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We present, and analyze thoroughly, a highly symmetric and efficient scheme for the determination of a
single-qubit state, such as the polarization properties of photons emitted by a single-photon source. In our
scheme there are only four measured probabilities, just enough for the determination of the three parameters
that specify the qubit state, whereas the standard procedure would measure six probabilities.

DOI: 10.1103/PhysRevA.70.052321 PACS number(s): 03.67.2a, 03.65.Wj, 07.60.Fs

I. INTRODUCTION

Experiments that exploit the polarization degree of free-
dom of single photons, detected one by one, have become an
almost routine matter in recent years. In particular, a whole
class of experiments that demonstrate the technical feasibil-
ity of quantum cryptography, or quantum key distribution,
use the photon polarization as the carrier of the quantum bit,
or qubit. Other experiments make use of a spatial degree of
freedom, essentially the path qubit of a two-path interferom-
eter, which is sometimes translated into the alternative of
early or late arrival for the sake of easier transmission.

In applications like these, as well as many others, one
must be able to characterize the qubit source and the trans-
mission channel. For this purpose a complete determination
of the state of the qubit is required, both as it is emitted from
the source and as it arrives after transmission. To be able to
perform the regular on-the-fly calibration of the setup, so as
to compensate for the unavoidable drifts, one needs an effi-
cient diagnostics that does not consume more qubits than
really necessary.

The standard procedure measures three orthogonal com-
ponents of the relevant qubit analog of Pauli’s spin vector
operator, so thatsix probabilities are estimated for the deter-
mination of thethree real parameters that specify the qubit
state. But clearly,four measured probabilities should suffice
to establish the values of three parameters. Indeed, such
minimal schemes for state determination are possible, and it
is the objective of this paper to present and analyze one such
scheme, a highly symmetric one.

In Sec. II we briefly review the standard six-output mea-
surement scheme and then introduce the minimal four-output
scheme, followed by remarks on state determination for qu-
bit pairs. We then proceed to describe, in Sec. III, optical
implementations for the measurement of a photon’s polariza-
tion qubit—polarimeters or ellipsometers in the jargon of
classical optics.

The question of how one infers a reliable estimate for the
qubit state after the detection of a finite, possibly small, num-
ber of qubits is addressed in Sec. IV. After discussing the
optimality of the highly symmetric four-output scheme in
Sec. V and remarking on some peculiar aspects of measuring
pure qubit states in Sec. VI, we analyze adaptive measure-
ment strategies in Sec. VII and then close with a summary.

II. QUBIT TOMOGRAPHY

A. Standard six-state tomography

We describe, as usual, the binary quantum alternative of
the qubit by a Pauli vector operatorsW =ssx,sy,szd. The
physical nature of the qubit is irrelevant for the present gen-
eral discussion—it might just as well be the spin-1

2 degree of
freedom of an electron or a pseudospin such as the path
degree of freedom in a two-path interferometer or the inter-
nal degree of freedom of a two-level atom—but in the par-
ticular application that we have in mind it is the polarization
degree of freedom of a photon. Then we use the convention
specified by

sx = uhlkvu + uvlkhu,

sy = isuhlkvu − uvlkhud,

sz = uvlkvu − uhlkhu, s2.1d

where uvl and uhl are the ket vectors for vertical and hori-
zontal polarization, respectively.

The statistical operator of the qubit emitted by a given
source,

r =
1

2
s1 + sW · sW d, s2.2d

is parametrized by the Pauli vectorksWl=ksW l=trhsW rj, the ex-
pectation value ofsW . The positivity of r restricts the Pauli
vectors to the Bloch ball,s= usWuø1. The experimental char-
acterization of the source requires, therefore, a complete
measurement ofsW with sufficient precision. Any procedure
that can yield this information is an example ofqubit tomog-
raphy.

In the standard approach one measuressx for some qubits
supplied by the source,sy for some others, andsz for yet
others. Assuming an unbiased procedure—that is, for each
qubit there is an equal chance for either one of the three
measurements to happen—there are six possible outcomes
that occur with the probabilities
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pj± =K1

6
s1 ± sjdL ; kPj±l for j = x,y,z. s2.3d

Each operatorPj± is a third of a projector, and since these
non-negative operators decompose the identity,

o
j=x,y,z

sPj+ + Pj−d = 1, s2.4d

they constitute the positive operator-valued measure
(POVM) of this standardsix-state tomography.

This POVM is an example of a tomographically complete
set of measurements of pairwise complementary observ-
ables; namely,sx, sy, andsz, so that their eigenstates con-
stitute sets of mutually unbiased bases. As Wootters and
Fields have shown[1], such sets are particularly well suited
for tomographic purposes, inasmuch as the statistical errors
in the estimates based on a finite number of measurements
are minimal. The sets themselves are not of minimal size,
however, because one measures six probabilities to deter-
mine three parameters, the components of the Pauli vectorsW.
Indeed, the six probabilities of Eq.(2.3) are subject to the
three constraintspj++pj−= 1

3, j=x,y,z, rather than to the
single constraint of unit sum. A minimal POVM, by contrast,
would refer to only four outcomes and their probabilities,
with unit sum as the only constraint.

B. Minimal four-state tomography

We construct such a minimal POVM of high internal sym-
metry by first choosing four unit vectorsaW1, . . . ,aW4 with
equal angle between each pair:

aW j ·aWk =
4

3
d jk −

1

3
= H 1 for j = k,

− 1/3 for j Þ k.
J s2.5d

Geometrically speaking, such a quartet consists of the vec-
tors pointing from the center of a cube to nonadjacent cor-
ners, as illustrated in Fig. 1 and exemplified by

aW1 = 3−1/2s1,1,1d,

aW2 = 3−1/2s1,− 1,− 1d,

aW3 = 3−1/2s− 1,1,− 1d,

aW4 = 3−1/2s− 1,− 1,1d. s2.6d

Alternatively, one may picture these vectors as the normal
vectors for the faces of the tetrahedron that is defined by the
other four corner of the cube.

The linear dependence of theaW j’s is stated by their null
sum

o
j=1

4

aW j = 0 s2.7d

and their completeness by the decomposition of the unit dy-
adic:

3

4 o
j=1

4

aW jaW j = 1I. s2.8d

The perfect symmetry of the tetrahedron geometry manifests
itself in the simplicity of this completeness relation and the
inner products of Eq.(2.5). As discussed in Sec. V B below,
the tetrahedron geometry is optimal in the sense that any
other vector quartet would define a less efficient scheme for
four-state tomography.

