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Analysis for practical realization of number-state manipulation by number-sum Bell
measurement with linear optics
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We analyze the linear optical realization of number-sum Bell measurement and number-state manipulation
by taking into account the realistic experimental situation, specifically imperfectness of single-photon detector.
The present scheme for number-state manipulation is based on the number-sum Bell measurement, which is
implemented with linear optical elements, i.e., beam splitters, phase shifters, and zero-one-photon detectors.
Squeezed vacuum states and coherent states are used as optical sources. The linear optical Bell state detector
is formulated quantum theoretically with a probability operator measure. Then, the fidelity of manipulation and
preparation of number states, particularly for qubits and quitrits, is evaluated in terms of the quantum efficiency
and dark count of single-photon detector. It is found that a high fidelity is achievable with small enough
squeezing parameters and coherent state amplitudes.
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[. INTRODUCTION an experimental demonstration has also been repiigd
Extensive research and development have been done rThen, various number-state preparations and manipulations
P fiave been investigated based on teleportation with humber-

ce?tl){ onAquantum .informagpnf and Cc;mmyr]:icatiotn teChc'jsum Bell measurements and relevant EPR resolildes] 3.
nologies. Among various media for quantum Information anty, yhese respects, there are growing interests in the number-

_commun_ication,_the phOton'U“mbef FOCk_ space is promisingum Bell measurement and its application for the number-
in the point that it provides higher dimensional states such aS(ate manipulation
qutrits to carry more information than qubits. This stimulates In this paper we analyze the linear optical realization of

great interest in preparation .a.md manipulatior] of V,ariousnumber-sum Bell measurement and number-state manipula-
Ehoton-numbe_r g states. SpeC|f||ca:Iy, teleportatiin?] is iqn by taking into account the realistic experimental situa-
nown to provide important tools for quantum communica-i,, - gpecifically imperfectness of single-photon detector.

t@on and information processing.. The number-state teIe'“’“‘""l‘he present scheme for number-state manipulation is based
tion may be performed by making a number-sum Bell meag,, e nymber-sum Bell measurement, which is implemented

surementl W't:‘_h certain Er;nsdteln—llil’odolsky-Rose{tiEPR) ; Iwith linear optical elements, i.e., beam splitters, phase
resourc_e[ 3] en, Its method really appears to be usefulgpigers ang zero-one-photon detectors. As for the optical
for engineering the input states, irrespective of teleportatio, rces  many useful manipulations of number states are re-
fidelity. In fact, a quantum scissors for number-state trunca: lized with squeezed vacuum states and coherent states
tion by projective measurement, which has been investigategich are widely used in optical experiments, while single-

thoroughly so farf4-6], may be viewed as a teleportation- hoton sources may not be requifdd-13. Beam splitters

based number-state manipulation. The entanglement resourgﬁd phase shifters will be available with high accuracy. On
is prepared from vacuum and one photon state through

fhe other hand, photon detectors are currently developed de-

50:50 beam splitter, and the joint photon detection .'mple'vices, which in practice have finite quantum efficiency and
ments the number-sum Bell measurement. An experiment

#lonzero dark count rate. Hence, for feasible experiments it is

reah_zatlon of.quantum scissors has been done recently, 9€fesired to provide a systematic method to evaluate the effi-
erating a qubit of vacuum and one-photon state by truncatlngiency of number-state manipulation with number-sum Bell

a coherent statgr]. It is also interesting that an experimental measurement, by taking into account the imperfectness of

result has been_reported for the teleportation of the vacuums ¢4 photon detectors. It is indeed encouraging that some
one-photon qubif8]. significant developments and new proposals have been made

The_number—sum B_eII measurement accordingly plays alor single-photon detection to achieve the quantum efficiency
essential role for engineering the photon-number states vl-lsf>6

| ion. S feasibl h h q ose to unity[15,14. We believe that the present work pro-
teleportation. Some feasible schemes have appeared recenfiy,ios fyture experimental efforts on engineering photon-
for implementing particularly the joint measurement of num-

b d oh diff it I @s1 q number states by number-sum Bell measurement.
er sum and phase difference with linear opf@s13, an This paper is organized as follows. In Sec. I, we describe

the number-sum Bell states, particularly those associated
with phase difference. In Sec. Ill, we present a linear optical
*Present address: National Institute of Information and Commudetector to measure a specific number-sum Bell state, and
nications Technology, 4-2-1 Nukui-Kita, Koganei, Tokyo 184-8795, formulate it quantum theoretically with a probability opera-
Japan. Email address: kitagawa@nict.go.jp tor measure(POM). Then, we estimate the sensitivity of
"Email address: yamamoto@nucleng.kyoto-u.ac.jp these detectors in terms of the efficiency of practical single-
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photon detectors. In Sec. IV, we investigate the number-state N [(wne)™"
manipulation via teleportation by number-sum Bell measure- |¢§1’1\I)>p: > %In),) (p=1,2. (10
ment. We present the formulas to evaluate the fidelity for n=0 VN+1

engineering various photon-number states. In Sec. V, by ap- The Bell measurement of number sum and phase differ-
plying these formulas we analyze the efficiencies of some,\q is represented by the Hermitian operators,
useful manipulations and preparations in particular for qubits
and qutrits. This analysis indicates that these experiments N, = Ny + Ny, (11)
will be performed with good fidelities by utilizing currently
available apparatus. Section VI is devoted to summary. o
s 5N _ &HNTHIN
Il. NUMBER-SUM BELL STATES ®-= NZ:O (@ - @5, (12

The measurement of number-sum Bell states plays the - :
central role in the present scheme for number-state manipt€"€ Np (P=1,2) reE)r(ﬁ)sent the number operators of the re-
lation. The number-sum Bell states are given generally as spective modes, andt,” the phase operators corresponding

N to the phase states in EQL0). The projection operataP™
[d(N,m)) =, di(N,m)|N = k);|k), (1)  extracts the states in the subspéieé-k),|k),} with number
k=0 sumN. As seen clearly from Eq$6) and(9), the Bell states

|¢_(N,m)) are the simultaneous eigenstates of number sum

for m=0,1,... N, forming an orthonormal set, and phase difference:

(d(N',m")[d(N,m)) = Snd(N,m") - d(N,m) = SN Sym-

. N.|p-(N,m)) = N|p_(N,m)), (13)
The inner product of complex vectors is henceforth repre- <i>_|q§_(N,m)>: ¢_(N,m)|_(N,m)), (14)
sented by
N where the phase-difference eigenvalues are given by
U-V =2 Uy (3 _2m
k=0 ¢—(N1m) - N+ 1m (15)

The generic states in the two-mode Fock spfog|n,),}

: SN _ &N :
are expanded in terms of these Bell states as Since[®;"-®; ] does not change the number st it

. N YN commutes withP™ as required for the Hermiticity of the
[2) = 2 2 GN)IN =K1K, = > X cg(N,m)|d(N,m)), entire phase-difference operatbr. These results clarify that
N=0 k=0 N=0 m=0 in the subspace with number sulh the phase-difference

4) operator introduced by Luis and Sanchez-Std| indeed
coincides with the difference of the phase operators of the

where individual modes given by Pegg and Barndt8], while it is
N not separable in the entire two-mode Fock space. It is also
ca(N,m) = d(N,m) - c(N) = >, di(N,m)c(N). (5)  obvious from Eqs(13) and(14) that N, and ®_ are com-
k=0 mutable:
Specifically, we consider the number-phase Bell states [N+ é,_]:o_ (16)
[10-13,17, ’

Therefore, the joint measurement of number sum and phase

N *
_ o Loy K difference can be made in principle, where the two-mode
|6-(N.m)) = g‘) IN+1 IN=Klk)2 6) number states are projected to the number-phase Bell states
_ |p-(N,m)).
with The number-phase Bell states in Ef) may be general-
1 ized by introducing a scaling parametef10,11] as
di(N,m) = ﬁ[(w;m)m]k, (7) N
\‘J *
o |¢-(N,m,1)) = D(N,1) 2 r'{(wpe) "N = K)g[K), (17)
where the(N+1)-root to generate ay, is given by k=0
o = exfdi2m/(N+1)],  (one) V=1, (8)  where the normalization factor is given by
These Bell states in E@6) are also expressed as YN+ 1(1-r?
D(N,I‘)=W. (18)

. [(w:\, 1)m,+m]N (N) (N)
_ +
|p_(N,m)) = 2_0 TN+l [bmemilbm)e (9 4 two-mode squeezed vacuum st@t¢ with squeezing pa-
m= rameter\ <1 may be used as a primary resource of entangle-

in terms of the phase states given by Pegg and Bajb@ft  ment, which is given by
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i N M-N
IN) = (1 =A\2)Y2D) \"n)|n). (19) ™D M@ (o) | photon
n=0 ++ ++ detector
Then, these generalized number-phase Bell states are actu- -0
ally generated from a pair of two-mode squeezed vacuum w1
stateg\),5 and|\’),, by making the number-phase Bell mea- Us; >2
surement:
|6-(N.=m) + A
|)\>13|7\I>24 0 |¢(N,m,r)>, (20) Y |0) | 0) ancillas
_ o _ | 9
where the scaling parameteris given by the ratio of the Bellstate M ~2

squeezing parameters, o ) ]
FIG. 1. A schematic diagram of the linear optical Bell state

r=\/\. (22 detector. The input two-mode state, which may contain the number-
sum Bell statgd)=|d(N,m)) with number-sumN, enters the de-

Here, we have considered the relation , i
tector together with the vacuum states(bf—2) ancilla modes. A

AN unitary transformatiory is made through a set of beam splitters
IN)1a\ Y= (1 =AY - )\’2)1/22 and phase shifters, and the output state is detected to give condi-
n=0 D(N,r) tionally the specific photon coum(ch'}") 1,. ,...,D as the

signal of |a>. The photon detectors need to resolve zero, one or
) |p_(N,—m))za p_(N,m,1))15 (22 more photons, since two or more photons may enter some of the

detectors for the case &f=2.

from the swappind1,3)(2,4) —(1,2)(3,4).
be expanded in terms of the number states of the oWput

lll. PRACTICAL BELL STATE DETECTOR modes,

We utilize a linear optical detector, sBell state detector |n(M)> = nYans- - [Nwdm (26)
to measure conditionally a specific two-mode number-sum
Bell state as given in Eql). Henceforth the Bell state to be \ith number distribution
detected is denoted simply by

|a> _ |d(N ) 23 Ny = (N, Ny, ... .Ny). (27)
with the number sun and amplitude coefficients The parameters of the optical set are chosen so that this
unitary transformation is given as
d = di(N,m). (29 5
— t t
As shown schematically in Fig. 1, it is constructed as an Ual2)10)a= gadl )iy + [V L nry),  (28)

M-port system consisting df) a set of beam splitters and ent ont

phase shifters(ii) (M—2) auxiliary input modegancillag ~ Where[¥ Lng) is a certain state orthogonal pafy,). That

with vacuum states, angii) zero-one-resolving photon de- is, only if the input statéi,) contains the Bell stathi} to
tectors for the output modes, though imperfect practicallyhe detected, the output state has the component of the spe-
This method is based on the idea of photon choppli.  cific number distribution,

The Bell state detectors dtp_ (N m)) for N=1 and 2 are ﬁ o

considered in Ref410,1]], and then a method for geneml Cm (1 —_0)
is presented in Ref§12,13. The photon detectors need to 0,...,0). (29
resolve zero, one or more photons, since two or more pho- _ . .
tons may enter some of the detectors for the cade Bl Then, by using the ideal zero-one-resolving photon detectors,
The operation of the set of beam splitters and phaséhe Bell statdd) is detected conditionally ify,), when the
shifters is given by a unitary transformation between the inphoton counting result 01°“ is obtained with success prob-
put modesy; and the output modes (in Heisenberg picture  ability
[20]:
|dea
a :z,{&biug =Ugb, &= ug,b*u bT o (29 t|</f<2>>] EARICIAN (30)
wherei,j=1,2,... M, andUg is anM X M unitary matrix.  Practically, we use imperfect zero-one-resolving photon de-
The two-mode input stat@y,) and vacuum stat¢0), of  tectors described by the POM%(0) andII(1). The POM of
(M-2) ancillas are transformed to certain output stategphoton detector for th&l photon count is given with quan-
through the optical setin Schrodinger pictune which may  tum efficiency» and mean dark count by
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N—m

