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The Gottesman-Knill theorem says that a stabilizer circuit—that is, a quantum circuit consisting solely of
controllednoT (cNoT), Hadamard, and phase gates—can be simulated efficiently on a classical computer. This
paper improves that theorem in several directions. First, by removing the need for Gaussian elimination, we
make the simulation algorithm much faster at the cost of a factor of 2 increase in the number of bits needed to
represent a state. We have implemented the improved algorithm in a freely available prograncealled
(cNoT-Hadamard-phagewhich can handle thousands of qubits easily. Second, we show that the problem of
simulating stabilizer circuits is complete for the classical complexity clakss which means that stabilizer
circuits are probably not even universal foassical computation. Third, we give efficient algorithms for
computing the inner product between two stabilizer states, puttingr-aupit stabilizer circuit into a “canoni-
cal form” that requires at mosD(n?/logn) gates, and other useful tasks. Fourth, we extend our simulation
algorithm to circuits acting on mixed states, circuits containing a limited number of nonstabilizer gates, and
circuits acting on general tensor-product initial states but containing only a limited number of measurements.
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I. INTRODUCTION guantum computer simulator of Obenland and Despajn
The drawback of such simulators, of course, is that their
Among the many difficulties that quantum computer ar-rynning time grows exponentially in the number of qubits.
chitects face, one of them is almost intrinsic to the task atyith a general-purpose package, then, simulating hundreds
hand: how do you design and debug circuits that you cannajr thousands of qubits is out of the question.
even simulate efficiently with existing tools¢, Obviously, if a A different direction of research has sought to find non-
quantum computer output the factors of a 3000-digit numbertrivial classes of quantum circuits thean be simulated ef-
then you would not need to simulate it to verify its correct-ficiently on a classical computer. For example, Vidél
ness, since multiplying is easier than factoring. But what ifshowed that, so long as a quantum computer’s state at every
the quantum computer did not work? Ordinarily architectstime step has polynomially bounded entanglement under a
might debug a computer by adding test conditions, monitormeasure related to Schmidt rank, the computer can be simu-
ing registers, halting at intermediate steps, and so on. But fdated classically in polynomial time. Notably, in a follow-up
a quantum computer, all of these standard techniques wouRgPer 7], Vidal actually implemented his algorithm and used

probably entail measurements that destroy coherence. Bé-t0 Simulate one-dimensional quantum spin chains consist-
mng of hundreds of spins. A second example is a result of

Valiant [8], which reduces the problem of simulating a re-
; : ; tricted class of quantum computers to that of computing the
fore trying to implement it. STrct ; : .
. ) I . Pfaffian of a matrix. The latter is known to be solvable in
uantum architecture is one motivation for studying clas- : o -
sicg algorithms to simulate and manipulate qua);tugm Cir_classmal polynomial time. However, Valiant's model has thus
. far not found any application, although Terhal and DiVin-

C.UItS, but it is not the only mqtlvatlon. Chemists and phySI'c nzo have shown that it applies to a model of noninteracting
cists have long needed to simulate quantum systems, an rmions[9]

they havg nt())t_lha:j the gatﬁncehto Wg't folr a g“lé‘”?“fg conr:- There is one class of quantum circuits that is known to be
puter to eh ui t.h nstead, t eli//l avec eve %pe |rfrl1|t(<j-:-1tec simulable in classical polynomial time, that does not impose
fmques such as the qu_anturfn onte E@N(lj ) met OM[ ] any limit on entanglement, and that arises naturally in sev-
or computing properties of certain ground states. NOT€ Tea g applications. This is the classsthbilizer circuitsintro-
cently, several general-purpose guantum computer S'mUIaFOEﬁJced to analyze quantum error-correcting codes-13. A
have appeared, including Oemer’s quantum programming,yiiizer circuit is simply a quantum circuit in which every
IanguageQCL 2], theQL{'DD (quantum information decision gate is a controlledkoT (cNOT), Hadamard, phase, or one-
diagrams package of Viamontest al. [3,4], and the parallel qubit measurement gat€ig. 1). We call a stabilizer circuit

unitary if it does not contain measurement gates. Unitary

stabilizer circuits are also known as Clifford group circuits.

*Present address: Institute for Advanced Study, Princeton, NY Stabilizer circuits will almost certainly be used to perform
08540, USA. Electronic address: aaronson@ias.edu the encoding and decoding steps for a quantum error-
"Electronic address: dgottesman@perimeterinstitute.ca correcting code, and they play an important role in fault-

puter using classical computer-aided desiGAD) tools, be-
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CNOT  |a) ) Knill theorem. For example, we show how to handle mixed

I states,without keeping track of pure states from which the
o) > lo®a) mixed states are obtainable by discarding qubits. We also

show how to simulate circuits involving a small number of

Hadamard ~ o(0)+B|1) . (+B)I0+(a-Bl1) nonstabilizer gates; or involving arbitragr]y tensor-product ini-
Phase  a/0y+B[1) o0 +B[1) tial states, but only a sm_all number_of measqrements. B_oth_ of

: these latter two simulations take time that is polynomial in

the number of qubits, but exponential in the number of non-
Measurement  a0y+]1)——-——lo2I0X0}+|B2|1X1] stabilizer gates or measurements. Presumably this exponen-
tial dependence is necessary, since otherwise we could simu-
late arbitrary quantum computations in classical
subexponential time.

tolerant circuits. However, it was soon realized that ke We conclude in Sec. VIII with some directions for further
bilizer formalismused to describe these circuits has manyresearch.

other applications. The stabilizer formalism is rich enough to

encompass most of the “paradoxes” of quantum mechanics, Il. PRELIMINARIES

includilnf ;he Greenberger—l—éqrne-Zeil?ge@HZ) ex;IJeri- We assume familiarity with quantum computing. This sec-
ment[14], dense quantum codirfg5], and quantum telepor- i, hrovides a crash course on the stabilizer formalism, con-

tation[16]. On the other hand, it is not so rich as to precludeﬁning attention to those aspects we will need. See Sec.
efficient simulation by a classical computer. That conclusion10 5.1 of Nielsen and Chuarig9] for more details

sometimes known as th&ottesman-Knill theoremis the
starting point for the contributions of this paper.

Our results are as follows. In Sec. Il we givetableau
algorithm for simulating stabilizer circuits that is faster than (1 0) (O 1)

FIG. 1. The four types of gate allowed in the stabilizer
formalism.

Throughout this paper we will use the following four
Pauli matrices:

the algorithm directly implied by the Gottesman-Knill theo- = 01 10
rem. By removing the need for Gaussian elimination, this

algorithm enables measurements to be simulate®(n?) 0 —i 1 0

steps instead aD(n®) (wheren is the number of qubijsat a Y= ( I ) = ( )

cost of a factor of 2 increase in the number of bits needed to i 0 0 -1

represent a quantum state. _ These matrices satisfy the following identities:
Section IV describegHP, a high-performance stabilizer

circuit simulator that implements our tableau algorithm. We X2=Y?=7?=1,

present the results of an experiment designed to test how

CcHPs performance is affected by properties of the stabilizer XY=iz, YZ=iX, ZX=iY,

circuit being simulatedcHp has already found application in

simulations of quantum fault-tolerance circuig9]. YX=-iZ, ZY=-iX, XZ=-iY.
Section V proves that the problem of simulating stabilizer

circuits is complete for the classical complexity class.  In particular, every two Pauli matrices either commute or

