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We consider an ensemble of trapped atoms interacting with a continuous-wave laser field. For sufficiently
polarized atoms and for a polarized light field, we may approximate the nonclassical components of the
collective spin angular momentum operator for the atoms and the Stokes vectors of the field by effective
position and momentum variables for which we assume a Gaussian state. Within this approximation, we
present a theory for the squeezing of the atomic spin by polarization rotation measurements on the probe light.
We derive analytical expressions for the squeezing with and without inclusion of the noise effects introduced
by atomic decay and by photon absorption. The theory is readily adapted to the case of inhomogeneous
light-atom coupling[A. Kuzmich and T.A.B. Kennedy, Phys. Rev. Lett.92, 030407(2004)]. As a special case,
we show how to formulate the theory for an optically thick sample by slicing the gas into pieces, each having
only small photon absorption probability. Our analysis of a realistic probing and measurement scheme shows
that it is the maximally squeezed component of the atomic gas that determines the accuracy of the
measurement.
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I. INTRODUCTION

With spin-squeezed atomic ensembles—i.e., samples
where the variance of one of the angular momentum(spin)
components is reduced compared with the coherent-state
value—one has the possibility to measure certain atomic
and/or classical parameters beyond the precision set by the
standard quantum noise. Recent examples where this possi-
bility was exploited include studies of magnetometry with
collective atomic spins[1–4]. The central feature in those
works is the entanglement of collective continuous light-
atom variables. This entanglement can be created by the free-
space interaction between a trapped polarized atomic sample
and an appropriately polarized propagating laser beam with
photon energy adjusted to the energy spacing between the
atomic energy levels[5,6]. The probing of the atomic en-
semble with the light field squeezes the atomic observable
(the atomic spin) and enables an improved measurement,
e.g., of a magnetic field. The underlying squeezing of the
collective atomic spin variable was dealt with in a series of
papers(see, e.g., Refs.[7–13], and references therein) in-
cluding investigations of quantum nondemolition feedback
schemes[3,12] and a study of the case of inhomogeneous
light-atom coupling[13]. In the present work, we follow the
lines of Refs.[2,14,15] and investigate the spin squeezing of
continuous variable quantum systems in the approximation
where the atomic and photonic degrees of freedom are de-
scribed by a Gaussian state. To this end we will use the fact
that the Gaussian state is fully characterized by its expecta-
tion value vector and its covariance matrix and we will use
the fact that explicit formulas exist for the time evolution of
the systemand for the quantum-state reduction under mea-
surements(see, e.g., Refs.[16–18] and references therein).
In particular, the fact that the measurements are explicitly

accounted for in the Gaussian description is a strength of the
present theory.

In the development of the theory, we shall consider a
continuous-wave(cw) beam of light passing through a cloud
of trapped atoms. In the Schrödinger picture we have an
explicit update formula for the quantum state conditioned on
the outcome of measurements carried out on a quantum sys-
tem, but a light beam is a multimode field with an infinite-
dimensional Hilbert space, in which a complete description
of the quantum state is normally prohibitively complicated.
The quantum mechanical description of cw optical fields is
often formulated in terms of temporal correlation functions
or the noise power spectrum of field operators in the Heisen-
berg picture, which is, however, not a convenient formula-
tion, when the field is being monitored continuously in time.
When we restrict ourselves to Gaussian states, however, it is
possible to describe the field in the Schrödinger picture and
to dynamically evolve the combined quantum state of the
interacting light-field and atomic system.

The paper is organized as follows. In Sec. II, we derive
the Hamiltonian for the collective atom-light coupling. In
Sec. III, we describe dynamics and measurements in the
Gaussian description and provide update formulas for the
covariance matrix and for the expectation value vector. In
Sec. IV, we present fully analytical results for spin squeezing
of an atomic gas for a homogeneous light-atom coupling and
small photon absorption probability and atomic decay rate.
In Sec. V, we describe how to handle the case of inhomoge-
neous light-atom coupling. In Sec. V A we treat the case of
an optically thin gas—i.e., small photon absorption—and we
obtain analytical results. In Sec. V B, we investigate the case
of an optically thick gas. In Sec. VI, we show that the maxi-
mally squeezed component of the gas will set the limit for
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the precision in a given measurement. In Sec. VII, we briefly
summarize the results and conclude the paper.

II. COLLECTIVE ATOM-LIGHT COUPLING

To describe the atom-light coupling, we imagine that the
beam is split up into short segments of durationt and corre-
sponding lengthL=ct. These beam segments are chosen so
short that the field in a single segment can be treated as a
single mode and that the state of an atom interacting with the
field does not change appreciably during timet, so that the
evolution of the atomic system is obtained by sequential in-
teraction with light segments. Since we are interested in
modeling a cw coherent beam with constant intensity, we
assume a mode function for each segment of the field which
is constant on a lengthL and within the transverse areaA;
i.e., the quantization of the field energyLA«0E

2=Nph"v
yields the relation between the electric field amplitude and
the photon number in the segment of the field,E
=ÎNph

Î"v /LA«0. In the scheme for spin squeezing, we con-
sider a light beam linearly polarized along thex direction and
propagating in they direction. The polarization can be de-
composed in two polarization components with opposite cir-
cular polarization with respect to the quantization axisz.
These two components interact differently with the atoms
because of the selection rules of the optical dipole transition.
Imagine atoms with a groundsugld and an excitedsueld state
with J=1/2, interacting with thes+ and s− components of
the light field on theug−1/2l↔ ue1/2l and ug1/2l↔ ue−1/2l tran-
sitions, respectively. The interaction Hamiltonian between a
collection ofNat atoms, enumerated with the indexi and the
two quantized fields, is thus written

