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We present, and analyze thoroughly, a highly symmetric and efficient scheme for the determination of a
single-qubit state, such as the polarization properties of photons emitted by a single-photon source. In our
scheme there are only four measured probabilities, just enough for the determination of the three parameters
that specify the qubit state, whereas the standard procedure would measure six probabilities.
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I. INTRODUCTION II. QUBIT TOMOGRAPHY

. . L A. Standard six-state tomography
Experiments that exploit the polarization degree of free-

dom of single photons, detected one by one, have become an We describe, as usual, the binary quantum alternative of
almost routine matter in recent years. In particular, a wholghe qubit by a Pauli vector operatar=(oy,0y,0,). The
class of experiments that demonstrate the technical feasibiphysical nature of the qubit is irrelevant for the present gen-
ity of quantum cryptography, or quantum key distribution, eral discussion—it might just as well be the séimiegree of
use the photon polarization as the carrier of the quantum bifreedom of an electron or a pseudospin such as the path
or qubit Other experiments make use of a spatial degree oflegree of freedom in a two-path interferometer or the inter-
freedom, essentially the path qubit of a two-path interferomnal degree of freedom of a two-level atom—but in the par-
eter, which is sometimes translated into the alternative oficular application that we have in mind it is the polarization
early or late arrival for the sake of easier transmission. degree of freedom of a photon. Then we use the convention
In applications like these, as well as many others, ongpecified by
must be able to characterize the qubit source and the trans-
mission channel. For this purpose a complete determination = [h)v] + [vX(h|
of the state of the qubit is required, both as it is emitted from X ’
the source and as it arrives after transmission. To be able to
perform the regular on-the-fly calibration of the setup, so as oy = i(|h)v] = |v)h]),
to compensate for the unavoidable drifts, one needs an effi-
cient diagnostics that does not consume more qubits than
really necessary. o, = [vXv| = |h)h], (2.2
The standard procedure measures three orthogonal com-

ponents of the relevant qubit analog of Pauli’s spin vectofyhere |v) and |h) are the ket vectors for vertical and hori-
operator, so thasix probabilities are estimated for the deter- zontal polarization, respectively.

mination of thethreereal parameters that specify the qubit  The statistical operator of the qubit emitted by a given
state. But clearlyfour measured probabilities should suffice goyrce,
to establish the values of three parameters. Indeed, such
minimal schemes for state determination are possible, and it 1
is the objective of this paper to present and analyze one such p==(1+8-0), (2.2
scheme, a highly symmetric one. 2
In Sec. Il we briefly review the standard six-output mea-
surement scheme and then introduce the minimal four-outpus parametrized by the Pauli vect® =(o)=tr{ap}, the ex-
scheme, followed by remarks on state determination for qupectation value ofr. The positivity of p restricts the Pauli
bit pairs. We then proceed to describe, in Sec. Ill, opticalvectors to the Bloch balls=|s|<1. The experimental char-
implementations for the measurement of a photon’s polarizaacterization of the source requires, therefore, a complete
tion qubit—polarimeters or ellipsometers in the jargon ofmeasurement of with sufficient precision. Any procedure
classical optics. that can yield this information is an exampleafbit tomog-
The question of how one infers a reliable estimate for theaphy.
qubit state after the detection of a finite, possibly small, num- In the standard approach one measurgfor some qubits
ber of qubits is addressed in Sec. IV. After discussing thesupplied by the sourcer, for some others, and for yet
optimality of the highly symmetric four-output scheme in others. Assuming an unbiased procedure—that is, for each
Sec. V and remarking on some peculiar aspects of measurirgubit there is an equal chance for either one of the three
pure qubit states in Sec. VI, we analyze adaptive measur@neasurements to happen—there are six possible outcomes
ment strategies in Sec. VII and then close with a summarythat occur with the probabilities
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The linear dependence of thg's is stated by their null
sum

4
2 4=0 2.7)
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FIG. 1. Picturing the vector quartet of H@.5) as pointing from an_d their completeness by the decomposition of the unit dy-
the center to four nonadjacent corners of a cube or as the vectoRdiC:
normal on the faces of a tetrahedron. 3 4
2255:1. (2.9
1
Pee = < 6(1 * U§)> = (Pe)for £=xy.z. (2.3 The perfect symmetry of the tetrahedron geometry manifests
itself in the simplicity of this completeness relation and the
inner products of Eg2.5). As discussed in Sec. V B below,
the tetrahedron geometry is optimal in the sense that any
D (Peu+Pe)=1, (2.4) other vector quartet would define a less efficient scheme for

four-state tomography.

Each such quartet dj's defines a POVM for minimal

(POVM) of this standardsix-state tomography

This POVM is an example of a tomographically complete ) 1 .

set of measurements of pairwise complementary observ- E Pj=1 with P; = Z(l +8j-0). (2.9
ables; namelyg,, oy, ando,, so that their eigenstates con- 1=
stitute sets of mutually unbiased bases. As Wootters antthis POVM is an example of a “symmetric informationally
Fields have showil], such sets are particularly well suited complete POVM[2]. Upon measuring it and so determining
for tomographic purposes, inasmuch as the statistical errofgie probabilitieg3]
in the estimates based on a finite number of measurements 1
ra;lre minimal. The sets themselves are not of minimal size, P =(P)=>(1+4 -9, (2.10

owever, because one measures six probabilities to deter- 4
mine three parameters, the components of the Pauli véctor
Indeed, the six probabiliti(fs of E@2.3) are subject to the
three constraintp. +p. =3, £€=X,y,z rather than to the 2— 2
single constraint oﬁ‘ unif su?n. A minimal POVM, by contrast, S 3; Pid: (2.19

would refer to only four outcomes and their probabilities, o )
with unit sum as the only constraint. and so are the statistical operator and its square,

Each operatoP,, is a third of a projector, and since these
non-negative operators decompose the identity,

&=Xy,z

4

the Pauli vector is readily available,

B. Minimal four-state tomography p= 62_ Y Pi -1 :2 <PJ>(6PJ -1,
j j

We construct such a minimal POVM of high internal sym-
metry by first choosing four unit vectora,, ...,a, with

