
Spherical-code key-distribution protocols for qubits

Joseph M. Renes*
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131-1156, USA

(Received 10 August 2004; published 16 November 2004)

Recently spherical codes were introduced as potentially more capable ensembles for quantum key distribu-
tion. Here we develop specific key-creation protocols for the two qubit-based spherical codes, the trine and
tetrahedron, and analyze them in the context of a suitably tailored intercept/resend attack, both in standard
form, and in a “gentler” version whose back action on the quantum state is weaker. When compared to the
standard unbiased basis protocols, Bennett-Brassard 1984(BB84) and six-state, two distinct advantages are
found. First, they offer improved tolerance of eavesdropping, the trine besting its counterpart BB84 and the
tetrahedron the six-state protocol. Second, the key error rate may be computed from the sift rate of the protocol
itself, removing the need to sacrifice key bits for this purpose. This simplifies the protocol and improves the
overall key rate.
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Heretofore quantum key-distribution protocols have often
been constructed using sets of unbiased bases, enabling key
bit creation whenever the two parties Alice and Bob happen
to send and measure the quantum system in the same basis.
Alice randomly selects a basis and a state within that basis to
send to Bob, who randomly chooses a basis in which to
measure and decodes the bit according to their preestablished
scheme. Should Bob choose the same basis as Alice, his
outcome is perfectly correlated with hers. Each of the parties
publicly announces the bases used, and for each instance
they agree, they establish one letter of the key. The use of
more than one basis prevents any would-be eavesdropper
Eve from simply reading the encoded bit without Alice and
Bob noticing. In two dimensions two sets of mutually unbi-
ased bases exist, forming the Bennett-Brassard 1984(BB84)
[1] and six-state protocols[2].

Equiangular spherical codes can be used to construct a
new scheme for key distribution[3]. Two such codes exist in
two dimensions. In the Bloch-sphere representation we may
picture these ensembles as three equally spaced coplanar
states forming a trine or four equally spaced states forming a
tetrahedron. Both Alice and Bob replace their use of unbi-
ased bases with equiangular spherical codes; by arranging
Bob’s code to be the dual of Alice’s, key creation becomes a
process of elimination, as previously considered by Phoenix
et al. [4]. Each of Bob’s measurement outcomes is orthogo-
nal to one of Alice’s signals, and thus each outcome excludes
one signal. Alice may then attempt to furnish the remaining
information by announcing a certain number of signals that
were not sent, a process known as sifting. By symmetry, Bob
can also send the sifting information to Alice, in the form of
outcomes not obtained; this convention will be followed
here. The shared anticorrelation between signal and outcome
allows them to remain one step ahead of an eavesdropper
Eve, ensuring that unless she tampers with the quantum sig-
nal, she knows nothing of the created key.

Should Eve tamper with the signal, the disturbance can be

recognized by Alice and Bob in the statistics of their results.
With this they can determine what she knows about their key,
and they may either proceed to shorten their key string so as
to remove Eve’s information of it, or else discard it entirely
and begin anew. Unlike bases-based protocols, however, here
Alice and Bob can determine the disturbance from the sifting
rate directly, obviating the need to explicitly compare(and
waste) portions of the key for this purpose.

The overarching questions in evaluating a key-distribution
protocol are whether or not it is unconditionally secure, and
if so, what the maximum tolerable error rate is. If, by grant-
ing Eve the ability to do anything consistent with the laws of
physics, Alice and Bob can still share a key, the protocol is
said to be unconditionally secure. This state of affairs per-
sists up to the maximum tolerable error rate, at which point
Alice and Bob must abandon their key-creation efforts. Es-
tablishing unconditional security is complicated and delicate,
so here we restrict attention to more limited attacks, exam-
ining the intercept/resend attack and a “gentler” variant. In
these settings we find that the spherical codes are more tol-
erant of noise than their basic counterparts. First, however,
we must consider the protocols for the two spherical codes in
detail.

Unlike the case of unbiased bases, in which Alice’s choice
of signal or Bob’s outcome determines the key letter, for the
trine and tetrahedron it is only the relation between Alice’s
signal and Bob’s outcome that determines the bit. In the trine
protocol, Alice’s choice of signal narrows Bob’s possible
outcomes to the two lying 60° on either side. Each is equally
likely, and they publicly agree beforehand that the one clock-
wise from Alice’s signal corresponds to 1 and the other 0.
Alice hopes to determine which is the case when Bob an-
nounces one outcome that hedid not receive. For any given
outcome, he chooses randomly between the other two and
publicly announces it. Half the time he announces that he did
not receive the outcome which Alice already knew to be
impossible. This tells Alice nothing new, and she announces
that the protocol failed. In the other half of cases, Alice
learns Bob’s outcome and announces success.