H = o
i=1

Nat

s"ga+ue1/2,ilkg−1/2,iu + H . c . +"ga−ue−1/2,il

3kg1/2,iu + H . c .d, s1d

with "g=−dE0,d the atomic dipole moment on the relevant
transition, andE0=Î"v /LA«0 the “field per photon,” identi-
fied above. We assume that the fields are frequency detuned
by an amountD with respect to the atomic resonance. In the
limit wheregÎNph!D the atoms are not excited by the fields
and the dynamics is entirely associated with the light-
induced energy shifts of the ground states. Adiabatic elimi-
nation of the upper states then leads to the effective Hamil-
tonian

H = o
i=1

Nat "g2

D
sa+

†a+ug−1/2,ilkg−1/2,iu + a−
†a−ug1/2,ilkg1/2,iud, s2d

which applies for the durationt for which the field overlaps
the atomic system. The photon field is suitably described by
a Stokes vector formalism, with a macroscopic value of the
componentkSxl="Nph/2 and where theSz operator yields the
difference between the number of photons with the two cir-
cular polarizations,Sz="sa+

†a+−a−
†a−d /2, and Sy yields the

difference between the number of photons polarized at 45°
and 135°, with respect to thez axis, respectively. The Stokes

vector components obey the commutator relations of a ficti-
tious spin, and the associated quantum mechanical uncer-
tainty relation onSy andSz,VarsSydVarsSzd= uk"Sxlu2/4, is in
precise correspondence with the binomial distribution of the
linearly polarized photons onto the other sets of orthogonal
polarization directions. We introduce the effective Cartesian
coordinates

sxph,pphd = S Sy

Îuk"Sxlu
,

Sz

Îuk"Sxlu
D , s3d

with the standard commutatorfxph,pphg= i and resulting un-
certainty relation, which is minimized in the initial state,
implying that this state is a Gaussian state; i.e., its Wigner
function is a Gaussian function of the phase space coordi-
nates.

The atomic ensemble is initially prepared with allNat at-
oms in a superpositionsug−1/2l+ ug1/2ld /Î2 of the two ground
states with respect to the quantization axisz; i.e., the total
state of the atoms is initially given byfsug−1/2l
+ ug1/2ld /Î2gNat. In this state, the system of two-level atoms is
described by a collective spin vector, where the component
along the x direction attains the macroscopic valuekJxl
="Nat/2 and where the collective spin along thez axis, Jz,
represents the population difference of theug±1/2l states. As
for the photons, the quantum mechanical uncertainty relation
for the collective spin components of the atomic state corre-
sponds exactly to the binomial distribution of the atoms on
the two ground states, and also here it is convenient to intro-
duce the Cartesian coordinates

sxat,patd = S Jy

Îuk"Jxlu
,

Jz

Îuk"Jxlu
D , s4d

for which the initial state is a minimum uncertainty Gaussian
state.

The Hamiltonian(2) can be rewritten in terms of the ef-
fective atomic and field variables. First, we note that
oi=1

Natug71/2,ilkg71/2,iu=Nat/2±Jz/" and that a±
†a±

=Ft /2±Sz/", whereF is the photon flux. We then insert
these expressions into Eq.(2), leave out a constant energy
shift, and obtain the effective interaction Hamiltonian

Ht = "ktpatpph. s5d

We display the product ofH andt, to expose the effect of the
interaction with the whole segment, and we introduce the
effective coupling “constant”

kt = 2
g2

D
ÎukJxlu

"

ukSxlu
"

t. s6d

The free-space coupling constant of light and atoms is small,
and the coarse-grained description will be perfectly valid
even for the macroscopic values ofNph=Ft required by our
treatment. The Hamiltonian in Eq.(5) correlates the atoms
and the light fields. It is bilinear in the canonical variables
and hence preserves the Gaussian character of the joint state
of the system[16]. We have emphasized the convenience of
using Gaussian states, because their Schrödinger picture rep-
resentation is very efficient and compact. Now, given that

L. B. MADSEN AND K. MØLMER PHYSICAL REVIEW A 70, 052324(2004)

052324-2



every segment of the optical beam becomes correlated with
the atomic sample, as a function of time, the joint state of the
atom and field has to be specified by a larger and larger
number of mean values and second-order moments. If no
further interactions take place between quantum systems and
the light after the interaction with the atoms, there is no need
to keep track of the state of the total system. In practice,
either the transmitted light may simply disappear or it may
be registered in a detection process. In the former case, the
relevant description of the remaining system is obtained by a
partial trace over the field state, which produces a new
Gaussian state of the atoms. We are interested in the case
where the polarization rotation of the field is registered—i.e.,
where the observablexph is measured. The effect of measur-
ing one of the components in a multivariable Gaussian state
is effectively to produce a new Gaussian state of the remain-
ing variables as discussed in detail in Sec. III.

III. DYNAMICS AND MEASUREMENTS IN THE
GAUSSIAN APPROXIMATION INCLUDING NOISE

Having established the fact that the quantum state of the
atoms is at all times described as a Gaussian state, we shall
set up the precise formalism. For the column vector of the
four variablesy=sxat,pat,xph,pphdT describing the atoms and
a single segment of the light beam, the Heisenberg equations
of motion yield

yst + td = St ystd, s7d

with the transformation matrix

St =1
1 0 0 kt

0 1 0 0

0 kt 1 0

0 0 0 1
2 . s8d

From Eq. (7) and the definition of the covariance matrix
gi j =2Reksyi −kyildsyj −kyjldl [16,18], we directly verify that
g transforms as

gst + td = StgstdSt
T, s9d

due to the atom-light interaction.
In the probing process there is a small probability that the

excited state levels which were adiabatically eliminated from
the interaction Hamiltonian of Eq.(5) will be populated. If
this happens, the subsequent decay to one of the twomz
= ±1/2 ground states occurs with the rate

h = F
s

A
S G2/4

G2/4 + D2D , s10d

where G is the atomic decay width ands=l2/ s2pd is the
resonant photon absorption cross section. The consequence
of the decay is a loss of spin polarization since a detection of
the fluorescence photons in principle could tell to which
ground state the atom decayed. If every atom has a probabil-
ity ht=ht to decay in timet with equal probability into the
two ground states, the collective mean spin vector is reduced
by the corresponding factorkJl→ kJls1−htd. When the clas-

sical x component is reduced this leads to a reduction with
time of the coupling strengthkt°kt

Î1−ht which was also
discussed in Refs.[1,2,15]. Simultaneously, every photon on
its way through the atomic gas has a probability for being
absorbed[15]

e = Nat
s

A
S G2/4

G2/4 + D2D . s11d

This means that the vector of expectation values evolves as
kyst+tdl=LtStkystdl with Lt=diagsÎ1−ht ,
Î1−ht ,Î1−e ,Î1−ed.

