[27], any
CNOT circuit has an equivalentCNOT circuit with Osn2d gates
and parallel depthOslog nd. Thus, using the same idea as in
Corollary 1, we obtain that any unitary stabilizer circuit has
an equivalent stabilizer circuit withOsn2d gates and parallel
depthOslog nd. (Moore and Nilsson showed this for the spe-
cial case of stabilizer circuits composed ofCNOT and Had-
amard gates only.)

VII. BEYOND STABILIZER CIRCUITS

In this section, we discuss generalizations of stabilizer
circuits that are still efficiently simulable. The first(easy)
generalization, in Sec. VII A, is to allow the computer to be
in a mixed rather than a pure state. Mixed states could be
simulated by simply purifying the state, and then simulating
the purification; but we present an alternative and slightly
more efficient strategy.

The second generalization, in Sec. VII B, is to initial
states other than the computational basis state. Taken to an
extreme, one could even have noncomputable initial states.
When combined with arbitrary quantum circuits, such quan-
tum advice is very powerful, although its exact power(rela-
tive to classical advice) is unknown[32]. We consider a more
modest situation, in which the initial state may include spe-
cific ancilla states, consisting of at mostb qubits each. The
initial state is therefore a tensor product of blocks ofb qu-
bits. Given an initial state of this form and general stabilizer
circuits, including measurements and classical feedback
based on measurement outcomes, universal quantum compu-

tation is again possible[33,34]. However, we show that an
efficient classical simulation exists, provided only a few
measurements are allowed.

The final generalization, in Sec. VII C, is to circuits con-
taining a few nonstabilizer gates. The qualifier “few” is es-
sential here, since it is known that unitary stabilizer circuits
plus any additional gate yields a universal set of quantum
gates[35,36]. The running time of our simulation procedure
is polynomial inn, the number of qubits, but is exponential
in the d, the number of nonstabilizer gates.

A. Mixed states

We first present the simulation for mixed states. We allow
only stabilizer mixed states—that is, states that are uniform
distributions over all states in a subspace(or equivalently, all
stabilizer states in the subspace) with a given stabilizer of
r ,n generators. Such mixed states can always be written as
the partial trace of a pure stabilizer state, which immediately
provides one way of simulating them.

It will be useful to see how to write the density matrix of
the mixed state in terms of the stabilizer. The operatorsI
+Md /2, whenM is a Pauli operator, is a projection onto the
+1 eigenspace ofM. Therefore, if the stabilizer of a pure
state has generatorsM1, . . . ,Mn, then the density matrix for
that state is

r =
1

2np
i=1

n

sI + Mid.

The density matrix for a stabilizer mixed state with stabilizer
generated byM1, . . . ,Mr is

r =
1

2r p
i=1

r

sI + Mid.

To perform our simulation, we find a collection of 2sn
−rd operatorsX̄i andZ̄i that commute with both the stabilizer

and the destabilizer. We can choose them so thatfX̄i ,X̄jg
=fZ̄i ,Z̄jg=fX̄i ,Z̄jg=0 for i Þ j , but hX̄i ,Z̄ij=0. This can be
done by solving a set of linear equations, which in practice
takes timeOsn3d. If we start with an initial mixed state, we
will assume it is of the formu00¯0lk00¯0u ^ I (so 0 on the
first n−r qubits and the completely mixed state on the lastr

qubits). In that case, we chooseX̄i =Xi+r and Z̄i =Zi+r.

We could purify this state by addingZ̄iZn+i and X̄iXn+i to
the stabilizer andXn+i and Zn+i to the destabilizer fori
=1, . . . ,r. Then we could simulate the system by just simu-
lating the evolution of this pure state through the circuit; the
extra r qubits are never altered.

A more economical simulation is possible, however, by
just keeping track of the originalr-generator stabilizer and

destabilizer, plus the 2sn−rd operatorsX̄i and Z̄i. Formally,
this allows us to maintain a complete tableau and generalize
the Osn2d tableau algorithm from Sec. III. We place ther
generators of the stabilizer as rowsn+1, . . . ,n+r of the tab-
leau, and the corresponding elements of the destabilizer as

rows 1, . . . ,r. The new operatorsX̄i and Z̄i si =1, . . . ,n−rd

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-10

become rowsr + i and n+r + i, respectively. Letī = i +n if i

øn and ī = i −n if i ùn+1. Then we have that rowsRi andRj

commute unlessi = j̄ , in which caseRi andRj anticommute.
We can keep track of this new kind of tableau in much the

same way as the old kind. Unitary operations transform the
new rows the same way as rows of the stabilizer or destabi-
lizer. For example, to perform aCNOT gate from control qu-
bit a to target qubitb, setxibªxib % xia andziaªzia % zib, for
all i P h1, . . . ,2nj.

