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Silicon quantum computation based on magnetic dipolar coupling
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A dipolar gate alternative to the exchange-gate-based Kane quantum computer is proposed where the qubits
are electron spins of shallow group V donors in silicon. Residual exchange coupling is treated as gate error
amenable to quantum error correction, removing the stringent requirements on donor positioning characteristic
of all silicon exchange-based implementatigisiller et al., Phys. Rev. Lett88, 027903(2002]. Contrary to
common speculation, such a scheme is scalable with no overhead in gating time even though it is based on
long-range dipolar interqubit coupling.
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[. INTRODUCTION single-spin level to avoid the scalability problems inherent to
the ensemble NMR proposalsuch as decreasing signal to
Since the seminal exchange gate proposal of Loss andoise ratio and overlapping resonan¢®,13).
DiVincenzo, research on semiconductor spin quantum com-
putation has focused on implementations based on the elec-
tron exchange interactiofil]. For silicon donor impurities Il. DIPOLAR GATE FIDELITY IN THE PRESENCE
the use of exchange coupling is problematic since the ex- OF EXCHANGE INTERACTION
change energy depends sensitively on donor positioning due The truncated magnetic coupling between two localized
to the quantum interference arising from the sixfold degenspins is given by
eracy of Si conduction ban@]. This results in the necessity
of donor positioning within one silicon bon@.4 A) other- Hiz= 1S+ 035, — [D12(6,d) = J@*, d)]S,Sy. (1)
wise severe tuning requirements will adversely affect th
scalability of this implementatio(in addition to many donor

ﬁ}alrig}i‘ﬂ?g;ﬁ?gtéﬂ?o%Cgﬁgzé-glissprigblirgn'furi[tzicr;_ Equation(1) is valid provided we neglect terms proportional
9 pIn g 10 S., which amount to a correction quadratic [iD;,/ (w;

puter architecture is an active research area, and donor spins . . :
in nuclear-spin-free silicoiipure 2Si) are expected to have ~w)] [14]. Hence a strong inhomogeneous field is needed

very long coherence timgg—6] (T,~T,~10° s [7]). Here (or inhomogeneous gyromagnetic  ratiog), but since
we propose the magnetic dipolar interaction rather than thglzl %=0.01 G(s_e_e belov)/ﬁe!d d|ffe§rences.on _the .10_100
exchange interaction between well separated donor electro range are sufficient. The dipolar interaction is given by
spins as a solution to this problem. The residual exchange y1voh

interaction is treated as a source of imperfection in the dipo- D1 (6,d) = o (3cogo-1), (2)

lar gate, whose error probability can be kept below*Jter

operation. Hence the exchange interaction can be ignored aghered is the interqubit distance anglis the angle between
long as error correction is applied, leading to no necessity ofhe external magnetic field and the line joining the spins. The
gate tuning. This is possible due to the long-range characteyptimum dipolar architecture assumgsO0, e.g., an array of

of dipolar coupling(proportional to 14°, with d the interqu-  spins directed along (this optimal coupling is denoted;,

bit separatiop as opposed to the short-range nature of ex-belov;Q. Equation (2) has a striking property: Ificosé)|
change[Jx=d?%exp(-d)] [8]. Nevertheless, this long-range =1/y3, the interaction is exactly zero. Hence in an array of
character led to speculations that a dipolar quantum comspin qubits dipolar coupling can be completely suppressed as
puter is not scalablg9]. We point out that this is not true, long as 88 makes one of the “magic” angles with the array:
because only up to the fourth nearest neighdN) cou-  #=54.74°, 125.26°. Exchange-based propogalsusually
plings need to be considered, and highly efficient quantunmequire the donors to be pushed outside the array to switch
gates can be constructed using the method of Leztngl.  on the exchange interaction. In addition, tw@D) and
[10], which we develop further to avoid correlated error be-three-dimensional3D) arrangements have been considered,
tween any two qubits inside the error correction manifold.particularly to optimize quantum error correctifitb,16. In
Similar pulsing sequences should be useful for a wide varietyhis case it may be impossible to find a geometry where all
of solid state quantum computing architectures based ohonds are making a magic angle with tBefield. Then if
long-range interactiongl1]. The resulting architecture takes dipolar interaction is to be ignored, we will lose track of the
advantage ofy-factor manipulation and measurement at thespin state within 1Qs (this time should be considered short

q—|ere$ are spin-1/2 operators, which couple to external
magnetic fields through the Zeeman frequencigs v,B;.
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TABLE |. A group V donor electron spin quantum computer,
where free evolution of the spin-spin dipolar interaction implements
CZ gates. Here we show donor electron ground state enefgies
[20], Bohr radiusa* [17], optimum interqubit distance,, (for the
exchange interaction to be ignored withini@rror probability,
interqubit distancel, (such thatD,,=J), and the CZ gate times.
Fastest gate times are obtained for bismuth donors.