The fractionht of atoms that have decayed represents a
loss of collective squeezing because its correlation with the
other atoms is lost, whereas it still provides a contribution
"2/4 per atom to the collective spin variance. We may use
the symmetry of the collective spin operator under the ex-
change of particles to express the mean value of, e.g.,Jz

2 as
kJz

2l=s"2/4dNat+s"2/4dNatsNat−1dksz
s1dsz

s2dl where we have
used thatkssz

sidd2l=kssz
s1dd2l=1 and ksz

sidsz
s jdl=ksz

s1dsx
s2dl for

all i and jsi Þ jd. We may solve the equation for the correla-
tions between the different spins:

ksz
s1dsz

s2dl =
kJz

2l − "2

4 Nat

"2

4 NatsNat − 1d
. s12d

During a time interval of durationt ,htNat atoms decay by
spontaneous emission. This means that

kJz
2l ° kJz8

2l = s"2/4dNats1 − htd + s"2/4dNats1 − htdfNats1

− htd − 1gksz
s1dsz

s2dl + s"2/4dhtNat,

where the last term comes from the atoms that have decayed.
The correlations given by Eq.(12) are inserted, and for large
Nat we find

kJz
2l → kJz8

2l = s1 − htd2kJz
2l +

"2Nat

4
f1 − s1 − htd2g

. s1 − htd2kJz
2l +

"2Nat

4
2ht, s13d

where the last line follows in the limit of small atomic decay,
ht!1. To determine the development of the canonical vari-
ables, we also need the behavior of moments of the type
kJxl : kJxl° kJx8l=s1−htdkJxl. Combining this result with Eq.
(13), we find

kpat
2 l → kpat8

2l = s1 − htdkpat
2 l +

"Nat2ht/4

kJx8l
s14d

and a similar expression forxat.
The photons that are absorbed do not contribute to the

collective Stokes vector, and we find, by an analysis similar
to the above, that

kSz
2l → kSz8

2l = s1 − ed2kSz
2l + s"2Nph/4des1 − ed

. s1 − ed2kSz
2l + s"2Nph/4de s15d

in the limit of smalle. For the effectivepph variable, we find
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kpph
2 l → kpph8

2l = s1 − edkpph
2 l +

"Nphe/4

kSx8l
s16d

and a similar expression forxph.
Using Eqs.(14) and (16) and similar expressions for the

other elements of the covariance matrix, Eq.(9) generalizes
to

gst + td = LtStgstdSt
TLt +

"Nat

kJxstdl
Mt +

"Nph

2kSxstdl
N s17d

for ht ,e!1 with Mt=diagsht ,ht ,0 ,0d and N
=diags0,0,e ,ed. The factor"Nat/ kJxstdl initially attains the
value 2, and increases by the factors1−htd−1 in each time
step t. The factor"Nph/ f2kSxstdlg is initially unity and is
approximately constant in time since the light field is con-
tinuously renewed by new segments of the light beam inter-
acting with the atoms. An exception is the optically thick gas
discussed below in Sec. V B.

We note that the present accumulation of noise is based
on the canonicalx and p variables entering the covariance
matrix, and not on the physical spin and Stokes variables for
the atoms and the photons, respectively. As discussed in
more detail elsewhere[19], this introduces difficulties in the
limit of large atomic decay probabilities. As long as the prob-
ability for atomic decay is small during the process under
concern, the present handling of the decoherence and noise is
highly accurate. This is the regime considered in this work.

In the Gaussian approximation, the system is fully char-
acterized by the vector of expectation values,kyl, and the
covariance matrixg. We probe the system by measuring the
Faraday rotation of the probe field—i.e., by measuring the
field observablexph. Since the photon field is an integral part
of the quantum system, this measurement will change the
state of the whole system and, in particular, the covariance
matrix of the atoms. We denote the covariance matrix by

g = SAg Cg

Cg
T Bg

D , s18d

where the 232 submatrix Ag is the covariance matrix for the
variablesy1=sxat,patdT,Bg is the 232 covariance matrix for
y2=sxph,pphdT, and Cg is the 232 correlation matrix fory1

andy2
T. An instantaneous measurement ofxph then transforms

Ag as [16–18]

Ag ° Ag8 = Ag − CgspBgpd−Cg
T, s19d

where p=diags1,0d and wheres¯d− denotes the Moore-
Penrose pseudoinverse.

After the measurement, the field part has disappeared and
a new beam segment is incident on the atoms. This part of
the beam is not yet correlated with the atoms, and it is in the
oscillator ground state hence, the covariance matrixg is up-
dated with Ag8 ,Cg8 a 232 matrix of zeros, and Bg8
=diags1,1d before the next application of the transformation
of Eq. (17).

Unlike the covariance matrix update, which is indepen-
dent of the value actually measured in the optical detection,
the vectorkyl of expectation values will change in a stochas-

tic manner depending on the outcome of these measure-
ments. The outcome of the measurement onxph after the
interaction with the atoms is random, and the actual mea-
surement changes the expectation value of all other observ-
ables due to the correlations represented by the covariance
matrix. Letx denote the difference between the measurement
outcome and the expectation value ofxph—i.e., a Gaussian
random variable with mean value zero and variance 1/2. The
change ofky1l due to the measurement is now given by

ky1l ° ky18l = ky1l + CgspBpd−sx, · dT, s20d

where we use thatspBpd−=diag(Bs1,1d−1,0), and hence the
second entrance in the vectorsx , ·d need not be specified.

