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We consider an ensemble of trapped atoms interacting with a continuous-wave laser field. For sufficiently
polarized atoms and for a polarized light field, we may approximate the nonclassical components of the
collective spin angular momentum operator for the atoms and the Stokes vectors of the field by effective
position and momentum variables for which we assume a Gaussian state. Within this approximation, we
present a theory for the squeezing of the atomic spin by polarization rotation measurements on the probe light.
We derive analytical expressions for the squeezing with and without inclusion of the noise effects introduced
by atomic decay and by photon absorption. The theory is readily adapted to the case of inhomogeneous
light-atom couplindA. Kuzmich and T.A.B. Kennedy, Phys. Rev. Le®2, 030407(2004)]. As a special case,
we show how to formulate the theory for an optically thick sample by slicing the gas into pieces, each having
only small photon absorption probability. Our analysis of a realistic probing and measurement scheme shows
that it is the maximally squeezed component of the atomic gas that determines the accuracy of the

measurement.
DOI: 10.1103/PhysRevA.70.052324 PACS nuniBer03.67.Mn, 03.65.Ta
[. INTRODUCTION accounted for in the Gaussian description is a strength of the

present theory.

With spin-squeezed atomic ensembles—i.e., samples |n the development of the theory, we shall consider a
where the variance of one of the angular momentspin  continuous-wavécw) beam of light passing through a cloud
components is reduced compared with the coherent-stajg yrapped atoms. In the Schrédinger picture we have an
value—one has the possibility to measure certain atomig, jicit update formula for the quantum state conditioned on

and/or classical parameters beyond the precision set by tr}ﬁe outcome of measurements carried out on a quantum sys-
standard quantum noise. Recent examples where this POSELm, but a light beam is a multimode field with an infinite-

bility was exploited include studies of magnetometry with dimensional Hilbert space, in which a complete description

collective atomic sping1-4]. The central feature in those of the quantum state is normally prohibitively complicated.

works is the entanglement of collective continuous light- h A hanical d ot f tical fields i
atom variables. This entanglement can be created by the freg- € quantum mechanical description of cw optical TIelds 15
tpéten formulated in terms of temporal correlation functions

space interaction between a trapped polarized atomic samp , : i .
and an appropriately polarized propagating laser beam witf" the noise power spectrum of field operators in the Heisen-
photon energy adjusted to the energy spacing between tm@rg picture, whlch_ls, hlowever,. not a con.venlent fprmula-
atomic energy level§5,6]. The probing of the atomic en- tion, when the field is being monitored continuously in time.
semble with the light field squeezes the atomic observabldVhen we restrict ourselves to Gaussian states, however, it is
(the atomic Spm and enables an improved measurementPOSSiNE to describe the field in the Schrddinger picture and
e.g., of a magnetic field. The underlying squeezing of thgo dynamically evolve the combined quantum state of the
collective atomic spin variable was dealt with in a series ofinteracting light-field and atomic system.

papers(see, e.g., Refg.7-13, and references thergiin- The paper is organized as follows. In Sec. I, we derive
cluding investigations of quantum nondemolition feedbackthe Hamiltonian for the collective atom-light coupling. In
schemeq3,12 and a study of the case of inhomogeneousSec. lll, we describe dynamics and measurements in the
light-atom coupling[13]. In the present work, we follow the Gaussian description and provide update formulas for the
lines of Refs[2,14,18 and investigate the spin squeezing of covariance matrix and for the expectation value vector. In
continuous variable quantum systems in the approximatioisec. IV, we present fully analytical results for spin squeezing
where the atomic and photonic degrees of freedom are def an atomic gas for a homogeneous light-atom coupling and
scribed by a Gaussian state. To this end we will use the fagmall photon absorption probability and atomic decay rate.
that the Gaussian state is fully characterized by its expectdn Sec. V, we describe how to handle the case of inhomoge-
tion value vector and its covariance matrix and we will useneous light-atom coupling. In Sec. V A we treat the case of
the fact that explicit formulas exist for the time evolution of an optically thin gas—i.e., small photon absorption—and we
the systemand for the quantum-state reduction under mea-obtain analytical results. In Sec. V B, we investigate the case
surementgsee, e.g., Refd.16-18 and references thergin  of an optically thick gas. In Sec. VI, we show that the maxi-
In particular, the fact that the measurements are explicithymally squeezed component of the gas will set the limit for
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the precision in a given measurement. In Sec. VII, we brieflywector components obey the commutator relations of a ficti-
summarize the results and conclude the paper. tious spin, and the associated quantum mechanical uncer-
tainty relation onS, andS,, Var(S)Var(S) =[(AS)[?/4, is in
precise correspondence with the binomial distribution of the
Il. COLLECTIVE ATOM-LIGHT COUPLING linearly polarized photons onto the other sets of orthogonal
To describe the atom-light coupling, we imagine that thepolar|zat|on directions. We introduce the effective Cartesian

beam is split up into short segments of duratioand corre- coordinates

sponding length.=c7. These beam segments are chosen so S S,
short that the field in a single segment can be treated as a (Xph Ppn) = m m '
single mode and that the state of an atom interacting with the v A
field does not change appreciably during timeso that the  with the standard commutatx,,, p,n]=i and resulting un-
evolution of the atomic system is obtained by sequential incertainty relation, which is minimized in the initial state,
teraction with light segments. Since we are interested inmplying that this state is a Gaussian state; i.e., its Wigner
modeling a cw coherent beam with constant intensity, wefunction is a Gaussian function of the phase space coordi-
assume a mode function for each segment of the field whichates.