Measurement of qubita is slightly more complex than
before. There are now three cases.

Case I. xpa=1 for somepP hn+1, . . . ,n+rj. In this case
Za anticommutes with an element of the stabilizer, and the
measurement outcome is random. We update as before, for
all rows of the tableau.

Case II. xpa=0 for all p. r. In this caseZa is in the sta-
bilizer. The measurement outcome is determinate, and we
can predict the result as before, by calling rowsum to add up
rows rn+i for thosei with xia=1.

Case III. xpa=0 for all pP hn+1, . . . ,n+rj, but xma=1 for
somemP hr +1, . . . ,nj or mP hn+r +1, . . . ,2nj. In this case
Za commutes with all elements of the stabilizer but is not
itself in the stabilizer. We get a random measurement result,
but a slightly different transformation of the stabilizer than in
case I. Observe that rowRm anticommutes withZa. This row
takes the role of rowp from case I, and the rowRm̄ takes the
role of row p−n. Update as before with this modification.
Then swap rowsn+r +1 andm and rowsr +1 andm̄. Finally,
increaser to r +1: the stabilizer has gained a new generator.

Another operation that we might want to apply is discard-
ing the qubita, which has the effect of performing a partial
trace over that qubit in the density matrix. Again, this can be
done by simply keeping the qubit in our simulation and not
using it in future operations. Here is an alternative: put the
stabilizer in a form such that there is at most one generator
with an X on qubita, and at most one with aZ on qubita.
Then drop those two generators(or one, if there is only one
total). The remaining generators describe the stabilizer of the

reduced mixed state. We also must put theX̄i and Z̄i opera-
tors in a form where they have no entries in the discarded
location, while preserving the structure of the tableau
(namely, the commutation relations of Proposition 2). This
can also be done in timeOsn2d, but we omit the details, as
they are rather involved.

B. Nonstabilizer initial states

We now show how to simulate a stabilizer circuit where
the initial state is more general, involving nonstabilizer ini-
tial states. We allow any number of ancillas in arbitrary
states, but the overall ancilla state must be a tensor product
of blocks of at mostb qubits each. An arbitrary stabilizer
circuit is then applied to this state. We allow measurements,
but only d of them in total throughout the computation. We
do allow classical operations conditioned on the outcomes of
measurements, so we also allow polynomial-time classical
computation during the circuit.

Let the initial state have density matrixr: a tensor product
of m blocks of at mostb qubits each. Without loss of gener-

ality, we first apply the unitary stabilizer circuitU1, followed
by the measurementZ1 (that is, a measurement of the first
qubit in the standard basis). We then apply the stabilizer
circuit U2, followed by measurementZ2 on the second qubit,
and so on up toUd, Zd.

We can calculate the probabilityps0d of obtaining out-
come 0 for the first measurementZ1 as follows:

ps0d = TrfsI + Z1dU1rU1
†g/2 = TrfsI + U1

†Z1U1drg/2

= 1/2 + TrfsU1
†Z1U1drg/2.

But U1 is a stabilizer operation, soU1
†Z1U1 is a Pauli matrix,

and is therefore a tensor product operation. We also knowr
is a tensor product of blocks of at mostb qubits, and the
trace of a tensor product is the product of the traces. Letr
= ^ j=1

m r j and U1
†Z1U1= ^ j=1

m Pj where j ranges over the
blocks. Then

ps0d =
1

2
+ p

j=1

m

TrsPjr jd.

SincePj andr j are boths2b32bd-dimensional matrices, each
TrsPjr jd can be computed in timeOs22bd.

By flipping an appropriately biased coin, Alice can gen-
erate an outcome of the first measurement according to the
correct probabilities. Conditioned on this outcome(say of 0),
the state of the system is

sI + Z1dU1rU1
†s1 + Z1d

4ps0d
.

After the next stabilizer circuitU2, the state is

U2sI + Z1dU1rU1
†s1 + Z1dU2

†

4ps0d
.

The probability of obtaining outcome 0 for the second mea-
surement, conditioned on the outcome of the first measure-
ment being 0, is then

ps0u0d =
TrfsI + Z2dU2sI + Z1dU1rU1

†s1 + Z1dU2
†g

8ps0d
.

By expanding out the eight terms, and then commutingU1
andU2 pastZ1 andZ2, we can write this as

o
i=1

8

p
j=1

m

TrsPij
s2dri jd.