The Gaussian state of the system is propagated in time by
repeated use of Eq.(17) and the measurement update formu-
las (19) and (20). This evolution is readily implemented nu-
merically, and the expectation value and our uncertainty
about, e.g., the value of the squeezedpat variable of the at-
oms are given by the second entrance in the vector of expec-
tation valuesky2l=kpatl and the covariance matrix element
Ags2,2d=2Varspatd.

We conclude this section by noting that if one associates
with the precise measurement ofxph an infinite variance of
pat and a total loss of correlations betweenpat and the other
variables due to Heisenberg’s uncertainty relation, the
Moore-Penrose pseudoinverse can be written as a normal
inverse of the covariance matrix, spBpd−

=diagsBs1,1d ,`d−1. Equations(19) and(20) are then equiva-

FIG. 1. Uncertainty ofpat as function of time. The effective
coupling isk2=1.833106 s−1. The lower curve is without inclusion
of atomic decay, and the upper curve includes atomic decay with a
rateh=1.7577 s−1 and photon absorption withe=0.028. These val-
ues correspond, for example, to a 2-mm2 interaction area, 2
31012 atoms,531014 photons s−1, 10 GHz detuning, and 852 nm
light, appropriate for the133Cs(6S1/2sF=4d−6P1/2sF=5d) transition
with decay rate 3.13107 s−1 and corresponding atomic dipole mo-
mentd=2.61310−29 C m. Factors of order unity related to the cou-
pling matrix elements among different states of the actual Zeeman
substructure are omitted.
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lent with the results for the estimation of classical Gaussian
random variables derived, e.g., in Ref.[20].

IV. HOMOGENOUS LIGHT-ATOM COUPLING

The time evolution of the atomicpat variable is com-
pletely determined by the update formulas for the covariance
matrix (17) and the measurement update formula(19). In the
limit of infinitesimal time steps, these formulas translate into
differential equations, and we obtain the following equations
for the variance ofpats~Jzd:

d

dt
Varspatd = − 2k2fVarspatdg2 s21d

and

d

dt
Varspatd = − 2k2s1 − ede−htVarspatd2 − hVarspatd + heht,

s22d

corresponding to the cases where atomic decay and photon
absorption are neglected and included, respectively. Here the
light-atom couplingk is given by

k2 = NatFS x

D
D2

, s23d

with x=g2t=d2"v /Ace0"2. Equation(21) is readily solved
by separating the variables, and we obtain

Varspatd =
1

2k2t + 1/Varspat,0d
, s24d

where Varspat,0d=1/2 is thevariance of the initial minimum-
uncertainty state.

To solve Eq.(22), we introduce the change of variable

Varspatd̃=e−htVarspatd and obtain

d

dt
Varspatd̃ = − 2k2s1 − edVarspatd2̃ − 2hVarspatd̃ + h,

s25d

which is separable. With

b =Î h

k2s1 − edS h

k2s1 − ed
+ 2D ,

the solution of Eq.(22) reads

Varspatd =
b

21Varspat,0d +
h

2k2s1 − ed
+

b

2
+ e−2bk2s1−edtSVarspat,0d +

h

2k2s1 − ed
−

b

2
D

Varspat,0d +
h

2k2s1 − ed
+

b

2
− e−2bk2s1−edtSVarspat,0d +

h

2k2s1 − ed
−

b

2
D2eht −

h

2k2s1 − ed
eht. s26d

Figure 1 shows the spin squeezing as a function of prob-
ing time. When atomic decay is not included, the uncertainty
in pat is a monotonically decreasing function with time.
When decays are included, a minimum is reached, whereaf-
ter the degree of squeezing starts to decrease. On the time
scale of the figure, which is chosen to reflect realistic experi-
mental time scales, the increase in Varspatd is hardly visible.
From Eq. (22), we find that the minimum in the variance
occurs at the instant of time

tmin =
1

2bk2s1 − ed
3 ln1Varspat,0d +

h

2k2s1 − ed
−

b

2

Varspat,0d +
h

2k2s1 − ed
+

b

2

3
4bk2s1 − ed

h 2 . s27d

In the typical experimental situation,h /2k2s1−ed!1, which
means thatb.Î2h / s1−ed /k. In this case Eq.(27) simpli-
fies to

tmin =
1

2Î2hs1 − edk
lnS4Î2s1 − edk

Îh
D . s28d

From Eq.(28), we see thattmin decreases for increasing cou-
pling strengthk and for increasing decay rateh. Interest-
ingly, the instant of time for the minimum in the variance is
independent of the initial uncertainty in the atomic variable
pat.

We may now go back to Eq.(22) and evaluate the value
of the variance at timetmin. In the regime considered above
and in the figure, we find

Dpstmind =Î1

k
Î h

2s1 − ed
. s29d

This clearly shows that the higher the coupling and the lower
the decay, the better the spin squeezing. It is the term linear
in h in Eq. (22) that is responsible for the “saturation effect”
in the variance at early times where the exponential is still
close to unity,eht.1.

To specify, for a given number of atoms, how many pho-
tons we need to obtain optimal spin squeezing in timetmin
limited perhaps by other experimental constraints, we ex-
press
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h , F
s

A

G2

D2, k2 , F
s2

A2

G2

D2Nat,

and insert into Eq.(28). The slow logarithmic dependence
and factors of order unity can be neglected, and we can in-
troducee via the relation

e , Nat
s

A

G2

D2

and find

Ftmin .
1

e
ÎA

s
Nat.