2 - 2
equal angle between each pair: pr=p-1+ 3; Py (212
d-d.= i‘g_k_}:{ 1 for j=k (2.5 It follows that, in addition to being restricted to the range
: 3% 3 |-13 for j#k, 0<p, <3, the probabilitiesp; obey the inequalities
Geometrically speaking, such a quartet consists of the vec- 1 , 3+ 1
tors pointing from the center of a cube to nonadjacent cor- 2 < 2 U 12 < 3 (2.13
ners, as illustrated in Fig. 1 and exemplified by !
= _p-l/2 The upper bound is reached by all pure statesp? ands
a;=3"41,1,), . 1
=1, the lower bound for the completely mixed stape;
ands=0.

d=3"Y(1,-1,-1,
C. Qubit-pair tomography

The minimal property of the four-state POVM of HG.9)
4,=312(-1,-1,) (2.6) carrigs over tolr'n'ultiqubit states. In casenofjubits, one has
o ' 4" joint probabilities for the B-1 independent parameters of
Alternatively, one may picture these vectors as the normathe 2' X 2" matrix elements of the statistical operator, so that
vectors for the faces of the tetrahedron that is defined by ththe count is just right. By contrast, if one were to measure
other four corner of the cube. realizations of the six-state POVM of E.4), one would

53 = 3_1/2(_ 11 11_ ])1
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have 6 joint probabilities which contain quite a lot of redun-
dant information.

More specifically, consider the=2 situation of a source
emitting qubit pairs. Using the;'s from above for one qubit
and corresponding operato@ for the other, we obtain the
16 joint probabilities(P;Q,) by measurning the two four-
state POVMs. They are the numerical ingredients in

p= Ek (6P; — 1(P;Q(6Qy— 1), (2.14
B

the explict construction of the two-qubit statistical operator.
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If there are no correlations in the joint probabilities, so that

(PjQ=(P;}Qp, thenp is the product of two factors of the

one-qubit form in Eq(2.12), as it should be. The generali-

zation of then=2 expressior{2.14) to n>2 is immediate.
Qubit-pair tomography of this kind requires that the vec-

tor quartetby, associated with th€,’s have a known orien-
tation relative to the quarte of the P’s. One can determine
this orientation by “quantum measurement tomogragdy;’
that is, by measuring the joint probabiliti€®;Q,) for a
source with a known outpyb]. In the simplest situation, for

example, the source emits pairs that are perfectly anticorre-

lated:

p= la-sm. 50,

2 (2.19

The orthogonal dyadié that turns theg; quartet and thdgk
quartet into each other,

FIG. 2. Schematic setup of an ellipsometer that implements the
standard six-state POVM; see text.

Finally, the photons that are reflected at the second BS
pass through a quarter-wave pl&@WP) before a PBS di-
rects them to a third pair of detectors. This branch imple-
ments the measurement@f and accounts for the remaining
terms in Eq.(2.4); namely,P,, andP,_.

B. Minimal four-outcome ellipsometer

There are a number of alternative schemes for an ellip-
someter that realizes the minimal four-state POVM of Eq.
(2.9). To demonstrate the case, we present one scheme here
and discuss a few other schemes, which are much simpler
and much more practical, elsewhgfz7].

The principle of one minimal ellipsometer is illustrated by

Fig. 3@). It is an asymmetric four-path interferometer. At the
input, one-half of the light intensity is directed into the up-
permost path for reference, whereas each of the other three
paths gets one-sixth of the intensity. Photons in the lower

>

=04, (2.16

is then given by

O=- 92k g(P;Qa=- 9Ek 6]<Pij>Bk, (2.17) )
In i, a

and can thus be determined experimentally.

nur Xy

uodnmur x4y
N

wodn);

1O¥]
. ELLIPSOMETRY

A. Standard six-outcome ellipsometer

Devices for characterizing the polarization properties of a
light source are calledllipsometersa term that makes ref-
erence to elliptic polarization as the generic outcome of the
measurement. Figure 2 shows the schematic setup of a stan-
dard six-state ellipsometer, which realizes the POVM of Egs.
(2.3) and(2.4) for the photonic polarization qubit. The input
beam splitteBS) reflects one-third of the light to a polariz-
ing BS (PBY that reflects vertically polarized photons and
transmits horizontally polarized ones and so directs them to
two photodetectors. This branch thus realizes a measurement
of o, and accounts foP,, andP,_ in the sum of Eq(2.4).

Two-thirds of the light are transmitted at the input BS and
are then equally split at a second BS. A photon transmitted TE
there will be detected by either one of the two detectors :
behind another PBS. This PBS is rotated by 45°, so that a FIG. 3. (a) Principle of a four-path interferometer for minimal
measurement o, is realized in this branch and the term ellipsometry andb) optical network for the implementation; see
P,.+P,_ is accounted for in Eq.2.4). text.
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o— ] (] </ ‘1’ The central stage has controlled gates acting on the qubit
0 EEHE N el of interest, a gate withp=0 for o, another one with¢g

1 :%w for . For their product to realizer=ioyo,, we pro-
, /2 vide the factor ofi by a subsequent controlled phase gate,

which implements the phase chan@é) —i|11), but has no
FIG. 4. Quantum computation network for minimal qubit to- effect on|00), |01), and|10).

mography. The bottom qubit is the one of interest; it enters in the At the final stage, the two auxiliary qubits are passed
statep whose properties are to be determined. The two top quit?hrough standard Ha,damard gates, for whitt Lrin Eq
. H 4 N

are auxiliary qubits that enter in state 0 of .the computatlongl ba5|?3_1), and are then measured in the computational basis. The
and are eventually measured. The probabilities for the four differen s .
probabilities for getting 00, 01, 10, or 11 gpg, P4, P, and

measurement results—00, 01, 10, and 11—areiseof Eq. (2.10) .

with the éj’s of Eq. (2.6). The network uses eFi’th gates of the ps Of Eq§_. (2.10 and(2.6), respectively. .