Each TrsPij
s2dri jd term can again be computed in timeOs22bd.

Similarly, the probability of any particular sequence of
measurement outcomesm1m2¯md can be written as a sum

psm1m2 ¯ mdd = o
i=1

22d−1

p
j=1

m

TrsPij
sddri jd,

where each trace can be computed in timeOs22bd. It follows
that the probabilities of the two outcomes of thedth mea-
surement can be computed in timeOsm22b+2dd.

IMPROVED SIMULATION OF STABILIZER CIRCUITS PHYSICAL REVIEW A70, 052328(2004)

052328-11

C. Nonstabilizer gates

The last case that we consider is that of a circuit contain-
ing d nonstabilizer gates, each of which acts on at mostb
qubits. We allow an unlimited number of Pauli measure-
ments and unitary stabilizer gates, but the initial state is re-
quired to be a stabilizer state—for concreteness,u0l^n.

To analyze this case, we examine the density matrixrt at
the tth step of the computation. Initially,r0 is a stabilizer
state whose stabilizer is generated by someM1, . . . ,Mn, so
we can write it as

r =
1

2nsI + M1dsI + M2d ¯ sI + Mnd.

If we perform a stabilizer operation, theMi’s become a dif-
ferent set of Pauli operators, but keeping track of them re-
quires at mostns2n+1d bits at any given time[or 2ns2n
+1d if we include the destabilizer]. If we perform a measure-
ment, theMi’s change in a more complicated way, but re-
main Pauli group elements.

Now consider a single nonstabilizer gateU. ExpandingU
in terms of Pauli operationsPi,

UrU† =
1

2nSo
i

ciPiDp
j

sI + MjdSo
k

ck
*PkD

=
1

2no
i,k

cick
*PiPkp

j

sI + s− 1dMj·PkMjd.

HereMj ·Pk is the symplectic inner product between the cor-
responding vectors, which is 0 wheneverMj and Pk com-
mute and 1 when they anticommute. In what follows, let
cik=cick

* andPik=PiPk. Then we can write the density matrix
after U as a sum of terms, each described by a Pauli matrix
Pik and a vector of eigenvalues for the stabilizer. SinceU and
U† each act on at mostb qubits, there are at most 42b terms
in this sum.

If we apply a stabilizer gate to this state, all of the Pauli
matrices in the decomposition are transformed to other Pauli
matrices, according to the usual rules. If we perform another
nonstabilizer gate, we can again expand it in terms of Pauli
matrices, and put it in the same form. The new gate can act
on b new qubits, however, giving us more terms in the sum.
After d such operations, we thus need to keep track of at
most 42bd complex numbers(the coefficientscik), 4bd strings
each of 2n bits (the Pauli matricesPik), and 4bd strings each
of n bits (the inner productsMj ·Pk). We also need to keep
track of the stabilizer generatorsM1, . . . ,Mn, and it will be
helpful to also keep track of the destabilizer, for a total of an
additional 2ns2n+1d bits.

The above allows us to describe the evolution when there
are no measurements. What happens when we perform a
measurement? Consider the unnormalized density matrix
corresponding to outcome 0 for measurement of the Pauli
operatorQ:

rs0d =
1

2n+2Q+o
i,k

cikPikp
j

fI + s− 1dMj·PkMjgQ+,

where here and throughout we letQ+= I +Q and Q−= I −Q.
As usual, eitherQ commutes with everything in the stabi-
lizer, orQ anticommutes with some element of the stabilizer.
(However, the measurement outcome can be indeterminate in
both cases, and may have a nonuniform distribution.) In the
first case, we can rewrite the density matrix as

rs0d =
1

2n+2o
i,k

cikQ
+PikQ

+p
j

fI + s− 1dMj·PkMjg.

But Q+PikQ
+=2PikQ

+ if Pik and Q commute, andQ+PikQ
+

=Q+Q−Pik=0 if Pik and Q anticommute. Furthermore, as
usual, asQ commutes with everything in the stabilizer,Q is
actually in the stabilizer, so projecting onQ+ either is redun-
dant (if Q has eigenvalue +1) or annihilates the state(if Q
has eigenvalue −1). Therefore, we can see thatrs0d has the
same form as before:

rs0d =
1

2no
i,k

cikPikp
j

fI + s− 1dMj·PkMjg,

where now the sum overi is only over thosePik’s that com-
mute withQ, and the sum overk is only over thosePk’s that
give eigenvalue +1 forQ.

