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Systematic errors in quantum operations can be the dominating source of imperfection in achieving control
over quantum systems. This problem, which has been well studied in nuclear magnetic resonance, can be
addressed by replacing single operations with composite sequences of pulsed operations, which cause errors to
cancel by symmetry. Remarkably, this can be achieved without knowledge of the amount af éndepen-
dent of the initial state of the system, current techniques allow the error to be reducH@’jo Here, we
extend the composite pulse technique to cancel erro® ¢9), for arbitraryn.
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INTRODUCTION example, to quantum computation, where the initial state is
arbitrary, and multiple operations must be cascaded to obtain

Precise and complete control over closed quantum sysdesired multiqubit transformations.
tems is a long-sought goal in atomic physics, molecular Only a few composite pulse sequences are known which
chemistry, and condensed matter research, with fundamentate fully compensatind15,16, meaning that they work on
implications for metrology[1,2] and computation[3,4]. any initial state and can replace a single pulse without further
Achieving this goal will require careful compensation for modification of other pulses. As has been theoretically dis-
errors of both random and systematic nature. And while recussed17-19 and experimentally demonstrated in ion traps
cent advances in quantum error correcti®@-8] allow all [12,13,20 and Josephson junctiof®l], these sequences can
such errors to be removed in principle, active error correctiorbe valuable for precise single- and multiple-qubit control us-
requires expanding the size of the quantum system, and feethg gate voltages or laser excitation.
back measurements which may be unavailable. Furthermore, Previously, the best fully compensating composite Pulse
in many systems, errors may be dominated by those of sysequence knowfl6—19 could only correct errors t@(€°).
tematic nature, rather than random errors, as when the clastere, we present a systematic technique for creating com-
sical control apparatus is miscalibrated or suffers from inhoposite pulse sequences to correct erroi®(d"), for arbitrary
mogeneities over the spatial extent of the target quanturm. The technique presented is very general and can be used to
system. correct a wide variety of systematic errors, though for large

Of course, systematic errors can be reduced simply byalues ofn it can become quite long. Below, our technique is
calibration, but that is often impractical, especially whenillustrated for the specific case of systematic amplitude er-
controlling large systems, or when the required control errokors, using two approaches. Also discussed is the number of
magnitude is smaller than that easily measurable. Interespulses required as a function of
ingly, however, systematic errors in controlling quantum sys-  The problem of systematic amplitude errors is modeled by
tems can be compensated without specific knowledge of thespresenting single-qubit rotations as
magnitude of the error. This fact is lof®] in the art of
NMR, and is achieved using the methodcoimposite pulses 0
in which a single imperfect pulse with fractional erreiis Ry(0) = exp[— i—%], (1)
replaced with a sequence of pulses, which reduces the error
to O(e).

Composite pulse sequences have been constructed to ¢
rect for a wide variety of systematic errof8—11]. These o . )
include pulse amplitude, phaie, and frequency errors and ¢ _ng“ﬁ)er.s'r(@Y’ an(_j X and Y are Pauli operators.
be applied to any system with sufficient control. As system™s(?) iS the ideal operation, and due to errors, the actual
control increases, new uses for composite pulses emerge. QP€ration is, insteadvl 4(6) =R,(6(1+¢)), where the angle of
remarkable example is the recent teleportation of an atomitotation differs from the desired by the factor 1. Note
state in ion trap§12,13. Barretet al. use a composite pulse that¢ and 6 may be specified arbitrarily, but the erreris
for individual addressing, while Reitet al. use a composite fixed for all operations, and unknown.
pulse to perform two-qubit operations.

In the context of spectroscopy, the goal is often to maxi- i Rrefs. [17-19, the distance measure used is one minus the
mize the measurable signal from a system which starts in ggejity, 1-|VU|| (“the infidelity”) where|Al| is the norm ofA. We
specific state. Thus, while composite sequences have be@ge instead the trace distaripe-U| following the NMR commu-
developed14] which can reduce errors ©(e") for arbitrary  nity. Thus, our composite pulses which arth order in trace dis-

n, these sequences are not general and do not apply, faance are @th order in infidelity.