Informally, this means that any stabilizer circuit can be simu-anticommute. The rule for whether to include a minus sign is
lated usingcNOT gates alone; the availability of Hadamard the same as that for quaternions, if we repléc, Y,Z) by
and phase gates provides at most a polynomial advantagél..i,j,k).
This result removes some of the mystery about the We define the grougP, of n-qubit Pauli operatorsto
Gottesman-Knill theorem by showing that stabilizer circuitsconsist of all tensor products of Pauli matrices, together
are unlikely to be capable even of universal classical comwith a multiplicative factor of +1 or i(so the total number
putation. of operators i§P,|=4""1). We omit tensor-product signs for
In Sec. VI we prove aanonical form theorenthat we  brevity; thus -YZZI should be read ¥@ Z@ Z®1 (we will
expect will have many applications to the study of stabilizeruse + to represent the Pauli group operajoGiven two
circuits. The theorem says that given any stabilizer circuitPauli operator®=i*P;---P, andQ=i'Q,---Q,, it is imme-
there exists an equivalent stabilizer circuit that applies aliate thatP commutes withQ if and only if the number of
round of Hadamard gates, followed by a round of phaséndicesj {1, ...,n} such thatP; anticommutes withQ; is
gates, followed by a round afNOT gates, and so on in the even; otherwiseP anticommutes withQ. Also, for all P

sequence H-C-P-C-P-C-H-P-C-P¢®here H, C, P stand for e P,, if P has a phase of £1 thda+P=I---I, whereas ifP
HadamardcNOT, phase, respectivelyOne immediate cor- has a phase ofitthenP+P=—|--I.
ollary, building on a result by Patel, Markov, and Hay&g] Given a pure quantum stalt@), we say a unitary matrik

and improving one by Dehaene and De MdaB], is that stabilizes|y) if |¢) is an eigenvector df} with eigenvalue 1,
any stabilizer circuit om qubits has an equivalent circuit or equivalently ifU|)=|) where we do not ignore global
with only O(n?/log n) gates. phase. To illustrate, the following table lists the Pauli matri-

Finally, Sec. VII extends our simulation algorithm to situ- ces and their opposites, together with the unique one-qubit
ations beyond the usual one considered in the Gottesmastates that they stabilize:
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n-1

1
G= ZnH <_k _ 2k> — 2n(n+1)/2H (4n—k_ 1)
k=0 2 k=0

X [0y +[1), —-X: |0)y—]1),

Y: +ill), -V i1
0)+i[1), 10 =ilD), Similarly, to findA, note that givers, there are 2-1 choices

for M4, 2"-2 choices forM,, 2"-4 choices forM3, and so

Z 0y, -Z |1). on. Thus
n-1 n-1
The identity matrixl stabilizes all states, whereas stabi- A= [T (27— 24 = 20-D2] ] (20 - 1)
lizes no states. ‘<o o0 '
The key idea of the stabilizer formalism is to represent a

quantum statéy), not by a vector of amplitudes, but by a Therefore
stabilizer group consisting of unitary matrices that stabilize 1, n-1
|4). Notice that ifU andV both stabilize|y) then so doUV N = G_ on <u) =[] (2"*+1)
andU™, and thus the set Stahy)) of stabilizers of|y) is a A o \ 2" k=1 i '
group. Also, it is not hard to show that [i)) #|¢) then
Stalf|)) # Stali|¢)). But why does this strange representa- =
tion buy us anything? To write down generators for §tal
(even approximatelystill takes exponentially many bits in [ll. EFFICIENT SIMULATION OF STABILIZER
general by an information-theoretic argument. Indeed stabi- CIRCUITS

lizers seemworsethan amplitude vectors, since they require
about 2" parameters to specify instead of abolit 2

Remarkably, though, a large and interesting class of qua
tum states can be specified uniquely by much smaller stabf*
lizer groups—specifically, the intersection of Sta®) with
the Pauli groug11-13. This class of states, which arises in
quantum error correction and many other settings, is chara
terized by the following theorem.

Theorem 1Given ann-qubit state|y), the following are

Theorem 1 immediately suggests a way to simulate stabi-

izer circuits efficiently on a classical computer. A well-
rljnown fact from group theory says that any finite gragp

as a generating set of size at most,|&f So if |¢) is a
stabilizer state om qubits, then the groug(|#)) of Pauli
Operators that stabiliz@y) has a generating set of size
=log, 2". Each generator takes121 bits to specify: 2 bits
for each of then Pauli matrices, and 1 bit for the pha’sSo
the total number of bits needed to spedify) is n(2n+1).

equivalent.
q(i) |y can be obtained fronf0)®" by cNoT, Hadamard What Gottesman and Knill showed, furthermore, is that these
and phase gates only. ' ' bits can be updated in polynomial time aftecsoT, Had-
(i) | can be obtained fror0)*" by cnoT, Hadamard, amard, phase, or measurement gate is appliedtoThe
phase, and measurement gates only. updates corresponding to unitary gates are very efficient, re-
(iii ) |4) is stabilized by exactly 2Pauli operators. quiring only O(n) time for each gate.
(iv) |) is uniquely determined b$(|1)) = Stakf| ) N P,, However, the updates corresponding to measurements are

or the group of Pauli operators that stabil{zé. not so efficient. We can decide @(n) time whether a mea-
Because of Theorem 1, we call any circuit consisting ensSurement of qubita will yield a deterministic or random

tirely of cNoT, Hadamard, phase, and measurement gates @/tcome. If the outcome is re;nd_om, then updating the state
stabilizer circuit and any state obtainable by applying a sta-2fter the measurement tak®¢n?) time, but if the outcome is

bilizer circuit to|0)°" a stabilizer stateAs a warmup to our  deterministic, then deciding whether the outcom@jr |1)
later results, the following proposition counts the number ofS€€MS to require inverting anXn matrix, which takes

stabilizer states. O(n2379 time in theory[20] but ordern® time in practice.
Proposition 1 Let N be the number of pure stabilizer What thatn® complexity means is that simulations of, say,
states om qubits. Then 2000-qubit systems would already be prohibitive on a desk-
top PC, given that measurements are frequent.
n-1 This section describes a simulation algorithm by which
N=2"T] 2" *+ 1):2[1/2+o(1)]n2_ both deterministic and random measurements can be per-
k=0 formed inO(n?) time. The cost is a factor of 2 increase in the

number of bits needed to specify a state. For, in addition to
the n stabilizer generators, we now store“destabilizer”
generators, which are Pauli operators that together with the
stabilizer generators generate the full Pauli gr@ipSo the
Humber of bits needed isn22n+ 1) =4n2.

The algorithm represents a state bighleauconsisting of

Proof. We haveN=G/A, where G is the total number of
generating sets andl is the number of equivalent generating
sets for a given stabilize®. To find G, note that there are
4"-1 choices for the first generatdrl; (ignoring overall
sign), because it can be anything but the identity. The secon
generator must commute witil; and cannot bé or M;, so
there are #/2-2 choices forM,. Similarly, M3 must com-
mute withM; andM,, but cannot be in the group generated if P e §(y)), thenP can only have a phase of 1, not; for in
by them, so there are"#4-4 choices for it, and so on. the latter casd®?=-I---1 would be inS(|#)), but we saw that +
Hence, including overall signs, does not stabilize anything.
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binary variablesx;, z; for all i e{1,..., 20}, je{l,...
andr; for alli e {1, ..., n}:?

.

N},

X1 X1n 211 Zin r
Xn1 Xnn Zn1 Znn T,
X(n+1)1 * Xmn [ Zne)1 * 00 Z(ntl)n |
L X@mn * X@mn | Z@n)1 * Z@2mn | T2n )

Rows 1 ton of the tableau represent the destabilizer genera)—(p

torsRy, ... ,R,, and rowsn+1 to 2n represent the stabilizer
generatorsR,q, ... ,Rop. If R=%P;---P,, then bitsx;, z;
determine thgth Pauli matrixP;: 00 meand, 01 meansX,

01 meansy, and 10 meanZ. Finally, r; is 1 if R has nega-
tive phase and 0 if; has positive phase. As an example, the
2-qubit statd00) is stabilized by the Pauli operator&+and
+|Z, so a possible tableau fi00) is

PHYSICAL REVIEW A70, 052328(2004)

g; is 1 if i=] and O otherwise. The algorithm proceeds
through the gates in order; for each one it does one of the
following depending on the gate type.