(N-m

TI(N) = E e E oCon7™(L = 7)™ n)(n,

(31)

where C,, is the binomial coefficienf21].
The two-mode input statg,, combined with the ancilla-

modep, is transformed by the optical set as

.
P2) ® pa— Uspz) ® palty, (32
where
M
Pa= [0)ax(0] = & (|0XO));. (33
1=

Then, the probability to obtain the photon count of E2P)
for the two-modep,) is given by

T -
Palp] = Trllpdlap) ® pddg] = Trlapp)].  (34)
The POM of this Bell state detector is given by
- T
T3 = (0 pp45|0), (35)
with the POM of the photon detector set
N M
1_[PD ®H(1)| @ 1_[(0)| (36)
i=N+1
It may be expressed as
» N N _
Tg=2 2 2 KL (N(NKOXNK] - (37)
N=0 k=0 i’=0
in terms of the basis states of number shim
[(N,K) = [N = K[k, (38)
with
krk(N)aN’N ((N",K)[TG[(N,K)). (39

Here, it should be remarked that the matrix element§pf

PHYSICAL REVIEW A 70, 052311(2004

N,k)) = ————=—(a))""(a})¥|0),|0 42
() = (@) @100 (42
By using Eq.(25) we obtain
(al)N k(az)k_z VVd[J (N)]®b (43
J(N)
wherej =i,z ....jn), 1<ji=M, and
Wil = Uan, " Yau iz, Yaay (44)

Then, we calculate the coefficients for the output stagg))
in Eq. (40) as

! -
ﬂ > Wliw]

(N k)l \’k J N)—»I"I(M)
whereng! =n;!ny!---ny!, and the sum is taken over all the
sets of indicegy, that provide the photon-number distribu-
tion Ney).

BE[”(M)] = (45)

Given the coeﬁicientﬁﬁ[n(M)] in Eq. (40), we obtain the
matrix elements of Bell measurement PQIylin Eq. (37) as

Kb n= S

Nz[n(M)]

Bk’[n(M)]B [naw]Peolingu)]. (46)

Here, we have considered the relation from the photon-
number conserving nature ofpp,

(N el = Sy, iy Prol Ny (47)

The probability that the statgy)) results in the photon

countngy is given by

Peol N1 = (| ppnaw)) = HPM(H)H Po, (M),

i=N+1
(48

where

Po,(n) =(n|TI(0)|n) = &™"57", (49)

between the states with different values of number sum are

zero, sincdfy andIlpp conserve the total photon number.
Specifically, for the basis staféN,k)) we obtain the out-
put state as

Ui(N KDY=

Nz[n(M)]:N

BE[”(M)]|”(M)>- (40)

Here, the sum is taken over the distributiong, with num-
ber sumN, since the unitary transformatiésy conserves the
total photon number

M
Nx[na]l= 2 n=N (42)
i=1

The basis states with number siNimare given by

P1,(n) =(n[TI(1)[n) = €767 [n(L - 67) + vén], (50)
with
on=1-n. (51

The output statén(y), in particular, to indicate the de-
cnt

sired Bell statdd) is faithfully counted asy,, with prob-
ability

Ped [N = €M1 = 87+ vory]N, (52)
(Henceforth we assume for simplicity that all the photon
detectors have the commapandr.) The probability for the

generic output statgy) to give the expected photon count

Ny is also evaluated as
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Peol[nw)] = e‘M”E rie [N 871 = sm)N, > Tirgd . )(d 1= Trrg] - Trgldydl],  (59)
d.)
(53) where
with certain coefflClents(ab)[n wn ], where the extra factors |a><a| s |(~1I @ | 60)
= +
(1-57)N come fromPy,(n) (1<i=<N). The non-negative ) A,
powersa andb in the expansion of Eq53) represent the *
discounts and overcounts of photons, respectively, which sat- - )
isfy the relation T3] = 2 PedInup]iBIngw ]2 (61)
N(m)

a-b=N-N (54) Then, theconfidenceof this practical Bell state detector may
in the range of ma{i),N—N]$asN and maﬁO,N—N]sb be defined by
<N. For N<N the deficit of photons should be supplied by Tr[I5/d)d][]
the dark counts, while foN>N the excess of photons d= W =1l (62

should be discarded with<<1. By considering Eq(54), the
leading dependence d®pp[|ngy))] on 57;<1 andv<1is In particular,C3=1 only for the Bell state detector with ideal

found for the output states other thm ) as optical devices. We evaluate the confidence in B@) with
Eqgs.(56) and(61) for the practical Bell state detector as

N-N <N
cnt ' N .'.\I), Ca=1-AC3=1- E q(aa'b)gnavb (63
Ped Ny # INfup] ~ 677 (N=N), (55) (@b)#(0,0
57]N—K| (N> N)_ in the expansion with respect &y and v.

It may be reasonably assumed for feasible photon detectors
that the dark count is considerably smaller than the ineffi- IV. NUMBER-STATE MANIPULATION

i 4 - ; . . . . .
ciency &7, e.g.,»~10" and 57~0.1, as will be explained We now investigate the number-state manipulation via
in Sec. V. Then, the leading error 57 of the Bell state  te|eportation with number-sum Bell measurement. The input
detector is provided by the statggy) with the total photon state(normalized may be prepared i optical modes as

numberN=N+1.