If we accept photon absorption at the percent level, we ob-
tain

Ftmin * 100ÎA

s
ÎNat. s30d

In our case, we haveA/s.1.73107. A realistic upper
limit for tmin is 1 ms, and from Eq.(30) it then follows that
the photon flux should fulfill

F * 108ÎNat
1

s
. s31d

V. INHOMOGENEOUS LIGHT-ATOM COUPLING

We now consider two scenarios leading to inhomoge-
neous light-atom coupling, a case recently discussed theo-
retically in the literature[13]. First, we shall study the case
where the coupling is inhomogeneous as a consequence of a
variation in the intensity of the light beam across the sample.
Second, we shall consider the case of an optically thick
sample where the photon field, and therefore the coupling,
changes through the atomic sample due to absorption. Both

cases are readily handled within the Gaussian approximation.

A. Case (a): Optically thin sample

We consider the case where the atomic gas is divided into,
say,n slices each with local light-atom coupling strengthki.
The 2n+2 column vector of Gaussian variables describing
the 2n collective canonical position and momentum variables
for the atoms and the 2 collective position and momentum
variables for the photon field then read

y = sxat,1,pat,1,…,xat,n,pat,n,xph,pphdT. s32d

The generalization of Eq.(5) to the case with inhomoge-
neous coupling reads

Ht = "So
i=1

n

kt,ipat,iDpph, s33d

where the summation index covers the different groups of
atoms.

To model the effect of an inhomogeneous coupling of the
light to the atomic sample, we considern=10 different val-
ues of k2 chosen uniformly in the intervalfk0

2s1−dd ;k0
2s1

+ddg with d=h0,0.1,0.5j. In this way, the effective coupling
constantÎo j=1

n k j
2 remains constant while the variance in the

coupling constants increases. The values of the coupling
strength could, e.g., differ because of the transverse intensity
profile of the laser beam. As a consequence, the values of the
atomic decay rateh (also proportional to intensity) are dif-
ferent in each slice. The measurement is described by the
method in Sec. III, and the propagation is given by a modi-
fication of Eq.(17):

gst + td = L tStgtSt
†L t + M t + N, s34d

where thes2n+2d3 s2n+2d matrix St is obtained from the
time evolution of the system as in Sec. III and where

L t = diagsÎ1 − ht,1,Î1 − ht,1,…,Î1 − ht,n,Î1 − ht,n,Î1 − e,Î1 − ed,

M t = " 3 diagSNat,1h1

kJx,1l
,
Nat,1h1

kJx,1l
,…,

Nat,nhn

kJx,nl
,
Nat,n,hn

kJx,nl
,0,0D ,

andN=diags0,0,… ,0 ,0 ,e ,ed. For convenience, we assume
that the number of atomsNat,i subject to a given coupling
strengthki is simply Nat/n.

The atomic covariance matrix now has dimensions2n
32nd, and it contains the variances of the atomic observ-
ables in each slice and the correlations between them. Col-
lective observables are described by linear combinations of
the sxat,i ,pat,id and their variances can be obtained explicitly.

From the Hamiltonian(33), it is clear that the probe field
couples to the asymmetric collective variableoi=1

n kt,ipat,i.

The correspondingasymmetriccollective harmonic oscillator
variables involved in the spin squeezing are, accordingly,

sXeff,Peffd =1 o
i=1

n

kixat,i

Îo
i=1

n

ki
2

,

o
i=1

n

kipat,i

Îo
i=1

n

ki
22 . s35d

The symmetriccollective variables that are usually consid-
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ered (see, e.g., the discussion in Ref.[13] and references
therein) are, on the other hand, given by

sX,Pd = S 1
În

o
i=1

n

xat,i,
1
În

o
i=1

n

pat,iD , s36d

and it is interesting to see how these two sets of variables are
connected. A straightforward calculation shows that we may
express the latter variables as

sX,Pd = asXeff,Peffd + bsX',P'd, s37d

wheresX' ,P'd are canonical variables which commute with
sXeff ,Peffd and with the interaction Hamiltonian of Eq.(33),
and where the coefficients are given by

a =

o
j=1

n

k j/În

Îo
j=1

n

k j
2

s38d

and

bsX',P'd =
1
În

o
i=1

n 11 −

kio
j=1

n

k j

o
j=1

n

k j
2 2sxat,i,pat,id. s39d

From Eq.(37), it follows that the variances ofX andP may
be expressed as

VarsXd = a2VarsXeffd + s1 − a2d/2 s40d

and

VarsPd = a2VarsPeffd + s1 − a2d/2, s41d

where we have used the fact that 1=a2+b2 and that the com-
ponents sX' ,P'd are unaffected by measurements, so
VarsX'd=VarsP'd=1/2 for all times(if atomic decay is not
taken into account).

In Fig. 2, the lowest curve shows the smallest eigenvalue
of the covariance matrix as a function of time. The associ-
ated eigenvector represents a combination of the canonical
variables for the different slices which is maximally
squeezed. For the present values of the noise parameters(h
ande), we have an overlap very close to unity between the
eigenvector of this curve and the effective asymmetric col-
lective variablePeff of Eq. (35). This means that this compo-
nent is indeed the one that is maximally squeezed. The ana-
lytical result for the squeezing of this component is obtained
from Eq. (26) with k→Îo j=1

n k j
2. For the values for atomic

decay and photon absorption considered in the figure, for-
mula (41) reproduces the fully numerical calculations for the
symmetric collective coordinateP of Eq. (36).