WhenQ anticommutes with an element of the stabilizer,
we can change our choice of generators so thatQ commutes
with all of the generators except forM1. Then we writers0d
as

rs0d =
1

2n+2o
i,k

cikQ
+PikfI + s− 1dMj·PkM1gQ+Lk

=
1

2n+2o
i,k

cikQ
+PikfQ+ + s− 1dMj·PkQ−M1gLk,

where

Lk = p
j.1

fI + s− 1dMj·PkMjg.

If Pik andQ commute, then we keep only the first termQ+ in
the square brackets in the second line of the equation for
rs0d. If Pik and Q anticommute, we keep only the second
term Q−M1 in the square brackets. In either case, we can
rewrite the density matrix in the same kind of decomposi-
tion:

rs0d =
1

2no
i,k

cikPikQ
+p

j.1
fI + s− 1dMj·PkMjg,

whereQ has replacedM1 in the stabilizer, and anyPik that
anticommutes withQ has been replaced byPikM1, its corre-
spondingcik replaced bys−1dMj·Pkcik.

Therefore, we can always write the density matrix after
the measurement in the same kind of sum decomposition as
before, with no more terms than there were before the mea-
surement. The density matrices are unnormalized, so we
need to calculate Trrs0d to determine the probability of ob-
taining outcome 0. Computing the trace of a single term is

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-12

straightforward: it is 0 ifPik is not in the stabilizer and ±2ncik
if Pik is in the stabilizer(with 1 or 2 determined by the
eigenvalue ofPik). To calculate Trrs0d, we just need to sum
the traces of the 42bd individual terms. We then choose a
random number to determine the actual outcome. Thereafter,
we only need to keep track ofrs0d or rs1d, which we can
easily renormalize to have unit trace. Overall, this simulation
therefore takes time and spaceOs42bdn+n2d.

VIII. OPEN PROBLEMS

(1) Iwama, Kambayashi, and Yamashita[26] gave a set of
local transformation rulesby which anyCNOT circuit (that
is, a circuit consisting solely ofCNOT gates) can be trans-
formed into any equivalentCNOT circuit. For example, a
CNOT gate froma to b followed by anotherCNOT gate from
a to b can be replaced by the identity, and aCNOT gate from
a to b followed by aCNOT gate fromc to d can be replaced
by a CNOT gate fromc to d followed by aCNOT gate froma
to b, provided thataÞd andbÞc. Using Theorem 3, can we
similarly give a set of local transformation rules by which
any unitary stabilizer circuit can be transformed into any
equivalent unitary stabilizer circuit? Such a rule set could
form the basis of an efficient heuristic algorithm for mini-
mizing stabilizer circuits.

(2) Can the tableau algorithm be modified to compute
measurement outcomes in onlyOsnd time?(In case the mea-
surement yields a random outcome, updating the state might
still take ordern2 time.)

(3) In Theorem 3, is the 11-round sequence H-C-P-C-P-
C-H-P-C-P-C really necessary, or is there a canonical form
that uses fewer rounds? Note that if we are concerned only
with state preparation, and not with how a circuit behaves on
any initial state other than the standard one, then the five-
round sequence H-P-C-P-H is sufficient.

(4) Is there a set of quantum gates that is neither universal
for quantum computation, nor classically simulable in poly-
nomial time? Shi[37] has shown that if we generalize stabi-
lizer circuits by addingany 1- or 2-qubit gate not generated
by CNOT, Hadamard, and phase gates, then we immediately
obtain a universal set.

(5) What is the computational power of stabilizer circuits
with arbitrary tensor-product initial states, but measurements
delayed until the end of the computation? It is known that, if
we allow classical postprocessing and control of future quan-
tum operations conditioned on measurement results, then
universal quantum computation is possible[33,34]. How-
ever, if all measurements are delayed until the end of the
computation, then the quantum part of such a circuit(though
not the classical postprocessing) can be compressed to con-
stant depth. On the other hand, Terhal and DiVincenzo[38]
have given evidence that even constant-depth quantum cir-
cuits might be difficult to simulate classically.

(6) Is there an efficient algorithm that, given aCNOT or
stabilizer circuit, produces an equivalent circuit of(approxi-
mately) minimum size? Would the existence of such an al-
gorithm have unlikely complexity consequences? This might
be related to the hard problem of proving superlinear lower
bounds onCNOT or stabilizer circuit size for explicit func-
tions.

ACKNOWLEDGMENTS

We thank John Kubiatowicz, Michael Nielsen, Isaac
Chuang, Cris Moore, and George Viamontes for helpful dis-
cussions, and Andrew Cross for fixing an error in the manu-
script and software. S.A. was supported by NSF and
DARPA. D.G. is supported by funds from NSERC of
Canada, and by the CIAR in the Quantum Information Pro-
cessing program.