When the desired Bell stafd) is measured by this Bell [in) = nz Cn(K Ingo) (64)
state detector, the probability to obtain the expected photon *
countnf,[},‘) is given with Eqs(34), (37), and(46) as where
Palld) = TATGD@1= 3 Poollnn B ng 1-d2. INgo) =Ntz I = Il (69
Ns[ng)l=N We here consider specifically a class of two-mode EPR re-

(56) sourcegnormalized as

In this practical Bell measurement, the other states orthogo-

[EPR = E Elols(1))- = E E Enlldoll)-1  (66)

nal to|d) may be miscounted dd) with nonzero probabili- 10 /=0
ties. Only if we can use the ideal Bell state detector, the Bell
state is measured faithfully as with the amplitude distribution matrix
Pl m)] =Pl @i (57 B =GB ©7

5 The permutation of number states between the two modes is
That is, the desired Bell statd) is measured with the suc- given by

cess probabilit)Pa[|a>] while the other orthogonal states are slly) # 80 o 1y # 1, 69
not detected. By considering E8) with P'd‘*"[|nCnt V=1,

the success probability in the ideal case is evaluated as In particular, for the number-difference 0 resource and the

number-sumN resource, respectively,
Palld)] = |gal* = [B[nfii] - d[>. (58) 0 { | (number-difference
() =
I

On the other hand, from the completeness of number-state (number-sumN).

Fock space the sum of the probabilities for the orthonormairy,q input state is then manipulated by making a Bell mea-
basis statefd(N,m))=|d ) other than(d) to be miscounted surement with an EPR resource. We here consider the one-

as |a> is given by mode manipulation with the measuremendd))f. The multi-

(69)
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mode manipulation may further be performed by applying
these sorts of one-mode manipulations to some modes of the

input state.

The Bell measurement is made on the 0-1 mode of the

combined statén; =k,I=N-k)

o N
[UlEPR= 2 X X cg  Exid(N.K)

n(K-1) N=0 k=0
X|S(N = K))_1|n(k-1)). (70)
Then, we obtain the output state as
Pout= TrIGpin ® peprl
= 2 Pl Inon) 1l toud Ny Dol D]l (7D)

N(m)
fOf Pin:|l/fin><l//in| and PEPR:|EP®<EPH! Where |S(N
-K))_1nk-1) =|n) by redenoting
IS(N=K))_1 = [ny);. (72

(The output statep,,; will be properly normalized later in
defining the fidelitys The output states associated wlithy)),
which may not be orthogonal each other, are given by

| Woud Ny ) = > Cou [n wllny (73)
(k)
with the amplitudes
t N=Ns[nn]
Cn(uK)[n(M)] En- kBk[n(M I, K- s’y (74

wherek is specified byn;=s(N-k) in terms ofn; andN. It is

straightforward to extend these formulas generally for the F[| >]
mixed states ofp,, and pgpg With the output states as

| ‘/’out[n(M)]>< Youl N M)]| - pout[n(M)]

This teleportation-based manipulation may be viewed as a

linear transformation of the input state:

Pout—']TjEPmTZE > PPD|:|n(M)>](7§E[n(M)]P|nTLE[n(M)])
n(m)
(75)
The amplitudes are accordingly transformed as
¢ [N )] = T[Ny JC" (76)
or
g:i)[n(m 1= E T n, N ]Ckn k=1’ (77)

As seen from Eq(74), the transformation matrist aE[n(M)]

PHYSICAL REVIEW A 70, 052311(2004

(B D = e BILN G JON = K) (79

with
AN - K) = 1 (0sk=N), 80
( )= 0 (k>N). (80)

We may further consider multiple manipulations of this sort
[11] as

TUEW) ... TR AEWD) (81)

The desired manipulation of input state with the EPR re-

source is obtained by using the ideal Bell state detectb})of
as

pout 7= 1,v=0) = [y U (82)
where
|45 = |Woul Ny = NG D) (83
with
Cgl{.ﬁ cnt] 2 k[ncnt an iy (84)

Here, only the number state(y)) is detected faithfully as

cnt

the photon counhyy, in the outputM ports. Thefidelity is

used to evaluate the quality of manipulation with the practi-
cal experimental setup, which is given by

Tr[Pout| EE EEIJ]
Tr[pout]TrH'r//ou <¢ga]

Where the denominator of the right side provides the normal-

ization factors ofog, and| out| The relevant quantities
are calculated by

<1, (85)

Tl poud = 2 Pedl[nau1c®Tngw] - c®Tnaw],  (86)
N(v)
Trl BN YEE] ] = ot ] - el ], (87)
T poud YEEXUEE] 1 = S Poel )]
N(w)
X [c®Tngy] - cInfihIlP.  (89)

Here, Tfpo.i is the probability to obtain the expected pho-
ton countnCnt by performing the conditional measurement

is composed of that given by the Bell state detectorwith this BeII state detector. The fidelity of manipulation is

BYnw], the reversal (0,...N—N,...,0 with N
=Ns[n)], Ry, and the EPR resourcg;
TdE[n(M)] = ERNBd[n(M)]a (78)

where

then evaluated by considering the sensitivity of photon de-
tector as

FIlEE = 1-AF[yfS]=1- 3 fab|ylE) oy

(ab)#(0,0
(89

052311-6
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V. ANALYSIS OF EFFICIENCIES 1 - ll T T T
o . - A
We can analyze the efficiencies of practical Bell state de- | —v=0 //.
tectors and number-state manipulations by applying the for- 5 :"_':_"fzﬂilﬁ /” |

mulas presented so far. N

/,/ ]
¢ost / -
A. Bell state detectors i & i

In the number-state manipulations based on teleportation,
the number-phase Bell statgs (N, m)) in Eqg. (6) may spe-

cifically be measured by the Bell state detectd@-13. In 0 1 ' 1 '

order to show the efficiency of practical Bell measurement 06 n 08 !

with linear optics in the present scheme, we evaluate the

confidence typically for the detection (@f)=|¢4_(N,0)) with FIG. 2. The confidence of the detector to measure the number-

number sumN=1, 2 and phase differencen=0. The phase Bell statgp_(N=1,0)) is shown depending o with »=0,
number-phase Bell states with nonzero phase difference 0.05, 0.1.
are also measured similarly by making a phase sajft