CNOT ogate from control a to target.bFor all i
S {l, e ,21}, set ri = I’i @Xiazib(xib @D Z‘a@ 1), Xib::XibEB Xia-
andz,:= z, ® zp.

Hadamard gate on qubit.aFor allie{1,...,2}, setr,
=1, ® XjaZ, and swapx, with zg.

Phase gate on qubit.aFor allie{1,...,2}, setr;:=r,
® X;aZiz and then sety, :=z, ® X,.

Measurement gate of qubit a in standard badisrst
check whether there exists mpe{n+1,...,21} such that
=1
Case | Such ap exists(if more than one exists, then Ipt
be the smallest In this case the measurement outcome is
random, so the state needs to be updated. This is done as
follows. First call rowsurfi,p) for all i €{1,...,2n} such
that i #p and x,=1. Second, set entire th@—n)th row
equal to thepth row. Third, set thepth row to be identically
0, except that, is 0 or 1 with equal probability, ang,,=1.
Finally, returnr, as the measurement outcome.

Case Il Such ap does not exist. In this case the outcome
is determinate, so measuring the state will not change it; the
only task is to determine whether O or 1 is observed. This is
done as follows. First set th&n+ 1)st row to be identically
0. Second, call rowsu@n+1,i+n) foralli e{1,... n}such
thatx;;=1. Finally, returrr,,,, as the measurement outcome.

Indeed, we will take the obvious generalization of the above Once we interpret the;, z;, andr; bits fori=n+1 as

“identity matrix” to be the standard initial tableau.

The algorithm uses a subroutine called rowshm,
which sets generatdr equal toi+h. Its purpose is to keep
track, in particular, of the phase bit, including all the fac-
tors of i that appear when multiplying Pauli matrices. The
subroutine is implemented as follows.

rowsunth,i). Let g(X;,2;,X»,2,) be a function that takes
4 bits as input, and that returns the exponent to which
raised (either 0, 1, or =1 when the Pauli matrices repre-
sented byx;z; and x,z, are multiplied. More explicitly, if
x;=2;=0 theng=0; if x;=2z;=1 theng=2,—x,; if x;=1 and
z,=0 then g=z,(2x,—1); and if x;=0 and z;=1 theng
=X,(1-22z,). Then setr,:=0 if

n

2rh+ 2ri + E g(Xij,Zij,th,Zhj) =0 (mOd 4)1
=1

and set,:=1 if the sum is congruent to 2 mod# will never
be congruent to 1 or)3Next, for allj e{1,... n}, setxy,
= Xj; @ Xpj and setz,;:=2z; ®z,; (here and throughouty de-
notes exclusivesr).

We now give the algorithm. It will be convenient to add
an additional(2n+1)st row for “scratch space.” The initial
state|0)*" hasr;=0 for alli {1, ..., h+1}, andx; = §; and
Zj=9n forallie{l,...,20+1} andje{l,... n}, where

’Dehaene and De Modrl8] came up with something like this

representing generators 8f|¢)), and rowsum as represent-
ing the group operation i®,, the correctness of thenoT,
Hadamard, phase, and random measurement procedures fol-
lows immediately from previous analyses by Gottesman
[13]. It remains only to explain why the determinate mea-
surement procedure is correct. Observe tRatcommutes

with R, if the symplectic inner product

Ry Ri=XZ1® - @ XynZin ® Xi1Zn @ **+ @ XinZnn

equals 0, and anticommutes wilh if R,-R=1. Using that
fact it is not hard to show the following.
Proposition 2 The following are invariants of the tableau
algorithm.
(i) Rys1, -+ ,Ro, generates(|#)), andRy, ... ,R,, generate
Ph-
(i) Ry, ... ,R, commute.
(i) For allhe{1, ... n}, R, anticommutes withR; ..
(iv) For alli, he{1,... n} such thati # h, R commutes
with Ryyp.
Now suppose that a measurement of gabjtields a de-
terminate outcome. Then tixg operator must commute with

all elements of the stabilizer, so

+Z,

n
2 Cth+n
h=1

for a unique choice o€, ...,c,€{0,1}. Our goal is to de-

tableau representation independently, though they did not use it tteermine thec,’s, since then by summing the appropriate

simulate measurements @(n?) time.

Rn+n'S we can learn whether the phase representing the out-
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come is positive or negative. Notice that for ail unitaryU such thal|)=|0)*" has the trivial stabilizer. This
e{l,...n}, same observation yields an algorithm to compute the inner
] . product: first transform the tableau 6f) to that of U|)
=|0)®" using Theorem 3 below; then perform Gaussian
G =2 (R -Ryun) =R - X ChRwn =R - Z, (mod 2 elimination on the tableau &f|¢) to obtains. Unfortunately,
h=1 h=1 . .
this algorithm takes ordar steps.
by Proposition 2. Therefore by checking whetReanticom-
mutes withZ,—which it does if and only ik,=1—we learn IV. IMPLEMENTATION AND EXPERIMENTS
whetherc,=1 and thus whether rowsy@n+1,i +n) needs to
be called.
We end this section by explaining how to compute the

We have implemented the tableau algorithm of Sec. Il in
a C program caIIedCHg (cNoT-Hadamard-phagewhich is
: - ! available for download.cHp takes as input a program in a
inner productbetween two stabilizer stattpg) and|e), given simple “guantum assembly language,” consisting of four in-

D abller tucons:c a b (aplyCoT gate fom coniro 0 tage
wise it equals 22, wheres is the minimum, over all sets of b), h a (apply Hadamard gate @), p a (apply phase gate to

a), andma (measurea in the standard basis, output the re-
generatorsGy, ... .Gy} for Stab (|¢)) gnd {Hi, ... .Hy} for sult, and update the state accordingliiere a and b are
Stab (|)), of the number ofi for which G;# H;. For ex- nonnegative integers indexing qubits; the maximaror b
ample,(XX,ZZ) and(ZI,1Z) have inner product 12, since  that occurs in any instruction is assumed tonBel, wheren
(Z1,12)=(Z1,22). The proof is easy: it suffices to observe js the number of qubits. As an example, the following pro-
that neither the inner product neris affected if we trans- gram demonstrates the famous quantum teleportation proto-
form |¢) and|¢) to U[¢) and U|g), respectively, for some col of Bennettet al. [16]:

} EPR pair is preparetqubit 1 is Alice’s half; qubit 2 is Bob’s half

12
c 01
h 0 . . . .
m 0 Alice interacts qubit Qthe state to be teleportedith her half of the EPR pair
m 1

03 i : .