Each such quartet ofaW j’s defines a POVM for minimal
four-state tomography in accordance with

o
j=1

4

Pj = 1 with Pj ;
1

4
s1 + aW j · sW d. s2.9d

This POVM is an example of a “symmetric informationally
complete POVM”[2]. Upon measuring it and so determining
the probabilities[3]

pj = kPjl =
1

4
s1 + aW j ·sWd, s2.10d

the Pauli vector is readily available,

sW = 3o
j

pjaW j , s2.11d

and so are the statistical operator and its square,

r = 6o
j

pjPj − 1 =o
j

kPjls6Pj − 1d,

r2 = r − 1 + 3o
j

pj
2. s2.12d

It follows that, in addition to being restricted to the range
0øpj ø

1
2, the probabilitiespj obey the inequalities

1

4
ø o

j

pj
2 =

3 + s2

12
ø

1

3
. s2.13d

The upper bound is reached by all pure states,r=r2 and s
=1, the lower bound for the completely mixed state,r= 1

2
ands=0.

C. Qubit-pair tomography

The minimal property of the four-state POVM of Eq.(2.9)
carries over to multiqubit states. In case ofn qubits, one has
4n joint probabilities for the 4n−1 independent parameters of
the 2n32n matrix elements of the statistical operator, so that
the count is just right. By contrast, if one were to measuren
realizations of the six-state POVM of Eq.(2.4), one would

FIG. 1. Picturing the vector quartet of Eq.(2.5) as pointing from
the center to four nonadjacent corners of a cube or as the vectors
normal on the faces of a tetrahedron.
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have 6n joint probabilities which contain quite a lot of redun-
dant information.

More specifically, consider then=2 situation of a source
emitting qubit pairs. Using thePj’s from above for one qubit
and corresponding operatorsQk for the other, we obtain the
16 joint probabilitieskPjQkl by measurning the two four-
state POVMs. They are the numerical ingredients in

r = o
j ,k

s6Pj − 1dkPjQkls6Qk − 1d, s2.14d

the explict construction of the two-qubit statistical operator.
If there are no correlations in the joint probabilities, so that
kPjQkl=kPjlkQkl, thenr is the product of two factors of the
one-qubit form in Eq.(2.12), as it should be. The generali-
zation of then=2 expression(2.14) to n.2 is immediate.

Qubit-pair tomography of this kind requires that the vec-

tor quartetbWk associated with theQk’s have a known orien-
tation relative to the quartetaW j of thePj’s. One can determine
this orientation by “quantum measurement tomography”[4];
that is, by measuring the joint probabilitieskPjQkl for a
source with a known output[5]. In the simplest situation, for
example, the source emits pairs that are perfectly anticorre-
lated:

r =
1

4
s1 − sW s1d · sW s2dd. s2.15d

The orthogonal dyadicOJ that turns theaW j quartet and thebWk
quartet into each other,

bWk = OJ ·aWk, aW j = bW j ·OJ , s2.16d

is then given by

OJ = − 9o
j ,k

aW jkPjQklaWk = − 9o
j ,k

bW jkPjQklbWk, s2.17d

and can thus be determined experimentally.

III. ELLIPSOMETRY

A. Standard six-outcome ellipsometer

Devices for characterizing the polarization properties of a
light source are calledellipsometers, a term that makes ref-
erence to elliptic polarization as the generic outcome of the
measurement. Figure 2 shows the schematic setup of a stan-
dard six-state ellipsometer, which realizes the POVM of Eqs.
(2.3) and(2.4) for the photonic polarization qubit. The input
beam splitter(BS) reflects one-third of the light to a polariz-
ing BS (PBS) that reflects vertically polarized photons and
transmits horizontally polarized ones and so directs them to
two photodetectors. This branch thus realizes a measurement
of sz and accounts forPz+ andPz− in the sum of Eq.(2.4).

Two-thirds of the light are transmitted at the input BS and
are then equally split at a second BS. A photon transmitted
there will be detected by either one of the two detectors
behind another PBS. This PBS is rotated by 45°, so that a
measurement ofsx is realized in this branch and the term
Px++Px− is accounted for in Eq.(2.4).

Finally, the photons that are reflected at the second BS
pass through a quarter-wave plate(QWP) before a PBS di-
rects them to a third pair of detectors. This branch imple-
ments the measurement ofsy and accounts for the remaining
terms in Eq.(2.4); namely,Py+ andPy−.

B. Minimal four-outcome ellipsometer

There are a number of alternative schemes for an ellip-
someter that realizes the minimal four-state POVM of Eq.
(2.9). To demonstrate the case, we present one scheme here
and discuss a few other schemes, which are much simpler
and much more practical, elsewhere[6,7].

The principle of one minimal ellipsometer is illustrated by
Fig. 3(a). It is an asymmetric four-path interferometer. At the
input, one-half of the light intensity is directed into the up-
permost path for reference, whereas each of the other three
paths gets one-sixth of the intensity. Photons in the lower

FIG. 2. Schematic setup of an ellipsometer that implements the
standard six-state POVM; see text.

FIG. 3. (a) Principle of a four-path interferometer for minimal
ellipsometry and(b) optical network for the implementation; see
text.
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paths pass through wave plates that realize the unitary polar-
ization transformationsr→sjrsj with j=x, or y, or z, re-
spectively. Then all four paths are recombined by a balanced
beam merger, which distributes the intensity of each input
evenly among the four outputs. An unpolarized photon has,
therefore, a probability of 25% for being detected by a par-
ticular one of the four detectors. The probabilities for a po-
larized photon are thepj’s of Eq. (2.10), so that the polariza-
tion POVM of Eq.(2.9) is measured indeed.

An optical network for a four-path interferometer of this
kind is shown in Fig. 3(b). The BS at the input reflects 4/6 of
the intensity and transmits 2/6, and the subsequent BSs ei-
ther split the beam 3:1 or 1:1; together, these three BSs
implement the initial stage of Fig. 3(a). At the central stage,
there are wave plates in three partial beams(labeled bysx,
sy, andsz, respectively). And the final beam merger consists
of four 1:1 BSs which direct the photons to the four photo-
detectors[8].

The interferometer of Fig. 3(b) has several loops. Some
alternative setups have two loops[9] or need a single loop
only, among them the interferometer of the experiment by
Clarkeet al. [10] and the minimal one-loop scheme of Ref.
[6], and yet another setup has no loop at all[7]. We note that
Clarkeet al. did not perform ellipsometry; their experiment
served a different purpose, and although their setup could be
used for ellipsometry, there is no mentioning of this possible
application in Ref.[10].

