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Systematic errors in quantum operations can be the dominating source of imperfection in achieving control
over quantum systems. This problem, which has been well studied in nuclear magnetic resonance, can be
addressed by replacing single operations with composite sequences of pulsed operations, which cause errors to
cancel by symmetry. Remarkably, this can be achieved without knowledge of the amount of errore. Indepen-
dent of the initial state of the system, current techniques allow the error to be reduced toOse3d. Here, we
extend the composite pulse technique to cancel errors toOsend, for arbitraryn.
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INTRODUCTION

Precise and complete control over closed quantum sys-
tems is a long-sought goal in atomic physics, molecular
chemistry, and condensed matter research, with fundamental
implications for metrology[1,2] and computation[3,4].
Achieving this goal will require careful compensation for
errors of both random and systematic nature. And while re-
cent advances in quantum error correction[5–8] allow all
such errors to be removed in principle, active error correction
requires expanding the size of the quantum system, and feed-
back measurements which may be unavailable. Furthermore,
in many systems, errors may be dominated by those of sys-
tematic nature, rather than random errors, as when the clas-
sical control apparatus is miscalibrated or suffers from inho-
mogeneities over the spatial extent of the target quantum
system.

Of course, systematic errors can be reduced simply by
calibration, but that is often impractical, especially when
controlling large systems, or when the required control error
magnitude is smaller than that easily measurable. Interest-
ingly, however, systematic errors in controlling quantum sys-
tems can be compensated without specific knowledge of the
magnitude of the error. This fact is lore[9] in the art of
NMR, and is achieved using the method ofcomposite pulses,
in which a single imperfect pulse with fractional errore is
replaced with a sequence of pulses, which reduces the error
to Osend.

Composite pulse sequences have been constructed to cor-
rect for a wide variety of systematic errors[9–11]. These
include pulse amplitude, phase, and frequency errors and can
be applied to any system with sufficient control. As system
control increases, new uses for composite pulses emerge. A
remarkable example is the recent teleportation of an atomic
state in ion traps[12,13]. Barretet al. use a composite pulse
for individual addressing, while Reibeet al. use a composite
pulse to perform two-qubit operations.

In the context of spectroscopy, the goal is often to maxi-
mize the measurable signal from a system which starts in a
specific state. Thus, while composite sequences have been
developed[14] which can reduce errors toOsend for arbitrary
n, these sequences are not general and do not apply, for

example, to quantum computation, where the initial state is
arbitrary, and multiple operations must be cascaded to obtain
desired multiqubit transformations.

Only a few composite pulse sequences are known which
are fully compensating[15,16], meaning that they work on
any initial state and can replace a single pulse without further
modification of other pulses. As has been theoretically dis-
cussed[17–19] and experimentally demonstrated in ion traps
[12,13,20] and Josephson junctions[21], these sequences can
be valuable for precise single- and multiple-qubit control us-
ing gate voltages or laser excitation.

Previously, the best fully compensating composite pulse
sequence known[16–19] could only correct errors toOse3d.1

Here, we present a systematic technique for creating com-
posite pulse sequences to correct errors toOsend, for arbitrary
n. The technique presented is very general and can be used to
correct a wide variety of systematic errors, though for large
values ofn it can become quite long. Below, our technique is
illustrated for the specific case of systematic amplitude er-
rors, using two approaches. Also discussed is the number of
pulses required as a function ofn.

The problem of systematic amplitude errors is modeled by
representing single-qubit rotations as

Rfsud = expF− i
u

2
sfG , s1d

where u is the desired rotation angle about the axis that
makes the anglef with the x̂ axis and lies in thex̂-ŷ plane,
sf=cossfdX+sinsfdY, and X and Y are Pauli operators.
Rfsud is the ideal operation, and due to errors, the actual
operation is, instead,Mfsud=Rf(us1+ed), where the angle of
rotation differs from the desiredu by the factor 1+e. Note
that f and u may be specified arbitrarily, but the errore is
fixed for all operations, and unknown.

