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We analyze the linear optical realization of number-sum Bell measurement and number-state manipulation
by taking into account the realistic experimental situation, specifically imperfectness of single-photon detector.
The present scheme for number-state manipulation is based on the number-sum Bell measurement, which is
implemented with linear optical elements, i.e., beam splitters, phase shifters, and zero-one-photon detectors.
Squeezed vacuum states and coherent states are used as optical sources. The linear optical Bell state detector
is formulated quantum theoretically with a probability operator measure. Then, the fidelity of manipulation and
preparation of number states, particularly for qubits and qutrits, is evaluated in terms of the quantum efficiency
and dark count of single-photon detector. It is found that a high fidelity is achievable with small enough
squeezing parameters and coherent state amplitudes.
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I. INTRODUCTION

Extensive research and development have been done re-
cently on quantum information and communication tech-
nologies. Among various media for quantum information and
communication, the photon-number Fock space is promising
in the point that it provides higher dimensional states such as
qutrits to carry more information than qubits. This stimulates
great interest in preparation and manipulation of various
photon-number states. Specifically, teleportation[1,2] is
known to provide important tools for quantum communica-
tion and information processing. The number-state teleporta-
tion may be performed by making a number-sum Bell mea-
surement with certain Einstein-Podolsky-Rosen(EPR)
resource[1,3]. Then, its method really appears to be useful
for engineering the input states, irrespective of teleportation
fidelity. In fact, a quantum scissors for number-state trunca-
tion by projective measurement, which has been investigated
thoroughly so far[4–6], may be viewed as a teleportation-
based number-state manipulation. The entanglement resource
is prepared from vacuum and one photon state through a
50:50 beam splitter, and the joint photon detection imple-
ments the number-sum Bell measurement. An experimental
realization of quantum scissors has been done recently, gen-
erating a qubit of vacuum and one-photon state by truncating
a coherent state[7]. It is also interesting that an experimental
result has been reported for the teleportation of the vacuum-
one-photon qubit[8].

The number-sum Bell measurement accordingly plays an
essential role for engineering the photon-number states via
teleportation. Some feasible schemes have appeared recently
for implementing particularly the joint measurement of num-
ber sum and phase difference with linear optics[9–13], and

an experimental demonstration has also been reported[14].
Then, various number-state preparations and manipulations
have been investigated based on teleportation with number-
sum Bell measurements and relevant EPR resources[10–13].
In these respects, there are growing interests in the number-
sum Bell measurement and its application for the number-
state manipulation.

In this paper we analyze the linear optical realization of
number-sum Bell measurement and number-state manipula-
tion by taking into account the realistic experimental situa-
tion, specifically imperfectness of single-photon detector.
The present scheme for number-state manipulation is based
on the number-sum Bell measurement, which is implemented
with linear optical elements, i.e., beam splitters, phase
shifters and zero-one-photon detectors. As for the optical
sources, many useful manipulations of number states are re-
alized with squeezed vacuum states and coherent states,
which are widely used in optical experiments, while single-
photon sources may not be required[10–13]. Beam splitters
and phase shifters will be available with high accuracy. On
the other hand, photon detectors are currently developed de-
vices, which in practice have finite quantum efficiency and
nonzero dark count rate. Hence, for feasible experiments it is
desired to provide a systematic method to evaluate the effi-
ciency of number-state manipulation with number-sum Bell
measurement, by taking into account the imperfectness of
actual photon detectors. It is indeed encouraging that some
significant developments and new proposals have been made
for single-photon detection to achieve the quantum efficiency
close to unity[15,16]. We believe that the present work pro-
motes future experimental efforts on engineering photon-
number states by number-sum Bell measurement.

This paper is organized as follows. In Sec. II, we describe
the number-sum Bell states, particularly those associated
with phase difference. In Sec. III, we present a linear optical
detector to measure a specific number-sum Bell state, and
formulate it quantum theoretically with a probability opera-
tor measure(POM). Then, we estimate the sensitivity of
these detectors in terms of the efficiency of practical single-
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photon detectors. In Sec. IV, we investigate the number-state
manipulation via teleportation by number-sum Bell measure-
ment. We present the formulas to evaluate the fidelity for
engineering various photon-number states. In Sec. V, by ap-
plying these formulas we analyze the efficiencies of some
useful manipulations and preparations in particular for qubits
and qutrits. This analysis indicates that these experiments
will be performed with good fidelities by utilizing currently
available apparatus. Section VI is devoted to summary.

II. NUMBER-SUM BELL STATES

The measurement of number-sum Bell states plays the
central role in the present scheme for number-state manipu-
lation. The number-sum Bell states are given generally as

udsN,mdl = o
k=0

N

dksN,mduN − kl1ukl2 s1d

for m=0,1, . . . ,N, forming an orthonormal set,

kdsN8,m8dudsN,mdl = dN8NdsN,m8d ·dsN,md = dN8Ndm8m.

s2d

The inner product of complex vectors is henceforth repre-
sented by

u ·v = o
k=0

N

uk
*vk. s3d

The generic states in the two-mode Fock spacehun1l1un2l2j
are expanded in terms of these Bell states as

ucs2dl = o
N=0

`

o
k=0

N

cksNduN − kl1ukl2 = o
N=0

`

o
m=0

N

cdsN,mdudsN,mdl,

s4d

where

cdsN,md = dsN,md ·csNd = o
k=0

N

dk
*sN,mdcksNd. s5d

Specifically, we consider the number-phase Bell states
[10–13,17],

uf−sN,mdl = o
k=0

N fsvN+1
* dmgk

ÎN + 1
uN − kl1ukl2 s6d

with

dksN,md =
1

ÎN + 1
fsvN+1

* dmgk, s7d

where thesN+1d-root to generate a ZN+1 is given by

vN+1 ; expfi2p/sN + 1dg, svN+1dN+1 = 1. s8d

These Bell states in Eq.(6) are also expressed as

uf−sN,mdl = o
m8=0

N fsvN+1
* dm8+mgN

ÎN + 1
ufm8+m

sNd l1ufm8
sNdl2 s9d

in terms of the phase states given by Pegg and Barnett[18],

ufm
sNdlp = o

n=0

N
fsvN+1dmgn

ÎN + 1
unlp sp = 1,2d. s10d

The Bell measurement of number sum and phase differ-
ence is represented by the Hermitian operators,