B. Case (b): Optically thick gas

We now turn to the situation where the sample is optically
thick. The probabilitye for absorption of photons through

the gas is then larger than, say, a few percent. This means
that the conditione!1 which was assumed in the derivation
of the effective light-atom coupling of Eq.(5) is no longer
fulfilled. By slicing the gas into pieces labeled byi
=1,2,… ,n, within each of which the constraint on atomic
decay and photon absorptionhi ,ei !1 is fulfilled, we may,
however, still locally for a fixed slicei use the effective
Hamiltonian and address the problem in the Gaussian ap-
proximation. The vector of variables describing the system is
then of the same form as in Eq.(32), and the Hamiltonian is
given by Eq.(33). The considerable absorption of photons
from a beam segment on its way through the atomic gas
means that the update formula for the covariance matrix
needs to be iterated according to the different local noise and
coupling strengths. Accordingly, as each beam segment
passes through the atomic gas fori =1–n, we go through the
following update formulas for the covariance matrix(17):

gi = L t,iSt,igi−1St,i
T L t,i +

"Nat,i

kJx,istdl
M t,i +

"Nph,i

2kSx,istdl
Ni ,

s42d

where the transformation matrixSt,i is given by a matrix
with off-diagonal elementskt,i at entrances(s2i −1d ,s2n
+2d) and(s2n+1d ,2i). For example,St,2 for the case of only
two slicessn=2d is given by

FIG. 2. Uncertainty of the maximally squeezed component of
the atomic gassPatd as a function of time. The higher-lying curves
show the uncertainty in the symmetric collective parameter[Eq.
(36)] for n=10 uniformly distributed values ofk2 in f0.9k0

2;1.1k0
2g

(middle) and f0.5k0
2;1.5k0

2g (upper). The central effective coupling
is k0

2=1.833106s−1, and all other parameters are as in Fig. 1. The
lower curve is the smallest eigenvalue of the covariance matrix,
which is the same for the two ranges ofk2 to the precision visible in
the figure.
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St,2 =1
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 kt,2

0 0 0 1 0 0

0 0 0 kt,2 1 0

0 0 0 0 0 1

2 . s43d

The constraints on decay and absorption must be fulfilled,
ht,i ,ei !1 and L t,i =diags1,… ,Î1−ht,i ,Î1−ht,i ,
1 ,… ,Î1−ei ,Î1−eid ,M t,i =diags0,… ,0 ,ht,i ,ht,i ,0 ,… ,0d,
and Ni =diags0,… ,0 ,ei ,eid. The full covariance matrix is
updated every time the pulse segment passes a new slice.
When the pulse segment has finally left the gas, it is being
measured, andgn is modified sgn→gn8d according to Eqs.
(18) and (19) of Sec. III, with the 2n32n submatrixAg the
covariance matrix for the variables y1
=sxat,1,pat,1,… ,xat,n,pat,ndT,Bg the 232 covariance matrix
for y2=sxph,pphdT, andCg the 2n32 correlation matrix for
y1 andy2

T. When we setg0st+td=gn8std, we use Eq.(42) with
i =1–n to describe the interaction with the next beam seg-
ment. In reality, the light segment corresponding to any prac-
tical durationt will be much longer than the entire atomic
sample, and the interaction with one group of atoms has not
finished before the interaction with the subsequent group
starts. It is not difficult to see, however, that if the atomic
dynamics is entirely due to the interaction with the optical
field, there is no difference between the achievements of the
real system and those where we imagine the atomic slices
separated by free-space separation distances larger thanct,
described precisely by the above formulation.

For convenience, we give the time and space(slice) de-
pendence of the parameters in Eqs.(42) and (43) explicitly.
The change in the classical Stokes vector through the differ-
ent slices due to photon absorption is given by

kSx,il = kSx,i=0lexpS− o
i8=1

i

ei8D , s44d

where the absorption probability in slicei is ei and, hence,
the total photon absorption probability in the gas isf1
−exps−oi=1

n eidg. The change inkJx,il due to atomic decay is
given by

kJx,istdl = kJx,is0dlexps− hitd. s45d

The atomic decay ratehi is a decreasing function of the slice
number since fewer and fewer photons are available to excite
the atoms,

hi = h0 expS− o
i8=1

i

ei8D , s46d

and finally, the light-atom coupling constantk will depend
on both time and space,

k2st,id = k0
2 expS− o

i8=1

i

ei8Dexps− hitd, s47d

where k0
2 is given as in Eq.(23) and every slice contains

Nat,i =Nat atoms. From the above relations and the initial con-
ditions kSx,il="Nph,i /2 andkJx,il="Nat,i /2 it follows that the
prefactors on the noise terms in Eq.(42) are given by

"Nat,i

kJx,il
=

2

e−hit
s48d

and

"Nph,i

2kSx,il
=

1

expS− o
i8=1

i

ei8D . s49d

We have modeled the effect of photon-absorption-induced
inhomogeneous light-atom coupling using the parameters de-
tailed in the caption of Fig. 3. The photon absorption is var-
ied by varying the detuning, and the light-atom coupling
strengthk2 and the atomic decay probabilityh are kept con-
stant at the values used in Figs. 1 and 2 by adjusting the
photon flux inversely proportional to changes in the detuning
squared. Figure 3 shows the uncertainty of the maximally
squeezed component of the sample as determined by the
smallest eigenvalue of the covariance matrix. We see as ex-
pected that the degree of squeezing decreases with increasing
photon absorption probability.

In Fig. 4, we compare, for two representative cases from
Fig. 3, the uncertainty of the maximally squeezed component
of the gas with the uncertainty of the collective inhomoge-
neous variablePeff of Eq. (35). The variance of the latter
variable can be calculated straightforwardly from our knowl-

FIG. 3. Uncertainty of the maximally squeezed component of
the gassPatd as function of probing time for varying degrees of
photon absorption. The percentage of photons absorbed is indicated
as the solid curves. The gas is decomposed inn slices, each absorb-
ing ei =0.028 of the light intensity. From the lower to the upper
curve the number of such slices attains the valuesn=1, 4, 8, 13, 25,
and 50. Other physical parameters are as specified in Fig. 1.
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edge of the time-dependent light-atom coupling constantski
and the full covariance matrix:

VarsPeffd = foi,j
kistdk jstdskpipjl − kpilkpjldg/ok

kistd2.