F{l), o} = |<¢|UI:NOTD(01)UCNOT| ), (7)

which are simply given bycoga/4)|, leading to an error
probability of «?/16 for small a (the error is given byE
=1-F?). If one wants to ignore exchange interaction, all that
needs to be done is to keep/16 less than some critical
boundp, for example the seven-qubit encoding threshpld

Donor Eg(meV) a* () doy(R) do(A)  7ez (uS) =10 [19]. Hence we havd/D,,=< \p, or
Sb 43 18.6 315 263 150 J [ a N d\E o 29102 (g
P 45 18.2 307 256 140 D \002A) \ax) & a*/) - @
As 54 16.6 279 232 105
Bi 71 145 241 200 68 for p=10". The length scale for the prefactor in this expres-

sion is given byvy2e/1.64y/e~0.02 A. The range where
this inequality is satisfied is approximately given byd

if compared with other mechanisms such as nuclear spectraf 0.03* and d=17a*. The first condition arises due to the
diffusion [5,6]). Hence dipolar coupling may have to be divergence of the dipolar interaction, and is not useful here
taken into account even in exchange gate quantum compuklso Ed.(3) is appropriate only fod>a*]. The physical
ing architectures. For the exchange interaction between twgolution is the second one, which is optingeistest gatefor

hydrogenic donors we use the asymptotic expresgpn dopr=17a*. Table | showsd, for various donors together
Lo d\52 g with their CZ gate timg«/D;5; see Eq(4)].
Ja*,d) = ——<—> exp<—2—>, (3)
he a* \a* a*

Ill. ASCHEME FOR DECOUPLING LONG-RANGE

valid for interdonor distanced much larger than the Bohr INTERACTIONS
radiusa*. Equation(3) is to be regarded as an envelope for

the strong oscillations of the exchange energy stemmin%N
from conduction band degeneraf@]. The Bohr radiug* is
related to the experimental donor ground state enEgggee

Up to now we have shown that dipolar coupling between

o donors can generate precise two-qubit evolution, i.e., a
dipolar coupled-qubit Si gate can be constructed. However,
the situation becomes complicated when we consider an ar-

Tat\J/{Z lv\[/illlnr{OW show how a silicon donor auantum comouter "2 of many donors. Particularly the long-range nature of the
q P dipolar interaction implies every spin in the array will be

can be implemented with the dipolar interaction and single- . ) o
spin rotations. The effect of the exchange interaction will becoupled to each other, raising questions about the scalability

treated as an error, leading to a lower bound on qubit sep% this proposalThis was one of the original motivations for
ration. Assuming=0 in Eq.(1), a controlledZ (CZ) gate is troducing the exchange gate since exchange can be expo-

. ) : . ) nentially suppressed by electrically controlling wave func-
obtained by free evolution during the time interval, : o : .
- /Dy, together withg-factor shifts[18], tion overlap) For example, it is possible that the complexity

of the pulsing sequencg$eading to the desired quantum
B ABeNS (2 T a!gonthn) m|ght sca_le exponentially with the n_umber of qu-
Ucz = & Cm4ig3m2iS zem( )'SZZeXP<‘ 'D_le)- (4 bpits, effectively making the problem of determining the evo-
12 ~ lution as hard as any mathematical problem a quantum algo-
Below we show how to correct for the Zeeman frequenciesithm is constructed to solvg9]. Nevertheless, this is not

wj. true for the case considered here, because using the same
We now search for the minimum interqubit distarcteo  argument leading to the discard of the exchange interaction

thatJ can be ignored. A residual exchange interactionill we can neglectwithin the 10 threshold dipolar coupling

add an additional evolution operator to K4): between any spin and its fifth or higher NMy Eg. (8),

o D1/ D1,=1/k3, which is less than 18 for k=5]. Hence Eq.
Ule) = exp=1a8,,5), ®) (1) generalized to a 1D spin array is
with e=7J3/D4,. This causes phase error in the CZ gate,
which is better evaluated by looking at two input states or- 1
thogonal to each other. Equivalently we look at the H=2 wiSz_E > DyS.S.. 9
controlledNoT (CNOT) gate(obtained by a basis change on ‘ Ij=i-4