Alice sends 2 classical bits to Bob

c 14
c 4 2
h 2 . .
c 32 Bob uses the bits from Alice to recover the teleported state.
h 2

We also have availableHp programs that demonstrate the lizer circuits are not even universal for classical computation.
Bennett-Wiesner dense quantum coding protddd], the  So if we want to simulat¢for examplé Simon’s algorithm,
GHZ experimen{14], Simon’s algorithm21], and the Shor then one measurement is needed for each bit of the first
9-qubit quantum error-correcting co¢22]. register.cHPs execution time will be dominated by these

Our main design goal focHP was high performance with  measurements, since as discussed in Sec. Ill each unitary
a large number of qubits and frequent measurements. Theate takes onlyD(n) time to simulate.
only reason to useHp instead of a general-purpose quantum * oyr experimental results, summarized in Fig. 2, show that

computer simulator SSCh ‘Tw'DD (3] ﬁr QC'& [2] is perfo(;— EHP makes practical the simulation of arbitrary stabilizer cir-
mance, so we wanted to leverage that advantage and makg. o, up to about 3000 qubits. Since the number of bits
thousands of qubits easily simulable rather than just hun-

dreds. Also, the results of Sec. V suggest that classical post-
processing is unavoidable for stabilizer circuits, since stabi- 3At www.cs.berkeley.edutfaaronson/chp.html
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1 ment. We repeated the whole procedure foranging from
0.9 - 0.6 to 1.2 in increments of 0.1.
£ 0.8 - There were several reasons for placing measurements at
g : the end of a circuit rather than interspersing them with uni-
S 0.7 1 tary gates. First, doing so models how many quantum algo-
2 0.6 rithms actually worl{apply unitary gates, then measure, then
£ 0.5 - perform classical postprocess)ngecond, it allowed us to
g 0.4 - ignore the effect of measurements on subsequent computa-
8 tion; third, it “standardized” the measurement stage, making
2 0.3 . . nea < T
S comparisons between different circuits more meaningful; and
§ 0.2 - fourth, it made simulation harder by increasing the propen-
0.1 ~ sity for the measurements to be nontrivially correlated.
0 o : - : " The decision to make the number of unitary gates propor-
200 tional to nlogn was based on the following heuristic argu-
Number of qubits n ment. The time needed to simulate a measurement is deter-

mined by how many times the rowsum procedure is called,
SVhich in turn is determined by how marng there are such
that x,,=1 (wherea is the qubit being measurgdnitially
xiz=1 if and only ifa=i, so a measurement takégn) time.

needed to represemt qubits grows quadratically im, the For a random state, by contrast, the expected numbés of
main limitation is available memory. On a machine with SUch tg""t_xia:1 is n by symmetry, so a measurement takes
256 Mbytes of random access memaiigAM), CHP can ordern“ time. In general, the more 1's there are in the tab-
handle up to about 20 000 qubits before virtual memory id€aU, the longer measurements take. But where does the tran-
needed, in which case thrashing makes its performance jifition from linear to quadratic time occur, and how sharp is
tolerable. The original version afHpP required~8n? bits for it? i o

memory; we were able to reduce this-an? bits, enabling Consdem people, each of'whom initially knows one se-

a 41% increase in the number of qubits for a fixed memonfret(with no two people knowing the same segré&ach day,
size. More trivially, we obtained an eightfold improvement in W0 people chosen uniformly at random meet and exchange
memory by storing 8 bits to each byte instead of 1. Not On|yall the secrets they know. What is the expected number of
did that change increase the number of storable qubits b§ays until everyone knows everyone else’s secrets? Intu-
183%, but it also madeHp about 50% faster—presumably itively, the answer isd(nlogn), because any given person
becaus&1) the rowsum subroutine now needed to exclusive-nas to wait®(n) days between meetings, and at each meet-
oronly 1/8 as many bytes, ar@) the memory penalty was ing, the number of secrets he knows approximately doubles
reduced. Storing the bits in 32-bit words yielded a further(or toward the end, the number of secrets he does not know
10% performance gain, presumably becausglpfrather is approximately halved Replacing people by qubits and
than (2) (since even with byte addressing, a whole memorymeetings bycNOT gates, one can see why a “phase transi-
line is loaded into the cache on a cache miss tion” from a sparse to a dense tableau might occur after

As expected, the experimentally measured execution tim&(nlogn) random unitary gates are applied. However, this
per unitary gate grows linearly in, whereas the time per argument does not pin down the proportionality consjant
measurement grows somewhere between linearly and qu&o that is what we varied in the experiment.
dratically, depending on the states being measured. Thus the The results of the experiment are presented in Fig. 2.
time needed for measurements generally dominates execMvhen 5=0.6, the time per measurement appears to grow
tion time. So the key question is this: what properties of aroughly linearly inn, whereas whe=1.2(meaning that the
circuit determine whether the time per measurement is lineafjumber of unitary gates has only doubjetthe time per mea-
quadratic, or somewhere in between? To investigate thisurement appears to grow roughly quadratically, so that run-
question we performed the following experiment. ning the simulations took 4 h of computing tifi@hus, Fig.

We randomly generated stabilizer circuits mqubits, for 2 gives striking evidence for a “phase transition” in simula-
n ranging from 200 to 3200 in increments of 200. For each tion time, as increasing the number of unitary gates by only
we used the following distribution over circuits: Fix a param- @& constant factor shifts us from a regime of simple states that
eter 3>0; then choos¢sn log,n] random unitary gates: a are easy to measure, to a regime of complicated states that
CNOT gate from controla to targetb, a Hadamard gate on are hard to measure. This result demonstratesaheis per-
qubit a, or a phase gate on qukit each with probability formance depends strongly on the circuit being simulated.
1/3, wherea and b are drawn uniformly at random from Without knowing what sort of tableaus a circuit will produce,
{1,... n} subject toa#b. Then measure qubi for each all we can say is that the time per measurement will be
ae{l,...,n}in sequence.

We simulated the resulting circuits THP. For each cir-  “Based on our heuristic analysis, we conjecture that for interme-
cuit, we counted the number of seconds needed fonall diate 8, the time per measurement growsrisfor some I c<2.
measurement stegignoring the time for unitary gatgsthen  However, we do not have enough data to confirm or refute this
divided byn to obtain the number of seconds per measure€onjecture.

FIG. 2. Average time needed to simulate a measurement aft
applying 8n log,n unitary gates ta qubits, on a 650 MHz Pentium
Il with 256 Mbytes RAM.
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somewhere between linear and quadratio.in complexity language, whai24] showed is thatoL=L%":
any problem inL with &L oracle is also insL itself.)
It is conjectured thalL # & L; in other words, that an
V. COMPLEXITY OF SIMULATING STABILIZER oracle for simulatingcNOT circuits would let anL machine
CIRCUITS compute more functions than it could otherwise. Intuitively,
this is because writing down the intermediate states of such a
The Gottesman-Knill theorem shows that stabilizer cir-cjrcuit requires more than a logarithmic number of read/write
cuits are not universal for quantum computation, unlessits. Indeed,®L contains some surprisingly “hard” prob-
quantum computers can be simulated efficiently by classicagbms, such as inverting matrices ovéF, [23]. On the other
ones. To a computer scientist, this theorem immediateland, it is also conjectured thatL # P, meaning that even
raises a question: wheunp stabilizer circuits sit in the hier- with an oracle for simulatingeNOT circuits, anL machine
archy of computational complexity theory? In this section wecould not simulate more general circuits withp and or
resolve that question, by proving that the problem of simugates. As usual in complexity theory, neither conjecture has
lating stabilizer circuits is complete for a classical complex-peen proved.
ity class known aspL (pronounced “parity-LJ.> The usual Now define the Gottesman-Knill problem as follows. We
definition of L is as the class of all problems that are solv-gre given a stabilizer circul as a sequence of gates of the
able by a nondeterministic Iogarithmic—space Turing ma-form cNOT a— b, Hadamarda_, phasea_, or measure, where
chine, that accepts if and only if the total number of accepta, be {1, ... n} are indices of qubits. The problem is to de-
ing paths is odd. But there is an alternate definition that igjde whether qubit 1 will bg1) with certainty afterC is
probably more intuitive to non-computer-scientists. This isapplied to the initial staté0)®". (If not, then qubit 1 will be
that &L is the class of problems that reduce to simulating 1) with probability either 1/2 or 0.
polynomial-sizeCNOT circuit, i.e., a circuit composed en-  since stabilizer circuits are a generalizationofoT cir-
tirely of NOT and CNOT gates, acting on the initial state cyits, it is obvious that the Gottesman-Knill problem is
|0---0). (It is easy to show that the two definitions are g -hard (i.e., any®L problem can be reduced to.itOur
equivalent, but this would require us first to eXplain what theresu|t says that the Gottesman-Knill prob'emns@ L. Intu-

usual definition means. ~itively, this means that any stabilizer circuit can be simulated
From the second definition, it is clear thatLCP; in  efficiently usingcnoT gates alone—the additional availabil-
other words, any problem reducible to simulatiogoT cir- ity of Hadamard and phase gates gives stabilizer circuits at

cuits is also solvable in polynomial time on a classical commost a polynomial advantage. In our view, this surprising
puter. But this raises a question: what do we mean by “refact helps to explain the Gottesman-Knill theorem, by pro-
ducible™? ProblemA is reducible to problemB is any  yiding strong evidence that stabilizer circuits are not even

instance of problem can be transformed into an instance of ynjversal for classical computatigassuming, of course, that
problemB; this means that problei is “harder” than prob-  c|assical postprocessing is forbidden

lem A in the sense that the ability to answer an arbitrary Theorem 2 Gottesman-Knill problenis in &L.

