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Entanglement of the Heisenberg chain with the next-nearest-neighbor interaction
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The features of the concurrences between the nearest-neighbors and that of the next-nearest-neighbors for
the one-dimensional Heisenberg model with next-nearest-neighbor couplarg studied as functions of
temperature and. The two concurrences exhibit a different dependencé anthe ground state, which could
be interpreted from the point of view of the correlation functions. The threshold temperature at which the
concurrence is zero and the temperature effect on the two concurrences for systems up to 12 sites are studied

numerically.
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[. INTRODUCTION Sec. lll, we study the properties of entanglement at the

. . ) .ground state and discuss some special cases. Our results
Much attention has been paid to the entanglement in spi@hoy that the coupling between next-nearest-neighbor sites
systemg1-7] and indistinguishable particle systeii® be-  goes not enhance the entanglement between nearest-neighbor
cause it plays an important role in quantum phy§40.  sjtes, regardless of whether it is a ferromagnetic or antiferro-
Entanglement is not only a useful concept in quantum telemagnetic coupling. In Sec. 1V, we study the concurrence at
portation, but also relevant to quantum phase transitiongite temperatures. The dependence of threshold temperature
[11,12 in condensed matter physics. Typical models includeyy, the next-nearest-neighbor coupling consthist obtained

the Ising model in a transverse figltil] and the anisotropic = gxpjicitly. The summary and discussion are given in Sec. V.
Heisenberg modgl7]. However, as far as we are aware, most

discussions of the spin chains merely focused on the model

with nearest-neighbor spin coupling. The entanglement of Il. MODEL AND ITS GENERAL FORMULATION
formation between two spins mostly vanishes unless the two
sites under consideration are at most next-nearest neighboIli@
[11]. It is therefore worthwhile to investigate the problem by

We consider a one-dimensional Heisenberg chain with
xt-nearest-neighbor coupling,

taking account of next-nearest-neighbor couplj@g]. This L
is not merely a purely scholastic consideration, for there ex- HQJ) =D [0 014y + Joi075] (1)
ist some quasi-one-dimensional compounds, such as =1 I 7

CuGeQ [14] and NaVOs [15], that manifest such interac-

tions. For the particular interests in the field of condensedvhereo; denote Pauli matrices for the spin at ik site, L
matter physics, those systems have been well studied by thienotes the total number of sites, and the dimensionless pa-
exact diagonalization methofll7,18 and density matrix rameterJ refers to the ratio between the next-nearest-
renormalization groupDMRG) approaci{19-21. All those  neighbor coupling and the nearest-neighbor coupling. This
works enriched our understanding of the ground-state propmodel is invariant under translation once the periodic bound-
erties, such as gap formation, dimerization, etc.; however, thary conditiono; =0 ,; is imposed. Additionally, it is invari-
relationship between next-nearest-neighbor coupling and erant under a global S@) rotation, which implies total spin
tanglement, which is known as a pure quantum correlatiorwonservation. Thus the reduced density matrix for the sub-
and a resource in quantum communication, has not been igpace of any two sites takes the form

vestigated yet.

In this paper, we study the pairwise entanglement between uw 0 0 O
the nearest-neighbor sites and that of the next-nearest- Ow z 0O
. . - . . . 1
neighbor sites in a Heisenberg chain with next-nearest- pji = N , (2
neighbor coupling both at finite temperatures and at the 0z w, O
ground state. The two quantities are characterized by the 0 0 0 u
entanglement of formation, the concurreri&é]. In the next
section we introduce the model and show how to calculatevhich is expressed in the conventional bal, |01), |10),

the entanglement of formation on the basis of the groundt11). The entities of the reduced density mat(® can be
state energy af=0 and the partition function at finit€. In  calculated from the correlation function&*={o“c"),
namely,

*Electronic address: sjgu@phy.cuhk.edu.hk u=u 1(1 +G?

u=-
URL: http://www.phystar.net/ 4

1050-2947/2004/18)/0523025)/$22.50 70 052302-1 ©2004 The American Physical Society



GU et al. PHYSICAL REVIEW A 70, 052302(2004)

1
2=2(G*+ GP+IGY -G, (3)

Consequently, the concurrence for arbitrary two sjtHsis
evaluated as

—— 1
C=2maf0,[z - vuu] =7 ma{0,36 - G*-1],

(4)

The correlation function between next-nearest-neighbor site:
at finite temperatures is given by
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whereZ is the partition function. The correlation function at _ FIG- 1. The ground-state correlation functi@q (left) and G,

zero temperature can be calculated according to the Hellmafright) versusJ for various lattices. The singularity dt1/2 arises
Feynman theorem from the level crossingdegeneracy

2 LdE(J) 1 (- 1L2 — L2\ -1
th=0= 3745 (6) C=(5+(2T22)(2+(2L%> : (10

whereEy(J) denotes the ground-state energy. The correlatio

function for neighboring sites is evaluated as r?or L>2, which tends to 1/4 in the thermodynamic limit.