the CZ gate,Ucnor=€" 22U ,€(™2%y). Therefore the
“erroneous” evolution is given by (a)UcnoT, Where

i+4

wherei is an integer labeling the location of each dofias
assumed positive as well as negafivEhe finite coupling
SN i(wl2 i(ml2 range allows us to develop quantum gates using a sequence
U@ =% (a)e 2% 6) of 7 pulses applied to subsets of the spjpach pulse is

is a 4x 4 matrix with elements equal to ces/4), sinfa/4),  given by X" =expinS,)]. The key point is that the interac-
and 0. The error due to a finiie can be evaluated by calcu- tion between any two spins can be canceled using two
lating the fidelity functions pulses[14],
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T @ T @ _ ting is also canceledS,, requires a total of 80r pulses
exp| ~ 15055, | X exp| —i5DS,S, | X7 =1, (100 which are applied in 12 seidewer than 14 pulses are ap-
plied in each set becaud®?=1—hence no rotations need to
wherel is the identity operator. Our task is now to find the be applied when the sign is the same for neighboring time
“decoupling” scheme which completely refocuses &y.af-  intervalg. An array of n spins will require fewer than g
ter some time intervat (therefore enabling single-qubit ro- pulses. Selective recoupling is achieved by choosing identi-
tation on any spipand also to produce sequences for “selecca| rows for the spins which are to be coupled. These rows

tive recoupling,” which provide CZ evolution for any NN are chosen from the four remaining rows kf,, for ex-
pair. For this task we use the method of RE¥0] which  ample,

consists in constructing sign matric8s representing ther
pulses. AnnXx m sign matrix has each element equal to +1 S
(denoted simply by ¥ and correspond to a systemro§pins +H+ =+ + +—-—=
where evolution during a time is divided intom time inter-

L o . . . +-—++-—+ +-—-+
vals. If spini has its interaction reversed in amgh time

interval (by application ofX") before and after this time in- A
terval), then (S,);=-1; otherwise(S,);=+1. For example, + - +—— +— + + -
Eq. (10) corresponds to e b — h— f——— 4+
+ + +—+—+—-+-—-—++
= . 11 /=
= <+ —> o Si4 F+++t+to————— (13)
The interaction between two spingj is decoupled if the R il e e il
rowsi andj of S, disagree in sign for half of then time b —— +— +— +—+

intervals. Equivalently, the inner product between these rows

: . . . +-+-——F+— -+
is zero. This property leads to a connection with the theory of

Hadamard matrices#s is annxn Hadamard matrix if and L A A
only if Hy-(Hp)T=nl. Hence a possible solution for the de- ++———+——+— ++
coupling problem ofn spins is to construcg, from n rows e b b m—— 4 4+ +—

out of a Hadamard matriid; wheren=n. Actually such a

solution turns out to be the most efficient aflee smallesn  implements CZ operations between spins 6, 7 and 10, 11 in
satisfyingn=n is the minimum number of intervats in the  parallel(bold). We point out that each seven-qubit structure
set of possibles,) because one can show that it is impossiblein Egs.(12) and(13) forms an error correction block for the
to add an additional row orthogonal K. Hadamard matri- Steane code19]. Note that residual dipolar interaction
ces exist fon=1, 2[Eq.(11)], 4, 8, 12,... (see Ref[10] and  couples qubits in different blocks. This is important for the
references therejnThe finite coupling range of Eq9) sug- ~ assumption of uncorrelated errors within each block and the
gestsn=12 as a convenient solutio§, can be assembled as validity of the 10* threshold(see Sec. IY. The spurious
annx 12 matrix composed of seven-ordered rows freigy ~ couplings lead to error of the order of%~107° in Eq. (12)
(identical rows are seven rows apafor the particular case and 226~ 1078 for selective recoupling when all blocks ex-