Yyhere 0 is the desired rotation angle about the axis that
makes the angle with the X axis and lies in th&-y plane,
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TWO METHODS FOR CONSTRUCTING Planar magnetization following a n/2 pulse

COMPOSITE PULSES Broadband pu.ﬁs'\

A composite pulse sequenéé;](e) is a sequence of op-
erations{M 4(6)} such thatRE;](G):R¢(0)+O(e”+1), for un-
known errore. To constructR[;](a), we begin with two
simple observations: firstR,(-0e)M ,(#)=R,(6) and sec-
ond, M 4(2km) = R (2kme) whenk is an integer. A compos-
ite pulse sequence can thus be obtained by finding ways to
approximateR (- fe) by a product of operatorR, (2kje).

We obtain this using two approaches.

The first approach we call the Trotter-SuzukTS)
method. Suzuki has developed a set of Trotter formulas that
when given a HamiltonialB and a series of Hamiltonians 0
{A} such thaB==A there exists a set of real numbés,} » .
such that | systematic error (g)

o
©

o
o

I
»

NMR signal (arb. units)

exp(—-iBt) = 11 exp(— ipjpAt) + o(t™?, (2 FIG. 1. Comparison of the narrowband and broadband compos-
il ite pulse sequences generated by the TS method. The Wimperis
BB1, PB1, and NB1 sequences are included in this family, and are

andX;p;,=1 [22]. Without loss of generality, we may limit equivalent to B2, P2, and N2.

ourselves to expansions where thg are rational numbers,
and assume the goal is to approxim&g-6e). Using Eq.
(2), we sett=e and B=—(0/2)X. Then we choosé,;=A;  order composite pulse sequer‘ré,gMo(a):Rg”](e) for anyn.
=mm(X cosg+Ysing) and A,=2mm(Xcosp-Ysing)  This method, which appears to be unrelated to previous com-
where ¢ and m satisfy the conditions thatmdr cos¢=¢/2  POSsite pulse techniqugs, 14, gives an efficient algorithm to
(i.e., Ay+Ay+A3=B) andg;,=p;,m is an integer. This yields calculate sequences for specifiend ¢ but not necessarily a

an nth order correction sequence short analytical description of the sequence. Furthermore, the
Solovay-Kitaev technique relies on general properties of
Fn:H M 4(27Q;n) M_ 4(477j )M 4(277Q;,) Hamiltonians a}nd can be applied without modification to
i other systematic error models, e.g., frequency errors.
= Ro(~ fe) + O(™?) = R}~ 0e) 3
and the associatedith order composite pulse sequence EXAMPLES

FaMo(0)=RM(=0e)Ro(8)Ro( ) =RM(6), thus giving a com-
pgsi?e(z ;))ulsg ;equ)sr?ge )()I?Oélrl)aitrlz%y(a)ccuraca ? The TS and SK techniques described above are general
The second approach we refer to as the Solovay-Kitae@Nd @PPly to a wide variety nc])f errors; explicit application of

(SK) method, as it uses elements of the proof of the Solovaythe techniques to generaly"(0) sequences for specific N
Kitaev theorem[23]. First, note that rotationdJ,(A)=I  can take advantage of symmetry arguments and composition
+Aé+0(Y) can be constructed for arbitrary@2 Hermit-  Of techniques, and can relax some of our assumptions to
ian matricesA, and k=1, recursively. This is done using minimize both the residual error and the sequence length.
an observation (from [23]) relating the commutator First, we explicitly write out the TS composite pulses and
[A,B]=AB-BA to a sequence of operations connect them to the well-known pulse sequences of Wimp-
exp—iAe)exp-iBeMexpliAe)expiBe™ =exp[A, B]é*M eris [16]. We choose to use the TS formulas that are sym-
' metric under reversal of pulses, i.e, an anagram. These for-
mulas remove all even-ordered errors by symmetry, and thus
yield only even-order composite pulse sequences. For con-
venience, we introduce the notatiorS;(¢q,d,,m)

Next, we inductively construct a composite pulse se-:M¢1(m7T)M¢2(2m7T)M‘f’l(mW) and Sul¢1, 62, M)

n-1 n-1
quenceF, for Ry(6). Note that the first order correction se- =Sh-1(¢1, b2, M* "Si-1(by, b2, 2MS,1(by, b, M . We
guence can be written aB;=M 4(2m)M_,(2m)=Ry(-0e) can now define a series aforder composite pulseshRas

+0O(€"™1). Thus to generat®), (A) it suffices to generate
Upe2(B) and U,»(C) such that[B,C]=A (choices of inte-
gers other thaftk/2] and|k/2] which sum tok also work, but
give worse performancé