It is worth mentioning that such a setup can also be
viewed as a quantum computation network for three qubits,
one being the polarization qubit of interest, the other two
qubits representing the four paths of the interferometer[11].
The network is depicted in Fig. 4. It consists of a sequence of
generalized Hadamard gates,

s3.1d

At the first stage, the auxiliary qubits are prepared in a su-
perposition state that has amplitude 1/Î2 for u00l= uvvl and
amplitudes 1/Î6 for u01l , u10l, and u11l= uhhl. We achieve
this by a controlled gate withf= 1

2p (this is a controlled-not
gate, in fact) that is sandwiched by a gate withf=a and two
gates with f=b, where a and b are such that sins2ad
= 1

3sÎ3−1d and tans2bd=Î3+1.

The central stage has controlled gates acting on the qubit
of interest, a gate withf=0 for sz, another one withf
= 1

2p for sx. For their product to realizesy= isxsz, we pro-
vide the factor ofi by a subsequent controlled phase gate,
which implements the phase changeu11l→ i u11l, but has no
effect onu00l, u01l, and u10l.

At the final stage, the two auxiliary qubits are passed
through standard Hadamard gates, for whichf= 1

4p in Eq.
(3.1), and are then measured in the computational basis. The
probabilities for getting 00, 01, 10, or 11 arep1, p4, p2, and
p3 of Eqs.(2.10) and (2.6), respectively.

Conditioned on the measurement outcome, the qubit of
interest emerges in the corresponding reduced state
2PjrPj /pj. For the optical implementation of Fig. 3(b), these
final states of the polarization qubit are fictitious, however,
unless the photodetectors are of a fantastic nondemolition
kind: sensitive to the passage of a photon without absorbing
the photon or affecting its polarization[12].

IV. COUNTING QUBITS

A. Maximum-likelihood estimator

In an actual experiment, we do not measure the probabili-
ties of Eqs.(2.3) or (2.10), but rather relative frequencies that
are statistically determined by these probabilities. The avail-
able information consists of the counts of detector clicks,n1,
n2, n3, n4 for the minimal four-state tomography of Sec. II B
and nx±, ny±, nz± for the standard six-state scheme of Sec.
II A. In what follows, we focus on the novel four-detector
situation.

In view of the intrinsic probabilistic nature of quantum
phenomena, a given total number ofN qubits does not result
in a definite, predictable number of clicks for each detector.
It is, therefore, clear that an observed breakup

N = n1 + n2 + n3 + n4 s4.1d

is consistent with not just one Pauli vectorsW in Eq. (2.2), but
with many. One expects that, as a rule, the obvious guess that
obtains from Eq.(2.11) upon the replacementpj →nj /N,
namely,

SW = 3o
j

n jaW j with n j ;
nj

N
s4.2d

gives a reliable estimate of the true Pauli vectorsW. But it may

happen that the length of this inferredSW exceeds unity, and
this is in fact a typical situation if the truesW is of unit length;
that is, the source emits qubits in a pure state.

Let us thus proceed to show how one infers a plausible
and physically correct answer on the basis of the registered
data. The experimental data consist in fact not just of the
total countsnj in the breakup(4.1), but of a particular se-
quence of detector clicks.Provided that the source emits
qubits in the state specified by the Pauli vectorsW, with no
statistical correlations between different qubits, the probabil-
ity LssW ;n1, . . . ,n4d for getting the observed click sequence is,
therefore, given by

FIG. 4. Quantum computation network for minimal qubit to-
mography. The bottom qubit is the one of interest; it enters in the
stater whose properties are to be determined. The two top qubits
are auxiliary qubits that enter in state 0 of the computational basis
and are eventually measured. The probabilities for the four different
measurement results—00, 01, 10, and 11—are thepj’s of Eq. (2.10)
with the aW j’s of Eq. (2.6). The network uses eight gates of the
generalized Hadamard type(3.1), three of them controlled by one of
the auxiliary qubits, and a controlled phase gate.
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L = p
j=1

4

pjssWdnj , s4.3d

wherepjssWd is the probability(2.10) that a qubit is registered
by the j th detector.

Conversely, in the spirit of the Bayesian principle of sta-
tistical inference, we can regardLssW ;n1, . . . ,n4d as the like-
lihood that the source is characterized bysW, given thata click
sequence with total detector countsn1, . . . ,n4 was observed.
When many qubits have been counted, the likelihood func-
tion is sharply peaked and essentially vanishes outside the
immediate vicinity of its maximum. These matters are illus-
trated by the four “likelihood clouds” in Fig. 5.

The maximum-likelihood(ML ) estimatorSW picks out the
most likely Pauli vector, the one for whichL is largest:

max
sW

LssWd = LsSWd. s4.4d

For the purposes of this paper, we accept thisSW as our plau-
sible guess forsW, while being fully aware of other strategies
[13–15].

An important theorem by Fisher states that ML estimators
become efficient in the large-N limit [16,17]. So the perfor-
mance, for largeN, of an experimental tomographic setup
can be quantified by the accuracy of the ML estimator. Usu-
ally an analytical expression for the ML estimator is not
available and one has to solve a nonlinear operator equation

for r= 1
2s1+SW ·sW d to find it [18]. In the present context, how-

ever, the high symmetry of the vector quartet of Eq.(2.5)
makes it possible to simplify this problem considerably.

There is a benefit in maximizing the right-hand side of
Eq. (4.2) with respect to the probabilitiespj rather than with
respect tosW. Lagrange multipliers are used to account for the
two constraints. One is the unit sum of thepj, o jpj =1, which
is the unit trace ofr; the other is the positivity ofr, rù0,
which is the upper bound in Eq.(2.13).

Without this positivity constraint, the likelihood(4.3)
would be maximized bypj =n j, which in turn would imply
the Pauli vector of Eq.(4.2). But if the actual counts violate
the inequality

o
j

n j
2 ø

1

3
, s4.5d

this simple estimation fails to provide a physically meaning-
ful result. When this happens, both constraints must be taken
into account and the likelihoodLssWd attains its maximum on
the boundary of the set of qubit states—that is, for a Pauli
vector of unit length[19].

The variation of the likelihood vanishes at the extremal
point:

d ln L = o
j

nj

pj
dpj = 0. s4.6d

The variationsdpj are subject to the two constraints

o
j

dpj = 0, o
j

pjdpj = 0, s4.7d

for which we use the Lagrange multipliersNl and 3Nm,
respectively. Denoting thepj values at the extremal point by
p̃j, Eq. (4.6) then implies

n j

p̃j

= l + 3mp̃j for j = 1, . . . ,4. s4.8d

We exploito jn j =1, o j p̃j =1, ando j p̃j
2= 1

3 to establish

o
j

n j

p̃j

= 4l + 3m s4.9d

and

1 = l + m, s4.10d

the first by summing the four equations in(4.8), the second
by summing them after multiplication withp̃j.