In general, one can numerically solve the eigenvalue

problem of the Hamiltonian for a finite-size system. It is
Gi’= 3L Y 2 (7)  known that the ground state of the system for 0 is an
antiferromagnetic statg4], while for J>0 many numerical

where E=(H) is the internal energy of the system. Clearly, results indicate that the ground state is antiferromagnetic for
the key point here is to study the two-site correlation func-a finite chain[25]. Thus we only need to consider the invari-
tion for the next-nearest neighbors. Although the concur&nt subspace spanned by those states with an equal number
rence defines a measurement of pure quantum correlation, @ down spins and up spins—i.eS,=0. This subspace
still depends on the correlation functions, which are appli-should include the eigenstates with the lowest eigenvalue of
cable to both quantum and classical systems. The entangléie system due to the global &) symmetry. The ground-

ment, however, only distills the quantum part from the sys-State energy can be obtained by diagonalizing the Hamil-
tem. tonian in this subspace.

The correlation function of the nearest-neighbor s{igs
and that of the next-nearest-neighbor si@sare plotted in
Fig. 1. The corresponding concurrenégsand C, are plot-

As is well known, there are no exact results of the Hamil-t€d in Fig. 2. The curves in those two figures show Gat
tonian(1) for generall except for some special values. When féaches a minimum ai=0, which implies that the next-
J=0, the Bethe-ansatz method was successfully applied tgearest-neighbor couplingdoes not enhance the antiferro- -
solve the ground state and excited std2%23, from which magnetic correlation between the nearest-neighbor sites. This
the correlation functiorG?? is easily obtained ag/3L. In ~ May be regarded as evidence to support the argument that the
terms of the internal energy, the thermal concurrence i®résence of interactions with a third party generally sup-
evaluated to be 0.386 at the ground state. Wirefi/2, the ~ Presses the entanglement between the original biparties. This
ground state is a uniformly weighted superposition of thef@ct brings about a maximum value of the concurreGget

two nearest-neighbor valence bond stdtes] : J=0. Moreover, in the region with antiferromagnetic frus-
trated couplingd >0, the concurrenc€; is significantly af-

|y =[1,2][3,4]---[L—1,L], fected by the magnitude &k Particularly, in the neighbor-
hood of J=1/2, theantiferromagnetic correlation db, is
_ _ _ dramatically broken by the frustration effect. T@g is sup-
=[L,1][2,3]---[L-2,L-1], 8 .
v =[L,20[2,3] [ L ® pressed down to zero rapidly beyond a threshold valug of
where which is about 0.6 forL=12. In contrast, the correlation
function G, and the concurrencg€, behave in a completely
—— different way. From the Hamiltonian, we can easily conclude
[ii1= V,r§(|0>i|1>i 11i[0)). ) that the frustration interactial> 0 supports the formation of
an antiferromagnetic correlatids, and thatC, is an increas-
Then the ground-state concurrence can be simply written ai;g function ofJ, as shown in Fig. 2. Moreover, we can also

IIl. GROUND-STATE CONCURRENCE
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0.5 ——————

FIG. 2. The ground concurren€® andC, versus] for various
lattices. Their singularities arount=1/2 arecaused by the level
crossing(or degeneragy

see from those figures that the concurrence as well as t
correlation functions is not smoothly continuous for all val-
ues ofJ. We interpret this phenomenon as a consequence
the ground-state level crossing Bt 1/2.

IV. THERMAL CONCURRENCE AND THRESHOLD
TEMPERATURE

Since the density matrix at a finite temperature is a sum
mation of Boltzmann weights over all states and becomes
diagonal matrix with equal entities whén— «, G** goes to
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FIG. 3. Threshold temperature of the concurrence of the nearest-
neighbor site<C; as a function ofl for different lattices. Clearly, it
converges quickly ak exceeds 10.