We see that for low and moderate photon absorption, the
result for the effective asymmetric variable of Eq.(35) is
close to the fully numerical result. Only for high photon
absorption do the effects of noise and differences in coupling
strength lead to a significant deviation from the numerical
result.

VI. PROBING THE DEGREE OF SQUEEZING

So far, we have not discussed to which extent the maxi-
mally squeezed component of the atomic sample will be use-
ful and, e.g., set a limit for the precision obtained in a mea-
surement of an interesting physical quantity. To investigate
this point, we follow the work in Ref.[13] and consider a
situation where(i) the sample is spin squeezed for a time
periodet1 (ii ) the spin squeezing is stopped and the sample is
subject to a spin rotation, and(iii ) the system is probed and
the rotation angle is estimated.

A. Noiseless case: Analytical results

We start by an analysis of the simple case corresponding
to a single atomic sample and a single probe field in the
noiseless limit. From Sec. III, we have at timet1

Varspatst1dd =
1

2k2t1 + 2
, s50d

where we have used the fact that the atoms are initially in a
coherent state with variance 1/2. Since VarsxatdVarspatd
=1/4 in this noiseless case, we also have

Var„xatst1d… = k2t1/2 + 1/2. s51d

After time t1, the light-atom coupling is turned off, and
the system is subject to a rotation around they axis, de-
scribed by the interactionHT=−uJy, where u=vT is the
small angle of rotation resulting from the action of the con-
stant rotation frequencyv in time T and whereJy is the y
component of the collective spin operator. Making the trans-
lation to the effective dimensionless position operator as in
Eq. (4) leads to the Hamiltonian

HT = − "uaxat, s52d

wherea=ÎkJxl /"=ÎNat/2. To obtain an estimate for the un-
known classical variableu, we follow the ideas introduced in
Ref. [2] and treat the rotation variableu as a quantum vari-
able within our Gaussian description. The total system is
then described by two atomic variables and one rotation vari-
able y=su ,xat,patdT. The corresponding transformation ma-
trix follows from Heisenbers equations of motion with the
Hamiltonian in Eq.(52) and in the basissu ,xat,patd we obtain

S= 11 0 0

0 1 0

a 0 1
2 , s53d

from which we verify that, e.g.,pat→pat+au. Equation(9)
now determines the time evolution of the system, and we
find the following covariance matrix at timet2 after the
rotation:

gst2d = 1 2 Varsu0d 0 a2 Varsu0d
0 2 Var„xatst1d… 0

a2 Varsu0d 0 2 Var„patst1d… + a22 Varsu0d
2 , s54d

where Var(patst1d) and Varsxatst1dd are given by Eqs.(50) and
(51), respectively.

Finally, at timestù t2, the rotation is turned off, and the
sample is probed by the light beam as in the time interval

f0;t1g. The transformation matrix is determined by Heisen-
berg’s equations of motion for the variablesy
=su ,xat,pat,xph,pphdT with the Hamiltonian(5) and is given
by
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S=1
1 0 0 0 0

0 1 0 0 k

0 0 1 0 0

0 0 k 1 0

0 0 0 0 0
2 . s55d

The covariance matrix of the system is propagated according
to Eq. (9). The measurements of the photon field are de-
scribed as in Eqs.(18) and (19) (see also Ref.[2]). The
submatrixAg is now the 333 matrix pertaining to the vari-
ablessu ,xat,patd, and Cg is the 332 covariance submatrix
describing the coherences and correlations between these
three variables and the photon field. We are interested in the
uncertainty on the value ofu—i.e., the(1,1) entrance in the
covariance matrix. To find this as a function of time, we
follow the procedure in Sec. III and calculate the difference
betweenAg aftern andn+1 iterations and consider the limit
of infinitesimal time steps. In general, the differential equa-
tions obtained in this way are matrix Ricatti equations and
may be solved by standard metohds[21]. In the present case,
the solution reads for probing timestù t2

Var„ustd… = Varsu0d −
Refksu − kuldspat − kpatldlt2

g

Var„pst2d…

3S1 −
1

f1 + 2Var„pst2d…k2st − t2dgD , s56d

where the covariances at timet2 are given in Eq.(54). We
see from Eq.(56) that the variance of the variableu does not
decrease forever. In the long-time limit, we find

Var„ust → `d… = Varsu0dS Var„patst1d…
Var„patst1d… + a2Varsu0dD .

s57d

This shows, as expected, that the limiting value only depends
on the squeezing and the rotation until timet2. For largea

parameter(many atoms) and for a sufficiently large initial
variance ofu, the result in Eq.(57) reduces to

Varsud .
Var„patst1d…

a2 . s58d

The ratio of the variances ofu in a measurement withsSd and
without (NS) spin squeezing is given by

VarsuSd
VarsuNSd

= 2Var„pat
Sst1d…. s59d

Since Var(patst1d)P g0;1/2g, this shows that one may gain a
significant factor in precision on the variableu by presqueez-
ing the sample.

Finally, we note that the result of Eq.(57) may be
obtained directly by considering the corresponding
classical Gaussian probability distributionPspat,ud
~exph−pat

2 / f2 Varspatdg−u2/ f2 Varsudgj. As a consequence
of the rotation,pat transforms according topat→pat+au, and
therefore the probability distribution after rotation reads
Pspat,ud~exph−spat−aud2/ f2 Varspatdg−u2/ f2 Varsudgj. A
measurement of the variablepat leads to a distribution inu
only, from which the variance ofu is read off with the result
given in Eq.(57).

B. Noise included: Numerical results

Whereas in Sec. VI A it is clear that it is the collective
variable pat that is squeezed, in the case of an atomic en-
semble with an inhomogeneous light-atom coupling we only
know from the analysis of Secs. V A and V B that there
existsa component that is squeezed and that this component
for moderate noise is very accurately approximated by the
asymmetric collective variablePeff of Eq. (35). The question
we address now is whether it is the variance of this compo-
nent that will show up in a measurement of a classical pa-
rameter, such as the rotation parameteru.