Taken together, Eqs.(4.8)–(4.10) make up a set of six
equations for the six unknownsp̃1, . . . ,p̃4, l, and m. We
solve the quadratic equations(4.8) for p̃j, or rathern j / p̃j,

n j

p̃j

=
1

2
sl + Îl2 + 12mn jd, s4.11d

and Eq.(4.10) for l, and substitute these into Eq.(4.9) to
arrive at a single equation form:

m + 2 −
1

2o
j

Îs1 − md2 + 12mn j = 0. s4.12d

There is always the solutionm=0, and thusl=1, but Eq.
(4.11) amounts to Eq.(4.2) for these values, and therefore
this solution is not acceptable, when the inequality(4.5) is
not obeyed, as is the case in the present discussion. Upon
recognizing that Eq.(4.12) can also be written as

FIG. 5. The likelihood function as a probability density for the
Pauli vectorsW. The plot shows the “likelihood clouds” for simulated
measurements for which the most likely Pauli vector has lengths
=0.84 and is pointing toward one of the corners of the cube of Fig.
1. A total of 100 qubits have been detected for the bottom right
corner, 200 for the bottom left corner, 400 for the top rear corner,
and 800 for the top front corner. The successive shrinking of the
cloud is clearly visible.
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6m2o
j

s3n j − 1dn j

1 − m + 6mn j + Îs1 − md2 + 12mn j

= 0, s4.13d

we can discard the unphysical solutionm=0 and find the
relevant solution in the range 0,mø2 as the root of this
sum overj . The upper boundm=2 is reached when all qubits
are detected by the same detector, so that one of then j equals
1 and the others vanish.

In summary, we determine the ML estimator

SW = 3o
j

p̃jaW j s4.14d

as follows. If the inequality(4.5) is obeyed byn j =nj /N, we
takep̃j =n j. Otherwise, we findm as the positive root of Eqs.
(4.12) and (4.13) and then get the fourp̃j’s from Eq. (4.11)
with l=1−m. In the extremal situation ofn j =d jk, we have

p̃j =
1
6 + 1

3d jk andSW =aWk.

B. Many detector clicks

In this procedure for finding the ML estimator, there is a
crucial difference between relative frequenciesn j that obey
the inequality(4.5), and can therefore serve as probabilities,
and those that violate the inequality. When the total number
N of detected qubits is small, statistical fluctuations are rela-
tively large and a violation is hardly surprising. But what is
the typical situation for a large number of detector clicks;
should we expect Eq.(4.5) to be obeyed or violated?

For the likelihood(4.3), only the breakup(4.1) matters,
not the particular sequence of detector clicks. There are
N! / sn1! n2! n3! n4! d different sequences for a given breakup,
so that there is a multinomial statistics for the probability of
getting a particular breakup for the given probabilitiespjssWd
of Eq. (2.10). We denote the corresponding averages over
possible breakups by overbars, as illustrated by

nj = Nn j = Npj s4.15d

and

n jnk = pjpk +
1

N
sd jkpk − pjpkd. s4.16d

Upon recalling thato jpj
2=s3+s2d /12 [cf. Eq. (2.13)], the lat-

ter averages imply

o
j

n j
2 =

1

N
+

N − 1

N
o

j

pj
2 =

1

3
−

1 − s2

12
+

9 − s2

12N
,

s4.17d

so that,on average, the inequality(4.5) is violated for pure
states(for which s=1) and is obeyed for mixed states(for
which s,1). We thus expect that the detector counts for a
pure qubit state will typically violate inequality(4.5),
whereas the counts for a mixed state will tend to obey it.

As a more precise statement about this matter, we note
that the fraction of detector click sequences that violate the
inequality is

probsviolationd =
1

2
+

1

2
erfXÎN

2k Soj

n j
2 −

1

3DC ,

s4.18d

where erfsd is the standard error function andk is given by

k2 = o
j ,k

pjpkspj − pkd2 = 2o
j

pj
3 − 2So

j

pj
2D2

. s4.19d

Equation(4.18) applies forN@1; in order to derive it, first
observe that the central limit theorem ensures that

expSio
j

a jsn j − pjdD = expS−
1

2N
o
j ,k

a jsd jkpk − pjpkdakD
s4.20d

for large N [20]. Then use this generating function for the
mean values of products of then j’s to calculate the probabil-
ity that o jn j

2.
1
3, with consistent approximations forN@1.

For pure states, the argument of the error function in Eq.
(4.18) is 1/s3kÎNd, which is always positive, but decreases
with growing N, so that click sequences that violate the in-
equality are more frequent than the ones obeying it, but they
are not much more frequent. A remarkable exception is the
situation of the Pauli vectorsW being exactly opposite to one
of the directions of the vector quartet of Eqs.(2.5) and(2.6).
Then one of thepj’s vanishes and the other three are all equal
to 1

3, so thatk=0 and there is a unit probability for getting a
violation.

For mixed states, the argument of the error function is
negative and increases in magnitude~ÎN (more about this in
Sec. V C). Accordingly, a violation of the inequality is highly
improbable. In the extreme situation of the completely mixed
state,r= 1

2, all pj’s are 1
4, so thatk=0 here too, and the

probability for violating the inequality vanishes.

C. Asymptotic efficiency

After detecting many qubits, we expect the ML estimator

SW to be quite close to the true Pauli vectorsW. If inequality
(4.5) is obeyed, the average squared distance

sDsWd2 = sSW − sWd2 = S3o
j

sn j − pjdaW jD2
=

12

N S1 − o
j

pj
2D

=
9 − s2

N
s4.21d

is immediately available as a consequence of Eq.(4.16).
The analysis is more involved when Eq.(4.5) is not

obeyed. Let us consider once more the extreme situation ofsW
being exactly opposite to one of theaW j, such assW=−aW4, say,
so thatp4=0 andn4=0, andn1, n2, n3 differ little from p1

=p2=p3= 1
3. To leading order inn j −

1
3, the solution of Eq.

(4.12) is then

m = 1 +
9

8o
j=1

3 Sn j −
1

3
D2

s4.22d

and the resulting ML estimator is
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SW =
1

2o
j=1

3

s1 + 3n jdaW j = sW +
3

2o
j=1

3 Sn j −
1

3
DaW j . s4.23d

In conjunction with Eq.(4.16), we thus get the large-N ap-
proximation

sDsWd2 = 3n1
2 + n2

2 + n3
2 − 1 =

2

N
s4.24d

in this case of perfect antialignment betweensW and the quar-
tet of aW j’s. The sensitivity to small misalignments is dis-
cussed in Sec. VII C.