[1] Quantum Monte Carlo Methods in Equilibrium and Nonequi-
librium Systems, edited by M. Suzuki(Springer, Berlin, 1986).

[2] B. Oemer, http://tph.tuwien.ac.at/;oemer/qcl.html
[3] G. F. Viamontes, I. L. Markov, and J. P. Hayes, Quantum Inf.

Process.2, 347 (2004).
[4] G. F. Viamontes, M. Rajagopalan, I. L. Markov, and J. P.

Hayes, inProceedings of the Asia and South-Pacific Design
Automation Conference(IEEE Computer Society, Los Alami-
tos, CA, 2003), p. 295.

[5] K. M. Obenland and A. M. Despain,High Performance Com-
puting (IEEE Computer Society, Los Alamitos, CA, 1998).

[6] G. Vidal, Phys. Rev. Lett.91, 147902(2003).
[7] G. Vidal, e-print quant-ph/0310089.
[8] L. G. Valiant, in Proceedings of the ACM Symposium on

Theory of Computing(ACM, New York, 2001), p. 114.
[9] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A65, 032325

(2002).
[10] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A54, 3824(1996).
[11] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.

Sloane, Phys. Rev. Lett.78, 405 (1997).
[12] D. Gottesman, Phys. Rev. A54, 1862(1996).
[13] D. Gottesman, e-print quant-ph/9807006.
[14] D. M. Greenberger, M. A. Horne, and A. Zeilinger,Bell’s

Theorem, Quantum Theory, and Conceptions of the Universe
(Kluwer, Dordrecht, 1989), p. 73.

[15] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett.69, 2881
(1992).

[16] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,
and W. Wootters, Phys. Rev. Lett.70, 1895(1993).

[17] K. N. Patel, I. L. Markov, and J. P. Hayes, e-print quant-ph/
0302002.

[18] J. Dehaene and B. De Moor, Phys. Rev. A68, 042318(2003).
[19] M. A. Nielsen and I. L. Chuang,Quantum Computation and

Quantum Information(Cambridge University Press, Cam-
bridge, 2000).

[20] D. Coppersmith and S. Winograd, J. Symb. Comput.9, 251
(1990).

[21] D. R. Simon, SIAM J. Comput.26, 1474(1997).
[22] P. W. Shor, Phys. Rev. A52, R2493(1995).

IMPROVED SIMULATION OF STABILIZER CIRCUITS PHYSICAL REVIEW A70, 052328(2004)

052328-13

[23] C. Damm, Inf. Process. Lett.36, 247 (1990).
[24] U. Hertrampf, S. Reith, and H. Vollmer, Inf. Process. Lett.75,

91 (2000).
[25] D. Aharonov and M. Ben-Or, inProceedings of the ACM Sym-

posium on Theory of Computing(ACM, New York, 1997), p.
176.

[26] K. Iwama, Y. Kambayashi, and S. Yamashita, in Proceedings
of Design Automation Conference(2002), p. 419.

[27] C. Moore and M. Nilsson, SIAM J. Comput.31, 799 (2002).
[28] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,

IEEE Trans. Comput.-Aided Des.22, 710 (2003).
[29] J.-S. Lee, Y. Chung, J. Kim, and S. Lee, e-print quant-ph/

9911053.
[30] R. Cleve and D. Gottesman, Phys. Rev. A56, 76 (1997).
[31] D. Gottesman, Phys. Rev. A57, 127 (1998).

[32] S. Aaronson, inProceedings of the IEEE Conference on Com-
putational Complexity(IEEE Computer Society, Los Alamitos,
CA, 2004), p. 320.

[33] P. W. Shor, inProceedings of the IEEE Symposium on Foun-
dations of Computer Science(IEEE Computer Society, Los
Alamitos, CA, 1996), p. 56.

[34] D. Gottesman and I. Chuang, Nature(London) 402, 390
(1999).

[35] G. Nebe, E. M. Rains, and N. J. A. Sloane, Designs, Codes,
Cryptogr. 24, 99 (2001).

[36] R. Solovay(unpublished).
[37] Y. Shi, Quantum Inf. Comput.3, 84 (2003).
[38] B. M. Terhal and D. P. DiVincenzo, Quantum Inf. Comput.4,

134 (2004).
[39] Isaac Chung(private communication).

S. AARONSON AND D. GOTTESMAN PHYSICAL REVIEW A70, 052328(2004)

052328-14