is constant on a length and within the transverse aréa The atomic ensemble is initially prepared with &ll; at-

i.e., the quantization of the field energyAsoEZZNphﬁw oms in a superpositiofig_y ) +|g1»)) /2 of the two ground
yields the relation between the electric field amplitude andstates with respect to the quantization azis.e., the total
the_photon number in the segment of the fiel, state of the atoms is initially given by[(|9-1/2)
=VNpn7iw/LAg,. In the scheme for spin squeezing, we con-|g, .%)/2]Nat, In this state, the system of two-level atoms is
sider a light beam linearly polarized along thelirection and  jegcribed by a collective spin vector, where the component
propagating in they direction. The polarization can be de- 410ng the x direction attains the macroscopic valga)
composed in two polarization components with opposite Cir—zN,/2 and where the collective spin along thexis, J,,

cular polarization with respect to _the quantiz_ation axis represents the population difference of {gg,,) states. As

These two components interact dlffere_ntly W'th the AOMK - e photons, the quantum mechanical uncertainty relation
becayse of the sglectlon rules of the optical _dlpole transitiong, the collective spin components of the atomic state corre-
Imaglne atoms W'th,a grolun(cﬂg>) and an excited|e)) state sponds exactly to the binomial distribution of the atoms on
with J=1/2, interacting with theo™ and o™~ components of e o ground states, and also here it is convenient to intro-

the light field on thelg_1/») < [ey2) and|gy) < ey tran- gy ce the Cartesian coordinates
sitions, respectively. The interaction Hamiltonian between a

3

collection of N, atoms, enumerated with the indeand the _ Jy J; 4
two quantized fields, is thus written (Xa Par) = NI A “@
Nat for which the initial state is a minimum uncertainty Gaussian
H =2 (figaieyz; g1 + H. c. +higale 1)) state.
= The Hamiltonian(2) can be rewritten in terms of the ef-
X{Qy2i] +H.C.), (1) fective atomic and field variables. First, we note that

Na ) 1= U
with #g=-dE,,d the atomic dipole moment on the relevant 3517'-%1/28’2;21%ZHL;;\I&;/izsigﬁéﬁphotc?:?‘lux w:tthena?r?éert
transition, andE, = Aiw/LAz, the *field per photon,” ident- these e_xpres,sions into EER), leave out a.constant energy
fied above. We assume that the fields are frequency detun% ift, and obtain the eﬁectiv:a interaction Hamiltonian
by an amount\ with respect to the atomic resonance. In the '
limit where gVN,,<A the atoms are not excited by the fields H7 =7k Paph- (5)
and the dynamics is entirely associated with the light- .
induced en)érgy shifts of the gyround states. Adiabatic elgi]mi-We display the product dil and, to expose the effect of the

nation of the upper states then leads to the effective Hamillteraction with thf? whole "segment, and we introduce the
tonian effective coupling “constant

Nt g [1G1(S)
he? K= 25 [ 6
H=> E(al&|g—1/2j><g—1/2,i|+3£a—|91/2,i><91/2,i|), (2 A h h ©
i=1

The free-space coupling constant of light and atoms is small,
which applies for the duration for which the field overlaps and the coarse-grained description will be perfectly valid
the atomic system. The photon field is suitably described byyen for the macroscopic values M= required by our
a Stokes vector formalism, with a macroscopic value of thereatment. The Hamiltonian in E@5) correlates the atoms
componentS)=7iN,,/2 and where th&, operator yields the  and the light fields. It is bilinear in the canonical variables
difference between the number of photons with the two cir-and hence preserves the Gaussian character of the joint state
cular polarizationsS,=f(ala,—a'a_)/2, andS, yields the  of the systen{16]. We have emphasized the convenience of
difference between the number of photons polarized at 45€sing Gaussian states, because their Schrodinger picture rep-
and 135°, with respect to theaxis, respectively. The Stokes resentation is very efficient and compact. Now, given that
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every segment of the optical beam becomes correlated witkical x component is reduced this leads to a reduction with
the atomic sample, as a function of time, the joint state of theime of the coupling strength,— «,\/1—7,. which was also
atom and field has to be specified by a larger and largediscussed in Ref§1,2,15. Simultaneously, every photon on
number of mean values and second-order moments. If nigs way through the atomic gas has a probability for being
further interactions take place between quantum systems aratbhsorbed15]

the light after the interaction with the atoms, there is no need )

to keep track of the state of the total system. In practice, - ‘_’< /4 ) (12)

either the transmitted light may simply disappear or it may - AA\TY4 +A?

be registered in a detection process. In the former case, the . .
relevant description of the remaining system is obtained by\%ﬁ1|S means that the vector O.f expectation va}luegﬂves as
partial trace over the field state, which produces a ne M))?'—_TSK}@ with L,=diagv1-7;,
Gaussian state of the atoms. We are interested in the ca§é‘7lr-\““1‘§a\’1_f)-

where the polarization rotation of the field is registered—i.e., The fractionz, of atoms that have decayed represents a
where the observable,, is measured. The effect of measur- loss of coIIec_tlve squeezing bgcagse its _correlatlon v_wth_the
ing one of the components in a multivariable Gaussian statéther atoms is lost, whereas it still provides a contribution

is effectively to produce a new Gaussian state of the remairf”/4 per atom to the collective spin variance. We may use
ing variables as discussed in detail in Sec. IIl. the symmetry of the collective spin operator under the ex-

change of particles to express th? )m(e;’;\n value of, éﬁgas
2\ _ (32 2 _ 1) (2
lIl. DYNAMICS AND MEASUREMENTS IN THE (35)= (% H)Ngrt (h%/ )Naf Nyt~ 1){0, "07) where we have