1In Refs. [17–19], the distance measure used is one minus the
fidelity, 1−iV†Ui (“the infidelity”) whereiAi is the norm ofA. We
use instead the trace distanceiV−Ui following the NMR commu-
nity. Thus, our composite pulses which arenth order in trace dis-
tance are 2nth order in infidelity.
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TWO METHODS FOR CONSTRUCTING
COMPOSITE PULSES

A composite pulse sequenceRf
fngsud is a sequence of op-

erationshMfsudj such thatRf
fngsud=Rfsud+Osen+1d, for un-

known error e. To constructRf
fngsud, we begin with two

simple observations: first,Rfs−uedMfsud=Rfsud and sec-
ond,Mfs2kpd= ±Rfs2kped whenk is an integer. A compos-
ite pulse sequence can thus be obtained by finding ways to
approximateRfs−ued by a product of operatorsRfl

s2klped.
We obtain this using two approaches.

The first approach we call the Trotter-Suzuki(TS)
method. Suzuki has developed a set of Trotter formulas that
when given a HamiltonianB and a series of Hamiltonians
hAlj such thatB=oAl there exists a set of real numbershpjnj
such that

exps− iBtd = p
j ,l

exps− ipjnAltd + Ostn+1d, s2d

and o jpjn=1 [22]. Without loss of generality, we may limit
ourselves to expansions where thepjn are rational numbers,
and assume the goal is to approximateR0s−ued. Using Eq.
(2), we set t=e and B=−su /2dX. Then we chooseA1=A3

=mpsX cosf+Y sinfd and A2=2mpsX cosf−Y sinfd
wheref and m satisfy the conditions that 4mp cosf=u /2
(i.e., A1+A2+A3=B) andqjn=pjnm is an integer. This yields
an nth order correction sequence

Fn = p
j

Mfs2pqjndM−fs4pqjndMfs2pqjnd

= R0s− ued + Osen+1d = R0
fngs− ued s3d

and the associatednth order composite pulse sequence
FnM0sud=R0

fngs−uedR0suedR0sud=R0
fngsud, thus giving a com-

posite pulse sequence of arbitrary accuracy.
The second approach we refer to as the Solovay-Kitaev

(SK) method, as it uses elements of the proof of the Solovay-
Kitaev theorem [23]. First, note that rotationsUksAd= I
+Aek+Osek+1d can be constructed for arbitrary 232 Hermit-
ian matricesA, and kù1, recursively. This is done using
an observation (from [23]) relating the commutator
fA,Bg=AB−BA to a sequence of operations
exps−iAeldexps−iBemdexpsiAeldexpsiBemd=expsfA,Bgel+md
+Osel+m+1d. Thus to generateUksAd it suffices to generate
Udk/2esBd and Ubk/2csCd such thatfB,Cg=A (choices of inte-
gers other thandk/2e andbk/2c which sum tok also work, but
give worse performance).2

Next, we inductively construct a composite pulse se-
quenceFn for R0sud. Note that the first order correction se-
quence can be written asF1=Mfs2pdM−fs2pd=R0s−ued
+Ose2d by selecting 4p cossfd=u. Assume we haveFn

=R0s−ued− iAn+1e
n+1+Osen+2d. We can then construct a se-

quence to correct for the next order, usingFn+1
=Un+1sAn+1dFn, where Un+1sAn+1d is constructed as above.
Iteratively applying this method fork=1, . . . ,n yields annth

order composite pulse sequenceFnM0sud=R0
fngsud for any n.

This method, which appears to be unrelated to previous com-
posite pulse techniques[9,14], gives an efficient algorithm to
calculate sequences for specificu andf but not necessarily a
short analytical description of the sequence. Furthermore, the
Solovay-Kitaev technique relies on general properties of
Hamiltonians and can be applied without modification to
other systematic error models, e.g., frequency errors.

EXAMPLES

The TS and SK techniques described above are general
and apply to a wide variety of errors; explicit application of
the techniques to generateR0

fngsud sequences for specificn
can take advantage of symmetry arguments and composition
of techniques, and can relax some of our assumptions to
minimize both the residual error and the sequence length.