Upon hearing his message was a success, Bob can deter-
mine the signal Alice sent. For any outcome Bob receives, he*Electronic address: renes@phys.unm.edu
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immediately knows one signal Alice could not have sent, and
the message that his announcement was successful indicates
to him that she also did not send the signal orthogonal to his
message. Had she sent that signal, she would have an-
nounced failure; thus Bob learns the identity of Alice’s sig-
nal. Each knowing the relative position of signal and out-
come, they can each generate the same requisite bit. This
round of communication is the analog of sifting in the pro-
tocols utilizing unbiased bases: a follow-up classical commu-
nication referencing the quantum signals with which Alice
and Bob establish the key.

Mathematically, we might consider the protocol as fol-
lows. Alice sends signalj , and Bob necessarily obtainsk= j
+1 or k= j +2. He announces that he did not receivel Þk. If
l = j , Alice announces failure. Otherwise each party knows
the identity of j , k, and l, and they compute the key bit as
s1−e jkld /2. Figure 1 shows the case that they agree on a 1.

Though Eve may listen to the messages on the classical
channel, she still has no knowledge of the bit value, for all
she knows is one outcome Bob did not receive and the cor-
responding antipodal state not sent by Alice. Of the two re-
maining equally likely alternatives, one corresponds to a 0
and the other a 1. Hence the protocol establishes one fully
secret bit half the time, analogous to the BB84 protocol.

The strategy for the tetrahedron is entirely similar, except
that Bob must now reveal two outcomes not obtained. As
depicted in Fig. 2, Alice uses four tetrahedral states in the
Bloch-sphere picture, and as before Bob uses the dual of
Alice’s tetrahedron for measurement. Alice sends signalj
and Bob receiveskÞ j . He then randomly chooses two out-
comesl andm he did not obtain and announces them. One-

third of the time this is successful, in thatl Þ j and mÞ j .
This allows Alice to inferk, and her message of satisfaction
allows Bob to inferj , just as for the trine. They then each
compute the bits1+e jklmd /2.

Again they stay one step ahead of Eve as she listens to the
messages, as she can only narrow Alice’s signal down to two
possibilities. Given the order of Bob’s messages, one of these
corresponds to 0 and the other to 1, so Eve is ignorant of the
bit’s identity. Using the tetrahedron allows Alice and Bob to
establish one fully secret bit one-third of the time, analogous
to the six-state protocol.

In the two protocols, the dual arrangement of signals and
measurements allows Alice and Bob to proceed by elimina-
tion to establish a putative key. To ensure security of the
protocols, however, the arrangement must also disallow Eve
from reading the signal without Alice and Bob noticing. Ana-
lyzing the intercept/resend attack provides evidence of how
well the protocols based on spherical codes measure up to
this task.

If Eve tampers with the signals in order to learn their
identity, the inevitable disturbance allows Alice and Bob to
infer how much Eve knows about the raw key. They can then
proceed to use error correction and privacy amplification
procedures to distill a shorter key which, with high probabil-
ity, is identical for Alice and Bob and which Eve has low
probability of knowing anything about. Instead of delving
into the details of error correction and privacy amplification,
we may instead use a lower bound on the optimal rate of the
distilled key, i.e., its length as a fraction of the raw key[5].
This provides a reasonable guess as to what may be achieved
in practice and is known to be achievable using one-way
communication. GivenN→` samples from a tripartite dis-
tribution psa,b,ed, Alice and Bob can construct a protocol to
distill with high probability a lengthRN string about which
Eve has asymptotically zero information for

R= IsA:Bd − minhIsA:Ed,IsB:Edj. s1d

Here the tripartite distribution refers to Alice’s and Bob’s bit
valuesa andb, and Eve’s best guesse from the eavesdrop-

FIG. 1. Bloch-sphere representation of the trine-based protocol
by which Alice and Bob create a secret key bit, shown here creating
a 1. Alice’s three possible signal states are shown in black and
Bob’s measurement outcomes in dotted lines; antipodal points are
orthogonal. Without loss of generality we may assume that Alice
sends the statej =1. The antipodal point is the impossible outcome
for Bob; here he obtains the outcomek=3. Of the two outcomes he
did not get, he picks one at random and announces this to Alice.
Here he announces the outcomel =2, and Alice infers the value of
k. Had Bob announced the other outcome, the protocol would fail,
as this tells Alice nothing she does not already know. Here she
announces that she is satisfied with Bob’s message, and Bob infers
the value ofj , since Alice’s signal could not have beenl. Now they
compute the bits1−e jkld /2=1. Theannouncement only revealsl, so
the bit is completely secret.