of n=14 (generaln is obtained by row repetition ecute a CZ gate in parall@nassive parallelization of the CZ
b b gate is needed for efficient computation and quantum error
correction.
t+tt-—-—-+++-—- Therefore the complete gate time for a large 1D array is
b b — + F——+ the same as for two donoxgpproximately 10Qus, being
optimal for bismuth—see Tablg.IThis shows that a dipolar
++-+-—+-=—+—-+ . . . -
donor electron spin quantum computer is reliable: If the sili-
Ll A S con lattice is isotopically purifiedfree of?°Si nuclear sping
++———+——+—-++ the coherence time will be limited by the spurious exchange
e b 44— and dipolar couplings, with a quality factor of the order of
Siu= _ (12)  10% A key advantage of this architecture is the interqubit
trt A At distance, which is three times larger than other proposals for
+++-——+ + +——= donors[1]. Also there is no need for an interqubit “J” gate, or
e b 4+ 4—— any electrical control over wave function overlgip3]. This
should make gate lithography much simpl{ene needs to
FAo Aot incorporate g-factor control [21] and single-spin
Sl st Sl sl measurement/initialization electrodg2] on top of each do-
+F——— e —— =+ 4+ nor.
The considerations above can be generalized to any long-
+—++—-——— + + +-

range coupling « 1/d". The number of NN’s which need to
Here we extract the firstand last seven rows ofS, from  be decoupled is given by még<p™/?, wherep is the
H,, with the first row(++- - -) excluded so that Zeeman split- desired error probability. Hence.; needs to be broken into
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n~p Y% time intervals. For example =1 andp=10“*lead error correction are in plac€3) Three-bit-flip error in both

to n~100. Implementation of any quantum gate is possibleblocks; the probability is the cube of a single bit flip, equiva-
as long as the time for single-spin rotation is much less thatent to three simultaneous independent bit flips.

1cz/'n. The dipolar case considered here clearly satisfies this We start by assuming blocks 1 and 2 store the state
criterion, sincercz/n~ 10 us (rotation times of the order of

0.1 ps are easily achievableFinally, notice that this ap- |1(0)) = 81| 00) + 8,|01) + a|10) + a,|11). (18)
proach for decoupling can also be applied to general aniso- i .
tropic exchange interactions, since these can be transform&@r fault tolerant quantum computing, we add four additional
into the S,S;, form by appropriate spin rotations. ancilla qubits which encode the state as

0)) = a,/000,000 + a,/000,11% + a5/111,00
IV. ERROR CORRECTION OF RESIDUAL [#0)) =l 0+a| b+ ag 0

LONG-RANGE COUPLING +a,/111,113. (19)

Here we show how imperfections arising from spuriousTime evolution under the spurious coupling Hamiltonian
long-range couplings connecting qubitsdrstinct quantum  [Eq. (15)] yields
error correction blockscan be corrected by the usual syn-
drome diagnosigprojective measurement on each blpck |W (7)) = cos(c)|W(0)) —i sin’(c)|¢) +i sin(c)cog(c)
[23]. The proof presented here is based on the simplest error .
correction code, the “three-bit-flip codéSec. 10.1.1 of Ref. X {24[]100,100 +i tan(c)|011,013]
[23]). However, we emphasize that these results are easily +a,[|100,012 +i tan(c)|011,100]
extended to the complete seven-bit Steane ¢a8¢which .
corrects for any type of continuous error on each qubit +ag[[011,100 +i tan(c)|100,013]
within its block. The essence of our proof is that the syn- +a,[|011,012 +i tan(c)|100,100]} + - -,
drome measurement on each block effectively destroys error

correlation between qubits belonging to different blocks. (20)
Con_sider two error correction blocks constitut_ed by qubitsyhere the swapped stdig) is given by
1,2,3(first block) and 4,5,6second block The residual cou-
pling Hamiltonian is |y =ay|111,11% + 8,111,000 + a5/000, 113
H=-4c"(S15, + S5, + S35 (14) +a,/000,000. (21)
and the evolution operator after one “clock timets Error correction proceeds with projection measurements over
U(7) = exp(— iH7) = cos(c)l +i sin(c)cog(c) the syndromes 0, 1, 2, and 3 in each bldekl, 2:
X[01,04,+ 0,05, + 03,06,] = COLC)SiNF(C) PY = [000/(000 + |[111)(111, (22)
X[01,02,04,05; + 01,03,04,06, + 02,03,05,06;]
k) —
=i Sins(c)[0'120'220'320'4zo'520'62]- (15) P(l) - |100><qu * |01]'><011I’ (23
Here c=c'r=7D14/ D4, is much less than {in the case of ®
seven-qubit blocke~773). To map this problem into the P2’ =1010¢010 +|101)}101, (24)
bit-flip code we use thg basis for our spin qubits:
1 _ PY =]001)(001] +|110¢110. (25)
0y =|+yy=—=(D+ill), (16) ,
V2 Depending on the outcome of the measurement we apply the
corresponding correction operathl{k) (for example, Ugl)
1) =|-y)= i(|T>—i|l>) ap b UM =04, U =0, UL =03,). The final corrected den-
=Ty = V2 ' sity matrix is an incoherent superposition of each possible

error:
In this basis the Pauli matrices of E@.5) act as a bit-flip

operator(o,|0y=|1),0,/1)=|0)). Equation(15) contains three pe= S UMPOURPA W (1) x (¥(n)|PLTUDTPRTYE@T,
contributions (1) Simultaneous bit flips of one spin in block = &, ' ' ) oo