N+la2 of the mode 2 in Eq(6) before the two-mode 1 1 0 0
states enter the Bell state detector. The Bell state detectors 2 0 2 2 1
for number sunN=1, 2 are useful for manipulations of qu- u;=[ 0 1 o 0 E B \_”
bits and qutrits, as seen later. 1 1 b1+
The Bell state detector df_(1,0)) with N=1 is charac- =0 & —= =
terized by the amplitude distribution and the unitary transfor- V2 V2 V6
mation of optical modes which are given, respectively, by \5 g
d= (1> 6.(N=1,0) (90 22 2
= — — » =1, s .
B\ X 3 +i \3(3 +i) (93
4 4\5
1 1
2w °
v v . .
U= 1 1 , (91) where one ancilla is used/=3) [10,11]. The confidence of
- = this Bell state detector is calculated in the leading orders as
V2 N2

where no ancilla is usedM=2). As is well known, this ACG=1-Cill¢-(N=2,0)]:

unitary transformationUy is realized with a 50:50 beam B @0 @1 7
splitter. The confidence of this Bell state detector is calcu- a q~El on? qaa’ vén?
lated in the leading orders of the expansion with respect to 213
onandv as 0 o
~ 1 28/9 - 304/27
ACG=1-Cil|l¢-(N=1,0)]: 2 -1075/324  15803/972
- . 3 1883/1458  —23147/2916
(a,0) o g (a,1) a
a oy o7 gy vopy 4 -2029/26244 -19991/39366
0 — 1 Numerlcal estimates of the confidence are shown in Figs.
1 3 -4 2 and 3 foN=1 andN=2, respectively, depending opwith
2 -3 5 ' v=0, 0.05, 0.1. Here, it is seen apparently that the confi-
3 1 PN dences of these Bell state detectors are not so good unless the
quantum efficiency of photon detectors is rather high as
4 0 0 7>0.9 with the small enough dark count It should, how-

o (@b) . o ever, be remarked that the confidence is defined in(&2).
where the coefficients;” " are presented in this list. The wjth Eq. (59) to provide a general estimate of Bell state

Bell state detector dfs_(2,0)) with N=2 is characterized by detector, which is irrespective of the actual contents of the
input two-mode states to be measured. If the input state con-

1 1 tains small components of the stata§> other than the de-
d= e 1]|—|¢p(N=2,0), (92)  sired Bell statdd), the actual probability to miscount these
V21 irrelevant components asl) becomes small according to
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L N=2 -
L —wv=0 i
[ ——:v=005 g
~=—=:v=0.1
Gosh .
0 1 " 1 "
0.6 03 1

n

FIG. 3. The confidence of the detector to measure the number-

phase Bell statégb_(N:Z,O» is shown depending on with »=0,
0.05, 0.1.

their portion in the input state. Furthermore, by the miscount

of photon detectors even the input componenti&o$ may
contribute to the fidelity to obtain the desired output state.
Hence, the practical Bell measurement may provide high fi-
delities for some sorts of number-state manipulations via
teleportation, as seen in the following.

B. Manipulations and preparations

We next examine some useful manipulations and prepara-
tions of number states which are based on the teleportation
technique [4-6,10-13, scissors, reversal, generalized
number-phase Bell state and truncated maximally squeezed
vacuum state. This analysis of efficiencies will indeed be
relevant for feasible experimental realizations of these sorts
of operations particularly for qubits and qutrits. The success
probabilities have been calculated by assuming the ideal Bell
state detectors in Refl1], which provide approximate esti-
mates even in the present scheme utilizing realistic photo
detectors with reasonable efficiency. The precise evaluation
of success probabilities can be made by applying the formug
las presented in Secs. lll and IV for the practical Bell state y
detectors. A detailed analysis may be reserved for a future
study, while it is not the aim of the present work.

The teleportation based manipulations are specified by the
sets of input state, EPR resource and Bell measurement as

Smanipulation: {| lﬂin>,|EPR, |a>} (94)

Specifically, we take the number-phase Bell measurement of
|dy=|_(N,0)) (r=1) with N=N=1, 2 andm=0. As for the

PHYSICAL REVIEW A 70, 052311(2004

IN) = [¢-(N,0,r)) — [ = 1,N),

which will be described below.

The ingredients for the relevant manipulations and prepa-

rations are listed as follows.

(i) Scissors
0 N
i) =2 cplny — X cfim),
n=0 n=0

Sscissors:{|‘ﬂi(r:wl)%|¢—(Nao)>-|¢—(Nuo)>}-

(i) Reversal
o N
gy = 2 el — X e,
n=0 n=0

Sreversa™ {|¢I(r})>* |)\ = 1,N>,|¢_(N, 0))}.

(i) Generalized number-phase Bell state

IN) = |4-(N,0,r)),

STl-(N,0,r)T={[A), N =r\),[¢-(N,0))}.

(iv) Truncated maximally squeezed vacuum state

|¢_(N,0,1A)) — N =1,N),

SIIN=1,N)]={[¢-(N,0,1/\)),|]\),|#-(N,0))}.

he matrices representing the relevant EPR resources are
Iven as follows. The squeezed vacuum state is represented

o o

—_—

E[N)]=V1-\?

o o o m
o o > o
o %

%6 © © o

The truncated maximally squeezed vacuum states are repre-

EPR resources, we take the two-mode squeezed vacuugented folN=1 and 2, respectively, by

state [\) with squeezing parametex<1, the generalized
number-phase Bell statép_(N,0,r)) and the truncated maxi-
mally squeezed vacuum stdte=1,N), which is given by

|0)|0) +[1)[1) + - -
WN+1

* ININ>

N=1,N)= (95

The squeezed vacuum state is taken as the primary resource
of entanglement, and the other EPR resources can be pre-
pared in the present scheme as

052311-8
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1 1 T v T T
\,_F 0 0O 0 - |0L|_3'f ___________________________________ 1
1 - To1=3 1
0O = 0 O L _
V3
E[AN=1N=2)]= L _ & 05+ i
0 0 =0 [ -1 ]
V3 .
0 0 00 [ ]
. 0 1 1 1 1
0.6 0.8 1
The generalized number-phase Bell stdies0) are repre- n

sented forN=1 and 2, respectively, by FIG. 4. The fidelity of the scissors and reversak=Fgy with