instance of problenB implies the ability to answer an arbi-  proof We will show how to solve the Gottesman-Knill

trary instance of problem (but not necessarily vice versa  problem using a logarithmic-space machMewith an oracle
We must, however, insist that the reduction transformingror simulating cNOT circuits. By the result of Hertrampf,

instances of problem into instances of problerB not be  Reith, and Vollmer[24] described above, this will suffice to
too difficult to perform. Otherwise, we could reduce hardproye the theorem.
problems to easy ones by doing all the difficult work in the By the principle of deferred measurement, we can assume
reduction itself. In the case @bL, we cannotmean “reduc-  that the stabilizer circuit has only a single measurement
ible in polynomial time,” which is a common restriction, gate at the endsay of qubit 3, with all other measurements
since then the reduction would be at least as powerful as theplaced bycnoT gates into ancilla qubits. In the tableau
problem it reduces to. Instead we require the reduction to bﬁlgorithm of Sec. 1. letx? Zi('t) r® be the values of the

. . . . " 1 1 b ’ I
performed in the complexity clads or logarithmic space— variablesx;, z;, r; aftert gates ofC have been applied. Then
that is, by a Turing machink! that is given a read-only input 1 || simulate C by computing these values. The first task
of sizen, and a write-only output tape, but on(log n) bits o \ js to decide whether the measurement has a determinate
of read/write memory. The reduction works as follows: first 5 ;icome—or equivalently whethexfT):O for everyi e {n
M specifies acNOT circuit on its output tape; then an 1 a1 \whereT is the number oflunitary gates. Observe

‘t‘)oracle” ttﬁ”SN: thefc;}rct#t’stouLptut(f\f[vhut:rr]] we cgtn. take to d that in thecNoT, Hadamard, and phase procedures, every
€, say, the value of the first qubit after the circuit is applie update to an; or z; variable replaces it by the sum modulo

thenM specifies anotheenoT circuit on its output tape; and 5ot one or two othex;; or z; variables. Also, iterating over-
so on. A useful result of Hertrampf, Reith, and Vollnjed] ", te{0,... T} and | E{ll 7 takes’onIyO(Iog n)
says that this seemingly paweriul kind of redgction, in which bits of mem,ory. ,Therefore dt’espi,te its memory restrictidn
M can make multiple calls to thenoT oracle, is actually no can easily write on its output tape a description x0T

more powerful than the kind with only one oracle calh circuit that simulates the tableau algorithm using? Bits

(ther;'s being omitteql, and that returnxiq) for any desired
See www.complexityzoo.com for definitions afL and several i. Then to decide whether the measurement outcome is de-
hundred other complexity classes. terminate,M simply iterates over all from n+1 to 2n.
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The hard part is to decide wheth@®) or |1) is measured
in case the measurement outcoisedeterminate, for this
problem involves the; variables, which do not evolve in a
linear way as theg;’s andz;'s do. Even worse, it involves

PHYSICAL REVIEW A70, 052328(2004)

This task is of direct relevance to quantum computer archi-
tecture: because the effects of decoherence build up over
time, it is imperative(even more so than for classical cir-
cuits) to minimize the number of gates as well as wires and

the complicated-looking and nonlinear rowsum procedureother resources. Even if fault-tolerant techniques will even-
Fortunately, though, it turns out that the measurement outually be used to tame decoherence, there remains the boot-
come r(zTnill) can be computed by keeping track of a singlestrapping problem of building the fault-tolerance hardware.
complex number. This « is a product of phases of the form In that regard we should point out that fault-tolerance hard-
+1 or 4, and therefore takes only 2 bits to specify. Further-ware is likely to consist mainly otnoT, Hadamard, and

more, although the “obvious” ways to computeuse more
than O(log n) bits of memory,M can get around that by
making liberal use of the oracle.
FirstM computes Whatg:ll) would be if thecNoT, Had-
amard, and phase procedures did not modifyrtlse Let P
be a Pauli matrix with a phase of +1 or,awhich therefore
takes 4 bits to specify. Also, leP\” be the Pauli matrix
represented by the biné.T), zl.(.T) in the usual way1=00, X
=10,Y=11,Z=01. Then the procedure is as follows.
a:=1
for j:==1ton
P:=I
fori:=n+1to 2
ask oracle fox(, ., xl(]T ), zl(JT)

(i
n _ ._p(M
i_n)l—lthenP.—P”. P

if x|
nexti
multiply « by the phase oP (x1 or i)
next j
The “answer” is 1 ifa=-1 and 0 ifa=1 (note thatx will
never be t at the engl However,M also needs to account
for ther,;'s, as follows.
fori:==n+1to 2n
ask oracle foeriT_)n)1
if inT_)n)lz 1
fort:=0to T-1
if (t+1)st gate is a Hadamard or phase gateon
ask oracle forxi(;), Z|(;)
if X92Y=1 thena:=-a
end if
if (t+1)st gate is acNOT gate froma to b

ask oracle fo?, ZY, x¥, 2

in
if XUz (xi(t?@zg)ea 1)=1 thena:=-a
end if
nextt
end if
nexti

The measurement outcom :11) is then 1 ifa=-1 and O
if «=1. As described above, the machiive needs only
O(logn) bits to keep track of the loop indices j, t, and

O(1) additional bits to keep track of other variables. Its cor-

phase gates, since the known fault-tolerant constructions
example, that of Aharonov and Ben-(25]) are based on
stabilizer codes.

Although there has been some previous work on synthe-
sizing CNOT circuits [17,26,27 and general classical revers-
ible circuits [28,29, to our knowledge there has not been
work on synthesizing stabilizer circuits. In this section we
prove acanonical form theorenthat is extremely useful for
stabilizer circuit synthesis. The theorem says that given any
circuit consisting oicNOT, Hadamard, and phase gates, there
exists an equivalent circuit that applies a round of Hadamard
gates only, then a round aiNOT gates only, and so on in the
sequence H-C-P-C-P-C-H-P-C-P-C. One easy corollary of
the theorem is that any tableau satisfying the commutativity
conditions of Proposition 2 can be generated by some stabi-
lizer circuit. Another corollary is that any unitary stabilizer
circuit has an equivalent circuit with onl9(n?/log n) gates.

Given twon-qubit unitary stabilizer circuit§,, C,, we say
thatC, andC, areequivalentif C(|#))=C,(|¢)) for all stabi-
lizer states|y), whereC;(|y)) is the final state whei; is
applied to|z,/;>.6 By linearity, it is easy to see that equivalent
stabilizer circuits will behave identically oall states, not
just stabilizer states. Furthermore, there exists a one-to-one
correspondence between circuits and tableaus.

Lemma 1LetCq, C, be unitary stabilizer circuits, and let
7., T, be their respective final tableaus when we run them on
the standard initial tableau. Théh andC, are equivalent if
and only if 7;=75.

Proof. Clearly7,=7, if C; andC, are equivalent. For the
other direction, it suffices to observe that a unitary stabilizer
circuit acts linearly on Pauli operatofthat is, rows of the
tableay: if it maps P; to Q; and P, to Q,, then it maps
P.+P, to Q;+Q,. Since the rows of the standard initial tab-
leau form a basis foP,,, the lemma follows. |

Our proof of the canonical form theorem will use the
following two lemmas.

