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A dipolar gate alternative to the exchange-gate-based Kane quantum computer is proposed where the qubits
are electron spins of shallow group V donors in silicon. Residual exchange coupling is treated as gate error
amenable to quantum error correction, removing the stringent requirements on donor positioning characteristic
of all silicon exchange-based implementations[Koiller et al., Phys. Rev. Lett.88, 027903(2002)]. Contrary to
common speculation, such a scheme is scalable with no overhead in gating time even though it is based on
long-range dipolar interqubit coupling.
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I. INTRODUCTION

Since the seminal exchange gate proposal of Loss and
DiVincenzo, research on semiconductor spin quantum com-
putation has focused on implementations based on the elec-
tron exchange interaction[1]. For silicon donor impurities
the use of exchange coupling is problematic since the ex-
change energy depends sensitively on donor positioning due
to the quantum interference arising from the sixfold degen-
eracy of Si conduction band[2]. This results in the necessity
of donor positioning within one silicon bond(2.4 Å) other-
wise severe tuning requirements will adversely affect the
scalability of this implementation(in addition to many donor
pairs having nearly zero exchange). This problem is attract-
ing considerable attention[3] since Si spin quantum com-
puter architecture is an active research area, and donor spins
in nuclear-spin-free silicon(pure 28Si) are expected to have
very long coherence times[4–6] (T2,T1,103 s [7]). Here
we propose the magnetic dipolar interaction rather than the
exchange interaction between well separated donor electron
spins as a solution to this problem. The residual exchange
interaction is treated as a source of imperfection in the dipo-
lar gate, whose error probability can be kept below 10−4 per
operation. Hence the exchange interaction can be ignored as
long as error correction is applied, leading to no necessity of
gate tuning. This is possible due to the long-range character
of dipolar coupling(proportional to 1/d3, with d the interqu-
bit separation) as opposed to the short-range nature of ex-
changefJ~d2.5exps−ddg [8]. Nevertheless, this long-range
character led to speculations that a dipolar quantum com-
puter is not scalable[9]. We point out that this is not true,
because only up to the fourth nearest neighbor(NN) cou-
plings need to be considered, and highly efficient quantum
gates can be constructed using the method of Leunget al.
[10], which we develop further to avoid correlated error be-
tween any two qubits inside the error correction manifold.
Similar pulsing sequences should be useful for a wide variety
of solid state quantum computing architectures based on
long-range interactions[11]. The resulting architecture takes
advantage ofg-factor manipulation and measurement at the

single-spin level to avoid the scalability problems inherent to
the ensemble NMR proposals(such as decreasing signal to
noise ratio and overlapping resonances[12,13]).

II. DIPOLAR GATE FIDELITY IN THE PRESENCE
OF EXCHANGE INTERACTION

The truncated magnetic coupling between two localized
spins is given by

H12 = v1S1z + v2S2z − fD12su,dd − Jsa * , ddgS1zS2z. s1d

Here Si are spin-1/2 operators, which couple to external
magnetic fields through the Zeeman frequenciesvi =giBi.
Equation(1) is valid provided we neglect terms proportional
to Si±, which amount to a correction quadratic infD12/ sv1

−v2dg [14]. Hence a strong inhomogeneous field is needed
(or inhomogeneous gyromagnetic ratiosgi), but since
D12/gi &0.01 G(see below) field differences on the 10–100
G range are sufficient. The dipolar interaction is given by