N̂+ ; N̂1 + N̂2, s11d

F̂− ; o
N=0

`

fF̂1
sNd − F̂2

sNdgP̂sNd. s12d

Here,N̂p sp=1,2d represent the number operators of the re-

spective modes, andF̂p
sNd the phase operators corresponding

to the phase states in Eq.(10). The projection operatorP̂sNd

extracts the states in the subspacehuN−kl1ukl2j with number
sumN. As seen clearly from Eqs.(6) and(9), the Bell states
uf−sN,mdl are the simultaneous eigenstates of number sum
and phase difference:

N̂+uf−sN,mdl = Nuf−sN,mdl, s13d

F̂−uf−sN,mdl = f−sN,mduf−sN,mdl, s14d

where the phase-difference eigenvalues are given by

f−sN,md =
2p

N + 1
m. s15d

Since fF̂1
sNd−F̂2

sNdg does not change the number sumN, it

commutes withP̂sNd as required for the Hermiticity of the

entire phase-difference operatorF̂−. These results clarify that
in the subspace with number sumN the phase-difference
operator introduced by Luis and Sánchez-Soto[17] indeed
coincides with the difference of the phase operators of the
individual modes given by Pegg and Barnett[18], while it is
not separable in the entire two-mode Fock space. It is also

obvious from Eqs.(13) and (14) that N̂+ and F̂− are com-
mutable:

fN̂+,F̂−g = 0. s16d

Therefore, the joint measurement of number sum and phase
difference can be made in principle, where the two-mode
number states are projected to the number-phase Bell states
uf−sN,mdl.

The number-phase Bell states in Eq.(6) may be general-
ized by introducing a scaling parameterr [10,11] as

uf−sN,m,rdl = DsN,rdo
k=0

N

rkfsvN+1
* dmgkuN − kl1ukl2, s17d

where the normalization factor is given by

DsN,rd =
ÎN + 1s1 − r2d

1 − r2sN+1d . s18d

A two-mode squeezed vacuum stateull with squeezing pa-
rameterl,1 may be used as a primary resource of entangle-
ment, which is given by
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ull = s1 − l2d1/2o
n=0

`

lnunlunl. s19d

Then, these generalized number-phase Bell states are actu-
ally generated from a pair of two-mode squeezed vacuum
statesull13 andul8l24 by making the number-phase Bell mea-
surement:

ull13ul8l24 ⇒
uf−sN,−mdl

ufsN,m,rdl, s20d

where the scaling parameterr is given by the ratio of the
squeezing parameters,

r = l8/l. s21d

Here, we have considered the relation

ull13ul8l24 = s1 − l2d1/2s1 − l82d1/2o
N=0

`
lN

DsN,rd

3o
m=0

N

uf−sN,− mdl34uf−sN,m,rdl12 s22d

from the swappings1,3ds2,4d→ s1,2ds3,4d.

III. PRACTICAL BELL STATE DETECTOR

We utilize a linear optical detector, sayBell state detector,
to measure conditionally a specific two-mode number-sum
Bell state as given in Eq.(1). Henceforth the Bell state to be
detected is denoted simply by

ud̃l ; udsÑ,m̃dl s23d

with the number sumÑ and amplitude coefficients

d̃k ; dksÑ,m̃d. s24d

As shown schematically in Fig. 1, it is constructed as an
M-port system consisting of(i) a set of beam splitters and
phase shifters,(ii ) sM −2d auxiliary input modes(ancillas)
with vacuum states, and(iii ) zero-one-resolving photon de-
tectors for the output modes, though imperfect practically.
This method is based on the idea of photon chopping[19].
The Bell state detectors ofuf−sÑ,m̃dl for Ñ=1 and 2 are

considered in Refs.[10,11], and then a method for generalÑ
is presented in Refs.[12,13]. The photon detectors need to
resolve zero, one or more photons, since two or more pho-

tons may enter some of the detectors for the case ofÑù2.
The operation of the set of beam splitters and phase

shifters is given by a unitary transformation between the in-
put modesai and the output modesbj (in Heisenberg picture)
[20]:

ai = Ud̃biUd̃

†
= Ud̃i jbj, ai

† = Ud̃bi
†U

d̃

†
= bj

†U
d̃ ji

†
, s25d

where i , j =1,2, . . . ,M, andUd̃ is an M 3M unitary matrix.
The two-mode input stateucs2dl and vacuum stateu0la of
sM −2d ancillas are transformed to certain output states
through the optical set(in Schrödinger picture), which may

be expanded in terms of the number states of the outputM
modes,

unsMdl ; un1l1un2l2 ¯ unMlM s26d

with number distribution

nsMd ; sn1,n2, . . . ,nMd. s27d

The parameters of the optical set are chosen so that this
unitary transformation is given as

Ud̃ucs2dlu0la = gd̃kd̃ucs2dlunsMd
cnt l + uC ' nsMd

cnt l, s28d

whereuC'nsMd
cnt l is a certain state orthogonal tounsMd

cnt l. That

is, only if the input stateucs2dl contains the Bell stateud̃l to
be detected, the output state has the component of the spe-
cific number distribution,

s29d

Then, by using the ideal zero-one-resolving photon detectors,

the Bell stateud̃l is detected conditionally inucs2dl, when the
photon counting result ofnsMd

cnt is obtained with success prob-
ability

P
d̃

idealfucs2dlg = ugd̃u2ukd̃ucs2dlu2. s30d

Practically, we use imperfect zero-one-resolving photon de-
tectors described by the POM’sPs0d andPs1d. The POM of
photon detector for theN photon count is given with quan-
tum efficiencyh and mean dark countn by