M2y —¢( +Dy2y = M, =/ D (2
GAUSSIAN APPROXIMATION INCLUDING NOISE used that(o, )%)=((0,")9)=1 and(o, o, )=(0, 0,") for
all'i andj(i #j). We may solve the equation for the correla-
Having established the fact that the quantum state of th@ons between the different spins:
atoms is at all times described as a Gaussian state, we shall

set up the precise formalism. For the column vector of the (3% - "fNat

1) (2N —
four variablesy=(Xa, Pt Xpn, Pon) " describing the atoms and (0P ol?) = PN Ny 1) (12
a single segment of the light beam, the Heisenberg equations 4 Tat A
of motion yield During a time interval of duratiorr, ,N,, atoms decay by
y(t+7)=Sy(t), (77 Spontaneous emission. This means that
with the transformation matrix (32 = (3,7 = (WA N(L = 7,) + (B2 A)Ny(1 = 7,)[Ny(1
10 0« = 1) = WP o) + (1214 . Nay
01 00 where the last term comes from the atoms that have decayed.
S,= 0k 1 0 (8)  The correlations given by EL2) are inserted, and for large
g N, we find
0 001
. ; ; 2 12 22y o ToNgt 2
From Eq.(7) and the definition of the_covarlanc_e matrix (J0) = (=1 -n)YI) + T[l -(1-7)7]
% =2Re(y; =y (y;—(yj)) [16,18, we directly verify that
transforms as 7N
7 = (L= )X+ =22y, (13)
Wi+ D)= SyDS], 9 4
due to the atom-light interaction. where the last line follows in the limit of small atomic decay,

In the probing process there is a small probability that the”?:< 1. To determine the development of the canonical vari-

excited state levels which were adiabatically eliminated from@bles, we aI’so need the behavior of moments of the type
the interaction Hamiltonian of Eq5) will be populated. If (& :(J0—(J0=(1-7,)(J0. Combining this result with Eq.

this happens, the subsequent decay to one of themywo (13), we find
=+1/2 ground states occurs with the rate

) iNa27./4
. ( 2/ ) (P2 = (Pid = (L=mpl) + — 1= (14)
=0 5, 10 X
77T A\ T4 + A2 (10) - .
and a similar expression fot,.
whereT is the atomic decay width ana=\?/(27) is the The photons that are absorbed do not contribute to the

resonant photon absorption cross section. The consequencellective Stokes vector, and we find, by an analysis similar
of the decay is a loss of spin polarization since a detection ofo the above, that

the fluorescence photons in principle could tell to which ' 5 5

ground state the atom decayed. If every atom has a probabil- <§> —(§)=(1-9 <§> + (A Npy/4)e(1 - €)

ity »,=n7to decay in timer with equal probability into the ~(1- E)z<§> + (h2Ny/d) e (15)

two ground states, the collective mean spin vector is reduced P

by the corresponding factdd) — (J)(1-»,). When the clas- in the limit of smalle. For the effectivepy, variable, we find
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, fiNppel4 10
(P — (P = (1= epp + —é‘% (16)
and a similar expression fog,,
Using Eqgs.(14) and(16) and similar expressions for the
other elements of the covariance matrix, E®). generalizes 10
to

AN AN
+ ) = U at + ph

W+ 1) =L SHYSL, <Jx(t)>MT 2(3((t)>N (17 |
for 7, e<l with M_=diad7,,7,0,0 and N
=diag0,0,¢,€). The factoriiNg/(J,(t)) initially attains the
value 2, and increases by the factdar-»,)"! in each time
step 7. The factorfiN,y/[2(S(1))] is initially unity and is 107 , - - -
approximately constant in time since the light field is con- 0 1 2t[ms] 3 4 5
tinuously renewed by new segments of the light beam inter-
acting with the atoms. An exception is the optically thick gas |G, 1. Uncertainty ofp, as function of time. The effective
discussed below in Sec. V B. coupling isk?=1.83x 10° sL. The lower curve is without inclusion

We note that the present accumulation of noise is basegf atomic decay, and the upper curve includes atomic decay with a
on the canonicak and p variables entering the covariance rate »=1.7577 s* and photon absorption witk=0.028. These val-
matrix, and not on the physical spin and Stokes variables fones correspond, for example, to a 2-firimteraction area, 2
the atoms and the photons, respectively. As discussed ir 10'? atoms,5< 10* photons §!, 10 GHz detuning, and 852 nm
more detail elsewhergl9], this introduces difficulties in the light, appropriate for thé*Cg6S,,(F=4) - 6Py,,(F=5)) transition
limit of large atomic decay probabilities. As long as the prob-with decay rate 3.% 10’ s™* and corresponding atomic dipole mo-
ability for atomic decay is small during the process undermentd=2.61x 10"%° C m. Factors of order unity related to the cou-
concern, the present handling of the decoherence and noisel#ng matrix elements among different states of the actual Zeeman
highly accurate. This is the regime considered in this work.Substructure are omitted.
In the Gaussian approximation, the system is fully char-
acterized by the vector of expectation valugp, and the tic manner depending on the outcome of these measure-
covariance matrixy. We probe the system by measuring thements. The outcome of the measurementxgp after the
Faraday rotation of the probe field—i.e., by measuring thenteraction with the atoms is random, and the actual mea-
field observablex,,. Since the photon field is an integral part surement changes the expectation value of all other observ-
of the quantum system, this measurement will change thables due to the correlations represented by the covariance
state of the whole system and, in particular, the covariancenatrix. Lety denote the difference between the measurement
matrix of the atoms. We denote the covariance matrix by outcome and the expectation valuexgf—i.e., a Gaussian
random variable with mean value zero and variance 1/2. The

