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The features of the concurrences between the nearest-neighbors and that of the next-nearest-neighbors for
the one-dimensional Heisenberg model with next-nearest-neighbor couplingJ are studied as functions of
temperature andJ. The two concurrences exhibit a different dependence onJ at the ground state, which could
be interpreted from the point of view of the correlation functions. The threshold temperature at which the
concurrence is zero and the temperature effect on the two concurrences for systems up to 12 sites are studied
numerically.
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I. INTRODUCTION

Much attention has been paid to the entanglement in spin
systems[1–7] and indistinguishable particle systems[8] be-
cause it plays an important role in quantum physics[9,10].
Entanglement is not only a useful concept in quantum tele-
portation, but also relevant to quantum phase transitions
[11,12] in condensed matter physics. Typical models include
the Ising model in a transverse field[11] and the anisotropic
Heisenberg model[7]. However, as far as we are aware, most
discussions of the spin chains merely focused on the model
with nearest-neighbor spin coupling. The entanglement of
formation between two spins mostly vanishes unless the two
sites under consideration are at most next-nearest neighbors
[11]. It is therefore worthwhile to investigate the problem by
taking account of next-nearest-neighbor coupling[13]. This
is not merely a purely scholastic consideration, for there ex-
ist some quasi-one-dimensional compounds, such as
CuGeO3 [14] and NaV2O5 [15], that manifest such interac-
tions. For the particular interests in the field of condensed
matter physics, those systems have been well studied by the
exact diagonalization method[17,18] and density matrix
renormalization group(DMRG) approach[19–21]. All those
works enriched our understanding of the ground-state prop-
erties, such as gap formation, dimerization, etc.; however, the
relationship between next-nearest-neighbor coupling and en-
tanglement, which is known as a pure quantum correlation
and a resource in quantum communication, has not been in-
vestigated yet.

In this paper, we study the pairwise entanglement between
the nearest-neighbor sites and that of the next-nearest-
neighbor sites in a Heisenberg chain with next-nearest-
neighbor coupling both at finite temperatures and at the
ground state. The two quantities are characterized by the
entanglement of formation, the concurrence[16]. In the next
section we introduce the model and show how to calculate
the entanglement of formation on the basis of the ground-
state energy atT=0 and the partition function at finiteT. In

Sec. III, we study the properties of entanglement at the
ground state and discuss some special cases. Our results
show that the coupling between next-nearest-neighbor sites
does not enhance the entanglement between nearest-neighbor
sites, regardless of whether it is a ferromagnetic or antiferro-
magnetic coupling. In Sec. IV, we study the concurrence at
finite temperatures. The dependence of threshold temperature
on the next-nearest-neighbor coupling constantJ is obtained
explicitly. The summary and discussion are given in Sec. V.

II. MODEL AND ITS GENERAL FORMULATION

We consider a one-dimensional Heisenberg chain with
next-nearest-neighbor coupling,

HsJd = o
j=1

L

fs j s j+1 + Js js j+2g, s1d

wheres j denote Pauli matrices for the spin at thej th site,L
denotes the total number of sites, and the dimensionless pa-
rameter J refers to the ratio between the next-nearest-
neighbor coupling and the nearest-neighbor coupling. This
model is invariant under translation once the periodic bound-
ary conditions1=sL+1 is imposed. Additionally, it is invari-
ant under a global SU(2) rotation, which implies total spin
conservation. Thus the reduced density matrix for the sub-
space of any two sites takes the form

r jl =1
u+ 0 0 0

0 w1 z 0

0 z* w2 0

0 0 0 u−
2 , s2d

which is expressed in the conventional basesu00l, u01l, u10l,
u11l. The entities of the reduced density matrix(2) can be
calculated from the correlation functionsGab=ksasbl,
namely,

u+ = u− =
1

4
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z=
1

4
sGxx + Gyy + iGxy − iGyxd. s3d

Consequently, the concurrence for arbitrary two sites[1] is
evaluated as

C = 2 maxf0,uzu − Îu+u−g =
1

2
maxf0,2uGzzu − Gzz− 1g,

s4d

The correlation function between next-nearest-neighbor sites
at finite temperatures is given by

G2
zzsTd = −

T

3Z

] Z

] J
, s5d

whereZ is the partition function. The correlation function at
zero temperature can be calculated according to the Hellman-
Feynman theorem

uG2
zzuT=0 =

1

3

dE0sJd
dJ

, s6d

whereE0sJd denotes the ground-state energy. The correlation
function for neighboring sites is evaluated as

G1
zz=

E

3L
− JG2

zz, s7d

whereE=kHl is the internal energy of the system. Clearly,
the key point here is to study the two-site correlation func-
tion for the next-nearest neighbors. Although the concur-
rence defines a measurement of pure quantum correlation, it
still depends on the correlation functions, which are appli-
cable to both quantum and classical systems. The entangle-
ment, however, only distills the quantum part from the sys-
tem.