generalized Hadamard ty&.1), three of them controlled by one of | Conditioned on the measurement ouycome, the qubit of

the auxiliary qubits, and a controlled phase gate. interest emerges in the correqundlng 'reduced state
2P;pP;/p;. For the optical implementation of Fig(t3, these

final states of the polarization qubit are fictitious, however,

HAinless the photodetectors are of a fantastic nondemolition

ization transformationg— ogpo With £=X, 'y, 01z, re- iy sensitive to the passage of a photon without absorbing
spectively. Then all four paths are recombined by a balance e photon or affecting its polarizatiqi.2]

beam merger, which distributes the intensity of each inpu
evenly among the four outputs. An unpolarized photon has,
therefore, a probability of 25% for being detected by a par- IV. COUNTING QUBITS
ticular one of the four detectors. The probabilities for a po-
larized photon are thp;'s of Eq.(2.10, so that the polariza-
tion POVM of Eq.(2.9) is measured indeed. In an actual experiment, we do not measure the probabili-
An optical network for a four-path interferometer of this ties of Eqs(2.3) or (2.10), but rather relative frequencies that
kind is shown in Fig. &). The BS at the input reflects 4/6 of are statistically determined by these probabilities. The avail-
the intensity and transmits 2/6, and the subsequent BSs eble information consists of the counts of detector clicks,
ther split the beam 3:1 or 1:1; together, these three BSB2, N3, N4 for the minimal four-state tomography of Sec. 11 B
implement the initial stage of Fig.(8. At the central stage, and N, Ny., N, for the standard six-state scheme of Sec.
there are wave plates in three partial begtabeled byo,, II'A. In what follows, we focus on the novel four-detector
oy, ando, respectively. And the final beam merger consists situatio_n. o o
of four 1:1 BSs which direct the photons to the four photo- In view of the intrinsic probabilistic nature of quantum
detectorq8]. phenomena, a given total numberNqubits does not result
The interferometer of Fig.(®) has several loops. Some in a definite, predictable number of clicks for each detector.
alternative setups have two loof] or need a single loop It is, therefore, clear that an observed breakup
only, among them the interferometer of the experiment by
Clarkeet al. [10] and the minimal one-loop scheme of Ref. N=n;+ny+nz+n, (4.1)
[6], and yet another setup has no loop af @]l We note that N
Clarkeet al. did not perform ellipsometry; their experiment is consistent with not just one Pauli vec®in Eg. (2.2), but
served a different purpose, and although their setup could b&ith many. One expects that, as a rule, the obvious guess that
used for ellipsometry, there is no mentioning of this possibleobtains from Eq.(2.11) upon the replacemenp; —n;/N,
application in Ref[10]. namely,
It is worth mentioning that such a setup can also be
viewed as a quantum computation network for three qubits, 2 > . _n
one being the polarization qubit of interest, the other two S= 3; vidj  with v = N (4.2
qubits representing the four paths of the interferomgté}.

The network is depicted in Fig. 4. It consists of a sequence Ofjives a reliable estimate of the true Pauli ve@dBut it may

generalized Hadamard gates, happen that the length of this inferr&exceeds unity, and
(0] cos¢ sin¢ \[{0| this is in fact a typical situation if the trugis of unit length;
: 1) 7 s 10/ that is, the source emits qubits in a pure state.
ai sin g —cos ¢/ \(1| (3.1 Let us thus proceed to show how one infers a plausible
and physically correct answer on the basis of the registered
At the first stage, the auxiliary qubits are prepared in a sugata. The experimental data consist in fact not just of the
perposition state that has amplitudey2/for [00) 2 [vv) and  total countsn; in the breakup(4.1), but of a particular se-
amplitudes 1{6 for [01),|10), and|11) A [hh). We achieve quence of detector clicksProvided thatthe source emits
this by a controlled gate Witb:%w (this is a controlled-not  qubits in the state specified by the Pauli vecfpmwith no
gate, in fact that is sandwiched by a gate with=« and two  statistical correlations between different qubits, the probabil-
gates with ¢=p, where o and g are such that si@a) ity £(S;ny,...,n,) for getting the observed click sequence is,
=1(\3-1) and tai28)=\3+1. therefore, given by

A. Maximum-likelihood estimator

052321-4
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Without this positivity constraint, the likelihood4.3)
would be maximized byp;=»;, which in turn would imply
the Pauli vector of Eq(4.2). But if the actual counts violate
the inequality

Ev

OJIH

(4.5)

this simple estimation fails to provide a physically meaning-

ful result. When this happens, both constraints must be taken

into account and the likelihood(3S) attains its maximum on

the boundary of the set of qubit states—that is, for a Pauli
FIG. 5. The likelihood function as a probability density for the vector of unit lengti{19].

Pauli vectors. The plot shows the “likelihood clouds” for simulated The variation of the likelihood vanishes at the extremal

measurements for which the most likely Pauli vector has lesgth point:

=0.84 and is pointing toward one of the corners of the cube of Fig.

1. A total of 100 qubits have been detected for the bottom right n;

corner, 200 for the bottom left corner, 400 for the top rear corner, oIn L= E _5pj =0. (4.6)

and 800 for the top front corner. The successive shrinking of the i P

cloud is clearly visible.

The variationsop; are subject to the two constraints

4 > =0, X pdp;=0, 4.7
£=[Tp@Em, 4.3 . P
j=1

for which we use the Lagrange multipliefdd\ and N,
wherep;($) is the probability(2.10 that a qubit is registered respectively. Denoting thp; values at the extremal point by
by the jth detector. P, Eq. (4.6) then implies

Conversely, in the spirit of the Bayesian principle of sta-
tistical inference, we can regars;n,, ... ,n,) as the like-
lihood that the source is characterizeddgiven thata click
sequence with total detector coumts ...,n, was observed.
When many qubits have been counted the likelihood funcWe exploit=;y;=1, =B;=1, and=p’=3 3 to establish
tion is sharply peaked and essentially vanishes outside the
immediate vicinity of its maximum. These matters are illus- > 1_’1 =4\ +3u (4.9
trated by the four “likelihood clouds” in Fig. 5. i B

The maximume-likelihoodML) estimatorS picks out the

%1=>\+3Mf>,- forj=1,...,4. (4.9
j

most likely Pauli vector, the one for which is largest: and
- 1=\+pu, (4.10
max L(S) = L(S). (4.4
s the first by summing the four equations (4.8), the second
) - by summing them after multiplication witf.