FIG. 1. A schematic diagram of the linear optical Bell state
detector. The input two-mode state, which may contain the number-

sum Bell stateud̃l;udsÑ,m̃dl with number-sumÑ, enters the de-
tector together with the vacuum states ofsM −2d ancilla modes. A
unitary transformationUd̃ is made through a set of beam splitters
and phase shifters, and the output state is detected to give condi-
tionally the specific photon countnsMd

cnt =s1, . . . ,1 ,0, . . . ,0d as the

signal of ud̃l. The photon detectors need to resolve zero, one or
more photons, since two or more photons may enter some of the

detectors for the case ofÑù2.
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PsNd = o
m=0

N

e−n nN−m

sN − md! on=m

`

nCmhms1 − hdn−munlknu,

s31d

wherenCm is the binomial coefficient[21].
The two-mode input staters2d combined with the ancilla-

modera is transformed by the optical set as

rs2d ^ ra → Ud̃rs2d ^ raUd̃

†
, s32d

where

ra = u0laak0u ; ^
i=3

M

su0lk0udi . s33d

Then, the probability to obtain the photon count of Eq.(29)
for the two-moders2d is given by

Pd̃frs2dg = TrfPPDUd̃rs2d ^ raUd̃

†g ; TrfGd̃rs2dg. s34d

The POM of this Bell state detector is given by

Gd̃ = ak0uU
d̃

†
PPDUd̃u0la s35d

with the POM of the photon detector set

PPD = ^
i=1

Ñ

Ps1di ^

i=Ñ+1

M

Ps0di . s36d

It may be expressed as

Gd̃ = o
N=0

`

o
k=0

N

o
k8=0

N

Kk8k
d̃ sNdusN,k8dlksN,kdu s37d

in terms of the basis states of number sumN

usN,kdl ; uN − kl1ukl2 s38d

with

Kk8k
d̃ sNddN8N = ksN8,k8duGd̃usN,kdl. s39d

Here, it should be remarked that the matrix elements ofGd̃
between the states with different values of number sum are
zero, sinceUd̃ andPPD conserve the total photon number.

Specifically, for the basis stateusN,kdl we obtain the out-
put state as

Ud̃usN,kdlu0la = o
NSfnsMdg=N

Bk
d̃fnsMdgunsMdl. s40d

Here, the sum is taken over the distributionsnsMd with num-
ber sumN, since the unitary transformationUd̃ conserves the
total photon number

NSfnsMdg ; o
i=1

M

ni = N. s41d

The basis states with number sumN are given by

usN,kdl =
1

ÎsN − kd!Îk!
sa1

†dN−ksa2
†dku0l1u0l2. s42d

By using Eq.(25) we obtain

sa1
†dN−ksa2

†dk = o
j sNd

Wk
d̃fj sNdg ^

l=1

N

bjl
† , s43d

wherej sNd;s j1, j2, . . . ,jNd, 1ø j l øM, and

Wk
d̃fj sNdg = U

d̃1j1

*
¯ U

d̃1jN−k

*
U

d̃2jN−k+1

*
¯ U

d̃2jN

*
. s44d

Then, we calculate the coefficients for the output stateunsMdl
in Eq. (40) as

Bk
d̃fnsMdg =

ÎnsMd!

ÎsN − kd!Îk!
o

j sNd→nsMd

Wk
d̃fj sNdg, s45d

wherensMd! ;n1!n2!¯nM!, and the sum is taken over all the
sets of indicesj sNd that provide the photon-number distribu-
tion nsMd.

Given the coefficientsBk
d̃fnsMdg in Eq. (40), we obtain the

matrix elements of Bell measurement POMGd̃ in Eq. (37) as

Kk8k
d̃ sNd = o

NSfnsMdg=N

Bk8
d̃*fnsMdgBk

d̃fnsMdgPPDfunsMdlg. s46d

Here, we have considered the relation from the photon-
number conserving nature ofPPD,

knsMd8 uPPDunsMdl = dnsMd8 nsMd
PPDfunsMdlg. s47d

The probability that the stateunsMdl results in the photon
countnsMd

cnt is given by

PPDfunsMdlg = knsMduPPDunsMdl = p
i=1

Ñ

P1gsnid p
i=Ñ+1

M

P0gsnid,

s48d

where

P0gsnd = knuPs0dunl = e−ndhn, s49d

P1gsnd = knuPs1dunl = e−ndhn−1fns1 − dhd + ndhg, s50d

with

dh ; 1 − h. s51d

The output stateunsMd
cnt l, in particular, to indicate the de-

sired Bell stateud̃l is faithfully counted asnsMd
cnt with prob-

ability

PPDfunsMd
cnt lg = e−Mnf1 − dh + ndhgÑ. s52d

(Henceforth we assume for simplicity that all the photon
detectors have the commonh andn.) The probability for the
generic output stateunsMdl to give the expected photon count
nsMd

cnt is also evaluated as
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PPDfunsMdlg = e−Mn o
sa,bd

rPD
sa,bdfnsMdgdhanbs1 − dhdÑ−b,

s53d

with certain coefficientsrPD
sa,bdfnsMdg, where the extra factors

s1−dhdÑ−b come fromP1gsnid s1ø i ø Ñd. The non-negative
powersa and b in the expansion of Eq.(53) represent the
discounts and overcounts of photons, respectively, which sat-
isfy the relation

a − b = N − Ñ s54d

in the range of maxf0,N−ÑgøaøN and maxf0,Ñ−Ngøb

ø Ñ. For N, Ñ the deficit of photons should be supplied by

the dark counts, while forN. Ñ the excess of photons
should be discarded withh,1. By considering Eq.(54), the
leading dependence ofPPDfunsMdlg on dh,1 and n,1 is
found for the output states other thanunsMd

cnt l as

PPDfunsMdl Þ unsMd
cnt lg , 5 nÑ−N sN , Ñd,

dhn sN = Ñd,

dhN−Ñ sN . Ñd.
6 s55d

It may be reasonably assumed for feasible photon detectors
that the dark countn is considerably smaller than the ineffi-
ciency dh, e.g.,n,10−4 and dh,0.1, as will be explained
in Sec. V. Then, the leading error,dh of the Bell state
detector is provided by the statesunsMdl with the total photon

numberN=Ñ+1.