As demonstrated by the numerical results of Fig. 6, these
asymptotic approximations are actually quite reliable forN
*1000. The plots report the mean values, with statistical

error bars of one standard deviation, of the distanceuSW −sWu as
obtained from 40 simulated experiments, whereby up to
6000 qubits are detected in each run. The top plot refers to a
true state that is completely mixed, so thats=0 in Eq.(4.21).
In the bottom plot we havesW=−aW4 and Eq.(4.24) applies.

By comparison, for the standard six-output ellipsometer
with countsnj± of the respective detectors, the ML estimator
is

SW = Snx+ − nx−

nx+ + nx−
,
ny+ − ny−

ny+ + ny−
,
nz+ − nz−

nz+ + nz−
D , s4.25d

provided that the length of thisSW does not exceed unity. If it
does, the search has to be constrained to unit vectors, much

like in the discussion of Eqs.(4.6)–(4.14). When Eq.(4.25)
applies, the error corresponding to Eq.(4.21) is given by

sDsWd2 =
9 − 3s2

N
. s4.26d

For s.0, this is a bit smaller than the value in Eq.(4.21), so
that the six-output scheme gives a slightly more reliable es-
timate. But whens gets close to unity, the four-output
scheme can provide better estimates because there are states
for which the error is substantially smaller, as the extreme
situation of Eq.(4.24) shows. For the six-output ellipsom-
eter, the privileged pure statesr project on an eigenstate of
sx, or sy, or sz, so that one of the six detectors in Fig. 2
never registers a qubit. Then we have

sDsWd2 =
8

3N
, s4.27d

which is a bit larger than its analog(4.24). The main lesson
is thus that the two schemes are of comparable asymptotic
efficiency.

V. OPTIMALITY OF MINIMAL FOUR-STATE
TOMOGRAPHY

A. Cramér-Rao bound

As a preparation of the discussion below on the optimality
and efficiency of the minimal four-state tomography, we re-
call some well-known facts about state estimation. We regard
the qubit state as parametrized by the three components of its
Pauli vectorsW=ssx,sy,szd, rather than by the four probabili-
ties pj, because the latter are constrained. Then, the error of

the components of the ML estimatorSW can be estimated by
the Cramér-Rao lower bound[17,21]

sDsjd2 ù sIF
−1djj with j = x,y,z, s5.1d

whereIF is the Fisher information matrix,

sIFdjz =
] log L

]sj

] log L
]sz

, s5.2d

and the averaging is done over the data—that is, over the
multinomial distribution that we exploited already in Sec.
IV B.

There is no unique numerical measure for the comparison

of the estimated staterest=
1
2s1+SW ·sW d with the true state

rtrue=
1
2s1+sW ·sW d. One can make a case for the trace-class

distance

Dtr =
1

2
trhurest− rtrueuj =

1

2
uSW − sWu, s5.3d

for the Hilbert-Schmidt distance

DHS =
1

2
ftrhsrest− rtrued2jg1/2 =

1

2
uSW − sWu, s5.4d

for the Uhlmann fidelity

FIG. 6. Mean value of the distance from the ML estimatorSW to
the true Pauli vectorsW for 40 simulated experiments with up to 6000
detected qubits per run. The top plot is forsW=0, the bottom plot for
sW=−aW4. The solid lines indicate one standard deviation to each side
of the mean value, as obtained from the large-N approximations for
sDsWd2 in Eqs.(4.21) and (4.24), respectively.
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U = trhuÎrest
Îrtrueuj

=
1

2
s1 + SW ·sW + ud1/2 +

1

2
s1 + SW ·sW − ud1/2, s5.5d

with

u = ÎsSW + sWd2 − sSW 3 sWd2, s5.6d

and for some more. In the single-qubit situation of present
interest, there is no difference betweenDtr andDHS, but they
are not the same for higher-dimensional systems, such as the
qubit pairs of Sec. II C. We note in passing that the Uhlmann
fidelity and the trace-class distance are natural pairs, inas-
much as they obey a fundamental inequality

Dtr
2 + U2 ø 1, s5.7d

irrespective of the dimension of the Hilbert space.
As long as one is comparing pure states with each other,

the actual choice between the quantitative measures of Eqs.
(5.3)–(5.5) does not matter much, because then all of them

are monotonic functions of the length of the differenceSW −sW
of the two Pauli vectors. If one state is mixed, however, this
is not true for the Uhlmann fidelity. For the sake of compu-
tational simplicity, we opt for the(square of twice) the
Hilbert-Schmidt distance and thus quantify the measure of

the estimate by the size ofsSW −sWd2, whose statistical average
is already considered in Sec. IV C. A convenient conserva-
tive estimate is given by the Cramér-Rao bound of Eq.(5.1).

According to Fisher’s theorem[16] the ML estimator ofr
attains the Cramér-Rao bound for largeN. Strictly speaking,
this statement applies only to mixed states, because only for
them are the ML estimators unbiased. For pure states, the
positivity constraint plays an important role, and the Cramér-
Rao bound derived for unbiased estimators tends to overes-
timate the error, and therefore we shall consider pure states
separately below. As a rule of thumb, the Cramér-Rao bound
is reliable when the lion’s share of the likelihood function is
contained within the Bloch ball. This can, in fact, be used as
an operational definition of “mixedness.” Indeed, as the
analysis in Sec. IV B shows, for mixed states there is no
significant fraction of the likelihood function outside the
Bloch ball if N is sufficiently large.

B. Optimality of the tetrahedron geometry

The four-state tomography with the tetrahedron geometry
of Eqs. (2.5)–(2.9) is the best minimal qubit-state measure-
ment, in the sense that, among the measurements with four
output channels, it provides the greatest accuracy. This can
be seen as follows.

For the multinomial statistics of Sec. IV B, the Fisher
information simplifies to

sIFdjz = No
j

1

pj

]pj

]sj

]pj

]sz

, s5.8d

wherepj is the probabilities of detecting a qubit in thej th
output channel. Consider now this variational problem: For a
given input state, the average distanceD is to be minimized

over all possible four-element POVMs. The functional in
question is

D = SpsIF
−1d − lo

j

P j , s5.9d

where Spsd is the trace(“spur”) of the 333 matrix, and a
Lagrange operatorL takes care of the constrainto jP j =1.