For the purposes of this paper, we accept 8as our plau- Taken together, Eqe4.8—4.10 make up a set of six
sible guess fos, while being fully aware of other strategies equations for the six unknowry, ... s A, and u. We
[13-13. solve the quadratic equatio4.8) for B;, or rathery;/p;,

An important theorem by Fisher states that ML estimators
become efficient in the largd-limit [16,17. So the perfor- v ——
mance, for largeN, of an experimental tomographic setup 3 = 5()\"’ VAT + 12uy), (4.11)
can be quantified by the accuracy of the ML estimator. Usu- !

ally an analytical expression for the ML estimator is notand Eq.(4.10 for \, and substitute these into E@.9) to
available and one has to solve a nonlinear operator equaticitrive at a single equation for:

for p= 2(1+S o) to find it [18]. In the present context, how- L

ever, the high symmetry of the vector quartet of E2.5) N 1 - V219, =

makes it possible to simplify this problem considerably. pr2 2; V=) 12um; = 0. (4.12
There is a benefit in maximizing the right-hand side of

Eq. (4.2 with respect to the probabilitigs rather than with  There is always the solutiop=0, and thus\=1, but Eq.

respect tcs. Lagrange multipliers are used to account for the(4.11) amounts to Eq(4.2) for these values, and therefore

two constraints. One is the unit sum of the >;p;=1, which  this solution is not acceptable, when the inequal#y) is

is the unit trace of; the other is the positivity op, p=0, not obeyed, as is the case in the present discussion. Upon

which is the upper bound in E¢2.13. recognizing that Eq(4.12 can also be written as

052321-5
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(Bv; = Dy \N 1
6u2 L =0, (4.13 lat _—+ Ml —( > #-=
)z 2 Lo+ 6um V(L -+ 120w (4.13 prob(violation) e E -3
we can discard the unphysical solutipgn=0 and find the (4.18

relevant solution in the range<Ou<2 as the root of this \yhere erf) is the standard error function andis given by
sum overj. The upper boungk=2 is reached when all qubits

are detected by the same detector, so that one of;tb@uals K= E Pip(p; = P2 = 22 pJ?’ - 2(2 p]-2>2. (4.19
1 and the others vanish. ik ' '

In summary, we determine the ML estimator Equation(4.18) applies forN>1; in order to derive it, first

observe that the central limit theorem ensures that

. 1
) ) ) eXP('E a’j(Vj_pj)) =ex —EE aj(‘sjkpk_pjpk)ak)
as follows. If the inequality4.5) is obeyed byv;=n;/N, we i ik
takep;=v;. Otherwise, we finds as theNpositive root of Egs. (4.20
(4.12) and(4.13 and then get the foup;'s from Eq. (4.1

With A=1-4. In the extremal situation of;= &, we have for large N [20]. Then use this generating function for the
Bi= + 5k and S= & mean values of products of thels to calculate the probabil-

ity that ;v 3, with consistent approximations foi> 1.

For pure states, the argument of the error function in Eq.
(4.18 is 1/(3x\ N) which is always positive, but decreases

In this procedure for finding the ML estimator, there is awith growing N, so that click sequences that violate the in-
crucial difference between relative frequencigshat obey equality are more frequent than the ones obeying it, but they
the inequality(4.5), and can therefore serve as probabilities,are not much more frequent. A remarkable exception is the
and those that violate the inequality. When the total numbesituation of the Pauli vectas being exactly opposite to one
N of detected qubits is small, statistical fluctuations are relaof the directions of the vector quartet of E¢8.5) and(2.6).
tively large and a violation is hardly surprising. But what is Then one of the;'s vanishes and the other three are all equal
the typical situation for a large number of detector clicks; to 3, SO thatk=0 and there is a unit probability for getting a
should we expect Eq4.5) to be obeyed or violated? violation.

For the likelihood(4.3), only the breakupg4.l) matters, For mixed states, the argument of the error function is
not the particular sequence of detector clicks. There areegative and increases in magnltwdeN (more about this in
N!/(n!'ny!ngln,!) different sequences for a given breakup, Sec. V Q. Accordingly, a violation of the inequality is highly
so that there is a multinomial statistics for the probability ofimprobable. In the extreme situation of the completely mixed
getting a particular breakup for the given probabilitiges) state,p:%, all pj's are %1, so thatk=0 here too, and the
of Eg. (2.10. We denote the corresponding averages oveprobability for violating the inequality vanishes.
possible breakups by overbars, as illustrated by

B. Many detector clicks

- C. Asymptotic efficiency

n; = Nv; = Np 4.1 . . _
i~ b (4.19 After detecting many qubits, we expect the ML estimator

and S to be quite close to the true Pauli vec®rlf inequality

(4.5) is obeyed, the average squared distance

(49?=(S-9?= (32 (v~ pj)éj)zz 1ﬁ2<1 —; IO,Z)

ViV = PPkt

1

N(5jkpk‘ PP - (4.16
Upon recalling thaE,p] =(3+s%)/12[cf. Eq.(2.13)], the lat- 9-&

ter averages imply == (4.2

N

2 V= l 12 p?= 1.1 -8, 9-¢ is immediately available as a consequence of (BdL6).

;3 12 1N The analysis is more involved when E¢4.5) is not

(4.17) obeyed. Let us consider once more the extreme situatign of

_ _ o being exactly opposite to one of tid such ass=-a,, say,
so that,on averagethe inequality(4.5) is violated for pure so thatp4 0 andv,=0, andvy, vy, V3 differ little from p;
StateS(fOf which s= 1) and is Obeyed for mixed StathDr =p,=p3= . To |ead|ng order |nvJ 3, the solution of Eq
which s<1). We thus expect that the detector counts for ai4.19 is then
pure qubit state will typically violate inequality4.5),

whereas the counts for a mixed state will tend to obey it. 9 > 1)\?