First, we explicitly write out the TS composite pulses and
connect them to the well-known pulse sequences of Wimp-
eris [16]. We choose to use the TS formulas that are sym-
metric under reversal of pulses, i.e, an anagram. These for-
mulas remove all even-ordered errors by symmetry, and thus
yield only even-order composite pulse sequences. For con-
venience, we introduce the notationS1sf1,f2,md
=Mf1

smpdMf2
s2mpdMf1

smpd and Snsf1,f2,md
=Sn−1sf1,f2,md4n−1

Sn−1sf1,f2,2mdSn−1sf1,f2,md4n−1
. We

can now define a series ofn order composite pulses Pn as

P0 =M0sud, s4d

P2 =Mf1
s2pdM−f1

s4pdMf1
s2pdP0, s5d

P2j = Sjsf j,− f j,2dP0, s6d

wheref j =cos−1−u /8pf j and f j =s2s2j−1d−2df j−1 when f1=1.
P2 is exactly the passband sequence PB1 described by Wim-

2Here we definebxc to be the largest integer less than or equal tox,
and dxe to the smallest integer that is greater than or equal tox.

FIG. 1. Comparison of the narrowband and broadband compos-
ite pulse sequences generated by the TS method. The Wimperis
BB1, PB1, and NB1 sequences are included in this family, and are
equivalent to B2, P2, and N2.
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peris[16]. Figure 1 compares the performance of these high-
order passband pulse sequences.

Wimperis also proposes a similar broadband sequence
BB1=S1sfB1,3fB1,1dP0 where fB1=cos−1s−u /4pd. The
broadband sequence corrects over a wider range ofe by
minimizing the first order commutator and thus the leading
order errors. Furthermore, although BB1 and PB1 appear
different when written as imperfect rotations, a transforma-
tion to true rotations shows that they have the same form,

PB1 =Mf1
s2pdM−f1

s4pdMf1
s2pdP0

= Rf1
s2pedR−f1

s4pedRf1
s2pedP0, s7d

BB1 = MfB1
spdM3fB1

s2pdMfB1
spdP0

= RfB1
spedR−fB1

s2pedRfB1
spedP0. s8d

This “toggled” frame suggests a way to create higher-order
broadband pulses. One simply takes a higher-order passband
sequence and replaces each elementS1sf j ,−f j ,md with
S1(fBj ,−fBj+4fBjsm/2 mod 2d ,m/2) where fBj satisfies
the condition cossfBjd=2 cossf jd. Applying this to Pn cre-
ates a family of broadband composite pulses Bn.

Similar extensions allow creation of another kind of com-
posite pulses(useful, for example, in magnetic resonance
imaging), which increaseerror so as to perform the desired
operation for only a small window of error. Such “narrow-
band” pulse sequences Nn may be obtained starting with a
passband sequence Pn, and dividing the angles of the correc-
tive pulses by 2. These higher-order narrowband pulses may
be compared with the Wimperis sequence NB1[16], as
shown in Fig. 1.

The SK method yields a third set ofnth order composite
pulses SKn, and for concreteness, we present an explicit for-
mulation of this method. It is convenient to letUnXsad= I
− iansX/2den+Osen+1d, such that one can then generate
UnZsad=M90s−p /2dUnXsadM90sp /2d and UnYsad
=M45sp /2dUnXsadM45s−p /2d.3 Using the first order rota-
tions

U1Xsad = MfS2pd a

4p
eDM−fS2pd a

4p
eD , s9d

where f=cos−1ha/ f4pda/ s4pde g j, as described above,
we may recursively construct UnXsad
=Ubn/2cYsadUdn/2eZsadUbn/2cYs−adUdn/2eZs−ad, and anyn.1 and
any a.

With these definitions, the first order SK composite pulse
for R0

fngsud is simply

SK1 =U1XsudM0sud = R0sud − i
A2

2
e2 + Ose3d. s10d

From the 232 matrix A2, we can then calculate the norm
iA2i and the planar rotationRA2

that performsRA2
s−A2dRA2

−1

=iA2iX. The second order SK composite pulse is then

SK2 =MA2

−1U2XsiA2i1/2dMA2
SK1 s11d

=R0sud − i
A3

2
e3 + Ose4d, s12d

where MA2
is the imperfect rotation corresponding to the

perfect rotationRA2
.

The nth order SK composite pulse family is thus

SKn = MAn

−1UnXsiAni1/ndMAn
SKsn − 1d s13d

=R0sud − i
An+1

2
en+1 + Osen+2d. s14d

A nice feature of the SK method is that when given a com-
posite pulse of ordern described by any method one can
compose a pulse of ordern+1. The “pure” SK method SKn
is outperformed in terms of both error reduction and pulse
number by the TS method Bn for nø4. Therefore, we apply
the SK method for ordersn.4 using B4 as our base com-
posite pulse. We label these pulses SBn.