We plotted our numerical results for the threshold tem-
perature for the case of next-nearest neighbors in Fig. 4. We
can see that there is no entanglement at any temper#ture

d any coupling whenL=6. This is because the system
can be partitioned into two parts far=6, i.e., the part of

ites{1,3,5 and that of{2,4,6. For each part, the next-

nearest-neighbor interaction does not assist the entanglement
of formation because of the inside frustration. For other
cases, the threshold temperature exhibits “down-down-up-
up” behavior as the number of sites increases, which differs
from that of the nearest-neighbor sites completely, and it
gonverges rapidly aftelc exceeds 10. We can therefore rea-
sonably assume that the threshold temperature of a system

zero, causing the entanglement to vanish at this limit. Thovith L=12 is sufficient to capture the feature of the infinite
concurrence ought to be a descendent function of temper&YStem- As is well known, in spin-1/2 systems, the nearest-

ture. This implies that the thermal fluctuation at a finite tem-

neighbor superexchange interaction is estimated in the order

perature tends to suppress the pairwise entanglement. Thed.1000 K. Our result shows that the threshold temperature is

fore a threshold temperaturg;, at which the concurrence

above that magnitude. Thus the entanglement of formation

vanishes is expected to exist. In the following we determindC" SPIn Systems may always exist at room temperature.

the dependence of the threshold temperature on the coupling

constant].

As we indicated before, the entanglement of a small sys-
tem can well characterize the behavior of a large system. We

To observe its finite-size effect. we calculate the threshold@!otted the thermal concurrence for nearest neighbors versus

temperature for systems with=4,5, ..., 12numerically.

the temperature and the interactidmn Fig. 5. The thermal

The threshold temperature for the concurrence of nearest-
neighbor sites is plotted in Fig. 3. Apparently, it converges
rapidly asL increases. This is due to the fact that the con-
currence studied here is only related to the nearest-neighbor
correlation function, so even a system as smalla40 can
describe the physical properties of the thermodynamic sys-
tem well. The system with up th=12 sites is sufficient to
specify the threshold temperature for the infinite system. We
also observe that the system with an ey@nodd number of
sites manifests different features Ji& 0, the threshold tem-
perature of the system with an even number of sites is larger
than that with an odd number of sites just like in the tradi-
tional isotropic Heisenberg mod¢R6]. This is because a
ferromagnetic coupling does not frustrate the tendency of
singlet formation between nearest neighborsl#0, how-
ever, the situation becomes different due to the frustration.
From the left panel Fig. 3, we see that the line lof5
crosses with the other lines aroudd0.125, so doek=4.

v

FIG. 4. Threshold temperature of the concurrence between the
next-nearest-neighbor sit€% as a function of] for different lat-
tices. Clearly, it converges quickly dsexceeds 10.
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FIG. 5. The curved surface of thermal concurre@zebetween FIG. 6. The curved surface of thermal concurre@gebetween
the nearest-neighbor sites as a function of the temperature and thge next-nearest-neighbor sites as a function of the temperature and
next-nearest-neighbor interactidnHereL =12. the next-nearest-neighbor interactidnHereL=12.

fluctuation usually suppresses the pairwise entanglemerf’0del[27,28 as an example. This is a soluble model de-
However, around=0.6 where the ground-state concurrenceSC'iPing the long-range spin interactidfi= = Jnomomn
tends to zero, thermal fluctuations may enhance the concufith Jn=Jo/[2sirf(nm/N)]. Its correlation function{eoery)
rence. In Fig. 6, we gave the results of the thermal Concurdecrea_ses rap|dly asincreases and the concurrence between
rence for the next-nearest neighbors. From Fig. 6, we ob@ny pair of two sites is zero. This examplg demonstrates that
serve that no next-nearest-neighbor spin entanglement occuf€ concurrence is a unwonted resource in condensed maitter
at any temperature as long ass smaller than a threshold Physics. We also noted that the interaction with a third party
value Jy,, while for J>J,;,, thermal fluctuation suppresses it generally suppresses the entanglement between the original

in most regions. biparties, regardless of whether the coupling is ferromagnetic
or antiferromagnetic.
V. SUMMARY AND DISCUSSION We also investigated the entanglement arising from ther-

mal fluctuations at a finite temperature. The threshold tem-

In this work, we studied the entanglement features of theperature of the entanglement was calculated for systems with
Heisenberg chain in the presence of next-nearest-neighbadifferent sizes. We found that the dependenc@&,pibn J for
coupling. Both the entanglement between nearest-neighba@ystems with an even number of sites differs from that with
sites and that between next-nearest-neighbor sites are calcan odd number of sites. Except in the region arodrd.6,
lated for the ground state and for finite temperatures, respethe thermal fluctuation usually suppresses the entanglement
tively. We found that the frustrated interactidk™0 sup- at finite temperatures.
presses the nearest-neighbor concurrence substantially, while
it induces the entanglement of formation between the next- ACKNOWLEDGMENTS
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