As a more precise statement about this matter, we note p=1 +§E (VJ B 5) (4.22
that the fraction of detector click sequences that violate the =
inequality is and the resulting ML estimator is
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like in the discussion of Eqg4.6)<4.14). When Eq.(4.25
applies, the error corresponding to E4.21) is given by

9-3
N

0.14

0.12

0.1

(AS)%= (4.26)

0.08

0.08 Fors>0, this is a bit smaller than the value in £¢.21), so

0.04 that the six-output scheme gives a slightly more reliable es-
TT’_ 0.02 timate. But whens gets close to unity, the four-output
Tt . . . . . scheme can provide better estimates because there are states
% %0 1000 2000 3000 4000 5000 6000 for which the error is substantially smaller, as the extreme
g o1 : i i . . situation of EQ.(4.24) shows. For the six-output ellipsom-
E eter, the privileged pure statgsproject on an eigenstate of
g oo08 ay, Or ay, Or o, so that one of the six detectors in Fig. 2
& never registers a qubit. Then we have

0.06

(A9)%= 8 (4.27)
0.04 3N’ '
0.02 which is a bit larger than its analag.24). The main lesson
is thus that the two schemes are of comparable asymptotic
0 ! L L ' . efficiency.
0 1000 2000 3000 4000 5000 6000
N

V. OPTIMALITY OF MINIMAL FOUR-STATE
FIG. 6. Mean value of the distance from the ML estima8dp TOMOGRAPHY
the true Pauli vectos for 40 simulated experiments with up to 6000
detected qubits per run. The top plot is 0, the bottom plot for
§=-4,. The solid lines indicate one standard deviation to each side As a preparation of the discussion below on the optimality
of the mean value, as obtained from the lalgapproximations for and efficiency of the minimal four-state tomography, we re-
(A$)? in Egs.(4.21) and(4.24), respectively. call some well-known facts about state estimation. We regard
the qubit state as parametrized by the three components of its
13 Pauli vectors=(s,,s,,s,), rather than by the four probabili-
22 (1+3p)a =5+ - 2 (V] 3)51-, (4.23  tiespj, because the latter are constrained. Then, the error of

A. Cramér-Rao bound

=1 the components of the ML estimatSrcan be estimated by
In conjunction with Eq.(4.16), we thus get the largh-ap-  the Cramér-Rao lower bour{d7,21]
proximation (As)?= (1Y, with £=x,y,2, (5.1)
— 2
(A9)2=3vf + 15+ 15— 1 =N (4.24  wherel is the Fisher information matrix,
in this case of perfect antialignment betweeand the quar- _dlog L dlog L -
tet of &’s. The sensitivity to small misalignments is dis- (IF)g = gs; a5, (5.2)

cussed in Sec. VII C.

As demonstrated by the numerical results of Fig. 6, thes@nd the averaging is done over the data—that is, over the
asymptotic approximations are actually quite reliable NJor multinomial distribution that we exploited already in Sec.
=1000. The plots report the mean values, with statisticalV B.

error bars of one standard deviation, of the dlstdSeeil as There is no unique numerical measure for the comparison
obtained from 40 simulated experiments, whereby up tof the estimated statpes=3(1+S-6) with the true state
6000 qubits are detected in each run. The top plot refers to g, = 2(1 +S-0). One can make a case for the trace-class
true state that is completely mixed, so teat) in Eq.(4.21). distance
In the bottom plot we havé=-3a, and Eq.(4.24) applies.

By comparison, for the standard six-output ellipsometer
with countsn,, of the respective detectors, the ML estimator
is

1 1 -
Dy = Etrﬂpest_ Ptruel} = §|S_ §| ) (5.3

for the Hilbert-Schmidt distance

(4.29

i (nx+ — Ny Nyp =Ny Ny — nz_>
B +n_'n,+n,_ n,+ ’ 1 1
Nys TNy Ny + Ny Nz + N, DHS: E[tr{(Pest_ Ptrue)z}]l/zz §|S—§|, (5_4)
provided that the length of thiS does not exceed unity. If it
does, the search has to be constrained to unit vectors, muébr the Uhlmann fidelity
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U=tV pest/ prud} over all possible four-element POVMs. The functional in
L . question is
_ = S 2 12, = S & n\12 _
_2(1 +S-§+u) +2(1 +S.5-u)?, (5.5 D=SplIh) -\> I1;, (5.9
j

with where Sp) is the trace(“spur”) of the 3xX 3 matrix, and a

N & Lagrange operatoh takes care of the constrailtIl;=1.
=V(S+92%-(Sx §? . . . - =

u \/(S §7-(Sx 9%, (5.6 First, let us find the POVM that minimizes the functional
and for some more. In the single-qubit situation of present5.9) for the maximally mixed input state. In that case the
interest, there is no difference betweBp andDyg, but they  extremal equations read

are not the same for higher-dimensional systems, such as the _ o

qubit pairs of Sec. Il C. We note in passing that the Uhimann RIL=AIL; forj=1,....4,
fidelity and the trace-class distance are natural pairs, inas-

much as they obey a fundamental inequality A= RIIj, (5.10
i
2 2
Dyrif=1, 6.7 where
irrespective of the dimension of the Hilbert space. -
P P R = Sp(IF2T) (5.12)

As long as one is comparing pure states with each other,
the actual choice between the quantitative measures of Edswolves the operator matriX; whose matrix elements are
(5.3+5.5) does not matter much, because then all of thengiven by

are monotonic functions of the length of the differer®es _ T, = o do, + odrio 1), (5.12
of the two Pauli vectors. If one state is mixed, however, this o '
is not true for the Uhimann fidelity. For the sake of compu-Note the joint appearance 0633 Sy traces and quantum-
tational simplicity, we opt for the(square of twicg the  mechanical f} traces. One verifies by inspection that any
Hilbert-Schmidt distance and thus quantify the measure oPOVM of the tetrahedron geometry of Eq2.5—2.9) sat-
the estimate by the size ¢8-9)2, whose statistical average isfies these extremal equations and hence identifies the maxi-
is already considered in Sec. IV C. A convenient conservamMally mixed state with greatest accuracy. _
tive estimate is given by the Cramér-Rao bound of @&). Obviously, for biased states the optimal POVM itself be-
According to Fisher’s theoreffi6] the ML estimator ofp ~ COMes biased. The generalization of the extremal equations
attains the Cramér-Rao bound for layeStrictly speaking, tolth|s case is stralghtforwqrd; the operat®ysvill then con-
this statement applies only to mixed states, because only f¢fin one more term proportional to the true statélthough
them are the ML estimators unbiased. For pure states, tHa! analytical solution may be difficult to obtain, one can
positivity constraint plays an important role, and the Cramér&/ways find the extremal measurement by an iterative proce-
Rao bound derived for unbiased estimators tends to overe§Ure: As the input state is usually not known and selected in
timate the error, and therefore we shall consider pure statd@ndom, operator; should be averaged over the Bloch ball.
separately below. As a rule of thumb, the Cramér-Rao bound! this way one obtains an algorithm providing the optimal
is reliable when the lion’s share of the likelihood function is Séduential measurement, in the sense that the Hilbert-
contained within the Bloch ball. This can, in fact, be used as>chmidt distance is consistently reduced in each iteration
an operational definition of “mixedness.” Indeed, as theStep. Numerical results show that the tetrahedron POVM is

analysis in Sec. IV B shows, for mixed states there is nd!S0 optimal for uniformly distributed input states.
significant fraction of the likelihood function outside the __ Quite explicitly, the optimal distance for the tetrahedron

Bloch ball if N is sufficiently large. POVM is
_9-¢
B. Optimality of the tetrahedron geometry Dopt= N (5.13

The four-state tomography with the tetrahedron geometr
of Egs.(2.5—2.9) is the best minimal qubit-state measure-
ment, in the sense that, among the measurements with fo
output channels, it provides the greatest accuracy. This cafy
be seen as follows.