D12su,dd =
g1g2"

d3 s3 cos2u − 1d, s2d

whered is the interqubit distance andu is the angle between
the external magnetic field and the line joining the spins. The
optimum dipolar architecture assumesu=0, e.g., an array of
spins directed alongB (this optimal coupling is denotedD12
below). Equation (2) has a striking property: Ifucosuu
=1/Î3, the interaction is exactly zero. Hence in an array of
spin qubits dipolar coupling can be completely suppressed as
long as ±B makes one of the “magic” angles with the array:
u=54.74°, 125.26°. Exchange-based proposals[1] usually
require the donors to be pushed outside the array to switch
on the exchange interaction. In addition, two-(2D) and
three-dimensional(3D) arrangements have been considered,
particularly to optimize quantum error correction[15,16]. In
this case it may be impossible to find a geometry where all
bonds are making a magic angle with theB field. Then if
dipolar interaction is to be ignored, we will lose track of the
spin state within 10µs (this time should be considered short

PHYSICAL REVIEW A 70, 052304(2004)

1050-2947/2004/70(5)/052304(6)/$22.50 ©2004 The American Physical Society70 052304-1



if compared with other mechanisms such as nuclear spectral
diffusion [5,6]). Hence dipolar coupling may have to be
taken into account even in exchange gate quantum comput-
ing architectures. For the exchange interaction between two
hydrogenic donors we use the asymptotic expression[8]

Jsa * , dd <
1.6

"«

e2

a*
S d

a*
D5/2

expS− 2
d

a*
D , s3d

valid for interdonor distancesd much larger than the Bohr
radiusa*. Equation(3) is to be regarded as an envelope for
the strong oscillations of the exchange energy stemming
from conduction band degeneracy[2]. The Bohr radiusa* is
related to the experimental donor ground state energyEd; see
Table I [17].

We will now show how a silicon donor quantum computer
can be implemented with the dipolar interaction and single-
spin rotations. The effect of the exchange interaction will be
treated as an error, leading to a lower bound on qubit sepa-
ration. AssumingJ=0 in Eq.(1), a controlled-Z (CZ) gate is
obtained by free evolution during the time intervaltCZ
=p /D12 together withg-factor shifts[18],

UCZ = e−s3p/4dies3p/2diS1ze−sp/2diS2zexpS− i
p

D12
H12D . s4d

Below we show how to correct for the Zeeman frequencies
vi.

We now search for the minimum interqubit distanced so
that J can be ignored. A residual exchange interactionJ will
add an additional evolution operator to Eq.(4):

Usad = exps− iaS1zS2zd, s5d

with a=pJ/D12. This causes phase error in the CZ gate,
which is better evaluated by looking at two input states or-
thogonal to each other. Equivalently we look at the
controlled-NOT (CNOT) gate(obtained by a basis change on
the CZ gate,UCNOT=e−isp/2dS2yUCZe

isp/2dS2y). Therefore the

“erroneous” evolution is given byŨsadUCNOT, where

Ũsad = e−isp/2dS2yUsadeisp/2dS2y s6d

is a 434 matrix with elements equal to cossa /4d , sinsa /4d,
and 0. The error due to a finitea can be evaluated by calcu-
lating the fidelity functions

Fhucl,aj = ukcuUCNOT
† ŨsadUCNOTuclu, s7d

which are simply given byucossa /4du, leading to an error
probability of a2/16 for small a (the error is given byE
=1−F2). If one wants to ignore exchange interaction, all that
needs to be done is to keepa2/16 less than some critical
boundp, for example the seven-qubit encoding thresholdp
=10−4 [19]. Hence we haveJ/D12øÎp, or

J

D
< S a*

0.02 Å
D2S d

a*
D11/2

expS− 2
d

a*
D ø 10−2, s8d

for p=10−4. The length scale for the prefactor in this expres-
sion is given byÎ2« /1.6"g /e<0.02 Å. The range where
this inequality is satisfied is approximately given by 0,d
&0.03a* and d*17a*. The first condition arises due to the
divergence of the dipolar interaction, and is not useful here
[also Eq.(3) is appropriate only ford@a* ]. The physical
solution is the second one, which is optimal(fastest gate) for
dopt<17a*. Table I showsdopt for various donors together
with their CZ gate time[p /D12; see Eq.(4)].