_ (Ay Cv) (18) change ofy;) due to the measurement is now given by
7 CT B )
Y Y
where the 2¢ 2 submatrix A, is the covariance matrix for the (yp) = (yp) =(yp) + C(mBm) (x, )T, (20)

variablesy; = (X, Pa) ", B, is the 2< 2 covariance matrix for

yZ:()gph'pph)T’ and G is the 2x2 correlation matrix fory;  \yhere we use thatrBm) =diagB(1,1)1,0), and hence the
andy,. An instantaneous measuremenkgfthen transforms  gecond entrance in the vectoy, -) need not be specified.
A, as[16-19 The Gaussian state of the system is propagated in time by
r_an -~T repeated use of E¢1l7) and the measurement update formu-
Ay Ay = Ay = CylmBym) C,, (19 las (19) and(20). This evolution is readily implemented nu-
where m=diag'1,0) and where(---)~ denotes the Moore- merically, and the expectation value and our uncertainty
Penrose pseudoinverse. about, e.g., the value of the squeezggvariable of the at-
After the measurement, the field part has disappeared argms are given by the second entrance in the vector of expec-
a new beam segment is incident on the atoms. This part dftion values(y,)=(p,) and the covariance matrix element
the beam is not yet correlated with the atoms, and it is in théd (2,2 =2Var(p,y).
oscillator ground state hence, the covariance matrix up- We conclude this section by noting that if one associates
dated with A’yC’y a 2X2 matrix of zeros, and 5 with the precise measurement xf, an infinite variance of
=diag1, 1) before the next application of the transformation p,; and a total loss of correlations betweggp and the other
of Eq. (17). variables due to Heisenberg’'s uncertainty relation, the
Unlike the covariance matrix update, which is indepen-Moore-Penrose pseudoinverse can be written as a normal
dent of the value actually measured in the optical detectionnverse of the covariance matrix, (7Bm)”
the vector(y) of expectation values will change in a stochas-=diagB(1, 1),%)". Equationg19) and(20) are then equiva-
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lent with the results for the estimation of classical Gaussian ) %
random variables derived, e.g., in RE20]. K”= Ng® NE (23
IV. HOMOGENOUS LIGHT-ATOM COUPLING with y=g’r=d’iw/Acefi®. Equation(21) is readily solved

by separating the variables, and we obtain
The time evolution of the atomip, variable is com-
pletely determined by the update formulas for the covariance
matrix (17) and the measurement update form§). In the
limit of infinitesimal time steps, these formulas translate into . . - -
differential equations, and we obtain the following equationsVhere Vatpa,0=1/2 is thevariance of the initial minimum-

for the variance op,(<J,): uncertainty state. _ _
To solve Eq.(22), we introduce the change of variable

Var(py) = 2 (24

Kt + 1/Var(pg o)’

%Var(pa,) = - 2 Var(py) ]2 21) Var(p,) =e "Var(p,) and obtain
d —_—

and gtV (Pa) = = 25(1 - @Var(pa)® = 27Var(pa) + 7,

d

—-Var(py) = - 26*(1 — e)e MVar(py)? - pVar(py) + 7e™, (29

dt which is separable. With

(22
Y Y
corresponding to the cases where atomic decay and photon B= \/Kz(l “o ( 2(1-0) + 2),
absorption are neglected and included, respectively. Here the
light-atom couplingk is given by the solution of Eq(22) reads
|
Var(pag + 55—+ 2+ e'zﬂ“z(l'f”(Var(pat P T /—3)
T 2k%(l-e) 2 " 2k(l-¢ 2 ¢ 7 "
Var(pa) =2 . s X ” o | e @
V +——— + = — @B (1‘f)t(v +—- —)
a(Pat 2k°(1-¢€) 2 © a(Pat 2c°(1-€) 2
[

Figure 1 shows the spin squeezing as a function of prob- 1 42(1 - €k

ing time. When atomic decay is not included, the uncertainty tmin= n = : (28)
229l -¢)k 7y

in py is a monotonically decreasing function with time.
When decays are mclude_d, a minimum is reached, Where_a]%rom Eq.(28), we see that,,,, decreases for increasing cou-
ter the degree of squeezing starts to decrease. On the tinjging strengthx and for increasing decay ratg Interest-
scale of the figure, which is chosen to reflect realistic experiingly, the instant of time for the minimum in the variance is
mental time scales, the increase in igp is hardly visible.  independent of the initial uncertainty in the atomic variable
From Eq.(22), we find that the minimum in the variance p,,

occurs at the instant of time We may now go back to Eq22) and evaluate the value
5 of the variance at timé,,;,. In the regime considered above
7 ) , ]
var 49— P and in the figure, we find
oo 1 “hn (Pato 2k¥(1-¢) 2 :
min — > Ui
2pk(1 - n B Ap(tmin) = \/ =1/ (29)
V. +— T 4 min A
APt * 5 209 2 k V2(1-¢)

This clearly shows that the higher the coupling and the lower
) the decay, the better the spin squeezing. It is the term linear
XM . (27) in »in Eqg. (22) that is responsible for the “saturation effect”
i in the variance at early times where the exponential is still
close to unity,e”=1.
To specify, for a given number of atoms, how many pho-
In the typical experimental situation/ 2«*(1-€) <1, which  tons we need to obtain optimal spin squeezing in time
means thap3=27/(1-¢)/«. In this case Eq(27) simpli-  limited perhaps by other experimental constraints, we ex-
fies to press
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oT? 5 P s cases are readily handled within the Gaussian approximation.
7T Paar T P
and insert into Eq(28). The slow logarithmic dependence A. Case (a): Optically thin sample
and factors of order unity can be neglected, and we can in- e consider the case where the atomic gas is divided into,
troducee via the relation say,n slices each with local light-atom coupling strength
o T2 The M+2 column vector of Gaussian variables describing
e~ Ny~ the 2h collective canonical position and momentum variables
AA for the atoms and the 2 collective position and momentum
and find variables for the photon field then read
1 A y= (Xat,lv Pat, 1 -+ - Xatp pat,naxpha pph)T- (32)
Dt = —\/ —Na- o o
mn= e Vg oAt The generalization of Eq5) to the case with inhomoge-

i neous coupling reads
If we accept photon absorption at the percent level, we ob- ping

tain n
A Hr=%| 2 Ky iPay Pph (33
— i=1
qnmnzjno\/:va. (30) '
o where the summation index covers the different groups of
atoms.