For the multinomial statistics of Sec. IV B, the Fisher
information simplifies to

Yn agreement with, or as a consequence of, the mean square
distance of Eq(4.21). As one would expect, the accuracy of

e ellipsometer is somewhat better for pure input states than
r mixed states. But, most importantly, the accuracy does
not depend on the orientation &frelative to the measure-
ment tetrahedron.

1 9p; ap; C. Orientation of the measurement tetrahedron
(Ip)g =N ==, (5.8 Their relative orientation is, however, not completely ir-
T Pj 9Sg IS, 3 i
relevant. For example, the value ef in Eq. (4.19 clearly

wherep; is the probabilities of detecting a qubit in tfin ~ depends on it. More generally, we can obtain the laige-
output channel. Consider now this variational problem: For anean values of functions &-S from the asymptotic gener-
given input state, the average distarizés to be minimized ating function
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exr[iF-(é—§)]:exr<— %F-IZ-F), (5.19

where the dyadic

K=9> 8;(Sp; — PP aK (5.19
ik

PHYSICAL REVIEW A 70, 052321(2004

VI. MEASURING PURE QUBIT STATES

When the measured quantum system is known to be in a
pure state—which is a bold overidealization of any realistic
situation—this knowledge can be exploited systematically
when estimating the otherwise unknown state. A somewhat
more realistic situation arises when the input state is pure but
we do not know this to begin with, although this case is quite

depends on the positioning éfrelative to the vector quartet @ bit artificial as well, because one can hardly assume that
of the &'s. This is, of course, an immediate consequence ofeal sources are not affected by classical noise or that the

Eq. (4.20.

experimental setup is totally decoupled from the environ-

As an application, let us consider the asymptotic meadnent. Put differently, it is far-fetched to assume that the ex-

value of the Uhimann fidelity of Eqg5.5) and(5.6). We first
note that

_ _} S_ 32 [§(§—_§)]2}
u=1 8[(8 S“+ 12 (5.16

holds whenS-$ is small. Then we recall Eq4.2) and
extract

—— 1 72:2
§.(S-9P=-§-K.§=— 5.1
[S-(S-9)] N N (5.17
from Eq.(4.25 to arrive at
5_1_9;32_9—'(2 (5.18
B 8N  N(1-%)° '

where we meet the orientation-dependent quanttyf Eq.

(4.19.

perimenter will ever have the perfect control that is neces-
sary to ensure that a source emits a pure state. Nevertheless,
there is an interest in such idealized scenarios because they
come up in analyses of eavesdropping attacks on schemes for
quantum cryptography, where—as a matter of principle—it
is assumed that the eavesdropper is only limited by the laws
of physics, not by practical limitations.

For s=1, the Uhimann fidelity5.5) simplifies to

L= 1+§-S 6.1
= 5 .
and is equivalent to
1 - 2
U=1J1 —Z(S—§) (6.2

if the estimator is a pure state as wel=1. When indeed
estimating pure states with pure states, the situation to be
considered now, it is customary to take the average®of

There are extremal orientations of three kinds. The value

of «? is largest whers is parallel to one of the vectors of the

tetrahedron quartet and smallest wh&is antiparallel. In
addition to these four maxima and four minima gt there
are also six saddle points that havgarallel to the sum of

two different vectors of the quartet. The maximal and mini-
mal values of«? are given by the upper and lower signs in

,_ (1+5)(3% 9)5°
AL AR

for S= +s3
72 4

(anyj),
(5.19

respectively, and the value at the saddle points is

3-9¢ 3
K> = % for S= \?5(§j +ay) (anyj # k).

(5.20

Accordingly, the approach dff to unity is fastest for thes
=-s§ orientation, for which the largdlapproximation

Py (3+9)(3+2)

8N(1 +9) (.21

- — 1 > 1
F=Uf=1--(5-92=1--(A5)? (6.3

4 4
as the fidelity measure that judges the quality of the estima-
tion procedure. One must keep in mind that both the true

Pauli vectors and its estimato8 are unit vectors here, as Eq.
(6.3) applies only under this restriction. Knowing that the
source generates pure states means having a lot of prior
knowledge because the set of pure states is much smaller
than the set of mixed statéthe Bloch sphere rather than the
Bloch ball), and so one can safely expect that a better, pos-
sibly much better, accuracy of the estimation can be
achieved.

The average fidelity of the optim@int measurement on
N copies is known to obey the inequali2,23

N+1
N+2’

Fs<

(6.4)

so that the corresponding error E-will decrease as IN in
the largeN limit. Any reasonable estimator should show this
dependence.

In our scheme the qubits are measured individually, not
jointly. Nevertheless, as a consequence of the Fisher theorem

applies. A small value ofk is also advantageous in Eq. in general anzd_of the findin_gs in Sec._ IVCin parti_cular, the
(4.18, as it ensures a large negative argument of the erroyariance(As)” in Eq. (6.3) is proportional to 1N in the
function and thus a small probability for violating the in- largeN limit, and so is then 1. But we need to reconsider

equality (4.5).

the asymptotics of the maximum-likelihood estimation, now
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taking into account that botg and S are restricted to the 1/N rate be achieved even for general orientations of the

Bloch sphere, so that we get the estima®ifrom Egs.

(4.10—4.13), whether inequality4.5) is obeyed or not.