N=1 for the input coherent state with|=+3 and|a|=3 is shown

0ro0o- depending ory with »=0,0.1.
1000 -
E[|¢_(N=1,0r))]=D(1,r)] O O 0 O --- |, a fadgp @b,
0000~ (o J— 1/8
' 1 9/16 1/8
5 2 - 27164 71128 |’
000 3 81/256  41/256
0ro00: 4 —243/1024 85/2048
E[l¢-(N=2,0r))]=D(2r)] 1 0 0 O - - -
000 O0: AFsc=1-FsdN=2;|a| = 3]:
-a @0 572 f@Dysp2 ]
1. Scissors and reversal 0 — 7117
In order to show the efficiency of number-state manipula- 1 483/1156 - 4826/4913
tions with the practical Bell state detectors, we evaluate the 2 1431/4624 48021/78608
f'df'_'tt{Nszt)heA sciesors and reversal for q“:““_:l)" and 3 -235683/314432  1276203/2672673
utrit (N=2). A coherent state may be taken typically as the
ﬁ]put y ypicaly 4 1443321/2515456 - 36559049/21381376

The fidelity of the reversaFg, is the same as that of the
scissord-g¢ in the present schenm@ the EPR resources are

= olal?2 J @
la)=¢ nZO \H|”>’ ideally prepareyd

with Frv=Fsc. (96)

This is verified by the relation

E'E[SC]=E'E[RV]
Then, by using particularly the=2 scissors we can prepare _ ) _
a qutrit for |¢_(N,0)) [SC] and|\=1,N) [RV] in calculating the in-

ner product of the output states with E@g6) and(78),
<(//0ut[n(,M)]||’/’out[n(M)]> = COUt[”(’M)] : COUt[n(M)]

= ci"TBdT[n(’,\,l)]RT [ETER\BYnoyIc".

cdn= e"‘“lzlz(l,a, a2/\e‘5, DT

|Yquuit) =100 + o 1) + (a2/V2)|2),

while we can rearrange this qutrit by the reversal as

— (21>
qu”@ (o120} + af1) +[2), Numerical estimates of the fidelity of the scissors and
where the normalization factors are omitted. reversal are shown in Figs. 4 and 5 fd=1 andN=2, re-
By applying the formulas presented in Secs. Ill and 1V, spectively, depending on with »=0,0.1. It is here noticed
the fidelity of the scissors is calculated straightforwardly,in Fig. 5 that the fidelity is apparently increasing fer
which is given in the leading orders fdt=1 and 2, respec- =0.6 in the case dfi=2 and|«|=3. This would indicate that

tively, with || =13 for example as the approximation with the leading terms up dg* is not
_ good enough with7°~0.01 for 67~ 0.4 in the case of
AFgc=1-FsdN=1;lal=3]: considerably largéa/.
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L I B S R — success probability of the ideal measurementdiN, 0)),

Ial=i‘f __________________ 1 e.g.,p(1)=1 andp(2)=1/2 for theBell state detectors pre-

sented so faiNote thatp(2)=3/8 wasgiven in error in Ref.

B i [11].) The success probabilities to prepare the EPR resources

k., 0.5 i |¢_(N,0)) and|]\=1,N) are included in the above estimates

- . for the scissors and reversal, respectively. It appears that

Prv(N) is rather suppressed, since an additional Bell mea-

surement is made to preparg=1,N) from |\) and

|¢_(N,0,1/\)). That is, [\=1,N) is generated from three

0.6 0.8 1 squeezed vacuum states by making the Bell measurement
n twice. Numerically, by taking typicallpn=\"=1/4 wehave

Psd(1) ~2X 1072 Pg(2)~1x10* and Pgy(1) ~4x 1073,

PR\/(Z) ~6X 10_6

FIG. 5. The fidelity of the scissors and reverfak=Fry with
N=2 for the input coherent state witk|=+3 and|a|=3 is shown
depending ony and »=0,0.1.

2. Generalized number-phase Bell states

It is already shown that a high fidelity is achievable in the . )

N=1 scissors for a small enough ampliitude of the input co- We next consider the preparation of two-mode entangled

herent state, e.gFsc>0.9 for =0.7 with|a|=1, where the ~ States. For the preparation of the generalized number-phase
conventional photon detectors resolving one or more photonBell state[¢_(N,0.r)), a squeezed vacuufh’=r) is used

may be use(i6]. In the present scheme including the cases ofis the EPR resource, and another squeezed vagiuis
N=2, we should use the single-photon detectors, which retaken as the input state, which is represented by the matrix
solve zero, one or more photons, since two or more photons in_

may enter some of the detectors. The best available single- c"=E[N)].

photon detector provides the quantum efficiency  Then, by applying the formulas in Secs. Il and IV, the fidel-

~0.7-0.9 [_113' lts dark count rate is roughly given as i is calculated for example with=\'=1/4 (r=1) for the
Ryar~ 10% s'1. Then, the mean dark count is estimated asinput state and EPR resource as

V= TreRyark~ 107 by assuming the detector resolution time
T,e—=10 Ns[6]. It is encouraging for future experimental at- AFgg=1-Fgg[N=1;r=1\=\'=1/4]:
tempts that new proposals have been made for single-photon

?féfCUOﬂ to achieve the quantum efficiency close to unity a f@052 f@l,s5a
In Figs. 4 and 5, we present the estimates of fidelity by 0 - 32

taking somewhat large amplitudes ag§=1\3 and|a|=3 to 1 1/8 24

emphasize the effect of imperfectness of single-photon de- 2 —1/256 197/8 |

tectors. A high fidelity can really be obtained for example as

Fsc=Fry=0.9 for ||=\3 with »=0.8 in the scissors and 3 0 1575/64

reversal ofN=1 and 2. If a smaller amplitude is taken as 4 0 1575/64

|a| <1, the fidelity becomes higher, as seen in Réf. It
should be noted here that the actual fidelities of scissors and AFgg=1-Fgg[N=2;r=1 A=\ =1/4]:
reversal are slightly decreased by those for preparing the _ -
EPR resourcelp_(N,0)) and|]x=1,N), which can be higher a fa0s,p fad g2
than 0.95 forn=0.7 with the small enough squeezing pa- 0 - 56
rameters~0.1, as estimated later.