First, let us find the POVM that minimizes the functional
(5.9) for the maximally mixed input state. In that case the
extremal equations read

RjP j = LP j for j = 1, . . . ,4,

L = o
j

RjP j , s5.10d

where

Rj = SpsIF
−2Tjd s5.11d

involves the operator matrixTj whose matrix elements are
given by

Tj ,jz = trhP jsjjsz + sjtrhszP jj. s5.12d

Note the joint appearance of 333 Spsd traces and quantum-
mechanical trhj traces. One verifies by inspection that any
POVM of the tetrahedron geometry of Eqs.(2.5)–(2.9) sat-
isfies these extremal equations and hence identifies the maxi-
mally mixed state with greatest accuracy.

Obviously, for biased states the optimal POVM itself be-
comes biased. The generalization of the extremal equations
to this case is straightforward; the operatorsTj will then con-
tain one more term proportional to the true stater. Although
an analytical solution may be difficult to obtain, one can
always find the extremal measurement by an iterative proce-
dure. As the input state is usually not known and selected in
random, operatorsRj should be averaged over the Bloch ball.
In this way one obtains an algorithm providing the optimal
sequential measurement, in the sense that the Hilbert-
Schmidt distance is consistently reduced in each iteration
step. Numerical results show that the tetrahedron POVM is
also optimal for uniformly distributed input states.

Quite explicitly, the optimal distance for the tetrahedron
POVM is

Dopt =
9 − s2

N
, s5.13d

in agreement with, or as a consequence of, the mean square
distance of Eq.(4.21). As one would expect, the accuracy of
the ellipsometer is somewhat better for pure input states than
for mixed states. But, most importantly, the accuracy does
not depend on the orientation ofsW relative to the measure-
ment tetrahedron.

C. Orientation of the measurement tetrahedron

Their relative orientation is, however, not completely ir-
relevant. For example, the value ofk2 in Eq. (4.19) clearly
depends on it. More generally, we can obtain the large-N

mean values of functions ofSW −sW from the asymptotic gener-
ating function
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expfirW · sSW − sWdg = expS−
1

2N
rW ·KJ · rWD , s5.14d

where the dyadic

KJ = 9o
j ,k

aW jsd jkpj − pjpkdaWk s5.15d

depends on the positioning ofsW relative to the vector quartet
of the aW j’s. This is, of course, an immediate consequence of
Eq. (4.20).

As an application, let us consider the asymptotic mean
value of the Uhlmann fidelity of Eqs.(5.5) and(5.6). We first
note that

U = 1 −
1

8
FsSW − sWd2 +

fsW · sSW − sWdg2

1 − s2 G s5.16d

holds whenSW −sW is small. Then we recall Eq.(4.21) and
extract

fsW · sSW − sWdg2 =
1

N
sW ·K ·sW =

72k2

N
s5.17d

from Eq. (4.25) to arrive at

Ū = 1 −
9 − s2

8N
−

9k2

Ns1 − s2d
, s5.18d

where we meet the orientation-dependent quantityk2 of Eq.
(4.19).

There are extremal orientations of three kinds. The value
of k2 is largest whensW is parallel to one of the vectors of the
tetrahedron quartet and smallest whensW is antiparallel. In
addition to these four maxima and four minima ofk2, there
are also six saddle points that havesW parallel to the sum of
two different vectors of the quartet. The maximal and mini-
mal values ofk2 are given by the upper and lower signs in

k2 =
s1 ± sds3 7 sds2

72
for sW = ± saW j sany jd,

s5.19d

respectively, and the value at the saddle points is

k2 =
s3 − s2ds2

72
for sW =

Î3

2
ssaW j + aWkd sany j Þ kd.

s5.20d

Accordingly, the approach ofŪ to unity is fastest for thesW
=−saW j orientation, for which the large-N approximation

Ū = 1 −
s3 + sds3 + 2sd

8Ns1 + sd
s5.21d

applies. A small value ofk is also advantageous in Eq.
(4.18), as it ensures a large negative argument of the error
function and thus a small probability for violating the in-
equality (4.5).

VI. MEASURING PURE QUBIT STATES

When the measured quantum system is known to be in a
pure state—which is a bold overidealization of any realistic
situation—this knowledge can be exploited systematically
when estimating the otherwise unknown state. A somewhat
more realistic situation arises when the input state is pure but
we do not know this to begin with, although this case is quite
a bit artificial as well, because one can hardly assume that
real sources are not affected by classical noise or that the
experimental setup is totally decoupled from the environ-
ment. Put differently, it is far-fetched to assume that the ex-
perimenter will ever have the perfect control that is neces-
sary to ensure that a source emits a pure state. Nevertheless,
there is an interest in such idealized scenarios because they
come up in analyses of eavesdropping attacks on schemes for
quantum cryptography, where—as a matter of principle—it
is assumed that the eavesdropper is only limited by the laws
of physics, not by practical limitations.

For s=1, the Uhlmann fidelity(5.5) simplifies to

U =Î1 + sW ·SW

2
s6.1d

and is equivalent to

U =Î1 −
1

4
sSW − sWd2 s6.2d

if the estimator is a pure state as well,S=1. When indeed
estimating pure states with pure states, the situation to be
considered now, it is customary to take the average ofU2,

F̄ = U2 = 1 −
1

4
ssW − SWd2 = 1 −

1

4
sDsWd2, s6.3d

as the fidelity measure that judges the quality of the estima-
tion procedure. One must keep in mind that both the true

Pauli vectorsW and its estimatorSW are unit vectors here, as Eq.
(6.3) applies only under this restriction. Knowing that the
source generates pure states means having a lot of prior
knowledge because the set of pure states is much smaller
than the set of mixed states(the Bloch sphere rather than the
Bloch ball), and so one can safely expect that a better, pos-
sibly much better, accuracy of the estimation can be
achieved.

The average fidelity of the optimaljoint measurement on
N copies is known to obey the inequality[22,23]

F̄ ø
N + 1

N + 2
, s6.4d

so that the corresponding error 1−F̄ will decrease as 1/N in
the large-N limit. Any reasonable estimator should show this
dependence.

In our scheme the qubits are measured individually, not
jointly. Nevertheless, as a consequence of the Fisher theorem
in general and of the findings in Sec. IV C in particular, the
variancesDsWd2 in Eq. (6.3) is proportional to 1/N in the

large-N limit, and so is then 1−F̄. But we need to reconsider
the asymptotics of the maximum-likelihood estimation, now
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taking into account that bothsW and SW are restricted to the

Bloch sphere, so that we get the estimatorSW from Eqs.
(4.10)–(4.13), whether inequality(4.5) is obeyed or not.