+0(€?) by selecting 4rcog¢)=6. Assume we haver, _
_selecting 4 co PO =M(6), (4)

=Ry(—0e) —iA11€"H+0O(€™4). We can then construct a se-
quence to correct for the next order, using,,; _
=Up.1(Ans))Fp WhereU,,4(A,1) is constructed as above. P2=M,2mM_4,(4mM,, (2m)PO, ®)
Iteratively applying this method fdt=1, ... nyields annth ]

2Here we definéx] to be the largest integer less than or equalto Where;=cos?~6/8xf; andf;=(2@"Y-2)f,_; whenf,=1.
and[x] to the smallest integer that is greater than or equal to P2 is exactly the passband sequence PB1 described by Wim-

052318-2



ARBITRARILY ACCURATE COMPOSITE PULSE SEQUENCES PHYSICAL REVIEW 20, 052318(2004)

peris[16]. Figure 1 compares the performance of these high-
order passhand pulse sequences.

Wimperis also proposes a similar broadband sequence
BB1=S,(¢g;,3¢s1,1)PO where ¢g;=cos(-6/4m). The 10

Asymptotic performance of various composite pulses

broadband sequence corrects over a wider range by N
minimizing the first order commutator and thus the leading §'9 [ -
order errors. Furthermore, although BB1 and PB1 appear ; B2[2 4 . .
different when written as imperfect rotations, a transforma- 2107} ke *:::m Skl
tion to true rotations shows that they have the same form, ~§ | e | |
PB1 =M, (2mM_ (4mM,, (2m)PO Sl R
=Ry, (2me)R 4 (4m€)R, (2€)PO, (7) 107 Per20 -
88692 5 10 20
_12| B6 [360) . order
BB1 = M¢Bl(7T)M3¢Bl(27T)M¢Bl(7T)PO 10 102 ] 107 o 10°
ase error (g
= R¢Bl(7Tf)R-¢Bl(27T€) R¢51(7T€)P0' (8)

o ., . FIG. 2. Composite pulse err@ as a function of base errarfor
This “toggled” frame suggests a way to create higher-ordef yariety of composite pulse sequences, Bn, SKn, and S are

broadband pulses. One simply takes a higher-order passbag nth order passband, broadband, SK, and combined B4-SK se-
sequence and replaces each elem8jtip;,—¢;,m) with quences, respectively. The number in the brackets refers to the num-
Si(pgj, —pgj*4dgj(m/2 mod 2, m/2) where ¢g; satisfies  ber of imperfect 2 rotations in the correction sequence. Note how
the condition co&pg;) =2 cog¢;). Applying this to B cre-  pulses of the same ordesuch as P6, B6, SK6, SBéave the same
ates a family of broadband composite pulses B slope(asymptotic scalingfor low values ofe, but can have widely
Similar extensions allow creation of another kind of com-varying performance wheais large. The inset plots the scaling of
posite pulsequseful, for example, in magnetic resonancethis sequence length with ordeifor SKn (SBn is very similay for
|mag|n@’ which increaseerror so as to perform the desired n<30 and compares it with the upper bound obtained with numeri-
operation for only a small window of error. Such “narrow- ¢al methods.
band” pulse sequencesnNmay be obtained starting with a
passband sequence,Rind dividing the angles of the correc- SK2 =M, Ux(||A] Y2 M SK1 (11
tive pulses by 2. These higher-order narrowband pulses may 2 z
be compared with the Wimperis sequence NBRB|, as A
shown in Fig. 1. =Ry(0) - i =3+ O(), (12)
The SK method yields a third set ath order composite 2
pulses SK, and for concreteness, we present an explicit for
mulation of this method. It is convenient to lek,x(a)=I
-ia"(X/2)e"+0(e™Y), such that one can then generate

‘Where My, is the imperfect rotation corresponding to the
perfect rotatiorRAz.
The nth order SK composite pulse family is thus

Unz(2)=Moo(=/ 2)Unx(@)Mog(7/ 2) and Unv(@)
=Myg(7/2)U (@) My5(—7/2).° Using the first order rota- SKn = M Unx([|AM™M 4 SK(n - 1) (13)
tions " "