A spuriously largev=0.1 is taken in Figs. 4 and 5 so as to 1 7164 175/4
make the correction by the dark count visible. Actually, the 2 —49/12286 17143/384
effect of the dark count is fairly small in these scissors and
reversal ofN=1,2, since [f@Y|y~10* with |[f@Y]<1 for 3 343/7077888  19736731/442368

the reasonable~ 107“. It should, however, be remarked that _4 0 842106125/ 188743628

the fidelity for preparing the EPR resour¢é_(N,0)) is Numerical estimates of the fidelity are shown in Figs. 6
somewhat sensitive to the dark counproviding a correc-  and 7 forN=1 andN=2, respectively, depending apwith
tion ~0.005, as seen later. v=0 for simplicity. Here \=1/4 istaken for the input state,

The net success probabilities for the scissors and reversghq then\’=r\ of the EPR resource is given with some
are roughly given from the estimates in the case of ideal Bellypical values of. A higher fidelity is obtained for a smaller

state detectorfll] as r<1, though it is not depicted in these figures. It is in fact
(N)2 (N)3 checked that the coefficient§? and f@% for Fgg are cal-
Y N p 12N : ;
Psd(N) ~ N+ 1)2?\ , Pry(N) ~ N+ 1)47\ : culated to be independent of the squeezing parametafr

the input state. That is, they are determined solely by the
where\?,\'2<1 for the squeezing parameters relevant forsqueezing parameter of the EPR resource. This may be
preparing the EPR resources. Hencef@tN) represents the ascribed to the fact that the optical setup of the present Bell

052311-10
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- —r=l 5 —=1/4 ]
[ =2 ] | e A=1f2 ]
=83 - A=213
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0.6 0.8 1 0.6 0.8 1
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FIG. 6. The fidelityFgg for the preparation oN=1 generalized
number-phase Bell statep_(N=1,0)) is shown depending oy
with »=0. Here,A\=1/4 istaken for the input state, and ther
=r\ of the EPR resource is given with some typical values.of

state detector wittJg in Egs.(91) and(93) andnfy; in Eq.
(29) is asymmetric under the exchange of the input modes
and 2, i.e., in this cas@)« |\'). Then, by taking the small
enough\’'<1/4 a fairly high fidelity Fgg>0.95 can be

N=1N=2)=(0)/0) +[1)]D +[2)[2)13,

%he generalized Bell statgd¢_(N,0,r=1/\)) and the
squeezed vacuum stalte) are taken as the input state and

FIG. 8. The fidelityFsy for the preparation oN=1 truncated
maximally squeezed vacuum stdke= 1 ,N=1) is shown depending
on 7 with »=0. Some typical values are taken for the relevant
sgqueezing parametar.

achieved forp=0.7 andv~ 10 As for the effect of the
dark count, the fidelityFgg for preparing|¢_(N,0,r)) ap-
pears somewhat sensitive to It provides a correction esti-

EPR resource, respectively. The matrix representing the in-
put state is given by

c"=E[|¢_(N,0,r = 1/M))].

mated agf@%|»~0.005 with|f@Y| <50 for the reasonable

y~104

The success probability to prepajé_(N,0,r)) is esti-

Then, the fidelity is calculated for example witk=1/4 as
AFMSV =1- FMSV[N = 1,)\ = 1/4]

mated roughlyf11] as

P(NAN/(N+1) (P> 1r2<1),
Pes(N) ~
oo { PN (r=1),

where;:ma>{)\,)\’]. Numerically, for example, we have
Psa(1) ~3Xx 1072 and Pgg(2) ~1 X 1073 with \'=1/4>\.

3. Truncated maximally squeezed vacuum states

For generating the truncated maximally squeezed vacuum

a f(a,o) 5773 f(a,l)V57]a

0 — 0

1 1/8 0

2 -1/256 -1/8 |
3 0 - 7/64

4 0 - 225/2048

AFMSV =1- FMSV[N = 2,)\ = 1/4]

states, a 20 572 f@ 57
= 0 — 0
1 2 —391/36864 -1351/4608
— — 3 -77/786432 107425/442368
- Iy - —_ —_
M -
| | 4 8473/226492416 -4611707/18874368
i Ne2 ] Numerical estimates are shown in Figs. 8 and 9 Nor
R 0'5_' A=1/4 ] =1 andN=2, respectively, depending on with »=0 for

| — 1 simplicity, where some typical values are taken for the rel-
| =2 evant squeezing parameter The contributions of the dark
I ~—ir=8f3 | count are actually negligible for~ 107, since f@V=f1.0

0 1 L =0 incidentally, as seen in the above lists. A fairly high fi-

0.6

0.8

n

FIG. 7. The fidelityFgg for the preparation oN=2 generalized
number-phase Bell statep_(N=2,0)) is shown depending oy
with »=0. Here,A\=1/4 istaken for the input state, and thar
=r\ of the EPR resource is given with some typical values.of

delity Fyysy>0.94 can really be achieved foj=0.7 with
small enoughA<1/4. The input generalized Bell state
|¢_(N,0,r=1/\)) may be prepared from a pair of squeezed
vacuum statef\’) and [\”) with r=\"/\"=1/\. As seen so
far, a high fidelity Fgg>0.95 can be achieved fop=0.7
with \"<1/4. Then, the actual net fidelity to prepare the