Here, too, the estimation is sensitive to the orientation o
the Pauli vectoss relative to the vector quartet of the mea-
surement tetrahedron. We deal first with the case of “n

antialigned”; that isS# -4 for all &’s. Then,»—p; and u
are of the order of 1YN and u is given by

2
Mzﬁz{ Pi(vi = py), (6.5
with k>0 from Eq.(4.19). The resulting averages
— 2
(= p)u= WGPJ - Dpy,
— 2
f=—, 6.6
M INK2 (6.6
available as a consequence of E4.16), are used in
F=1-33[(-p)-@p-Dpul (6.7
J
to arrive at
— 2 2
1-F=—-—=>1[@3p;-Dp]?
N 3NK2§;‘ [(3p; =~ Dpy]
4 2
=—-—(27> p'-1). :
N 9NK2( ; ¥ ) 6.8

0

tetrahedron. Let us illustrate this last remark by the example
of the parallel strategy. For the parallel orientation, only
tabout half of the measurement outcomes will violate inequal-
ity (4.5); the others would notsee Sec. IV B Knowing that

{he input state is pure one can, however, ignore this inequal-
ity and always solve Eq$4.8)—(4.10) for the input-state unit
Pauli vector.

VII. ADAPTIVE STRATEGIES
A. Premeasurement strategy

The good performance of the antiparallel strategy hints at
a very simple adaptive procedure that provides the fabst 1/
asymptotic behavior without any prior knowledge about the
purity of the input state: Let us split the input ensemble into
two halves. After the firsN/2 particles have been registered
and the direction of the input Pauli vector estimated, the
experimenter adopts the antiparallel strategy for measuring
the rest of the ensemble. Notice that in this simple adaptive
scenario, the first half of the particles are used for a premea-
surement and serve only for adjusting the measurement ap-
paratus, while it is the second half which provide the actual
estimate of the input state.

Let # denote the angle between the Pauli ve&af the
input state and the Pauli vect§y estimated from the first
half of the ensemble. This anglecan be estimated with an
accuracy of 1€osf«1/N in the first stage. This means that,
in the second stage, the mean probability of detecting a par-
ticle in the channel antiparallel 1§ will be proportional to
1/N. No matter how large i#, only a few particles will be

In particular, when the tetrahedron is aligned with the Pauligetected in this channel.

vector, the upper-sign case of E§.19 with s=1, we have

x?=1/18 and 2Z;p/=7/4, sothat

— 1
1-F,=— 6.9
nm=y (6.9

for this parallel strategy|1). This is only half as big as what
one would get for thes=1 value of Eq.(4.21) and thus
demonstrates the advantage of estimating the pure true stag1

by pure-state estimators only.

There is no such advantage for the antiparallel strateg

The maximal uncertainty in the length of the Pauli vector
is then easily calculated with the aid of

: (7.0)

F= ;—32 n?-3
I
for the estimator of Eq4.2). Let us seh; =45 with 6 a small
gmber independent &f and look for the minimal length of
e estimated Pauli vector compatible with the give®ince
the right-hand side of Eq7.1) is a concave function afi,,
5, andny, it is minimal when all of them are equal to each

(1)) that has the tetrahedron antialigned wittbecause the
argument in Sec. IV B establishes that the ML estimator i
always a pure state then. Since this is now the lower-sign 48
case of Eq.(5.19 for s=1, we have x?’=0 and Egs. Shin = 1_ﬁ
(6.5—6.8) are not valid. Instead, we recall that Egs.

(4.22<4.249) apply and conclude that

Sother, n,=nz=n,=(N-6)/3, with the consequence
(7.2

for largeN. This guarantees that in the second stage both the
1 orientation and length of the Pauli vector, and so the fidelity,
1-F == (6.10  will be determined with an error proportional to N./ Nu-

2N merical simulations show that for largé(up toN=10) the

holds here. The antiparallel strategy has thus half the averageean error 1+ of this simple protocol is about twice as
error of the aligned strategy. large as, and thus worse than, that of the optimal joint
On the other hand, for a generic orientation of the inputPOVM measurement, in which aN qubits are measured
state there will always be an uncertainty in the length of theogether. Let us emphasize that while our protocol would
input state vector and therefore the fidelity will approachprovide this performance for any input pure state, it also
unity at a much slower rate proportional to\IN. Only if  provides a meaningful estimate for any input mixed state, of
one knows beforehand that the input state is pure can theourse, with a larger uncertainty proportional toyl/ In
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contrast to that, the optimal joint measurement that attains 0.0002 ' 7 '

the ultimate limit of Eq.(6.4) would not work for mixed

input states. 0.00015- i LTIy
3 1

B. Self-learning strategies [ 0,000 4
It is known that sequential measurements when combined I ..‘°

with self-learning adaptive strategies can come close to the Se-05° T

quantum estimation limif24—24. Their improvement on the r 1

conventional sequential measurement depends on the purity % 053 004 0.06 .08

of the input statg24]. Adaptive techniques are more sensi- misalignment (rad)
tive to pure states than to states with a lot of classical noise. FiG. 7. Mean estimation errors of the POVM tetrahedrons that,
The optical network of Fig. ®) can easily be adapted to on the Bloch sphere, differ from the exact paralistjuares and

a self-learning procedure and so can other optical implemenantiparallel(circles orientations by the known angle given on the
tations. After each detection the current information aboutbscissa.

the input state can be evaluated, and the operatigns,

and o, acting on the next particle inside the interferometery ,.a and mixed. one obtains the respective numig@rs
can be modified by a common unitary transformation. This is_ \3)/5=1.054 and7-16)/5=0.910, again with a clear ad-

economically achieved by performing the required unitary, TR :
) : . vantage for the antialigning adaptive strategy.
transformation on the approaching photon before it enters the g gning P ay

interferometer proper.

From the discussion in Sec. VI one might get the impres-
sion that a particularly good adaptive strategy would be to. " ) .
always keep one of the measured half-projectors antiparallé'la?“gr"ng adaptive scheme, one should, hoyvever, keep' n
to the current estimate. Matters are, however, not so :simplé-‘.q_'noI that they apply only for the exact_ly aligned or antl_-

Let us illustrate the difference between the adaptive an@IIgned settings Of_ the apparatus. But in such an ad_aptlve
nonadaptive procedures at the extreme example of measurir heme, after the first particle is observed, the uncertainty of

only two qubits. In thenonadaptivecase, everything is as te input state Pguli vector orienFatic_m s Sti”. quite large,
: yvh|ch may result in a significant misalignment in the second

adaptive step. In fact, the antialigning strategy has a greater
sensitivity to such misalignments. This is illustrated by the
simulation data shown in Fig. 7, where the estimation errors
of both strategies are shown in dependence on the misalign-
ments of the apparatuses for the chosen input intensity‘of 10
particles. Each point has been obtained by averaging over
5X 10° ML estimates.