When the desired Bell stateud̃l is measured by this Bell
state detector, the probability to obtain the expected photon
countnsMd

cnt is given with Eqs.(34), (37), and(46) as

Pd̃fud̃lg = TrfGd̃ud̃lkd̃ug = o
NSfnsMdg=Ñ

PPDfunsMdlguBd̃fnsMdg · d̃u2.

s56d

In this practical Bell measurement, the other states orthogo-

nal to ud̃l may be miscounted asud̃l with nonzero probabili-
ties. Only if we can use the ideal Bell state detector, the Bell
state is measured faithfully as

P
d̃

idealfudsN,mdlg = P̄d̃fud̃lgdNÑdmm̃. s57d

That is, the desired Bell stateud̃l is measured with the suc-

cess probabilityP̄d̃fud̃lg, while the other orthogonal states are
not detected. By considering Eq.(28) with PPD

idealfunsMd
cnt lg=1,

the success probability in the ideal case is evaluated as

P̄d̃fud̃lg = ugd̃u2 = uBd̃fnsMd
cnt g · d̃u2. s58d

On the other hand, from the completeness of number-state
Fock space the sum of the probabilities for the orthonormal

basis statesudsN,mdl;ud̃'l other thanud̃l to be miscounted

as ud̃l is given by

o
ud̃'l

TrfGd̃ud̃'lkd̃'ug = TrfGd̃g − TrfGd̃ud̃lkd̃ug, s59d

where

1 = ud̃lkd̃u + o
ud̃'l

ud̃'lkd̃'u, s60d

TrfGd̃g = o
nsMd

PPDfunsMdlguBd̃fnsMdgu2. s61d

Then, theconfidenceof this practical Bell state detector may
be defined by

Cd̃ =
TrfGd̃ud̃lkd̃ug

TrfGd̃g
ø 1. s62d

In particular,Cd̃=1 only for the Bell state detector with ideal
optical devices. We evaluate the confidence in Eq.(62) with
Eqs.(56) and (61) for the practical Bell state detector as

Cd̃ ; 1 − DCd̃ = 1 − o
sa,bdÞs0,0d

q
d̃

sa,bd
dhanb s63d

in the expansion with respect todh andn.

IV. NUMBER-STATE MANIPULATION

We now investigate the number-state manipulation via
teleportation with number-sum Bell measurement. The input
state(normalized) may be prepared inK optical modes as

ucinl = o
nsKd

cnsKd

in unsKdl, s64d

where

unsKdl ; un1l1un2l2 ¯ unKlK ; un1l1unsK−1dl. s65d

We here consider specifically a class of two-mode EPR re-
sources(normalized) as

uEPRl = o
l=0

`

Elull0ussldl−1 ; o
l=0

`

o
l8=0

`

El8lull0ul8l−1 s66d

with the amplitude distribution matrix

El8l = dl8ssldEl . s67d

The permutation of number states between the two modes is
given by

ssl1d Þ ssl2d ↔ l1 Þ l2. s68d

In particular, for the number-difference 0 resource and the
number-sumN resource, respectively,

ssld = H l snumber-difference 0d,

N − l snumber-sumNd.
J s69d

The input state is then manipulated by making a Bell mea-
surement with an EPR resource. We here consider the one-

mode manipulation with the measurement ofud̃l. The multi-
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mode manipulation may further be performed by applying
these sorts of one-mode manipulations to some modes of the
input state.

The Bell measurement is made on the 0-1 mode of the
combined statesn1;k, l ;N−kd

ucinluEPRl = o
nsK−1d

o
N=0

`

o
k=0

N

cknsK−1d

in EN−kusN,kdl

3ussN − kdl−1unsK−1dl. s70d

Then, we obtain the output state as

rout = TrfGd̃rin ^ rEPRg

= o
nsMd

PPDfunsMdlgucoutfnsMdglkcoutfnsMdgu s71d

for rin= ucinlkcinu and rEPR= uEPRlkEPRu, where ussN
−kdl−1unsK−1dl;unsKdl by redenoting

ussN − kdl−1 ; un1l1. s72d

(The output staterout will be properly normalized later in
defining the fidelity.) The output states associated withunsMdl,
which may not be orthogonal each other, are given by

ucoutfnsMdgl = o
nsKd

cnsKd

out fnsMdgunsKdl s73d

with the amplitudes

cnsKd

out fnsMdg = uEN−kBk
d̃fnsMdgcknsK−1d

in un1=ssN−kd
N=NSfnsMdg, s74d

wherek is specified byn1=ssN−kd in terms ofn1 andN. It is
straightforward to extend these formulas generally for the
mixed states ofrin and rEPR with the output states as
ucoutfnsMdglkcoutfnsMdgu→routfnsMdg.

This teleportation-based manipulation may be viewed as a
linear transformation of the input state:

rout = Td̃ErinTd̃E

† ; o
nsMd

PPDfunsMdlgsTd̃EfnsMdgrinTd̃E

† fnsMdgd.

s75d

The amplitudes are accordingly transformed as

coutfnsMdg = Td̃EfnsMdgcin s76d

or

cnsKd

out fnsMdg = o
k=0

N

T n1k
d̃E fnsMdgcknsK−1d

in . s77d

As seen from Eq.(74), the transformation matrixTd̃EfnsMdg
is composed of that given by the Bell state detector,

Bd̃fnsMdg, the reversal s0, . . . ,N→N, . . . ,0d with N
=NSfnsMdg, RN, and the EPR resource,E:

Td̃EfnsMdg = ERNBd̃fnsMdg, s78d

where

sBd̃fnsMdgdkk8 = dkk8Bk
d̃fnsMdgusN − kd s79d

with

usN − kd = H1 s0 ø k ø Nd,

0 sk . Nd.
J s80d

We may further consider multiple manipulations of this sort
[11] as

T d̃EsLd
¯ T d̃Es2dT d̃Es1d. s81d

The desired manipulation of input state with the EPR re-

source is obtained by using the ideal Bell state detector ofud̃l
as

routsh = 1,n = 0d = ucout
d̃Elkcout

d̃Eu, s82d

where

ucout
d̃El = ucoutfnsMd = nsMd

cnt gl s83d

with

cnsKd

out fnsMd
cnt g = o

k=0

N

Tn1k
d̃E fnsMd

cnt gcknsK−1d

in . s84d

Here, only the number stateunsMd
cnt l is detected faithfully as

the photon countnsMd
cnt in the outputM ports. Thefidelity is

used to evaluate the quality of manipulation with the practi-
cal experimental setup, which is given by

Ffucout
d̃Elg =

Trfroutucout
d̃Elkcout

d̃Eug

TrfroutgTrfucout
d̃Elkcout

d̃Eug
ø 1, s85d

where the denominator of the right side provides the normal-

ization factors ofrout and ucout
d̃Elkcout

d̃Eu. The relevant quantities
are calculated by

Trfroutg = o
nsMd

PPDfunsMdlgcoutfnsMdg ·coutfnsMdg, s86d

Trfucout
d̃Elkcout

d̃Eug = coutfnsMd
cnt g ·coutfnsMd

cnt g, s87d

Trfroutucout
d̃Elkcout

d̃Eug = o
nsMd

PPDfunsMdlg

3 ucoutfnsMdg ·coutfnsMd
cnt gu2. s88d

Here, Trfroutg is the probability to obtain the expected pho-
ton countnsMd

cnt by performing the conditional measurement
with this Bell state detector. The fidelity of manipulation is
then evaluated by considering the sensitivity of photon de-
tector as

Ffucout
d̃Elg ; 1 − DFfucout

d̃Elg = 1 − o
sa,bdÞs0,0d

f sa,bdfucout
d̃Elgdhanb.

s89d
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V. ANALYSIS OF EFFICIENCIES

We can analyze the efficiencies of practical Bell state de-
tectors and number-state manipulations by applying the for-
mulas presented so far.

A. Bell state detectors

In the number-state manipulations based on teleportation,
the number-phase Bell statesuf−sN,mdl in Eq. (6) may spe-
cifically be measured by the Bell state detectors[10–13]. In
order to show the efficiency of practical Bell measurement
with linear optics in the present scheme, we evaluate the

confidence typically for the detection ofud̃l= uf−sÑ,0dl with

number sum Ñ=1, 2 and phase differencem=0. The
number-phase Bell states with nonzero phase differencem
are also measured similarly by making a phase shifta2

→v
Ñ+1

m
a2 of the mode 2 in Eq.(6) before the two-mode

states enter the Bell state detector. The Bell state detectors

for number sumÑ=1, 2 are useful for manipulations of qu-
bits and qutrits, as seen later.

The Bell state detector ofuf−s1,0dl with Ñ=1 is charac-
terized by the amplitude distribution and the unitary transfor-
mation of optical modes which are given, respectively, by

d̃ =
1
Î2

S1

1
D → uf−sÑ = 1,0dl, s90d

Ud̃ =1
1
Î2

−
1
Î2

1
Î2

1
Î2
2 , s91d

where no ancilla is usedsM =2d. As is well known, this
unitary transformationUd̃ is realized with a 50:50 beam
splitter. The confidence of this Bell state detector is calcu-
lated in the leading orders of the expansion with respect to
dh andn as

DCd̃ ; 1 −Cd̃fuf−sÑ = 1,0dlg:

3
a q

d̃

sa,0d
dha q

d̃

sa,1d
ndha

0 — 1

1 3 − 4

2 − 3 5

3 1 − 2

4 0 0

4 ,

where the coefficientsq
d̃

sa,bd
are presented in this list. The

Bell state detector ofuf−s2,0dl with Ñ=2 is characterized by

d̃ =
1
Î311

1

1
2 → uf−sÑ = 2,0dl, s92d

Ud̃ =1
1
Î2

0 −
1
Î2

0 1 0

1
Î2

0
1
Î2
21

1 0 0

0
2
Î6

−
1
Î3

0
1 + i
Î6

1 + i
Î3
2

31
Î3

2Î2

Î5

2Î2
0

−
3 + i

4

Î3s3 + id
4Î5

0

0 0 1
2 , s93d

where one ancilla is usedsM =3d [10,11]. The confidence of
this Bell state detector is calculated in the leading orders as

DCd̃ ; 1 −Cd̃fuf−sÑ = 2,0dlg:

3
a q

d̃

sa,0d
dha q

d̃

sa,1d
ndha

0 — 7/3

1 28/9 − 304/27

2 − 1075/324 15803/972

3 1883/1458 − 23147/2916

4 − 2029/26244 − 19991/39366

4 .

Numerical estimates of the confidence are shown in Figs.

2 and 3 forÑ=1 andÑ=2, respectively, depending onh with
n=0, 0.05, 0.1. Here, it is seen apparently that the confi-
dences of these Bell state detectors are not so good unless the
quantum efficiency of photon detectors is rather high as
h.0.9 with the small enough dark countn. It should, how-
ever, be remarked that the confidence is defined in Eq.(62)
with Eq. (59) to provide a general estimate of Bell state
detector, which is irrespective of the actual contents of the
input two-mode states to be measured. If the input state con-

tains small components of the statesud̃'l other than the de-

sired Bell stateud̃l, the actual probability to miscount these

irrelevant components asud̃l becomes small according to

FIG. 2. The confidence of the detector to measure the number-

phase Bell stateuf−sÑ=1,0dl is shown depending onh with n=0,
0.05, 0.1.
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their portion in the input state. Furthermore, by the miscount

of photon detectors even the input components ofud̃'l may
contribute to the fidelity to obtain the desired output state.
Hence, the practical Bell measurement may provide high fi-
delities for some sorts of number-state manipulations via
teleportation, as seen in the following.