III. A SCHEME FOR DECOUPLING LONG-RANGE
INTERACTIONS

Up to now we have shown that dipolar coupling between
two donors can generate precise two-qubit evolution, i.e., a
dipolar coupled-qubit Si gate can be constructed. However,
the situation becomes complicated when we consider an ar-
ray of many donors. Particularly the long-range nature of the
dipolar interaction implies every spin in the array will be
coupled to each other, raising questions about the scalability
of this proposal(This was one of the original motivations for
introducing the exchange gate since exchange can be expo-
nentially suppressed by electrically controlling wave func-
tion overlap.) For example, it is possible that the complexity
of the pulsing sequences(leading to the desired quantum
algorithm) might scale exponentially with the number of qu-
bits, effectively making the problem of determining the evo-
lution as hard as any mathematical problem a quantum algo-
rithm is constructed to solve[9]. Nevertheless, this is not
true for the case considered here, because using the same
argument leading to the discard of the exchange interaction
we can neglect(within the 10−4 threshold) dipolar coupling
between any spin and its fifth or higher NN[by Eq. (8),
D1k/D12=1/k3, which is less than 10−2 for kù5]. Hence Eq.
(1) generalized to a 1D spin array is

H = o
i

viSiz −
1

2 o
i; j=i−4

i+4

DijSizSjz, s9d

wherei is an integer labeling the location of each donor(i is
assumed positive as well as negative). The finite coupling
range allows us to develop quantum gates using a sequence
of p pulses applied to subsets of the spins[eachp pulse is
given byXsid=expsipSixd]. The key point is that the interac-
tion between any two spins can be canceled using twop
pulses[14],

TABLE I. A group V donor electron spin quantum computer,
where free evolution of the spin-spin dipolar interaction implements
CZ gates. Here we show donor electron ground state energiesEd

[20], Bohr radiusa* [17], optimum interqubit distancedopt (for the
exchange interaction to be ignored within 10−4 error probability),
interqubit distanced0 (such thatD12=J), and the CZ gate times.
Fastest gate times are obtained for bismuth donors.

Donor Ed smeVd a* sÅd dopt sÅd d0 sÅd tCZ smsd

Sb 43 18.6 315 263 150

P 45 18.2 307 256 140

As 54 16.6 279 232 105

Bi 71 14.5 241 200 68
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expS− i
t

2
DS1zS2zDXs2dexpS− i

t

2
DS1zS2zDXs2d = I , s10d

whereI is the identity operator. Our task is now to find the
“decoupling” scheme which completely refocuses Eq.(9) af-
ter some time intervalt (therefore enabling single-qubit ro-
tation on any spin) and also to produce sequences for “selec-
tive recoupling,” which provide CZ evolution for any NN
pair. For this task we use the method of Ref.[10] which
consists in constructing sign matricesSn representing thep
pulses. Ann3m sign matrix has each element equal to ±1
(denoted simply by ±), and correspond to a system ofn spins
where evolution during a timet is divided intom time inter-
vals. If spin i has its interaction reversed in anylth time
interval (by application ofXsid before and after this time in-
terval), then sSndil =−1; otherwisesSndil = +1. For example,
Eq. (10) corresponds to

S2 = S+ +

+ −
D . s11d

The interaction between two spinsi , j is decoupled if the
rows i and j of Sn disagree in sign for half of them time
intervals. Equivalently, the inner product between these rows
is zero. This property leads to a connection with the theory of
Hadamard matrices:Hn̄ is an n̄3 n̄ Hadamard matrix if and
only if Hn̄·sHn̄dT= n̄I. Hence a possible solution for the de-
coupling problem ofn spins is to constructSn from n rows
out of a Hadamard matrixHn̄ where n̄ùn. Actually such a
solution turns out to be the most efficient one(the smallestn̄
satisfyingn̄ùn is the minimum number of intervalsm in the
set of possibleSn) because one can show that it is impossible
to add an additional row orthogonal toHn̄. Hadamard matri-
ces exist forn̄=1, 2 [Eq. (11)], 4, 8, 12,… (see Ref.[10] and
references therein). The finite coupling range of Eq.(9) sug-
gestsn̄=12 as a convenient solution.Sn can be assembled as
an n312 matrix composed of seven-ordered rows fromH12
(identical rows are seven rows apart). For the particular case
of n=14 (generaln is obtained by row repetition),