In our case, we havé/o=1.7x10". A realistic upper ) )
limit for tu, is 1 ms, and from Eq(30) it then follows that To model the ?ﬁECt of an '”homoge”eous _couplmg of the
the photon flux should fulfill light to the atomic sample, we consider 10 different val-

ues of k* chosen uniformly in the intervel«(1-6); k3(1

+6)] with 6={0,0.1,0.5. In this way, the effective coupling

COﬂStant\e"E?:lsz remains constant while the variance in the

coupling constants increases. The values of the coupling

strength could, e.g., differ because of the transverse intensity

V. INHOMOGENEOUS LIGHT-ATOM COUPLING profile of the laser beam. As a consequence, the values of the

We now consider two scenarios leading to inhomoge-8toMmic decay rate; (also proportional to intensijyare dif-

neous light-atom coupling, a case recently discussed thed€rent in each slice. The measurement is described by the

retically in the literaturg13]. First, we shall study the case Method in Sec. lll, and the propagation is given by a modi-

where the coupling is inhomogeneous as a consequence ofigation of Eq.(17):

variation in the intensity _of the light beam across the sample. Y(t+7)=L.S,y, 1'—7"’ M.+N, (34)

Second, we shall consider the case of an optically thick

sample where the photon field, and therefore the couplingivhere the(2n+2) X (2n+2) matrix S, is obtained from the

changes through the atomic sample due to absorption. Botiime evolution of the system as in Sec. Ill and where

1
@21§ﬁ£§. (31

L,=diagV1l-7,, V1- Netres VL= 70, V1- 7.Vl —€N1-¢),

M,.=% X dia Nat171 Nagam Natn7n Natps 70 0,0),

<\]x,1> , <\]x,1> T <‘]x,n> , <‘]x,n> ,

andN=diag0,0,...,0,0,¢,€). For convenience, we assume The correspondingsymmetricollective harmonic oscillator
that the number of atomil,; subject to a given coupling variables involved in the spin squeezing are, accordingly,
strengthk; is simply N/ n.

The atomic covariance matrix now has dimensi@m ! !
X 2n), and it contains the variances of the atomic observ- 2 KiXatj Z KiPat;
ables in each slice and the correlations between them. Col- (Xefrs Peft) = = —, = - _ (35)
lective observables are described by linear combinations of ) )
the (X4, Pat;) @and their variances can be obtained explicitly. E K 2 K
From the Hamiltoniar{33), it is clear that the probe field =t =t
couples to the asymmetric collective variabl . ipy;. ~ The symmetriccollective variables that are usually consid-
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ered (see, e.g., the discussion in R¢L3] and references 10"
therein) are, on the other hand, given by
n n
1 1
(X,P)= <?2 Xatjs 2 pat.i) , (36)
VNi=1 VNi=1
and it is interesting to see how these two sets of variables are —~
connected. A straightforward calculation shows that we may AT
express the latter variables as 2
(xv P) = a(xeff1 Peff) + b(XLv PL) 1 (37)

where(X, ,P ) are canonical variables which commute with
(Xetf, Pesp) @nd with the interaction Hamiltonian of E¢33),
and where the coefficients are given by

2
10 . : - y

n _ 0 1 2 3 4 5

E KJ/\n t [ms]
j=1
a=

(39 FIG. 2. Uncertainty of the maximally squeezed component of
) the atomic gasgP,,) as a function of time. The higher-lying curves
2 K; show the uncertainty in the symmetric collective parameir.
=1 (36)] for n=10 uniformly distributed values of in [0.9x3; 1.1x2]
and (middle) and[0.5«3;1.5«3] (upped. The central effective coupling
is k3=1.83x 10°s7L, and all other parameters are as in Fig. 1. The
lower curve is the smallest eigenvalue of the covariance matrix,

n
n Kiz Kj which is the same for the two ranges:gfto the precision visible in

1 =1 :
b(X,,P,)= '_EE 1-—, (XajoPa))- (39) the figure.
VNi=1

. _ the gas is then larger than, say, a few percent. This means
From Eq.(37), it follows that the variances of andP may  that the conditiore<1 which was assumed in the derivation

be expressed as of the effective light-atom coupling of E5) is no longer
var(X) = a?Var(Xey) + (1 - a2)/2 (40) fulfilled. By §Ii§:ing the gas into pieces I_abeled b'y'

=1,2,...,n, within each of which the constraint on atomic
and decay and photon absorptiof, <1 is fulfilled, we may,
Var(P) = aVar(Poq) + (1 -a2)/2, (41) however, still locally for a fixed sliceé use the effective

Hamiltonian and address the problem in the Gaussian ap-
where we have used the fact thatd’+b? and that the com-  proximation. The vector of variables describing the system is
ponents (X, ,P,) are unaffected by measurements, sothen of the same form as in E2), and the Hamiltonian is
Var(X,)=Var(P,)=1/2 for alltimes(if atomic decay is not given by Eq.(33). The considerable absorption of photons
taken into account from a beam segment on its way through the atomic gas