Up(@) =M ¢(2ﬂ{ iDM_(ﬁ(zw[ 2
A7 A7

where $=cosHa/[4nfal(4m)]]}, as described above A nice feature of the SK method is that when given a com-
’ " posite pulse of orden described by any method one can

), (9 =Ro(0) - iAn7+16”+1+ O(e"). (14

we ma recursivel construct U, «(a
—Uy (@)U y (@)U (—a)Uy (-a). and anyn> 1nxa(1n)d compose a pulse of ordert 1. The “pure” SK method SK
an)}ngJY /2122l 2zt < Y is outperformed in terms of both error reduction and pulse

. I ) . number by the TS methodrBfor n<4. Therefore, we apply
forvl\?/g‘?(;??ssii?r?gllgmons, the first order SK composite pUISethe SK method for ordera>4 using B4 as our base com-

posite pulse. We label these pulsesnSB
A
SK1=U(8)M(6) =R0(o)—i5262+0(63). (10)
PERFORMANCE AND EFFICIENCY
From the 2<2 matrix A,, we can then calculate the norm
|AJ]| and the planar rotatioRy, that performsRAz(—Az)R,’é

=||Aj||X. The second order SK composite pulse is then

Two important issues with composite pulses are the actual
amount of error reduction as a function of pulse error, and
the time required to achieve a desired amount of error reduc-
tion. These performance metrics are shown in Fig. 2, com-

*The optimal way to generate,y is to shift the phaseg of the ~ paring the SK, broadband, and passband composite pulses
underlyingM 4(0) that generatéJ,, by 90°. for varying errore, and ¢=0, and using as the composite
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pulse errorE=||R¢(0)—R[£](0)||. We find that for practical rotation angle. These can be constructed vatin®) pulses,
values of error reductiomy< 30, the number ofr pulses for n=30. For high-precision applications such as quantum
required to reduce error t0(e") grows as~n%%, which is  computation, these pulses allow one to perform accurate op-
close to the lower bound ofn® which can be analytically —erations even with large errors. Practically, the B4 and B2
derived [24]. In contrast, the TS sequencenBequires =BB1 pulse sequences seem most useful, depending on the
O(exp(n?)) pulses. magnitude of error.

For a wide range of base erroes the TS formulation While we have focused on composite pulse sequences for
outperforms the SK method in achieving a low compositerotation errors, we emphasize that these methods also apply
pulse errotE. The recursive nature of the TS method buildsto correcting systematic errors in control phase and fre-
off elements that remove lower-order errors, resulting in duency[24]. For example, a frequency error can be repre-
rapid increase of pulse number and a monotonic decrease f¢nted for an expected rotatiorRy(6) as Mg(6)
effective error at every order for any value of the base error=exd—i(6/2X+|6/2|6Z)]. ~ Note  that M(6/2)Mg(
However, the SK approach is superior to the TS method for-6)My(6/2) yields to first order iné the phase shift
applications requiring incredible precisioB=<10' from  U,;,(266). Starting with any fully compensating composite
relatively precise controlss< 1072, pulse sequence that corrects frequency errors to ofder

The SK and TS pulse sequences presented here are cang., CORPSH17], and the basic operatiod;»(265), one
ceptually simple but may not be optimal. Integrating ideascan then apply the SK technique to create a pulse sequence
from both methods, we can develop additional families ofof O(s") [24].
composite pulses. As an example, the SK method relies on Furthermore, the TS and SK approaches can be extended
cancellation of error order by order by building up sequenceso any set of operations that has a subgroup isomorphic to
of 27 pulses. However, there is no reason that the basic unjiotations of a spin. For example, Jones has used this isomor-
should be a single pulse. Instead, one can build a sequenggism to create reliable two-qubit gates based on an Ising
from TS (B2) style pulse tripletsG(¢1)=S;(¢1,3¢1,1). BY interaction to accurac®(e®) [18]. Similarly, the techniques
using an additional symmetry that the [YG(-¢1)G(#1)]  outlined here can immediately be applied to gain arbitrary
=0, the leading order error is guaranteed to be proportionahccuracy multiqubit gates. Interestingly, the TS formula can
to X at the cost of doubling the pulse sequence. The resultinge directly applied to any set of operations, if the operations
pulses are of length exp) [compared to exm?) for TS],  suffer from proportional systematic timing errors. Therefore,
broadband compared to SK sequences, and described in déis control method could also be applied to classical sys-
tail in [24]. tems.
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