The formalism necessary for handling this problem was
developed in Secs. III and V B. In short, forn slices of gas
each fulfilling ei ,hi !1si =1,… ,nd, we first propagate and
perform measurements on the system of 2n collective atomic
position and momentum variables and 2 collective photon
position and momentum variables. At timet1, the light field
is turned off, and the atomic sample is fortP ft1; t2g subject
to a rotation around they axis described by the effective
Hamiltonian

Ht = − "uo
i

n

aixat,i , s60d

with u=vT as in Sec. VI A and with coupling constantsai
determined by a generalization of the result in Eq.(52):

ai =ÎkJx,il
"

=ÎNat,i

2
e−hit1. s61d

Spontaneous emission of photons is neglected in our ap-
proach, so theai’s are fixed by their values at the instant of
time t1 when the photon field is switched off and the possi-
bility for stimulated atomic decay disappears. The transfor-

FIG. 4. As Fig. 3 but only forn=4 andn=50. Curves(1) and
(3) represent the maximally squeezed component of the gas. Curves
(2) and(4) display the uncertainty in the inhomogeneous collective
variablePeff of Eq. (35) as a function of time.
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mation matrixS corresponding to the Hamiltonian in Eq.
(60) is readily found from Heisenberg’s equations of motion
for the variablessu ,xat,1,pat,1,… ,xat,n,pat,nd. Its diagonal en-
tries are unity, thei =1,… ,n su ,pat,id entries are assigned the
valuesai, and the rest are zero—a natural generalization of
Eq. (53). The propagation in time of the covariance matrix is
then determined by Eq.(9). At time t2 the rotation is stopped,
and for timest. t2, the atom-light Hamiltonian is turned on
again. First the initial covariance matrix foru, atomic slices,
and the photon fieldsu ,xat,1,pat,1,… ,xat,n,pat,n,xph,pphd is set
up. This involves the covariance from the previous part
supplemented by the position and momentum variables of
the photon field. The dynamics of this enlarged covariance
matrix is described by suitable modified versions of Eqs.
(17) and (19) of Sec. III.

We aim to extract from our numerical study that the vari-
able of relevance in the probing of the rotation angle is the
maximally squeezed component; i.e., at moderate noise lev-
els, it is essentially the optimally squeezed asymmetricPeff
variable of Eq.(35) and not the symmetric collective vari-
ableP of Eq. (36). From Heisenberg’s equation of motion it
follows thatPeff andP transform according to

Peff → Peff +1 o
j=1

n

k ja j

Îo
j=1

n

k j
22u s62d

and

P → P + 1o
j=1

n

a j

În
2u. s63d

A generalization of the result in Eq.(58) then yields the
following expressions for the variance ofu in the long-time
limit:

Varsud =
VarsPeffd

1 o
j=1

n

k ja j

Îo
j=1

n

k j
22

2
s64d

and

Varsu8d =
VarsPd

1o
j=1

n

a j

În
2

2
, s65d

where VarsPd is given by Eq.(41).
Figure 5 shows results for inhomogeneous coupling mod-

eled by choosingn=10 different values ofk2 uniformly over

the interval fs1−ddk0
2/n; s1+ddk0

2/ng with dP h0,0.02,
0.1,0.2,0.3,0.4,0.5j. As in Sec. V, the effective coupling
strength is fixed byk0. In the figure, the solid lines areinde-
pendentof fluctuations in the coupling strength. The lowest
solid line shows the asymptotic uncertainty ofu as obtained
by Eq. (64). The decreasing solid curve is the numerical
result, converging towards this value. It represents a collec-
tion of indistinguishable curves showing the numerical re-
sults for all the different variances of the coupling strength.
We observe that the decreasing solid curves show a better
estimation of the rotation angleu than the prediction by the
symmetric collective variable shown by the dashed curves in
the figure. The fact that the decreasing solid curves converge
to the value determined by the maximally squeezed compo-
nent signifies that this indeed sets the limit for the precision
of the measurement.

VII. CONCLUSIONS

In this work we have given a comprehensive account of
the theory of probing and measurements in the Gaussian-
state description. We have followed the ideas of Refs.[2,15],
and we have provided a complete analysis of the method and
its strengths by analyzing in detail the problem of spin
squeezing.

The Gaussian description of the collective quantum pa-
rameters including possibly an external classical parameter

FIG. 5. Uncertainty of the parameteru as a function of time and
for different variances of the coupling strength as specified in the
text. The gas is sliced inn=10 pieces. The number of atoms and
photons are as in the preceding figures. The value ofai is 0.2236.
The dashed curves show the limiting uncertainty in theu parameter
as estimated from Eq.(65) for the standard collective variableP of
Eq. (36) with the smallest variance in the coupling strength for the
lowest dashed curve and the highest variance for the upper dashed
curve. The constant horizontal solid line gives the limiting value of
Eq. (64), as obtained by the maximally squeezed componentPeff of
Eq. (35), and it is independent of the variance of the coupling
strength. The decreasing solid curve is a collection of indistinguish-
able curves showing the numerical results for all the different vari-
ances of the coupling strength(see text).
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allows us to include the measurement process directly and to
obtain analytical results in the noiseless case and in the limit
of low noise. Also the theory is readily generalized to handle
situations which have resisted a satisfactory treatment with
other theoretical methods. For example, the case of an opti-
cally thick gas with corresponding inhomogeneous light-
atom coupling can be treated and even understood analyti-
cally to a large extent.

We have shown that in the present case of squeezing of
the spin of an atomic ensemble by using a continuous-wave
coherent light beam, it is indeed the maximally squeezed
component of the atomic gas that determines the precision

with which one can estimate the value of an external pertur-
bation.

At present, we seek to address a series of other problems
in continuous variable quantum physics including generation
and detection of finite bandwidth squeezed light and estima-
tion of time-varying external perturbations.
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