In Fig. 2, the lowest curve shows the smallest eigenvalugneans that the update formula for the covariance matrix
of the covariance matrix as a function of time. The associneeds to be iterated according to the different local noise and
ated eigenvector represents a combination of the canonicgbupling strengths. Accordingly, as each beam segment
variables for the different slices which is maximally passes through the atomic gas iferl —n, we go through the

squeezed. For the present values of the noise paraniefers following update formulas for the covariance matfb?):
and e), we have an overlap very close to unity between the

eigenvector of this curve and the effective asymmetric col-

lective variablePy of Eg. (35). This means that this compo-

nent is indeed the one that is maximally squeezed. The ana- - #iNg; AN

lytical result for the squeezing of this component is obtained % =L #iSzi%-1S;b i+ 70— - SM 7+ 27— =N,

f : SN 2 : <Jx,|(t)> 2<S<,|(t)>

rom Eq. (26) with x— VL «{. For the values for atomic

decay and photon absorption considered in the figure, for- (42
mula(41) reproduces the fully numerical calculations for the

symmetric collective coordinaté of Eg. (36).

where the transformation matri®,; is given by a matrix
with off-diagonal elementsk,; at entrances((2i-1),(2n

We now turn to the situation where the sample is optically+2)) and((2n+1),2i). For exampleS, , for the case of only
thick. The probabilitye for absorption of photons through two slices(n=2) is given by

B. Case (b): Optically thick gas
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100 0 0 O 10°
010 O 0 O
S—OOlOOKTZ 43)
" looo 1 0 0
000«k,1 O 75.5%
000 0 0 1 e
S 50.5%
The constraints on decay and absorption must be fulfilled, 30.6%
777,i16i<1 and LT'i:diag(L... ,\““‘1_7]7:“\3“1_7]7.’“ Tgéoﬁ
1,...,Gl—ei,v’l—ei),MT'i:diag(O,...,0,7;T‘i,777,i,0,...,0), 2.8%
and N;=diag0,...,0,¢,¢). The full covariance matrix is
updated every time the pulse segment passes a new slice.
When the pulse segment has finally left the gas, it is being 10'20 : 5 3 1 s P
measured, and, is modified (y,— ;) according to Egs. t [ms]
(18) and(19) of Sec. I, with the 21X 2n submatrixA , the
covariance matrix for the variables y; FIG. 3. Uncertainty of the maximally squeezed component of

=(Xat,1:Pat.1: -+ +Xatn: Pan) T, B, the 2x 2 covariance matrix the gas(Py) as function of probing time for varying degrees of
for y,=(Xpn, pph)T, andC, the 20X 2 correlation matrix for photon ab_sorption. The percgntage of photor_15_ absorbed is indicated
y; andyl. When we setyy(t+7)=y/(t), we use Eq(42) with s the solid curves. The gas is decomposetstices, each absorb-
i=1-n to describe the interaction with the next beam seg "9 &=0-028 of the light intensity. From the lower to the upper
ment. In reality, the light segment corresponding to any pracSUrve the number of such slices attains the vahes, 4, 8, 13, 25,
tical duration will be much longer than the entire atomic and 50. Other physical parameters are as specified in Fig. 1.
sample, and the interaction with one group of atoms has not

finished before the interaction with the subsequent group . 5
starts. It is not difficult to see, however, that if the atomic K(4,) = kg ex
dynamics is entirely due to the interaction with the optical

field, there is no difference between the.achievement_s Of,th\%here «2 is given as in Eq(23) and every slice contains
real system and those where we imagine the atomic slicag_ ., atoms. From the above relations and the initial con-
separated by free-space separation distances largercthan ditions (S;)=/Non;/2 and(J, ;) =%Nq/ 2 it follows that the

described precisely by the above formulation. - - -
For convenience, we give the time and spéakce) de- prefactors on the noise terms in E42) are given by

- €i')eXP(‘ 7it), (47)

i'=1

pendence of the parameters in Eg&) and (43) explicitly. ANy 2
The change in the classical Stokes vector through the differ- 3. et (48)
ent slices due to photon absorption is given by X!
and
i
AN 1
(Su) = (Sy=0exp| = 2 e |, (44) 2R = — (49)
i'=1 S p( )
ex - E €jr

where the absorption probability in sliées ¢ and, hence, T
the total photon absorption probability in the gas[k We have mode_led the effect of_ phot(_)n-absorption-induced
—exp-=",€)]. The change inJ,;) due to atomic decay is inhomogeneous light-atom coupling using the parameters de-
given by tailed in the caption of Fig. 3. The photon absorption is var-

ied by varying the detuning, and the light-atom coupling
strengthx? and the atomic decay probability are kept con-
stant at the values used in Figs. 1 and 2 by adjusting the

. . . . . photon flux inversely proportional to changes in the detuning
The atomic decay ratg; is a decreasing function of the slice squared. Figure 3 shows the uncertainty of the maximally

number since fewer and fewer photons are available to eXCi@queezed component of the sample as determined by the
the atoms, smallest eigenvalue of the covariance matrix. We see as ex-

pected that the degree of squeezing decreases with increasing
) photon absorption probability.

(Jxi(1) = (I (0)exp(= mt). (45)

(46) In Fig. 4, we compare, for two representative cases from
Fig. 3, the uncertainty of the maximally squeezed component
of the gas with the uncertainty of the collective inhomoge-

and finally, the light-atom coupling constartwill depend  neous variablePy; of Eq. (35). The variance of the latter

on both time and space, variable can be calculated straightforwardly from our knowl-

i
7= "o exp(— 2 €
il_

=1
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edge of the time-dependent light-atom coupling constants Var(xy(ty)) = k’t,/2 + 1/2. (51)

and the full covariance matrix: i ) .
After time ty, the light-atom coupling is turned off, and

Var(Pgg) :[Ei’j Ki(t)Kj(t)«pipj)_<pi><pj>)]/2k’<i(t)2- the system is subject to a ri)tation around _;haxi_s, de-
scribed by the interactioT=-6J,, where §=wT is the

We see that for low and moderate photon absorption, themall angle of rotation resulting from the action of the con-
result for the effective asymmetric variable of E5) is  stant rotation frequency in time T and wherel, is they
close to the fully numerical result. Only for high photon component of the collective spin operator. Making the trans-
absorption do the effects of noise and differences in couplindation to the effective dimensionless position operator as in
strength lead to a significant deviation from the numericalEq. (4) leads to the Hamiltonian
result.