= As expected, the antialigning adaptive strategy performs
5-\3 =1.089 (7.3 better if no misalignment is present. However, even a small
misalignment(of the order of 1° in this cagds enough to
wash out this advantage. For even larger misalignments the
aligned setting provides much better performafg. Dif-

second qubit after the first qubit has been detected. Since t Srent sensitivities of bath measurement strategies to this
ind of error might be of quite some importance for the

ML estimatorS obtained after the detection of the first qubit yotential applications of the minimal ellipsometer in quan-
will coincide with one of the tetrahedron vectors, the anti-y,m communication protocols and quantum cryptography.
aligning of the tetrahedron for the second qubit amounts t0 one can understand this extreme sensitivity of the anti-

the replacemend; — ~&;. Now the probability that the first yjigned setting and why it becomes immediately worse than
qubit is detected by thgh detector and the second by tkt 4o aligned setting by taking a second look at E6s8) and
detector ?ﬁ:pj(%‘pk)- The resulting ML estimator is then (6.10). The x2=0 result(6.10) is not the x*— 0 limit of the
given by S= \f%(éj—ék), and upon averaging over all mea- «°>0 result(6.8). In fact we havgsee Fig. 8

surement results and all input Pauli vectors we get

C. Numerical simulations

Although these numbers speak clearly in favor of the an-

qubit is detected by thgh detector and the second by tkta
detector isp;p with the p;'s of Eq.(2.10 and, in accordance
with Sec. IV, the ML estimator isS=4; if j=k and S
:ﬁm(éﬁék) if j #k. Upon averagindS-3$)? first over all
measurement results for a given input Pauli veétand then
over all possible inputs, we thus get

(S-9?=

as the figure of merit.
In the adaptive casgethe tetrahedron is realigned for the

ask?—0 (7.5

— 4
[ 1-F— — in Eq.(6.9),
11-vy24 3N

(S-92%= =1.017, (7.9 o
which is larger than the error ¢, in Eq. (6.9). Therefore,
which is markedly smaller than the nonadaptive value in Eqthe slightest misalignment takes us from thé2N) error of
(7.3). It is also smaller than the value for the adaptive strat£q. (6.10 to this 4/3N) because Eq(7.5 applies to tiny
egy with parallel alignment because that is identical with thenonzero values ok?, while Eq.(6.10 holds only if ¥*=0
nonadaptive procedure when only two qubits are detected. exactly.
We note that the averages in E¢8.3) and(7.4) are taken This observation also resolves the apparent contradiction

over pure input states. If one averages over all input state®etween the general upper bound of E§4) and the large-
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4 . . L L FIG. 10. Relative differencaF, in percent, between the errors
0 02 04 182 0.6 08 1 of the random and parallel adaptive strategigack dot$ and least-

) o o squares linear fitstraight ling. The lines connecting the dots guide

FIG. 8. l2:or each value ot” betweenx”=0 (perfect antialign-  yhe eve but have no further significance. The irregularities stem
men) and «“=1/18 (perfect alignment the possible values of the ¢, the fimited number of input stata®00 000 used for the
coefficient of the 1N term in Eq.(6.8) are in the area bounded by averaging

the two curves. The smallest coefficient obtains for the case of

perfect alignment, when E6.9) applies. . ) . .
where the orientation of the measured half-projectors is cho-

N error for perfect antialignment in E@6.10, which does sen at random in each st¢pee Fig. 1 As expected, the
not respect that upper bound. Nevertheless, this example &laptive strategy is better and its benefit grows with increas-
not a valid counterexample, because it refers to an absurdiyng size of the measured ensemble.
artificial situation: The experimenter has perfectpriori
knowledge of the state to be measured and has perfect con-
trol over his measurement apparatus, such as to ensure the VIIl. SUMMARY
perfect antialignment to which Eg6.10 applies. In other
words,whenit applies, there is no need for a state estimatio
to begin with.

Having thus compared the performances of the two ex
treme strategies, we now calculate the mean fidelity of th

We have presented a minimal measurement scheme for
nsingle-qubit tomography that has no more than the necessary
number of four outputs. The scheme is conceptually simple,
highly symmetric and optimal among all four-output
eschemes, and can be realized with the present technology for
Yhe polarization qubit of photons emitted by a single-photon
ource. As a demonstration, we designed a simple, but not
implest, optical network.

Our thorough analysis showed that the scheme is efficient
the sense that it enables one to estimate the qubit state
liably without first detecting an enormous number of
ubits—a few thousand are sufficient for most practical ap-

. X . . lications; a few hundred may be enough if extreme preci-
son. It is evident that this bound can be attained only fOIEion is not required. The efficiency can be increased by adap-
large N, while the most pronounced difference is seen for.

derately sized bles. Such a behavior is tvpi Iftive procedures in which the apparatus is adjusted in
moderately sized ensembles. Such a behavior 1S typical 104..organce with the current estimate for the qubit state.
all sequential self-learning estimation strategies.

) . Since the four-output setup provides optimal complete to-
Finally, let us compare the efficiency of the parallel adap-m B b P b b

i trat ith ol ial ography with the minimal number of output channels, it is
Ive strategy with a very simple sequentia rneasuremenﬂ)articularly well suited as a detection device for certain

qubit the information about the input state is updated and
new ML estimate is calculated. Then one of the measurea
half-projectors is aligned along this current estimate. These
two steps are repeated until all input particles are used URy,
Figure 9 shows mean fidelities and errors that were obtaine

by averaging over 200 000 randomly selected pure inpugg
states. The quantum limit, E¢6.4), is shown for compari-

1 guantum communication protocols such as tomographic
quantum cryptography28]. Indeed, there are protocols for
09 quantum key distribution that exploit the tetrahedron quartet

of states[29], among them a highly efficient tomographic
8 protocol [30].
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