FIG. 2. Unfolded view of the Bloch-sphere tetrahedron states.
Vertices of triangles correspond to Bob’s outcomes, their centers
Alice’s signals; all three vertices of the large triangle represent the
same point antipodal to its center. Suppose Alice sends signalj ;
Bob necessarily receiveskÞ j . Here we supposej =1 andk=2. Bob
then announces two outcomes not obtained, here shown asl =3 and
m=4. Had either message equaledj , which happens 2/3 of the
time, Alice would announce failure. Otherwise, as here, she accepts.
Thus Alice determinesk, and Bob finds outj . They compute the bit
s1+e jklmd /2=1. Theannouncement reveals onlyl andm, so the bit
is secret.
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ping. The quantityIsA:Bd is the mutual information between
two parties, quantifying how much knowledge of one’s out-
come implies about the other’s.

Here we are assuming that Eve simply intercepts a frac-
tion q of the signals, measures them, and sends a new state
on to Bob. The first task is then to determineR as a function
of q and then to relateq to the statistics compiled in the
course of the protocol. As it happens, Eve’s best attack in the
intercept/resend context is to useboth Alice’s and Bob’s
trines for measurement, half the time pretending to be Alice
and the other half Bob. This holds for the tetrahedron as well
and is due to the minimum in Eq.(1), which gives the equa-
tion a symmetry between Alice and Bob with respect to Eve.
Choosing only one of the trines(or tetrahedra) to measure
breaks this symmetry, leading the minimum to pick the
smaller information quantity and yield a consequently larger
key. By mixing the two strategies, Eve restores the symmetry
and increases the minimum knowledge she has about either
party’s bit string. Phoenixet al. [4] note that the scheme in
which Eve pretends to be Bob maximizes her mutual infor-
mation with Alice; however, as the analysis stops there and
does not proceed to consider either Eve’s information about
the key bits or any secret key rate bounds, it is insufficient as
a cryptographic analysis.

To determine the mutual information quantities as func-
tions of q, it suffices to consider first the case in which Eve
intercepts every signal and uses Alice’s ensemble for mea-
surement. With these quantities in hand, we can mix Eve’s
two measurement strategies appropriately and then include
her probability of interception. We begin with the trine.
Given a signal state from Alice, there are two cases to con-
sider. Either Eve measures and gets the same state, which
happens with probability 2/3, or she obtains one of the other
two results, with probability 1/6 for each. Whatever her out-
come, she passes the corresponding state along to Bob and
guesses that it was the state sent by Alice,unless the subse-
quent exchange of classical messages eliminates this possi-
bility, at which point she reserves judgment about the key
bit.

Suppose Eve’s outcome corresponds to Alice’s signal, and
thus no disturbance is caused. Naturally, Alice and Bob go on
to establish a bit half the time, a bit known to Eve. On the
other hand, should her outcome not coincide with Alice’s
signal, there are two further possibilities. Half the time Bob
obtains a result consistent with Alice’s signal, i.e., not the
orthogonal state, and a further half of the time the sifting
succeeds. However, the required sifiting messages will elimi-
nate Eve’s outcome as Alice’s signal, thus forcing Eve to
abandon her guess. In the remaining case, Bob’s result is
orthogonal to Alice’s signal, which guarantees successful
sifting, but also different bit values for Alice and Bob. Half
of Eve’s guesses are excluded while the remainder agree
with Bob’s.

Putting all this together, one obtains that the protocol fails
with probability 5/12. All three agree one-third of the time,
and Alice’s bit is different from that shared by Bob and Eve
one-twelfth of the time. In the remaining one-sixth of events,
Eve does not field a guess, as the messages exchanged by
Alice and Bob contradict her measurement results; better to
abstain than to introduce a purely random guess. In this sub-

set of events, Alice and Bob agree a further half the time.
Of the key bits created, Bob and Alice agree with prob-

ability 5/7, while Eve and Alice agree with probability 4/7.
Eve only fields a guess with probability 5/7, and always
agrees with Bob when she does. These numbers are obtained
by considering the raw probabilities of agreement and renor-
malizing by 12/7. Should Eve instead measure the signals
using Bob’s trine ensemble, her agreement probabilities with
Alice and Bob are swapped. Mixing the two strategies then
yields Eve a no-guess probability of 2/7, an agreement prob-
ability with either party of 9/14, and an an error probability
of 1/14.

To interpolate between the end points of no interception
and full interception, note that to condition on the cases of
successful bit creation, the probability of bit agreement must
be renormalized by the probability of sifting success. This
probability depends linearly onq: psift=s6+qd /12. All prob-
abilities must therefore contain 6+q in the denominator,
whence we may derive pairwise probabilities that the parties’
bit values agree:pab=s6−qd / s6+qd, and pae=9q/2s6+qd,
respectively. Eve’s probability to not guess at all is 2s3
−2qd / s6+qd. Determining the relevant mutual informations
from these expressions is straightforward; for expressions in-
volving Eve, simply treat the “no guess” as another outcome
which has no correlation at all to the other party.