S14 =1
+ + + + + + − − − − − −

+ + + − − − + + + − − −

+ − − + + − − + + − − +

+ + − + − − + − − + − +

+ + − − + − − + − + + −

+ + − − − + − − + − + +

+ − + + − − −− + + + −

+ + + + + + − − − − − −

+ + + − − − + + + − − −

+ − − + + − − + + − − +

+ + − + − − + − − + − +

+ + − − + − − + − + + −

+ + − − − + − − + − + +

+ − + + − − −− + + + −

2 . s12d

Here we extract the first(and last) seven rows ofS14 from
H12 with the first rows++¯ d excluded so that Zeeman split-

ting is also canceled.S14 requires a total of 80p pulses
which are applied in 12 sets(fewer than 14 pulses are ap-
plied in each set becauseXsid2= I—hence no rotations need to
be applied when the sign is the same for neighboring time
intervals). An array of n spins will require fewer than 6n
pulses. Selective recoupling is achieved by choosing identi-
cal rows for the spins which are to be coupled. These rows
are chosen from the four remaining rows ofH12, for ex-
ample,

S148 =1
+ + + + + + − − − − − −

+ + + − − − + + + − − −

+ − − + + − − + + − − +

+ + − + − − + − − + − +

+ + − − + − − + − + + −

+ − + − + − + − − − + +

+ − + − + − + − − − + +

+ + + + + + − − − − − −

+ + + − − − + + + − − −

+ − + − − + − + − + − +

+ − + − − + − + − + − +

+ + − − + − − + − + + −

+ + − − − + − − + − + +

+ − + + − − −− + + + −

2 s13d

implements CZ operations between spins 6, 7 and 10, 11 in
parallel (bold). We point out that each seven-qubit structure
in Eqs.(12) and(13) forms an error correction block for the
Steane code[19]. Note that residual dipolar interaction
couples qubits in different blocks. This is important for the
assumption of uncorrelated errors within each block and the
validity of the 10−4 threshold(see Sec. IV). The spurious
couplings lead to error of the order of 7−6,10−5 in Eq. (12)
and 22−6,10−8 for selective recoupling when all blocks ex-
ecute a CZ gate in parallel(massive parallelization of the CZ
gate is needed for efficient computation and quantum error
correction).

Therefore the complete gate time for a large 1D array is
the same as for two donors(approximately 100µs, being
optimal for bismuth—see Table I). This shows that a dipolar
donor electron spin quantum computer is reliable: If the sili-
con lattice is isotopically purified(free of29Si nuclear spins),
the coherence time will be limited by the spurious exchange
and dipolar couplings, with a quality factor of the order of
104. A key advantage of this architecture is the interqubit
distance, which is three times larger than other proposals for
donors[1]. Also there is no need for an interqubit “J” gate, or
any electrical control over wave function overlap[1,3]. This
should make gate lithography much simpler(one needs to
incorporate g-factor control [21] and single-spin
measurement/initialization electrodes[22] on top of each do-
nor).

The considerations above can be generalized to any long-
range couplingD~1/dr. The number of NN’s which need to
be decoupled is given by maxskdøp−1/2r, where p is the
desired error probability. HencetCZ needs to be broken into

SILICON QUANTUM COMPUTATION BASED ON… PHYSICAL REVIEW A 70, 052304(2004)

052304-3



n̄,p−1/2r time intervals. For example,r *1 andp=10−4 lead
to n̄,100. Implementation of any quantum gate is possible
as long as the time for single-spin rotation is much less than
tCZ/ n̄. The dipolar case considered here clearly satisfies this
criterion, sincetCZ/ n̄,10 ms (rotation times of the order of
0.1 µs are easily achievable). Finally, notice that this ap-
proach for decoupling can also be applied to general aniso-
tropic exchange interactions, since these can be transformed
into theSizSjz form by appropriate spin rotations.