Here, too, the estimation is sensitive to the orientation of
the Pauli vectorsW relative to the vector quartet of the mea-
surement tetrahedron. We deal first with the case of “not
antialigned”; that is,sWÞ−aW j for all aW j’s. Then,n j −pj and m
are of the order of 1/ÎN andm is given by

m =
2

3k2o
j

pjsn j − pjd, s6.5d

with k2.0 from Eq.(4.19). The resulting averages

sn j − pjdm =
2

9Nk2s3pj − 1dpj ,

m2 =
2

9Nk2 , s6.6d

available as a consequence of Eq.(4.16), are used in

F̄ = 1 − 3o
j

fsn j − pjd − s3pj − 1dpjmg2 s6.7d

to arrive at

1 − F̄ =
2

N
−

2

3Nk2o
j

fs3pj − 1dpjg2

=
4

N
−

2

9Nk2S27o
j

pj
4 − 1D . s6.8d

In particular, when the tetrahedron is aligned with the Pauli
vector, the upper-sign case of Eq.(5.19) with s=1, we have
k2=1/18 and 27o jpj

4=7/4, sothat

1 − F↑↑ =
1

N
s6.9d

for this parallel strategy(↑↑). This is only half as big as what
one would get for thes=1 value of Eq.(4.21) and thus
demonstrates the advantage of estimating the pure true state
by pure-state estimators only.

There is no such advantage for the antiparallel strategy
(↑↓) that has the tetrahedron antialigned withsW, because the
argument in Sec. IV B establishes that the ML estimator is
always a pure state then. Since this is now the lower-sign
case of Eq. (5.19) for s=1, we have k2=0 and Eqs.
(6.5)–(6.8) are not valid. Instead, we recall that Eqs.
(4.22)–(4.24) apply and conclude that

1 − F↑↓ =
1

2N
s6.10d

holds here. The antiparallel strategy has thus half the average
error of the aligned strategy.

On the other hand, for a generic orientation of the input
state there will always be an uncertainty in the length of the
input state vector and therefore the fidelity will approach
unity at a much slower rate proportional to 1/ÎN. Only if
one knows beforehand that the input state is pure can the

1/N rate be achieved even for general orientations of the
tetrahedron. Let us illustrate this last remark by the example
of the parallel strategy. For the parallel orientation, only
about half of the measurement outcomes will violate inequal-
ity (4.5); the others would not(see Sec. IV B). Knowing that
the input state is pure one can, however, ignore this inequal-
ity and always solve Eqs.(4.8)–(4.10) for the input-state unit
Pauli vector.

VII. ADAPTIVE STRATEGIES

A. Premeasurement strategy

The good performance of the antiparallel strategy hints at
a very simple adaptive procedure that provides the fast 1/N
asymptotic behavior without any prior knowledge about the
purity of the input state: Let us split the input ensemble into
two halves. After the firstN/2 particles have been registered
and the direction of the input Pauli vector estimated, the
experimenter adopts the antiparallel strategy for measuring
the rest of the ensemble. Notice that in this simple adaptive
scenario, the first half of the particles are used for a premea-
surement and serve only for adjusting the measurement ap-
paratus, while it is the second half which provide the actual
estimate of the input state.

Let u denote the angle between the Pauli vectorsW of the
input state and the Pauli vectorsW1 estimated from the first
half of the ensemble. This angleu can be estimated with an
accuracy of 1−cosu~1/N in the first stage. This means that,
in the second stage, the mean probability of detecting a par-
ticle in the channel antiparallel tosW1 will be proportional to
1/N. No matter how large isN, only a few particles will be
detected in this channel.

The maximal uncertainty in the length of the Pauli vector
is then easily calculated with the aid of

S2 =
12

N2o
j

nj
2 − 3 s7.1d

for the estimator of Eq.(4.2). Let us setn1=d with d a small
number independent ofN and look for the minimal length of
the estimated Pauli vector compatible with the givend. Since
the right-hand side of Eq.(7.1) is a concave function ofn2,
n3, andn4, it is minimal when all of them are equal to each
other,n2=n3=n4=sN−dd /3, with the consequence

Smin = 1 −
4d

N
s7.2d

for largeN. This guarantees that in the second stage both the
orientation and length of the Pauli vector, and so the fidelity,
will be determined with an error proportional to 1/N. Nu-
merical simulations show that for largeN (up toN=105) the

mean error 1−F̄ of this simple protocol is about twice as
large as, and thus worse than, that of the optimal joint
POVM measurement, in which allN qubits are measured
together. Let us emphasize that while our protocol would
provide this performance for any input pure state, it also
provides a meaningful estimate for any input mixed state, of
course, with a larger uncertainty proportional to 1/ÎN. In
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contrast to that, the optimal joint measurement that attains
the ultimate limit of Eq.(6.4) would not work for mixed
input states.

B. Self-learning strategies

It is known that sequential measurements when combined
with self-learning adaptive strategies can come close to the
quantum estimation limit[24–26]. Their improvement on the
conventional sequential measurement depends on the purity
of the input state[24]. Adaptive techniques are more sensi-
tive to pure states than to states with a lot of classical noise.

The optical network of Fig. 3(b) can easily be adapted to
a self-learning procedure and so can other optical implemen-
tations. After each detection the current information about
the input state can be evaluated, and the operationssx, sy,
and sz acting on the next particle inside the interferometer
can be modified by a common unitary transformation. This is
economically achieved by performing the required unitary
transformation on the approaching photon before it enters the
interferometer proper.

From the discussion in Sec. VI one might get the impres-
sion that a particularly good adaptive strategy would be to
always keep one of the measured half-projectors antiparallel
to the current estimate. Matters are, however, not so simple.

Let us illustrate the difference between the adaptive and
nonadaptive procedures at the extreme example of measuring
only two qubits. In thenonadaptivecase, everything is as
discussed above. In particular, the probability that the first
qubit is detected by thej th detector and the second by thekth
detector ispjpk with thepj’s of Eq. (2.10) and, in accordance

with Sec. IV, the ML estimator isSW =aW j if j =k and SW

=Î3/4saW j +aWkd if j Þk. Upon averagingsSW −sWd2 first over all
measurement results for a given input Pauli vectorsW and then
over all possible inputs, we thus get

sSW − sWd2 =
5 −Î3

3
= 1.089 s7.3d

as the figure of merit.
In the adaptive case, the tetrahedron is realigned for the

second qubit after the first qubit has been detected. Since the

ML estimatorSW obtained after the detection of the first qubit
will coincide with one of the tetrahedron vectors, the anti-
aligning of the tetrahedron for the second qubit amounts to
the replacementaW j →−aW j. Now the probability that the first
qubit is detected by thej th detector and the second by thekth
detector isL=pjs 1

2 −pkd. The resulting ML estimator is then

given bySW =Î3/8saW j −aWkd, and upon averaging over all mea-
surement results and all input Pauli vectors we get

sSW − sWd2 =
11 −Î24

6
= 1.017, s7.4d

which is markedly smaller than the nonadaptive value in Eq.
(7.3). It is also smaller than the value for the adaptive strat-
egy with parallel alignment because that is identical with the
nonadaptive procedure when only two qubits are detected.