052311-11
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1/1_——7/ The net success probability to prepde=1,N) from
[ M/-*”"’MM 1 |$_(N,0,r=1/\)) and|\) is estimated roughlyl1] as
D 1 PIN? o
- " - P N -~ —)\, ’
iz, 0.5 — i usv(N) (N+1)?
I E:x:m l where N’ =\\" with N2, \'?, \"2< 1. Numerically, for ex-
[ —— ample Pysy(1) ~4x 102 and Pygy(2)~7x10° with A
I —iA=23 | =1/2,\'=1/8 and\"=1/4.
0 1 I 1 n
0.6 1 03 1 VI. SUMMARY

o _ In summary, we have analyzed the linear optical realiza-
FIG. 9. The fidelityFysy for the preparation oN=2 truncated  {jopy of number-sum Bell measurement and number-state ma-
maximally squeezed vacuum stdike=1,N=2) is shown depending injation by taking into account the realistic experimental
on 7 with »=0. Some typical values are taken for the relevantg; a4ion *specifically imperfectness of single-photon detec-
squeezing parametar tor. The present scheme for number-state manipulation is
based on the number-sum Bell measurement, which is imple-
truncated maximally squeezed vacuum state1,N=1,2) mented with linear optical elements, i.e., beam splitters,
can be as high as 0.9, e.g., for=0.7 with A=1/4, \’ phase shifters and zero-one-photon detectors..Squeezed
=(1/4)2 and\"=1/4. vacuum states and coherent states are used as optical sources,
It should be remarked here that the input state and Eprlhl'le single-photon sources may not be required. The linear
state may be exchanged in the preparatiopsfL,N). Then, optical _BeII st_ate detector_ _has been formulated quantum
the fidelity somewhat changes since the optical setup of Beljn€oretically with a probability operator measure. Then, the
state detector is asymmetric under the exchange of the inpdifl€lity of manipulation and preparation of number states,
modes 1 and 2, as explained before. In fact, we Hays, particularly for qubits and_ quitrits, has been evaluated in
=1-fODyt...(FOD~10-50 with |$g2)>:|)\> and [EPR tgrms of the quantum efflqency; and da_rk county of
=|¢_(N,0,r=1/\)) for both the cases"&flzl,z. It isreally single-photon detector. It will be encouraging for future ex-
checked numerically that the corrections of the ordenbf perimental attempts that a high fidelity is a<_:h|evable for
. . =0.7 andv~ 10"* with small enough squeezing parameters
are zero up tad7* independent ok. This case may be more ough sq 9p
favorable since the fidelity is rather insensitivezfoFurther- ~0.1 and coherent state amplituded.
more, a somewhat large may be taken to increase the suc-
cess probability. The effect of the dark count is small enough
for v~10* with f®Y~50. In any case, the fidelity for the ~ The authors would like to thank K. Ogure, M. Senami,
preparation of¢_(N,0,r=1/\)) should be considered. and M. Sasaki for valuable discussions.

ACKNOWLEDGMENTS

[1] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres[9] G. Bjork and J. S6derholm, J. Opt. B: Quantum Semiclassical

and W. K. Wootters, Phys. Rev. Letf0, 1895(1993. Opt. 1, 315(1999.

[2] S. L. Braunstein and H. J. Kimble, Phys. Rev. Le80D, 869  [10] A. Kitagawa and K. Yamamoto, Phys. Rev. 86, 052312
(1998; L. Vaidman, Phys. Rev. A9, 1473(1994). (2002.

[3] G. J. Milburn and S. L. Braunstein, Phys. Rev. 80, 937 [11] A. Kitagawa and K. Yamamoto, Phys. Rev. 88, 042324
(1999; P. T. Cochrane, G. J. Milburn, and W. J. Munilbid. (2003.
62, 062307(2000; P. T. Cochrane and G. J. Milburitid. 64, [12] X. B. Zou, K. Pahlke, and W. Mathis, Phys. Rev. B8,
062312(2001. 043819(2003.

[4] D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett.[13] X. B. Zou, K. Pahlke, and W. Mathis, Phys. Lett. 323 329
81, 1604(1998; S. M. Barnett and D. T. Pegg, Phys. Rev. A (2009

60, 4965(1999. [14] A. Trifonov, T. Tsegaye, G. Bjork, J. S6derholm, E. Goober,
[5] M. Koniorczyk, Z. Kurucz, A. Gabris, and J. Janszky, Phys. M. Atatlire, and A. V. Sergienko, J. Opt. B: Quantum Semi-
Rev. A 62, 013802(2000; C. J. Villas-Boas, Y. Guimaraes, classical Opt.2, 105 (2000.
M. H. Y. Moussa, and B. Basei#hid. 63, 055801(200D. [15] S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, Appl.
[6] S. K. Ozdemir, A. Miranowicz, M. Koashi, and N. Imoto, Phys. Lett. 74, 1063(1999; J. Kim, S. Takeuchi, Y. Yama-
Phys. Rev. A64, 063818(2001; 66, 053809(2002. moto, and H. H. Hoguepid. 74, 902(1999.
[7] S. A. Babichev, J. Ries, and A. |. Lvovsky, Europhys. Léd, [16] A. Imamodu, Phys. Rev. Lett.89, 163602(2002; D. F. V.
1(2003. James and P. G. Kwiaibid. 89, 183601(2002; M. Johnsson
[8] E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, and M. Fleischhauer, Phys. Rev. A7, 061802 (2003; K.
Phys. Rev. Lett.88, 070402(2002. Banaszek and I. A. Walmsley, Opt. Let28, 52 (2003; D.

052311-12



ANALYSIS FOR PRACTICAL REALIZATION OF... PHYSICAL REVIEW A 70, 052311(2004

Achilles, C. Silberhorn, CSliwa, K. Banaszek, and I. A. [18] D. T. Pegg and S. M. Barnett, Phys. Rev.38, 1665(1989;

Walmsley,ibid. 28, 2387(2003; O. Haderka, M. Hamar, and S. M. Barnett and D. T. Pegdpid. 42, 6713(1990.
J. Pgina, Jr., e-pri_nt quant-ph/0302154;Rehaek, Z. Hradil, [19] H. Paul, P. Térm4, T. Kiss, and I. Jex, Phys. Rev. L&,
O. Haderka, J. Rena, Jr, and M. Hamar, Phys. Rev. 87, 2464(1996; P. Kok and S. L. Braunstein, Phys. Rev. 88,

061801(2003; M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J.

D. Franson,bid. 68, 043814(2003; A. M. Branczyk, T. J. o . .
Osbomne, A. Gilchrist, and T. C. Ralphibid. 68, 043821 [20] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys.

(2003. Rev. Lett. 73, 58 (1994).

[17] A. Luis and L. L. Sanchez-Soto, Phys. Rev. 48, 4702 [21] S. M. Barnett, L. S. Phillips, and D. T. Pegg, Opt. Commun.
(1993. 158 45(1998.

033812(2001).

052311-13