1 and another in block 2. This leads to error probability of (26)

~¢? for each spin in each blodlsquare of the amplitude; see

Eg. (7)]. Note that error is correlated between block®.  Because error is correlated between blocks the projection
Simultaneous double bit flip in both blocks, with probability pWp@ 544 statdW(7) is zero unles$=j. For example

equal to the square of the single-bit-flip probabilityc?). b ’

This process has the same order of magnitude of two inde- 2
pendent single-bit-flip errors occurring at the same time. This 11 ng>p<ok)|xp(7-)> = cosS(c)|¥(0)) —i sin*(c)|¢),
type of error is only corrected after two concatenations of k=1
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2 factor of 10 due to larger Bohr ragliHence our proposal is
[T U®PR (1) =i sin(c)cog(c) X [|W(0)) +i tan(c)|¢)] not feasible for GaAs, but might work for the narrow gap
k=1 I1I-V materials as long as decoherence due to nuclear spec-
(27) tral diffusion is suppressed by nuclear polarizati@j. In
. this case spin flip followed by phonon emission will be the
for 1=1, 2, 3[note that Eq(20) omitted the syndrome sub- gominant decohering process. Adjusting the external mag-
spaces 2 Finally, it is straightforward to calculate the fi- \etic field, coherence times of the order of a few seconds are

delity squared, achievableg[24], suggesting the possibility of quality factors
IF[2 = (W(0)|p[¥(0)) = cod(c)[ 1 + 2 sirf(c)] greater than 10in a narrow gap donor dipolar quantum com-

puter, which does not require exchange interaction control

+sirf(c)[1 + 2 cos(c) J(¥ (0)|)|*. (28)  and can be constructed with current lithography techniques.

In conclusion we consider a quantum computer architec-
ture based on dipolar-coupled donors in silicon. Although
gate times are considerably longer than in exchange-based

maxE) = 1 — min(|F|?) = 3¢*+ 0(c?), (290  implementationgalbeit the same time scales as in the solid

o ) . state NMR proposalgl2]), one does not need atomic preci-
which is the square of the error without error correction.qjon donor implantation or electrical control of two-qubit
Hence neglecting small dipolar coupling between dlfferentcoup"ng& In particular, “top-down” construction schemes
error c_orrection blocks_is for all practical purposes equi\_/alenbased on ion implantation should benefit from our proposal,
to having a source of independent uncorrelated error identipe 4 se these lack precision in donor positioning in addition
cal to the one assumed in the quantum error correction litg, creating interstitial defecf@5] (dipolar coupling is nearly
erature. insensitive to electronic structyreOur proposal for decou-

pling of short-range “always on” interactions together with
V. DISCUSSION error correction of the remaining long-range couplings ap-
plies equally well to any solid state implementation based on
other types of long-range interactiogas long as the cou-
ling is bilineay [11,12, opening the way to implementa-
ons which do not have severe lithography requirements.

Maximum error occurs when the second term of E) is
zero. This leads to

We now consider the feasibility of our dipolar quantum
computer proposal for IlI-V semiconductor donor impurities
and quantum dots. Although these materials have a smaﬁ
effective masgimplying highera* and d,,), some of the
narrow gap semiconductors have quite large lfiactors,
enhancing dipolar coupling. A simple estimation is obtained
from the relationrc;~ (0.3/m* )3(2/g)2x 100 us. Using the The authors acknowledge useful discussions with B. E.
parameters of Ref[24] we get7.;~0.1 s for GaAs and Kane, J. Kempe, T. D. Ladd, T. Schenkel, J. Vala, and W.
7cz~1 ms for GaSb, InAs, and InSb donor impuritigsian-  Witzel. This work is supported by ARDA, LPS, US-ONR,
tum dots have dipolar gate times higher by approximately and NSF.
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