We note that the averages in Eqs.(7.3) and(7.4) are taken
over pure input states. If one averages over all input states,

pure and mixed, one obtains the respective numberss7
−Î3d /5=1.054 ands7−Î6d /5=0.910, again with a clear ad-
vantage for the antialigning adaptive strategy.

C. Numerical simulations

Although these numbers speak clearly in favor of the an-
tialigning adaptive scheme, one should, however, keep in
mind that they apply only for the exactly aligned or anti-
aligned settings of the apparatus. But in such an adaptive
scheme, after the first particle is observed, the uncertainty of
the input state Pauli vector orientation is still quite large,
which may result in a significant misalignment in the second
adaptive step. In fact, the antialigning strategy has a greater
sensitivity to such misalignments. This is illustrated by the
simulation data shown in Fig. 7, where the estimation errors
of both strategies are shown in dependence on the misalign-
ments of the apparatuses for the chosen input intensity of 104

particles. Each point has been obtained by averaging over
53105 ML estimates.

As expected, the antialigning adaptive strategy performs
better if no misalignment is present. However, even a small
misalignment(of the order of 1° in this case) is enough to
wash out this advantage. For even larger misalignments the
aligned setting provides much better performance[27]. Dif-
ferent sensitivities of both measurement strategies to this
kind of error might be of quite some importance for the
potential applications of the minimal ellipsometer in quan-
tum communication protocols and quantum cryptography.

One can understand this extreme sensitivity of the anti-
aligned setting and why it becomes immediately worse than
the aligned setting by taking a second look at Eqs.(6.8) and
(6.10). The k2=0 result(6.10) is not the k2→0 limit of the
k2.0 result(6.8). In fact we have(see Fig. 8)

1 − F̄ → 4

3N
ask2 → 0 in Eq. s6.8d, s7.5d

which is larger than the error ofF↑↑ in Eq. (6.9). Therefore,
the slightest misalignment takes us from the 1/s2Nd error of
Eq. (6.10) to this 4/s3Nd because Eq.(7.5) applies to tiny
nonzero values ofk2, while Eq. (6.10) holds only if k2=0
exactly.

This observation also resolves the apparent contradiction
between the general upper bound of Eq.(6.4) and the large-

FIG. 7. Mean estimation errors of the POVM tetrahedrons that,
on the Bloch sphere, differ from the exact parallel(squares) and
antiparallel(circles) orientations by the known angle given on the
abscissa.
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N error for perfect antialignment in Eq.(6.10), which does
not respect that upper bound. Nevertheless, this example is
not a valid counterexample, because it refers to an absurdly
artificial situation: The experimenter has perfecta priori
knowledge of the state to be measured and has perfect con-
trol over his measurement apparatus, such as to ensure the
perfect antialignment to which Eq.(6.10) applies. In other
words,whenit applies, there is no need for a state estimation
to begin with.

Having thus compared the performances of the two ex-
treme strategies, we now calculate the mean fidelity of the
following adaptive measurement: After detecting each new
qubit the information about the input state is updated and a
new ML estimate is calculated. Then one of the measured
half-projectors is aligned along this current estimate. These
two steps are repeated until all input particles are used up.
Figure 9 shows mean fidelities and errors that were obtained
by averaging over 200 000 randomly selected pure input
states. The quantum limit, Eq.(6.4), is shown for compari-
son. It is evident that this bound can be attained only for
large N, while the most pronounced difference is seen for
moderately sized ensembles. Such a behavior is typical for
all sequential self-learning estimation strategies.

Finally, let us compare the efficiency of the parallel adap-
tive strategy with a very simple sequential measurement

where the orientation of the measured half-projectors is cho-
sen at random in each step(see Fig. 10). As expected, the
adaptive strategy is better and its benefit grows with increas-
ing size of the measured ensemble.

VIII. SUMMARY

We have presented a minimal measurement scheme for
single-qubit tomography that has no more than the necessary
number of four outputs. The scheme is conceptually simple,
highly symmetric and optimal among all four-output
schemes, and can be realized with the present technology for
the polarization qubit of photons emitted by a single-photon
source. As a demonstration, we designed a simple, but not
simplest, optical network.

Our thorough analysis showed that the scheme is efficient
in the sense that it enables one to estimate the qubit state
reliably without first detecting an enormous number of
qubits—a few thousand are sufficient for most practical ap-
plications; a few hundred may be enough if extreme preci-
sion is not required. The efficiency can be increased by adap-
tive procedures in which the apparatus is adjusted in
accordance with the current estimate for the qubit state.

Since the four-output setup provides optimal complete to-
mography with the minimal number of output channels, it is
particularly well suited as a detection device for certain
quantum communication protocols such as tomographic
quantum cryptography[28]. Indeed, there are protocols for
quantum key distribution that exploit the tetrahedron quartet
of states[29], among them a highly efficient tomographic
protocol [30].
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FIG. 8. For each value ofk2 betweenk2=0 (perfect antialign-
ment) andk2=1/18 (perfect alignment), the possible values of the
coefficient of the 1/N term in Eq.(6.8) are in the area bounded by
the two curves. The smallest coefficient obtains for the case of
perfect alignment, when Eq.(6.9) applies.

FIG. 9. Mean error(curves a, decreasing) and mean fidelity
(curvesb, increasing) of the minimal qubit tomography as a func-
tion of N, the size of the measured ensemble. Solid lines: the pro-
posed network of Figs. 3 and 4 with the adaptive parallel strategy
described in the text. Dashed lines: the quantum limit of Eq.(6.4).
Notice that the proposed optical network attains the quantum limit
asymptotically for largeN.

FIG. 10. Relative differenceDF, in percent, between the errors
of the random and parallel adaptive strategies(black dots) and least-
squares linear fit(straight line). The lines connecting the dots guide
the eye but have no further significance. The irregularities stem
from the limited number of input states(200 000) used for the
averaging.
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