VI. PROBING THE DEGREE OF SQUEEZING HT = - 6axXy, (52

So far, we have not discussed to which extent the maxi-

mally squeezed component of the atomic sample will be useyherea=/(3,)/%=N,/2. To obtain an estimate for the un-
ful and, e.g., set a limit for the precision obtained in a meaynown classical variablé, we follow the ideas introduced in
surement of an interesting physical quantity. To investigatqef. [2] and treat the rotation variabeas a quantum vari-
this point, we follow the work in Ref[13] and consider @ aple within our Gaussian description. The total system is
situation where(i) the sample is spin squeezed for a time yhen described by two atomic variables and one rotation vari-
penlodet1 (i) thg spin squeezing is stopped a_nd the sample igp)e y=(6, %P . The corresponding transformation ma-
subject to a spin rotation, ar{di) the system is probed and iy follows from Heisenbers equations of motion with the

the rotation angle is estimated. Hamiltonian in Eq(52) and in the basif, x,;, p,) We obtain
A. Noiseless case: Analytical results

We start by an analysis of the simple case corresponding
to a single atomic sample and a single probe field in the S

. - X , 53
noiseless limit. From Sec. lll, we have at tihe (53

1
L O
o + O
= o o

Var(palty) = Py (50)
! from which we verify that, e.g.p,— pat @6. Equation(9)
where we have used the fact that the atoms are initially in @mow determines the time evolution of the system, and we

coherent state with variance 1/2. Since MgiVar(p,)  find the following covariance matrix at timg after the

=1/4 inthis noiseless case, we also have rotation:
|
2 Var( 00) 0 a2 Var( 00)
) = 0 2 Var(Xa{t1) 0 : (54)
a2 Var(6,) 0 2 Var(pa(ty)) + a?2 Var(6p)

where Vaftp,(t;)) and VaKx,(t;)) are given by Eqg50) and  [0;t;]. The transformation matrix is determined by Heisen-
(51), respectively. berg's equations of motion for the variabley

Finally, at timest=t,, the rotation is turned off, and the =(0,Xa, pat,xph,pph)T with the Hamiltonian(5) and is given
sample is probed by the light beam as in the time intervaby
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parameterfmany atomg and for a sufficiently large initial

10 _ .
variance ofe, the result in Eq(57) reduces to
Var(pt
Var(6) = M (58)
(4) o
R e The ratio of the variances @fin a measurement witfs) and
:?s - (3) | without (NS) spin squeezing is given by
e Var(6° s
— = =2Va t). 59
(2) 1065 Var(GNS) r(pat( 1)) ( )
(1) . . .
Since Vafp,(ty)) € 10;1/2], this shows that one may gain a
significant factor in precision on the varialfddy presqueez-
5 ing the sample.
e 1 =2 3 . 5 6 Finally, we note that the result of Eq57) may be

t [ms] obtained directly by considering the corresponding
classical Gaussian probability distributionP(py, 6)
FIG. 4. As Fig. 3 but only fon=4 andn=50. Curves(1) and o exp{-p2/[2 Var(p.)]- */[2 Var(§)]}. As a consequence
(3) represent the maximally squeezed component of the gas. Curvgg the rotation p,, transforms according tpy— p.+ a6, and
(2) and(4) display the uncertainty in the inhomogeneous collectiveiarefore the probability distribution after rotation reads

variable Py of Eq. (35) as a function of time. P(Pas, ) ocexp{—(pat—ae)Z/[Z Var(p.)]- @I[2Var o). A
10000 measurement of the variabjg, leads to a distribution ir¢
only, from which the variance of is read off with the result
0100« given in Eq.(57).
S={0 010 0]. (55
00k10 B. Noise included: Numerical results
000O00O Whereas in Sec. VI A it is clear that it is the collective

. . . . variable py that is squeezed, in the case of an atomic en-
The covariance matrix of the system is propagated accordingg mpje with an inhomogeneous light-atom coupling we only
to Eq. (9). The measurements of the photon field are deynqy from the analysis of Secs. VA and VB that there
scribed as in Eqs(18) and (19) (see aIsp_Ref[Z]). The. existsa component that is squeezed and that this component
submatrixA, is now the 3<3 matrix pertaining to the vari- - ¢ oo derate noise is very accurately approximated by the
ables (6, Xa, P, andC, is the 3x2 covariance submatrix - 55y mmetric collective variablB,; of Eq. (35). The question

describing the coherences and correlations between thege: jqdress now is whether it is the variance of this compo-
three variables and the photon field. We are interested in th§ant that will show up in a measurement of a classical pa-

uncertainty on the value af—i.e., the(1,1) entrance in the ameter. such as the rotation parameter

covariance matrix. T<_) find this as a function of time, we  The formalism necessary for handling this problem was
follow the procedure in Sec. Il and calculate the d'ﬁerencedeveloped in Secs. IIl and V B. In short, farslices of gas
betweerA  aftern andn+1 iterations and consider the limit 5. fulfilling €, 7<1G=1,...,n), we fir,st propagate and
of infinitesimal time steps. In general, the differential equa%erform measurements on the system mt2llective atomic

tlonsbobtallne(; Ibn this \(/jva):jare ngrlx R'Cﬁtt' equations andsition and momentum variables and 2 collective photon
may be solved by standard metolj@d]. In the present case, position and momentum variables. At tinhg the light field