B. Manipulations and preparations

We next examine some useful manipulations and prepara-
tions of number states which are based on the teleportation
technique [4–6,10–13]; scissors, reversal, generalized
number-phase Bell state and truncated maximally squeezed
vacuum state. This analysis of efficiencies will indeed be
relevant for feasible experimental realizations of these sorts
of operations particularly for qubits and qutrits. The success
probabilities have been calculated by assuming the ideal Bell
state detectors in Ref.[11], which provide approximate esti-
mates even in the present scheme utilizing realistic photon
detectors with reasonable efficiency. The precise evaluations
of success probabilities can be made by applying the formu-
las presented in Secs. III and IV for the practical Bell state
detectors. A detailed analysis may be reserved for a future
study, while it is not the aim of the present work.

The teleportation based manipulations are specified by the
sets of input state, EPR resource and Bell measurement as

Smanipulation= hucinl,uEPRl,ud̃lj. s94d

Specifically, we take the number-phase Bell measurement of

ud̃l= uf−sN,0dl sr =1d with Ñ=N=1, 2 andm=0. As for the
EPR resources, we take the two-mode squeezed vacuum
state ull with squeezing parameterl,1, the generalized
number-phase Bell stateuf−sN,0 ,rdl and the truncated maxi-
mally squeezed vacuum stateul=1,Nl, which is given by

ul = 1,Nl =
u0lu0l + u1lu1l + ¯ + uNluNl

ÎN + 1
. s95d

The squeezed vacuum state is taken as the primary resource
of entanglement, and the other EPR resources can be pre-
pared in the present scheme as

ull → uf−sN,0,rdl → ul = 1,Nl,

which will be described below.
The ingredients for the relevant manipulations and prepa-

rations are listed as follows.
(i) Scissors:

ucin
s1dl = o

n=0

`

cn
inunl → o

n=0

N

cn
inunl,

Sscissors= hucin
s1dl,uf−sN,0dl,uf−sN,0dlj.

(ii ) Reversal:

ucin
s1dl = o

n=0

`

cn
inunl → o

n=0

N

cN−n
in unl,

Sreversal= hucin
s1dl,ul = 1,Nl,uf−sN,0dlj.

(iii ) Generalized number-phase Bell state:

ull → uf−sN,0,rdl,

Sfuf−sN,0,rdlg = hull,ul8 = rll,uf−sN,0dlj.

(iv) Truncated maximally squeezed vacuum state:

uf−sN,0,1/ldl → ul = 1,Nl,

Sful = 1,Nlg = huf−sN,0,1/ldl,ull,uf−sN,0dlj.

The matrices representing the relevant EPR resources are
given as follows. The squeezed vacuum state is represented
by

Efullg = Î1 − l21
1 0 0 0 ¯

0 l 0 0 ¯

0 0 l2 0 ¯

0 0 0 l3
¯

A A A A �

2 .

The truncated maximally squeezed vacuum states are repre-
sented forN=1 and 2, respectively, by

Eful = 1,N = 1lg =1
1
Î2

0 0 0 ¯

0
1
Î2

0 0 ¯

0 0 0 0 ¯

0 0 0 0 ¯

A A A A �

2 ,

FIG. 3. The confidence of the detector to measure the number-

phase Bell stateuf−sÑ=2,0dl is shown depending onh with n=0,
0.05, 0.1.
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Eful = 1,N = 2lg =1
1
Î3

0 0 0 ¯

0
1
Î3

0 0 ¯

0 0
1
Î3

0 ¯

0 0 0 0 ¯

A A A A �

2 .

The generalized number-phase Bell statessm=0d are repre-
sented forN=1 and 2, respectively, by

Efuf−sN = 1,0,rdlg = Ds1,rd1
0 r 0 0 ¯

1 0 0 0 ¯

0 0 0 0 ¯

0 0 0 0 ¯

A A A A �

2 ,

Efuf−sN = 2,0,rdlg = Ds2,rd1
0 0 r2 0 ¯

0 r 0 0 ¯

1 0 0 0 ¯

0 0 0 0 ¯

A A A A �

2 .

1. Scissors and reversal

In order to show the efficiency of number-state manipula-
tions with the practical Bell state detectors, we evaluate the
fidelity of the scissors and reversal for qubitsN=1d and
qutrit sN=2d. A coherent state may be taken typically as the
input,

ual = e−uau2/2o
n=0

`
a

În!
unl,

with

cin = e−uau2/2s1,a,a2/Î2, . . .dT.

Then, by using particularly theN=2 scissors we can prepare
a qutrit

ucqutrit1l = u0l + au1l + sa2/Î2du2l,

while we can rearrange this qutrit by the reversal as

ucqutrit2l = sa2/Î2du0l + au1l + u2l,

where the normalization factors are omitted.
By applying the formulas presented in Secs. III and IV,

the fidelity of the scissors is calculated straightforwardly,
which is given in the leading orders forN=1 and 2, respec-
tively, with uau=Î3 for example as

DFSC; 1 − FSCfN = 1;uau = Î3g:

3
a fsa,0ddha f sa,1dndha

0 — 1/8

1 9/16 1/8

2 − 27/64 7/128

3 81/256 41/256

4 − 243/1024 85/2048

4 ,

DFSC; 1 − FSCfN = 2;uau = Î3g:

3
a fsa,0ddha f sa,1dndha

0 — 7/17

1 483/1156 − 4826/4913

2 1431/4624 48021/78608

3 − 235683/314432 1276203/2672672

4 1443321/2515456 − 36559049/21381376

4 .

The fidelity of the reversalFRV is the same as that of the
scissorsFSC in the present scheme(if the EPR resources are
ideally prepared):

FRV = FSC. s96d

This is verified by the relation

E†EfSCg = E†EfRVg

for uf−sN,0dl [SC] and ul=1,Nl [RV] in calculating the in-
ner product of the output states with Eqs.(76) and (78),

kcoutfnsMd8 guucoutfnsMdgl = coutfnsMd8 g ·coutfnsMdg

= cin†Bd̃†fnsMd8 gRN8
† E†ERNBd̃fnsMdgcin.