Lemma 2 Given ann-qubit stabilizer state, it is always
possible to apply Hadamard gates to a subset of the qubits so
as to make theX matrix have full rank(or, equivalently,
make all 2 basis states have nonzero amplitude

Proof. We can always perform row additions on the

rectness follows straightforwardly from the correctness ofX 2n stabilizer matrix without changing the state that it rep-

the tableau algorithm. |
For a problem to bebL-complete simply means that it is

®L-hardandin @L. Thus, a corollary of Theorem 2 is that

the Gottesman-Knill problem i®L-complete.

VI. CANONICAL FORM

resents. Suppose tiematrix has rank<n; then by Gauss-
ian elimination, we can put the stabilizer matrix in the form

®The reason we restrict attention to unitary circuits is simply that,
if measurements are included, then it is unclear what it even means
for two circuits to be equivalent. For example, does deferring all

Having studied the simulation of stabilizer circuits, in this measurements to the end of a computation preserve equivalence or
section we turn our attention to manipulating those circuitsnot?
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AlB states invariant they do not in general leave circuits invari-
(0 C) ant.
The procedure is as follows.

where A is kX n and has rank. Then since the rows are (1) Use Hadamard gates to makehave full rank(this is
linearly independentC must have rank—k; therefore it has  possible by Lemma)2

an (n—k) X (n—k) submatrixC, of full rank. Let us permute (2) UsecNoT gates to perform Gaussian elimination©n
the columns of th&X andZ matrices simultaneously to obtain producing

(A1 A, |B; Bz> (A‘B)
0 0|C G)° I|D/)’
and then perform Gaussian elimination on the bottofk (3) Use phase gates to makeinvertible (this is possible
rows to obtain by Lemma 3. Now commutativity of the stabilizer implies
A Al B that IDT is symmetric, therefor® is symmetric, therefore
( 1 2P 2)_ D=MMT for some invertibleM.
0 0D | (4) UsecNOT gates to produce
Now commutativity relations imply Al B
(M M)'

DT
(Ag A2)( | ):0
Note that when we mapl to IM, we also map
and thereforeA,DT=A,. Notice that this implies that the D to D(MT)!=MMT(MT)"1=M.

X k matrix A; has full rank, since otherwise thé matrix (5) Apply phase gates to afi qubits to obtain
would have column rank less th&nSo applying Hadamard
gates to the rightmost—k qubits yields a state (A B )
M|0
Al By B A
( 0O I'|lD O ) Since M is full rank, there exists some subsetof qubits
. such that applying two phase gates in succession to every
whoseX matrix has full rank. . ~ B 3¢ Swill preserve the above tableau, but sgt;=- - =ry,
Lemma 3For any matrixA  Z;*", there exists a diagonal =g Apply two phase gates to eveme S.

matrix A such thatA+A has full rank. (6) Use CNOT gates to perform Gaussian elimination on

Proof. Consider using Gaussian elimination to redéce \ producing
+A to an upper-triangular matrix. Initially set:=0. Then,
when theith row is about to be used to zero out thha Al|B
column, if (A+A);; =0 then set\;;:=1 and continue. Ledq 7lo
be the diagonal matrix that results; then Gaussian elimination
reducesA+Asn, to an upper-triangular matrix with all 1's By commutativity relations|BT=AQ"+1, thereforeB=1.

along the diagonal. | (7) Use Hadamard gates to produce
Say a unitary stabilizer circuit is in canonical form if it
consists of 11 rounds in the sequence H-C-P-C-P-C-H-P-C- (1 A)
P-C. 0|1/
Theorem 3Any unitary stabilizer circuit has an equiva- ) ) )
lent circuit in canonical form. (8) Use phase gates to makeinvertible (here we again

Proof. Divide a 20X 2n tableau into foumx n matrices ~ @PP€al to Lemma)3Now commutativity of ihe destabilizer
A=(a;), B=(by), C=(c;), andD=(d;), containing the desta- implies thatA is symmetric, thereford=NN'" for some in-

bilizer x; bits, destabilizeg; bits, stabilizerx; bits, and sta- vertible N.
bilizer z; bits, respectively: (9) Usecnor gates to produce

AlB (N N)

(c D> olc/
(we can ignore the phase bity. Since unitary circuits are ~ (10) Use phase gates to produce
reversible, by Lemma 1 it suffices to show how to obtain the Nlo
standard initial tableau starting from an arbitrdyB, C, D. ;

We cannot use row additions, since although they leave

0|C

then by commutativity relationsNCT=I. Next apply two
"Actually, this gives the canonical form for the inverse of the phase gates each to some subset of qubits in order to pre-
circuit, but of course the same argument holds for the inverse circuiserve the above tableau, but set---=r,=0.
too, which is also a stabilizer circuit. (11) UsecNoOT gates to produce
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110 tation is again possiblg33,34. However, we show that an
<0 I) efficient classical simulation exists, provided only a few
measurements are allowed.
[} The final generalization, in Sec. VII C, is to circuits con-

Since Theorem 3 relied only on a tableau satisfying thdaining a few nonstabilizer gates. The qualifier “few” is es-
commutativity conditions, not on its being generated bysential here, since it is known that unitary stabilizer circuits
some stabilizer circuit, an immediate corollary is that anyplus any additional gate yields a universal set of quantum
tableau satisfying the conditions is generated by some stabgates[35,36. The running time of our simulation procedure
lizer circuit. We can also use Theorem 3 to answer the foliS polynomial inn, the number of qubits, but is exponential
lowing question: how many gates are needed fonayubit  in thed, the number of nonstabilizer gates.
stabilizer circuit in the worst case? Cleve and Gottesman
[30] showed thatO(n?) gates suffice for the special case of A. Mixed states

state preparation, and Gottesmi@l] and Dehaene and De e first present the simulation for mixed states. We allow
Moor [18] showed thaD(n?) gates suffice for stabilizer cir- only stabilizer mixed statesthat is, states that are uniform
cuits more generally; even these results were not obvous distributions over all states in a subspaoeequivalently, all
priori. However, with the help of our canonical form theo- stabilizer states in the subspaceith a given stabilizer of
rem we can show a stronger upper bound. r <n generators. Such mixed states can always be written as

Corollary 1. Any unitary stabilizer circuit has an equiva- the partial trace of a pure stabilizer state, which immediately
lent circuit with only O(n?/log n) gates. provides one way of simulating them.

Proof. Patel, Markov, and Hayefl7] showed that any It will be useful to see how to write the density matrix of
CNOT circuit has an equivalentNOT circuit with only  the mixed state in terms of the stabilizer. The operator
O(n?/logn) gates. So given a stabilizer circdlt first putC  +M)/2, whenM is a Pauli operator, is a projection onto the
into canonical form, then minimize thenoT segments. +1 eigenspace olM. Therefore, if the stabilizer of a pure
Clearly the Hadamard and phase segments require@(my  state has generatoh,, ... ,M,, then the density matrix for

gates each. B that state is

Corollary 1 is easily seen to be optimal by a Shannon .
counting argument: there ar€®” distinct stabilizer circuits _ iH (1+M)
on n qubits, but at mostn?)™ with T gates. P=onil .

A final remark: as noted by Moore and Nilssf#v], any
CNOT circuit has an equivaler@NoT circuit with O(n?) gates The density matrix for a stabilizer mixed state with stabilizer
and parallel depti©(log n). Thus, using the same idea as in 9enerated by, ... M, is
Corollary 1, we obtain that any unitary stabilizer circuit has r
an equivalent stabilizer circuit wit®(n?) gates and parallel p= l]‘[ (1+M,).
depthO(log n). (Moore and Nilsson showed this for the spe- 2"
cial case of stabilizer circuits composed @iot and Had-

To perform our simulation, we find a collection ofr2
amard gates only.