By determining the probability of error in Alice’s and
Bob’s bit strings as a function ofq, we may compare to other
protocols. For the trine, errors occur in the key string with
probability 2q/ s6+qd. Using the calculated agreement prob-
abilities in the rate bound, one obtains thatR=0 corresponds
to a maximum tolerable bit error rate of 20.4%. This com-
pares favorably with the BB84 protocol’s maximum tolerable
bit error rate of 17.1% under the same attack[6]. In terms of
channelerror rate these figures double, if we consider the
quantum channel to be a depolarizing channel instead of aris-
ing from Eve’s interference. If Bob receives the maximally
mixed state instead of Alice’s signal, the probability of error
given successful sifting is 1/2. Hence a fully depolarizing
channel leads to a bit error rate of 50% for either protocol.

Analysis of the tetrahedron protocol proceeds similarly by
examining the various cases. In this case, whenq=1 the
failure rate of the protocol drops to 5/9, while Alice and Bob
agree with probability 5/8, Eve has probability 7/16 of
knowing Alice’s or Bob’s bit value, and she reserves judg-
ment half the time. As the successful sifting rate of the pro-
tocol varies ass3+qd /9, we may determine the form of the
probabilities using the same method to bepab=peb
=s6−qd /2s3+qd andpae=7q/4s3+qd, while the error rate in
the key string is 3q/2s3+qd and Eve’s probability of not
guessing iss3−qd / s3+qd. Using these probabilities in the
rate bound yields a maximum error rate of 26.7%. As before,
this compares favorably to the maximum tolerable error rate
in the six-state protocol of 22.7%.

Eve’s attack could be gentler, however. In the version al-
ready considered, her positive-operator-valued measure
(POVM) consists of subnormalized projectors onto the code
states in addition to an element proportional to the identity
operator, corresponding to the case in which Eve opts not to
intercept the signal. A similar POVM can be created by dis-
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tributing a piece of identity operator to all the other elements.
The crucial difference is that the state Eve sends on to Bob
after her measurement is different. Using the square root of
each POVM element in the formula for the postmeasurement
state, the resulting measurement yields Eve more informa-
tion for the same amount of disturbance. Note that in the
context of the BB84 protocol, this attack was determined to
be optimal when Eve does not wait to hear in which basis the
signal was prepared[7].

Enlisting the aid ofMATHEMATICA to carry out the book-
keeping yields the following results. Since the attack is
stronger, the maximum tolerable error decreases; in particu-
lar the trine can create secret keys up to a 16.6% bit error
rate, as opposed to 15.3% for its cousin BB84. The tetrahe-
dron remains the most robust, sustaining key creation up to a
maximum error rate of 22.6%, as compared to 21.0% for the
six-state protocol.

Framing the key rate in terms of the error rate is solely for
ease of comparison, as it is not necessary for Alice and Bob
to sacrifice key bits in order to obtain an estimate ofq when
using spherical codes, in contrast to the situation for the un-
biased bases. For spherical codes, the sifting rate of the pro-
tocol itself determinesq; as the channel becomes noisier and
Bob’s outcome less correlated with Alice’s signal, the sifting
rate increases. Of course, not all of this increase provides
useful key: most of it leads to errors. But Eve cannot substi-
tute signals solely for the purpose of modifying the sift rate,
as her signals will be uncorrelated with Alice’s and will
therefore also lead to an increase in the sift rate. Hence she is
precluded from masking her interceptions, and Alice and

Bob can determineq from the sifting rate itself.
Finally, a word on the feasibility of implementing such

protocols. Generation of trine or tetrahedral codewords as
polarization states of(near) single-photon sources is not dif-
ficult. The generalized measurements accompanying the en-
sembles can be performed by using polarizing beam splitters
and wave plates to map polarization states into different
propagation modes and proceeding from there with linear
optical elements to produce the appropriate interference.
Such measurements have indeed been performed with rms
errors in observed statistical distributions of a few percent
[8]. The physical implementation need not be identical to the
logical construction of the protocol, however. For instance,
three states constructed from two pairs of singlets together
with ordinary photodectors can implement the trine protocol
[9].

Two advantages of using spherical codes have been estab-
lished herein. First and foremost is the strong possibility of
improved eavesdropping resistance. Subsequent analyses ei-
ther of stronger attacks, such as use of an asymmetric clon-
ing machine[10], or of the use of error-correcting codes to
beat back noise[11] are required to demonstrate this fact in
the setting of unconditional security, although the intercept/
resend attacks are indicative of the trend[12]. Beyond secu-
rity is the ability to directly estimate the error rate from the
sift rate itself, obviating any need to sacrifice raw key bits.
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