Numerical estimates of the fidelity of the scissors and
reversal are shown in Figs. 4 and 5 forN=1 andN=2, re-
spectively, depending onh with n=0,0.1. It is here noticed
in Fig. 5 that the fidelity is apparently increasing forh
&0.6 in the case ofN=2 anduau=3. This would indicate that
the approximation with the leading terms up todh4 is not
good enough withdh5,0.01 for dh,0.4 in the case of
considerably largeuau.

FIG. 4. The fidelity of the scissors and reversalFSC=FRV with
N=1 for the input coherent state withuau=Î3 anduau=3 is shown
depending onh with n=0,0.1.
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It is already shown that a high fidelity is achievable in the
N=1 scissors for a small enough amplitude of the input co-
herent state, e.g.,FSC.0.9 for h=0.7 with uau=1, where the
conventional photon detectors resolving one or more photons
may be used[6]. In the present scheme including the cases of
Nù2, we should use the single-photon detectors, which re-
solve zero, one or more photons, since two or more photons
may enter some of the detectors. The best available single-
photon detector provides the quantum efficiencyh
<0.7–0.9 [15]. Its dark count rate is roughly given as
Rdark,104 s−1. Then, the mean dark count is estimated as
n=tresRdark,10−4 by assuming the detector resolution time
tres=10 ns[6]. It is encouraging for future experimental at-
tempts that new proposals have been made for single-photon
detection to achieve the quantum efficiency close to unity
[16].

In Figs. 4 and 5, we present the estimates of fidelity by
taking somewhat large amplitudes asuau=Î3 and uau=3 to
emphasize the effect of imperfectness of single-photon de-
tectors. A high fidelity can really be obtained for example as
FSC=FRV*0.9 for uau=Î3 with hù0.8 in the scissors and
reversal ofN=1 and 2. If a smaller amplitude is taken as
uau,1, the fidelity becomes higher, as seen in Ref.[6]. It
should be noted here that the actual fidelities of scissors and
reversal are slightly decreased by those for preparing the
EPR resourcesuf−sN,0dl andul=1,Nl, which can be higher
than 0.95 forhù0.7 with the small enough squeezing pa-
rameters,0.1, as estimated later.

A spuriously largen=0.1 is taken in Figs. 4 and 5 so as to
make the correction by the dark count visible. Actually, the
effect of the dark count is fairly small in these scissors and
reversal ofN=1,2, since uf sa,1dun,10−4 with uf sa,1du&1 for
the reasonablen,10−4. It should, however, be remarked that
the fidelity for preparing the EPR resourceuf−sN,0dl is
somewhat sensitive to the dark countn providing a correc-
tion ,0.005, as seen later.

The net success probabilities for the scissors and reversal
are roughly given from the estimates in the case of ideal Bell
state detectors[11] as

PSCsNd ,
psNd2

sN + 1d2l2N, PRVsNd ,
psNd3

sN + 1d4l82N,

wherel2,l82!1 for the squeezing parameters relevant for
preparing the EPR resources. HenceforthpsNd represents the

success probability of the ideal measurement ofuf−sN,0dl,
e.g.,ps1d=1 andps2d=1/2 for theBell state detectors pre-
sented so far.(Note thatps2d=3/8 wasgiven in error in Ref.
[11].) The success probabilities to prepare the EPR resources
uf−sN,0dl and ul=1,Nl are included in the above estimates
for the scissors and reversal, respectively. It appears that
PRVsNd is rather suppressed, since an additional Bell mea-
surement is made to prepareul=1,Nl from ull and
uf−sN,0 ,1 /ldl. That is, ul=1,Nl is generated from three
squeezed vacuum states by making the Bell measurement
twice. Numerically, by taking typicallyl=l8=1/4 wehave
PSCs1d,2310−2, PSCs2d,1310−4 and PRVs1d,4310−3,
PRVs2d,6310−6.

2. Generalized number-phase Bell states

We next consider the preparation of two-mode entangled
states. For the preparation of the generalized number-phase
Bell stateuf−sN,0 ,rdl, a squeezed vacuumul8=rll is used
as the EPR resource, and another squeezed vacuumull is
taken as the input state, which is represented by the matrix

cin = Efullg.

Then, by applying the formulas in Secs. III and IV, the fidel-
ity is calculated for example withl=l8=1/4 sr =1d for the
input state and EPR resource as

DFGB ; 1 − FGBfN = 1;r = 1,l = l8 = 1/4g:

3
a fsa,0ddha f sa,1dndha

0 — 32

1 1/8 24

2 − 1/256 197/8

3 0 1575/64

4 0 1575/64

4 ,

DFGB ; 1 − FGBfN = 2;r = 1,l = l8 = 1/4g:

3
a fsa,0ddha f sa,1dndha

0 — 56

1 7/64 175/4

2 − 49/12286 17143/384

3 343/7077888 19736731/442368

4 0 842106125/18874368

4 .

Numerical estimates of the fidelity are shown in Figs. 6
and 7 forN=1 andN=2, respectively, depending onh with
n=0 for simplicity. Here,l=1/4 is taken for the input state,
and thenl8=rl of the EPR resource is given with some
typical values ofr. A higher fidelity is obtained for a smaller
r ,1, though it is not depicted in these figures. It is in fact
checked that the coefficientsf sa,0d and f sa,1d for FGB are cal-
culated to be independent of the squeezing parameterl of
the input state. That is, they are determined solely by the
squeezing parameterl8 of the EPR resource. This may be
ascribed to the fact that the optical setup of the present Bell

FIG. 5. The fidelity of the scissors and reversalFSC=FRV with
N=2 for the input coherent state withuau=Î3 anduau=3 is shown
depending onh andn=0,0.1.

A. KITAGAWA AND K. YAMAMOTO PHYSICAL REVIEW A 70, 052311(2004)

052311-10



state detector withUd̃ in Eqs.(91) and (93) andnsMd
cnt in Eq.