PERFORMANCE AND EFFICIENCY

Two important issues with composite pulses are the actual
amount of error reduction as a function of pulse error, and
the time required to achieve a desired amount of error reduc-
tion. These performance metrics are shown in Fig. 2, com-
paring the SK, broadband, and passband composite pulses
for varying errore, and f=0, and using as the composite

3The optimal way to generateUnY is to shift the phasesf of the
underlyingMfs0d that generateUnx by 90°.

FIG. 2. Composite pulse errorE as a function of base errore for
a variety of composite pulse sequences. Pn, Bn, SKn, and SBn are
the nth order passband, broadband, SK, and combined B4-SK se-
quences, respectively. The number in the brackets refers to the num-
ber of imperfect 2p rotations in the correction sequence. Note how
pulses of the same order(such as P6, B6, SK6, SB6) have the same
slope(asymptotic scaling) for low values ofe, but can have widely
varying performance whene is large. The inset plots the scaling of
this sequence length with ordern for SKn (SBn is very similar) for
nø30 and compares it with the upper bound obtained with numeri-
cal methods.
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pulse errorE=iRfsud−Rf
fngsudi. We find that for practical

values of error reduction,n,30, the number ofp pulses
required to reduce error toOsend grows as,n3.09, which is
close to the lower bound of,n3 which can be analytically
derived [24]. In contrast, the TS sequence Bn requires
O(expsn2d) pulses.

For a wide range of base errors«, the TS formulation
outperforms the SK method in achieving a low composite
pulse errorE. The recursive nature of the TS method builds
off elements that remove lower-order errors, resulting in a
rapid increase of pulse number and a monotonic decrease in
effective error at every order for any value of the base error.
However, the SK approach is superior to the TS method for
applications requiring incredible precision,Eø10−12, from
relatively precise controls,e,10−2.

The SK and TS pulse sequences presented here are con-
ceptually simple but may not be optimal. Integrating ideas
from both methods, we can develop additional families of
composite pulses. As an example, the SK method relies on
cancellation of error order by order by building up sequences
of 2p pulses. However, there is no reason that the basic unit
should be a single pulse. Instead, one can build a sequence
from TS (B2) style pulse triplets,Gsf1d=S1sf1,3f1,1d. By
using an additional symmetry that the TrfYGs−f1dGsf1dg
=0, the leading order error is guaranteed to be proportional
to X at the cost of doubling the pulse sequence. The resulting
pulses are of length expsnd [compared to expsn2d for TS],
broadband compared to SK sequences, and described in de-
tail in [24].

CONCLUSIONS

We have presented a set of tools that allows one to gen-
erate arbitrarily accurate composite pulse sequences for sys-
tematic, but unknown, error. As an example, we have con-
structed explicit composite pulse sequences for errors in

rotation angle. These can be constructed withOsn3d pulses,
for n&30. For high-precision applications such as quantum
computation, these pulses allow one to perform accurate op-
erations even with large errors. Practically, the B4 and B2
=BB1 pulse sequences seem most useful, depending on the
magnitude of error.

While we have focused on composite pulse sequences for
rotation errors, we emphasize that these methods also apply
to correcting systematic errors in control phase and fre-
quency[24]. For example, a frequency error can be repre-
sented for an expected rotationR0sud as M08sud
=expf−isu /2X+ uu /2udZdg. Note that M08su /2dM08s
−udM08su /2d yields to first order in d the phase shift
U1Zs2udd. Starting with any fully compensating composite
pulse sequence that corrects frequency errors to orderd 2,
e.g., CORPSE[17], and the basic operationU1Zs2udd, one
can then apply the SK technique to create a pulse sequence
of Osd nd [24].

Furthermore, the TS and SK approaches can be extended
to any set of operations that has a subgroup isomorphic to
rotations of a spin. For example, Jones has used this isomor-
phism to create reliable two-qubit gates based on an Ising
interaction to accuracyOse3d [18]. Similarly, the techniques
outlined here can immediately be applied to gain arbitrary
accuracy multiqubit gates. Interestingly, the TS formula can
be directly applied to any set of operations, if the operations
suffer from proportional systematic timing errors. Therefore,
this control method could also be applied to classical sys-
tems.
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