the solution reads for probing times t, is turned off, and the atomic sample is ot [t;;t,] subject
Re{((ﬂ—(ﬁ))(pat—(pat)))tz] to a rotation around thg axis described by the effective
Var(6(t)) = Var(6y) — i i
ar(o(t)) = Var(6p) var(p(t,) Hamiltonian
n
1
x| 1- . (56 Hr=-%6>, aiXy, (60)
( 1+ ZVar(paz))KZ(t—tz)]) 50 -

where the covariances at tintg are given in Eq(54). We  with #=wT as in Sec. VI A and with coupling constanis
see from Eq(56) that the variance of the variabledoes not  determined by a generalization of the result in Eif):
decrease forever. In the long-time limit, we find

varpty) ) =y 2 = Mg, 61

Var(p(ty)) + a?Var(dp)
(57) Spontaneous emission of photons is neglected in our ap-
proach, so they’s are fixed by their values at the instant of
This shows, as expected, that the limiting value only depend8me t; when the photon field is switched off and the possi-
on the squeezing and the rotation until tige For largea  bility for stimulated atomic decay disappears. The transfor-

Var(0(t — «)) = Var( 00)(
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mation matrixS corresponding to the Hamiltonian in Eq.

(60) is readily found from Heisenberg’s equations of motion

for the variables 0, Xy 1, Pat 1, -+ » Xatn: Patp) - ItS diagonal en-
tries are unity, thé=1,...,n (6, py;) entries are assigned the

valuesq;, and the rest are zero—a natural generalization of
Eqg. (53). The propagation in time of the covariance matrix is

then determined by E@9). At time t, the rotation is stopped,
and for timest>t,, the atom-light Hamiltonian is turned on
again. First the initial covariance matrix féy atomic slices,
and the photon field6, Xat 1, Pat,1, - -+ » Xatn» Patpn Xohs Ppn) 1S S€t

up. This involves the covariance from the previous part
supplemented by the position and momentum variables of
the photon field. The dynamics of this enlarged covariance
matrix is described by suitable modified versions of Egs.

(17) and(19) of Sec. lll.

We aim to extract from our numerical study that the vari-

PHYSICAL REVIEW A 70, 052324(2004)

10°

Aa9)

-8 . n
0 0.5 1
t [ms]

10 1.5 2

able of relevance in the probing of the rotation angle is the
maximally squeezed component; i.e., at moderate noise lev- F|G. 5. Uncertainty of the parametéras a function of time and

els, it is essentially the optimally squeezed asymmeRgie
variable of Eq.(35) and not the symmetric collective vari-
ableP of Eq. (36). From Heisenberg’s equation of motion it
follows thatP.¢ and P transform according to

E Kjq;
j=1
Pett— Petr+ | —=— |0 (62)
VE#
j=1
and
n
> a
j=1
P—P+ — | . (63)
\Vn

A generalization of the result in Eq58) then yields the
following expressions for the variance éfin the long-time
limit:

Var(Pg)
Var(6) = (64)
and
Var(P)
Var(9') = > (65)
E a;
j=1
Vn

where VafP) is given by Eq.(41).

for different variances of the coupling strength as specified in the
text. The gas is sliced in=10 pieces. The number of atoms and
photons are as in the preceding figures. The value; @§ 0.2236.
The dashed curves show the limiting uncertainty in éfgarameter

as estimated from E@65) for the standard collective variabR of

Eq. (36) with the smallest variance in the coupling strength for the
lowest dashed curve and the highest variance for the upper dashed
curve. The constant horizontal solid line gives the limiting value of
Eq. (64), as obtained by the maximally squeezed compoRgpDf

Eq. (35), and it is independent of the variance of the coupling
strength. The decreasing solid curve is a collection of indistinguish-
able curves showing the numerical results for all the different vari-
ances of the coupling strengthee text

the interval [(1-8)x3/n;(1+8)k3/n] with §e{0,0.02,
0.1,0.2,0.3,0.4,0}5 As in Sec. V, the effective coupling
strength is fixed by. In the figure, the solid lines aiade-
pendentof fluctuations in the coupling strength. The lowest
solid line shows the asymptotic uncertainty ®&s obtained

by Eq. (64). The decreasing solid curve is the numerical
result, converging towards this value. It represents a collec-
tion of indistinguishable curves showing the numerical re-
sults for all the different variances of the coupling strength.
We observe that the decreasing solid curves show a better
estimation of the rotation anglé than the prediction by the
symmetric collective variable shown by the dashed curves in
the figure. The fact that the decreasing solid curves converge
to the value determined by the maximally squeezed compo-
nent signifies that this indeed sets the limit for the precision
of the measurement.

VII. CONCLUSIONS

In this work we have given a comprehensive account of
the theory of probing and measurements in the Gaussian-
state description. We have followed the ideas of Rgfd.g,
and we have provided a complete analysis of the method and
its strengths by analyzing in detail the problem of spin
squeezing.

Figure 5 shows results for inhomogeneous coupling mod- The Gaussian description of the collective quantum pa-

eled by choosing=10 different values ok? uniformly over

rameters including possibly an external classical parameter
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allows us to include the measurement process directly and twith which one can estimate the value of an external pertur-

obtain analytical results in the noiseless case and in the limipation.

of low noise. Also the theory is readily generalized to handle At present, we seek to address a series of other problems
situations which have resisted a satisfactory treatment withh continuous variable quantum physics including generation

other theoretical methods. For example, the case of an optind detection of finite bandwidth squeezed light and estima-

cally thick gas with corresponding inhomogeneous light-tion of time-varying external perturbations.
atom coupling can be treated and even understood analyti-

cally to a large extent.
We have shown that in the present case of squeezing of ACKNOWLEDGEMENT
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