(29) is asymmetric under the exchange of the input modes 1
and 2, i.e., in this caseull↔ ul8l. Then, by taking the small
enough l8ø1/4 a fairly high fidelity FGB.0.95 can be
achieved forhù0.7 andn,10−4. As for the effect of the
dark count, the fidelityFGB for preparinguf−sN,0 ,rdl ap-
pears somewhat sensitive ton. It provides a correction esti-
mated asuf sa,1dun,0.005 with uf sa,1du&50 for the reasonable
n,10−4.

The success probability to prepareuf−sN,0 ,rdl is esti-
mated roughly[11] as

PGBsNd , HpsNdl̄2N/sN + 1d sr2 @ 1,r2 ! 1d,

psNdl2N sr < 1d,
J

where l̄=maxfl ,l8g. Numerically, for example, we have
PGBs1d,3310−2 andPGBs2d,1310−3 with l8=1/4.l.

3. Truncated maximally squeezed vacuum states

For generating the truncated maximally squeezed vacuum
states,

ul = 1,N = 1l = su0lu0l + u1lu1ld/Î2,

ul = 1,N = 2l = su0lu0l + u1lu1l + u2lu2ld/Î3,

the generalized Bell stateuf−sN,0 ,r =1/ldl and the
squeezed vacuum stateull are taken as the input state and
EPR resource, respectively. The matrix representing the in-
put state is given by

cin = Efuf−sN,0,r = 1/ldlg.

Then, the fidelity is calculated for example withl=1/4 as

DFMSV ; 1 − FMSVfN = 1;l = 1/4g:

3
a fsa,0ddha f sa,1dndha

0 — 0

1 1/8 0

2 − 1/256 − 1/8

3 0 − 7/64

4 0 − 225/2048

4 ,

DFMSV ; 1 − FMSVfN = 2;l = 1/4g:

3
a fsa,0ddha f sa,1dndha

0 — 0

1 35/192 0

2 − 391/36864 − 1351/4608

3 − 77/786432 − 107425/442368

4 8473/226492416 − 4611707/18874368

4 .

Numerical estimates are shown in Figs. 8 and 9 forN
=1 and N=2, respectively, depending onh with n=0 for
simplicity, where some typical values are taken for the rel-
evant squeezing parameterl. The contributions of the dark
count are actually negligible forn,10−4, since f s0,1d= f s1,1d

=0 incidentally, as seen in the above lists. A fairly high fi-
delity FMSV.0.94 can really be achieved forhù0.7 with
small enoughlø1/4. The input generalized Bell state
uf−sN,0 ,r =1/ldl may be prepared from a pair of squeezed
vacuum statesul8l and ul9l with r =l9 /l8=1/l. As seen so
far, a high fidelityFGB.0.95 can be achieved forhù0.7
with l9ø1/4. Then, the actual net fidelity to prepare the

FIG. 6. The fidelityFGB for the preparation ofN=1 generalized
number-phase Bell stateuf−sN=1,0,rdl is shown depending onh
with n=0. Here,l=1/4 is taken for the input state, and thenl8
=rl of the EPR resource is given with some typical values ofr.

FIG. 7. The fidelityFGB for the preparation ofN=2 generalized
number-phase Bell stateuf−sN=2,0,rdl is shown depending onh
with n=0. Here,l=1/4 is taken for the input state, and thenl8
=rl of the EPR resource is given with some typical values ofr.

FIG. 8. The fidelityFMSV for the preparation ofN=1 truncated
maximally squeezed vacuum stateul=1,N=1l is shown depending
on h with n=0. Some typical values are taken for the relevant
squeezing parameterl.

ANALYSIS FOR PRACTICAL REALIZATION OF… PHYSICAL REVIEW A 70, 052311(2004)

052311-11



truncated maximally squeezed vacuum stateul=1,N=1,2l
can be as high as 0.9, e.g., forh=0.7 with l=1/4, l8
=s1/4d2 andl9=1/4.

It should be remarked here that the input state and EPR
state may be exchanged in the preparation oful=1,Nl. Then,
the fidelity somewhat changes since the optical setup of Bell
state detector is asymmetric under the exchange of the input
modes 1 and 2, as explained before. In fact, we haveFMSV

=1−f s0,1dn+¯ sf s0,1d,10–50d with ucin
s2dl= ull and uEPRl

= uf−sN,0 ,r =1/ldl for both the cases ofN=1,2. It is really
checked numerically that the corrections of the order ofn0

are zero up todh4 independent ofl. This case may be more
favorable since the fidelity is rather insensitive toh. Further-
more, a somewhat largel may be taken to increase the suc-
cess probability. The effect of the dark count is small enough
for n,10−4 with f s0,1d,50. In any case, the fidelity for the
preparation ofuf−sN,0 ,r =1/ldl should be considered.

The net success probability to prepareul=1,Nl from
uf−sN,0 ,r =1/ldl and ull is estimated roughly[11] as

PMSVsNd ,
psNd2

sN + 1d2l82N,

where l8=ll9 with l2, l82, l92!1. Numerically, for ex-
ample PMSVs1d,4310−3 and PMSVs2d,7310−6 with l
=1/2, l8=1/8 andl9=1/4.

VI. SUMMARY

In summary, we have analyzed the linear optical realiza-
tion of number-sum Bell measurement and number-state ma-
nipulation by taking into account the realistic experimental
situation, specifically imperfectness of single-photon detec-
tor. The present scheme for number-state manipulation is
based on the number-sum Bell measurement, which is imple-
mented with linear optical elements, i.e., beam splitters,
phase shifters and zero-one-photon detectors. Squeezed
vacuum states and coherent states are used as optical sources,
while single-photon sources may not be required. The linear
optical Bell state detector has been formulated quantum
theoretically with a probability operator measure. Then, the
fidelity of manipulation and preparation of number states,
particularly for qubits and qutrits, has been evaluated in
terms of the quantum efficiencyh and dark countn of
single-photon detector. It will be encouraging for future ex-
perimental attempts that a high fidelity is achievable forh
*0.7 andn,10−4 with small enough squeezing parameters
,0.1 and coherent state amplitudes&1.
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