IV. ERROR CORRECTION OF RESIDUAL
LONG-RANGE COUPLING

Here we show how imperfections arising from spurious
long-range couplings connecting qubits indistinct quantum
error correction blockscan be corrected by the usual syn-
drome diagnosis(projective measurement on each block)
[23]. The proof presented here is based on the simplest error
correction code, the “three-bit-flip code”(Sec. 10.1.1 of Ref.
[23]). However, we emphasize that these results are easily
extended to the complete seven-bit Steane code[19] which
corrects for any type of continuous error on each qubit
within its block. The essence of our proof is that the syn-
drome measurement on each block effectively destroys error
correlation between qubits belonging to different blocks.

Consider two error correction blocks constituted by qubits
1,2,3(first block) and 4,5,6(second block). The residual cou-
pling Hamiltonian is

H = − 4c8sS1zS4z + S2zS5z + S3zS6zd, s14d

and the evolution operator after one “clock time”t is

Ustd = exps− iHtd = cos3scdI + i sinscdcos2scd

3fs1zs4z + s2zs5z + s3zs6zg − cosscdsin2scd

3fs1zs2zs4zs5z + s1zs3zs4zs6z + s2zs3zs5zs6zg

− i sin3scdfs1zs2zs3zs4zs5zs6zg. s15d

Here c=c8t=pD14/D12 is much less than 1(in the case of
seven-qubit blocksc,7−3). To map this problem into the
bit-flip code we use they basis for our spin qubits:

u0l = u + yl =
1
Î2

su↑l + i u↓ld, s16d

u1l = u− yl =
1
Î2

su↑l − i u↓ld. s17d

In this basis the Pauli matrices of Eq.(15) act as a bit-flip
operatorsszu0l= u1l ,szu1l= u0ld. Equation(15) contains three
contributions.(1) Simultaneous bit flips of one spin in block
1 and another in block 2. This leads to error probability of
,c2 for each spin in each block[square of the amplitude; see
Eq. (7)]. Note that error is correlated between blocks.(2)
Simultaneous double bit flip in both blocks, with probability
equal to the square of the single-bit-flip probabilitys,c4d.
This process has the same order of magnitude of two inde-
pendent single-bit-flip errors occurring at the same time. This
type of error is only corrected after two concatenations of

error correction are in place.(3) Three-bit-flip error in both
blocks; the probability is the cube of a single bit flip, equiva-
lent to three simultaneous independent bit flips.

We start by assuming blocks 1 and 2 store the state

ucs0dl = a1u00l + a2u01l + a3u10l + a4u11l. s18d

For fault tolerant quantum computing, we add four additional
ancilla qubits which encode the state as

ucs0dl = a1u000,000l + a2u000,111l + a3u111,000l

+ a4u111,111l. s19d

Time evolution under the spurious coupling Hamiltonian
[Eq. (15)] yields

uCstdl = cos3scduCs0dl − i sin3scdufl + i sinscdcos2scd

3 ha1fu100,100l + i tanscdu011,011lg

+ a2fu100,011l + i tanscdu011,100lg

+ a3fu011,100l + i tanscdu100,011lg

+ a4fu011,011l + i tanscdu100,100lgj + ¯ ,

s20d

where the swapped stateufl is given by

ufl = a1u111,111l + a2u111,000l + a3u000,111l

+ a4u000,000l. s21d

Error correction proceeds with projection measurements over
the syndromes 0, 1, 2, and 3 in each blockk=1, 2:

P0
skd = u000lk000u + u111lk111u, s22d

P1
skd = u100lk100u + u011lk011u, s23d

P2
skd = u010lk010u + u101lk101u, s24d

P3
skd = u001lk001u + u110lk110u. s25d

Depending on the outcome of the measurement we apply the
corresponding correction operatorUi

skd (for example,U0
s1d

= I , U1
s1d=s1z, U2

s1d=s2z, U3
s1d=s3z). The final corrected den-

sity matrix is an incoherent superposition of each possible
error:

rc = o
i,j

Ui
s1dPi

s1dUj
s2dPj

s2duCstdl 3 kCstduPi
s1d†Ui

s1d†Pj
s2d†Uj

s2d†.

s26d

Because error is correlated between blocks the projection
Pi

s1dPj
s2d onto stateuCstdl is zero unlessi = j . For example,

p
k=1

2

U0
skdP0

skduCstdl = cos3scduCs0dl − i sin3scdufl,
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p
k=1

2

Ul
skdPl

skduCstdl = i sinscdcos2scd 3 fuCs0dl + i tanscduflg

s27d

for l =1, 2, 3 [note that Eq.(20) omitted the syndrome sub-
spaces 2,3]. Finally, it is straightforward to calculate the fi-
delity squared,

uFu2 = kCs0durcuuCs0dl = cos4scdf1 + 2 sin2scdg

+ sin4scdf1 + 2 cos2scdgzkCs0duflz2. s28d

Maximum error occurs when the second term of Eq.(28) is
zero. This leads to

maxsEd = 1 − minsuFu2d < 3c4 + Osc6d, s29d

which is the square of the error without error correction.
Hence neglecting small dipolar coupling between different
error correction blocks is for all practical purposes equivalent
to having a source of independent uncorrelated error identi-
cal to the one assumed in the quantum error correction lit-
erature.

V. DISCUSSION

We now consider the feasibility of our dipolar quantum
computer proposal for III-V semiconductor donor impurities
and quantum dots. Although these materials have a small
effective mass(implying higher a* and dopt), some of the
narrow gap semiconductors have quite large bulkg factors,
enhancing dipolar coupling. A simple estimation is obtained
from the relationtCZ,s0.3/m* d3s2/gd23100 ms. Using the
parameters of Ref.[24] we get tCZ,0.1 s for GaAs and
tCZ,1 ms for GaSb, InAs, and InSb donor impurities(quan-
tum dots have dipolar gate times higher by approximately a

factor of 10 due to larger Bohr radii). Hence our proposal is
not feasible for GaAs, but might work for the narrow gap
III-V materials as long as decoherence due to nuclear spec-
tral diffusion is suppressed by nuclear polarization[5]. In
this case spin flip followed by phonon emission will be the
dominant decohering process. Adjusting the external mag-
netic field, coherence times of the order of a few seconds are
achievable[24], suggesting the possibility of quality factors
greater than 103 in a narrow gap donor dipolar quantum com-
puter, which does not require exchange interaction control
and can be constructed with current lithography techniques.

In conclusion we consider a quantum computer architec-
ture based on dipolar-coupled donors in silicon. Although
gate times are considerably longer than in exchange-based
implementations(albeit the same time scales as in the solid
state NMR proposals[12]), one does not need atomic preci-
sion donor implantation or electrical control of two-qubit
couplings. In particular, “top-down” construction schemes
based on ion implantation should benefit from our proposal,
because these lack precision in donor positioning in addition
to creating interstitial defects[25] (dipolar coupling is nearly
insensitive to electronic structure). Our proposal for decou-
pling of short-range “always on” interactions together with
error correction of the remaining long-range couplings ap-
plies equally well to any solid state implementation based on
other types of long-range interactions(as long as the cou-
pling is bilinear) [11,12], opening the way to implementa-
tions which do not have severe lithography requirements.
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