=) operator@?i andZ that commute with both the stabilizer
and the destabilizer. We can choose them so EE@,DT,—]
=[Z,Z]=[Z,Z]=O for i #j, but {%,Z}:O. This can be

In this section, we discuss generalizations of stabilizeidone by solving a set of linear equations, which in practice
circuits that are still efficiently simulable. The firstasy  takes timeO(n®). If we start with an initial mixed state, we

generalization, in Sec. VII A, is to allow the computer to be will assume it is of the formj00- - -0){00- --0| ® | (so 0 on the
in a mixed rather than a pure state. Mixed states could bérst n—r qubits and the completely mixed state on the tast

simulated by simply purifying the state, and then simulatinggypity. In that case, we choosé=X.,, andZ,=Z,,,.

the purlf_|c_at|on, but we present an alternative and slightly We could purify this state by addirgZ,,; and XX to

more efficient strategy. " - X

o . . ... the stabilizer andX,,; and Z,,; to the destabilizer fori

The second generalization, in Sec. VII B, is to initial _ . - .
=1,...r. Then we could simulate the system by just simu-

states other than the computational basis state. Taken to ar&ing the evolution of this pure state through the circuit; the

extreme, one could even have noncomputable initial states. .
extrar qubits are never altered.

When combined with arbitrary quantum circuits, such quan- . : S .
A more economical simulation is possible, however, by

tum advice is very powerful, although its exact powerla- . : - o
tive to classical agvlioc)eis unknown[329]. We consid%r\gﬂore Just keeping track of the originatgenerator stabilizer and

modest situation, in which the initial state may include spe-destabilizer, plus the (@—-r) operatorsX; and Z;. Formally,

cific ancilla states, consisting of at mdstjubits each. The this allows us to mainta_in a complete tableau and generalize
initial state is therefore a tensor product of blocksbogu-  the O(n?) tableau algorithm from Sec. Il. We place the
bits. Given an initial state of this form and general stabilizergenerators of the stabilizer as rows 1, ... n+r of the tab-
circuits, including measurements and classical feedbacléau, and the corresponding elements of the destabilizer as
based on measurement outcomes, universal quantum compigws 1,...r. The new operator¥; and Z, (i=1,... n-r)

VIlI. BEYOND STABILIZER CIRCUITS
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become rows +i and n+r+i, respective'y' Le]l_:| +nif i al|ty, we first apply the Unitary stabilizer Cil‘CLlLtl, followed
<nandizi-nif i=n+1. Then we have that row andR by the measuremer#; (that is, a measurement of the first

.. . ) qubit in the standard bagisWe then apply the stabilizer
commute unless=j, in which caseR; andR; anticommute.

) ) : circuit U,, followed by measuremet, on the second qubit,
We can keep track of this new kind of tableau in much theand S0 én up tdJg ZZ- 2 9
same way as the old kind. Unitary operations transform the \va can calculate the probabilitg(0) of obtaining out-
new rows the same way as rows of the stabilizer or destabix

) come O for the first measurement as follows:
lizer. For example, to perform @NOT gate from control qu-

b:} a tc; target quilb, SetXip 1= Xip © Xig ANz =2, ® Zp, for p(0) = Tr[(1 + Z)U1pUT)2 = T (1 + UlZ,U ) pl/2
allie{l,..., .
1 1 _ T
Measurement of qubit is slightly more complex than =12+ Ti[(U;2,Up)p)/2.

before. There_are now three cases. hi But U, is a stabilizer operation, 8917,U, is a Pauli matrix,
Case | xp,=1 for somepe{n+1,... n+r}. In this case 4 i therefore a tensor product operation. We also kpow

Z, anticommutes with an element of the stabilizer, and thgs 5 tensor product of blocks of at mastqubits, and the

measurement outcome is random. We update as before, fgfce of a tensor product is the product of the traces.pLet

all rows of the tableau. _ o =®Mp; and UJZ;U;=®P; where j ranges over the
Case Il xpa=0 for all p>r. In this caseZ, is in the sta-  |5cks. Then

bilizer. The measurement outcome is determinate, and we

can predict the result as before, by calling rowsum to add up 1

rows rp,,; for thosei with x,;=1. p(0) = >t [1Tr(Pjp).
Case lll xp,=0 forallpe {n+1,... n+r}, butx,,=1 for j=1

someme{r+1,...nforme{n+r+1,...,}. In this case

. » X SinceP; andp; are both(2P x 2P)-dimensional matrices, each
Z, commutes with all elements of the stabilizer but is nOtTr(P

itself in the stabilizer. We get a random measurement result,

but a slightly different transformation of the stabilizer than in

case |. Observe that rolR,, anticommutes wittZ,. This row

takes the role of rovwp from case I, and the roR;; takes the

role of row p—n. Update as before with this modification.

Then swap rows+r +1 andm and rowsr +1 andm. Finally, (I +Z)UspUl(1 +2y)

increaser to r+1: the stabilizer has gained a new generator. 4p(0)
Another operation that we might want to apply is discard- P

ing the qubita, which has the effect of performing a partial after the next stabilizer circuit),, the state is

trace over that qubit in the density matrix. Again, this can be

done by simply keeping the qubit in our simulation and not U,(l +Z)U1pUl(1 +Z2)U]

using it in future operations. Here is an alternative: put the 4p(0)

stabilizer in a form such that there is at most one generator

with an X on qubita, and at most one with & on qubita. = The probability of obtaining outcome 0 for the second mea-

Then drop those two generatqi@ one, if there is only one surement, conditioned on the outcome of the first measure-

total). The remaining generators describe the stabilizer of thenent being 0, is then

reduced mixed state. We also must put ¥aeand Z; opera- + +
tors in a form where they have no entries in the discarded p(0[0) = T+ Zp)Ua(l + 2)UspU5 (1 +Zl)U2]_
location, while preserving the structure of the tableau 8p(0)

(namely, the commutation relations of Proposition Phis
can also be done in tim&(n?), but we omit the details, as
they are rather involved.

;pj) can be computed in tim®(2%).

By flipping an appropriately biased coin, Alice can gen-
erate an outcome of the first measurement according to the
correct probabilities. Conditioned on this outco(say of 0,

the state of the system is

By expanding out the eight terms, and then commutihg
and U, pastZ; andZ,, we can write this as

8 m
B. Nonstabilizer initial states E H TI’(P-(-Z)p--)
ij Mij/-

We now show how to simulate a stabilizer circuit where i=1j=1
the initial state is more general, involving nonstabilizer ini- ) . o
tial states. We allow any number of ancillas in arbitrary Ea;h TI(P'IJ p‘ir)l term gag'lagalr; be compgte:j in r2"). f
states, but the overall ancilla state must be a tensor product >'Mary; tt € ?ro a "ty.?_ any p%rncu ff[‘tr sequence o
of blocks of at mosth qubits each. An arbitrary stabilizer M€aSurement outcomes;m,---mg can be writlen as a sum

circuit is then applied to this state. We allow measurements, 2201
but only d of them in total throughout the computation. We _ (d)
. ! e mym - -+ = Tr(Pi" pii)
do allow classical operations conditioned on the outcomes of p(mymy -+ M) 21 ]1:[1 (P i)
measurements, so we also allow polynomial-time classical
computation during the circuit. where each trace can be computed in ti@@%). It follows

Let the initial state have density matgx a tensor product that the probabilities of the two outcomes of tt#h mea-
of m blocks of at mosb qubits each. Without loss of gener- surement can be computed in tir@¢m220+2d),
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C. Nonstabilizer gates 1
o o _ p(0) = W(TE ciPic T [ + (= DMiPav;1Q",
The last case that we consider is that of a circuit contain- ik i
ing d nonstabilizer gates, each of which acts on at niost where here and throughout we 18t =1+Q and Q"=1-Q

qubits. We a".OW an u.n.llmlted number of _P.a.uh Measure-as usual, eithelQ commutes with everything in the stabi-
mgnts and unitary §Fab|I|zer gates, but the initial nstate IS reﬁzer, or Q anticommutes with some element of the stabilizer.
quired to be a stabilizer state—for concreten¢BsT". (However, the measurement outcome can be indeterminate in

To analyze this case, we examine the density matrt ., cases, and may have a nonuniform distributiomthe
the tth step of the computation. Initiallypy is a stabilizer first case, we can rewrite the density matrix as
state whose stabilizer is generated by sdvhg ... ,M,, so '

we can write it as 1 N
p(0) = 552 QP TL I + (= )MiPaw].
ik j

But Q*P; Q*=2P; Q" if P, and Q commute, and)*P; Q*
=Q*Q Py=0 if Py and Q anticommute. Furthermore, as
usual, agQ commutes with everything in the stabiliz€),is

- ) ) actually in the stabilizer, so projecting @ either is redun-
If we perform a stabilizer operation, théd;'s become a dif- dant(if Q has eigenvalue #lor annihilates the statéf Q

ferent set of Pauli operators, but keeping track of them re5q eigenvalue 1 Therefore, we can see that0) has the
quires at most(2n+1) bits at any given timgor 2n(2n ¢4 form as before: ’

+1) if we include the destabilizg¢rIf we perform a measure- L
ment, theM;’s change in a more complicated way, but re- 0==Sc.P. |+ (= DMiPM.
main Pauli group elements. p(0) 2nz tk ml?[[ -9 il

Now consider a single nonstabilizer gale ExpandingU o
in terms of Pauli operationg,, where now the sum overis only over thoséP’s that com-

mute withQ, and the sum ovek is only over thosd?,’s that
give eigenvalue +1 foQ.
i1 « When Q anticommutes with an element of the stabilizer,
UpU" = 5(2 CiPi)H (I+ MQ(% Ckpk) we can change our choice of generators so ¢habmmutes
' J with all of the generators except foi;. Then we writep(0)
as

1
P:§(|+M1)(|+M2)‘”(| +Mp).

1 x .
= EE CiCkPi PkH (l + (— l)MJ Pij).
i.k ] 1 + M;-P +
p(0) = 2n_+22 CikQ Pi[l + (= DMiITkM]Q A
i,k
HereM; - Py is the symplectic inner product between the cor- 1
responding vectors, which is 0 whenewdr and P, com- = 2n—+22 CkQ Py [QF + (- DMIPKQ ™M ]A,,
ik

mute and 1 when they anticommute. In what follows, let
Cik=Cic, and Py =P;P,. Then we can write the density matrix

. . .where
afterU as a sum of terms, each described by a Pauli matrix
P, and a vector of eigenvalues for the stabilizer. Sibcand A= [INEG ]_)Mj'Pij]_
U' each act on at most qubits, there are at most4terms =1

in this sum.

If we apply a stabilizer gate to this state, all of the Pauli
matrices in the decomposition are transformed to other Pau
matrices, according to the usual rules. If we perform anothe
nonstabilizer gate, we can again expand it in terms of Pau
matrices, and put it in the same form. The new gate can an{ﬁm
on b new qubits, however, giving us more terms in the sum.” ™~
After d such operations, we thus need to keep track of at 1 .
most 4°9 complex numbersthe coefficients;), 4°9 strings p(0) = EE CikpikQ+H [+ (=DM Pamy],
each of 2 bits (the Pauli matrice®;), and 49 strings each K =t
of n bits (the inner productsv;-P,). We also need to keep whereQ has replaced; in the stabilizer, and anf;, that
track of the stabilizer generatoM,, ... ,M,, and it will be  anticommutes witlQ has been replaced by M,, its corre-
helpful to also keep track of the destabilizer, for a total of anspondinggc;, replaced by(-1)MiPkc,.
additional 2y(2n+1) bits. Therefore, we can always write the density matrix after

The above allows us to describe the evolution when theréhe measurement in the same kind of sum decomposition as
are no measurements. What happens when we perform keefore, with no more terms than there were before the mea-
measurement? Consider the unnormalized density matrigurement. The density matrices are unnormalized, so we
corresponding to outcome 0 for measurement of the Paulieed to calculate pX0) to determine the probability of ob-
operatorQ: taining outcome 0. Computing the trace of a single term is

If P, andQ commute, then we keep only the first te@ in

hhe square brackets in the second line of the equation for
(0). If Py and Q anticommute, we keep only the second
.erm Q"M; in the square brackets. In either case, we can

write the density matrix in the same kind of decomposi-
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straightforward: it is 0 ifP;, is not in the stabilizer and £2;, (4) Is there a set of quantum gates that is neither universal
if Py is in the stabilizer(with + or — determined by the for quantum computation, nor classically simulable in poly-
eigenvalue ofP,). To calculate Tp(0), we just need to sum nomial time? Sh{37] has shown that if we generalize stabi-
the traces of the 29 individual terms. We then choose a lizer circuits by addingany 1- or 2-qubit gate not generated
random number to determine the actual outcome. Thereaftedy cNOT, Hadamard, and phase gates, then we immediately
we only need to keep track @fi0) or p(1), which we can obtain a universal set.

easily renormalize to have unit trace. Overall, this simulation (5) What is the computational power of stabilizer circuits

therefore takes time and spa®¢4?°‘n+n?). with arbitrary tensor-product initial states, but measurements
delayed until the end of the computation? It is known that, if
VIIl. OPEN PROBLEMS we allow classical postprocessing and control of future quan-

tum operations conditioned on measurement results, then

(1) Iwama, Kambayashi, and Yamashij6] gave a set of universal quantum computation is possij&3,34. How-
local transformation rulesoy which anycnoT circuit (that  ever, if all measurements are delayed until the end of the
is, a circuit consisting solely oENOT gateg can be trans- computation, then the quantum part of such a cir¢thibugh
formed into any equivalentNoT circuit. For example, a not the classical postprocessjrgan be compressed to con-
CNOT gate froma to b followed by anothecNOT gate from  stant depth. On the other hand, Terhal and DiVinceji3&)
ato b can be replaced by the identity, an¢®OT gate from  have given evidence that even constant-depth quantum cir-
ato b followed by acNoOT gate fromc to d can be replaced cuits might be difficult to simulate classically.
by acNoT gate fromc to d followed by acNOT gate froma (6) Is there an efficient algorithm that, givencaoT or
to b, provided thal+ d andb+# c. Using Theorem 3, can we stabilizer circuit, produces an equivalent circuit(approxi-
similarly give a set of local transformation rules by which mately) minimum size? Would the existence of such an al-
any unitary stabilizer circuit can be transformed into anygorithm have unlikely complexity consequences? This might
equivalent unitary stabilizer circuit? Such a rule set couldpe related to the hard problem of proving superlinear lower
form the basis of an efficient heuristic algorithm for mini- bounds oncNOT or stabilizer circuit size for explicit func-
mizing stabilizer circuits. tions.

(2) Can the tableau algorithm be modified to compute
measurement outcomes in oryn) time?(In case the mea-
surement yields a random outcome, updating the state might
still take ordem? time.) We thank John Kubiatowicz, Michael Nielsen, Isaac

(3) In Theorem 3, is the 11-round sequence H-C-P-C-PChuang, Cris Moore, and George Viamontes for helpful dis-
C-H-P-C-P-C really necessary, or is there a canonical forncussions, and Andrew Cross for fixing an error in the manu-
that uses fewer rounds? Note that if we are concerned onlgcript and software. S.A. was supported by NSF and
with state preparation, and not with how a circuit behaves o®ARPA. D.G. is supported by funds from NSERC of
any initial state other than the standard one, then the five€anada, and by the CIAR in the Quantum Information Pro-
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