III. GROUND-STATE CONCURRENCE

As is well known, there are no exact results of the Hamil-
tonian(1) for generalJ except for some special values. When
J=0, the Bethe-ansatz method was successfully applied to
solve the ground state and excited states[22,23], from which
the correlation functionG1

zz is easily obtained asE/3L. In
terms of the internal energy, the thermal concurrence is
evaluated to be 0.386 at the ground state. WhenJ=1/2, the
ground state is a uniformly weighted superposition of the
two nearest-neighbor valence bond states[13] :

uc1l = f1,2gf3,4g ¯ fL − 1,Lg,

uc2l = fL,1gf2,3g ¯ fL − 2,L − 1g, s8d

where

fi, jg =
1
Î2

su0liu1l j − u1liu0l jd. s9d

Then the ground-state concurrence can be simply written as

C = S1

2
+

s− 1dL/2

2L/2 DS2 +
s− 1dL/2

2L/2–2 D−1

, s10d

for L.2, which tends to 1/4 in the thermodynamic limit.
In general, one can numerically solve the eigenvalue

problem of the Hamiltonian for a finite-size system. It is
known that the ground state of the system forJ,0 is an
antiferromagnetic state[24], while for J.0 many numerical
results indicate that the ground state is antiferromagnetic for
a finite chain[25]. Thus we only need to consider the invari-
ant subspace spanned by those states with an equal number
of down spins and up spins—i.e.,Stotal

z =0. This subspace
should include the eigenstates with the lowest eigenvalue of
the system due to the global SU(2) symmetry. The ground-
state energy can be obtained by diagonalizing the Hamil-
tonian in this subspace.

The correlation function of the nearest-neighbor sitesG1
and that of the next-nearest-neighbor sitesG2 are plotted in
Fig. 1. The corresponding concurrencesC1 andC2 are plot-
ted in Fig. 2. The curves in those two figures show thatG1
reaches a minimum atJ=0, which implies that the next-
nearest-neighbor couplingJ does not enhance the antiferro-
magnetic correlation between the nearest-neighbor sites. This
may be regarded as evidence to support the argument that the
presence of interactions with a third party generally sup-
presses the entanglement between the original biparties. This
fact brings about a maximum value of the concurrenceC1 at
J=0. Moreover, in the region with antiferromagnetic frus-
trated couplingJ.0, the concurrenceC1 is significantly af-
fected by the magnitude ofJ. Particularly, in the neighbor-
hood of J=1/2, theantiferromagnetic correlation ofG1 is
dramatically broken by the frustration effect. TheC1 is sup-
pressed down to zero rapidly beyond a threshold value ofJ
which is about 0.6 forL=12. In contrast, the correlation
function G2 and the concurrenceC2 behave in a completely
different way. From the Hamiltonian, we can easily conclude
that the frustration interactionJ.0 supports the formation of
an antiferromagnetic correlationG2 and thatC2 is an increas-
ing function ofJ, as shown in Fig. 2. Moreover, we can also

FIG. 1. The ground-state correlation functionG1 (left) and G2

(right) versusJ for various lattices. The singularity atJ=1/2 arises
from the level crossing(degeneracy).
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see from those figures that the concurrence as well as the
correlation functions is not smoothly continuous for all val-
ues ofJ. We interpret this phenomenon as a consequence of
the ground-state level crossing atJ=1/2.

IV. THERMAL CONCURRENCE AND THRESHOLD
TEMPERATURE

Since the density matrix at a finite temperature is a sum-
mation of Boltzmann weights over all states and becomes a
diagonal matrix with equal entities whenT→`, Gzz goes to
zero, causing the entanglement to vanish at this limit. The
concurrence ought to be a descendent function of tempera-
ture. This implies that the thermal fluctuation at a finite tem-
perature tends to suppress the pairwise entanglement. There-
fore a threshold temperatureTth at which the concurrence
vanishes is expected to exist. In the following we determine
the dependence of the threshold temperature on the coupling
constantJ.

To observe its finite-size effect, we calculate the threshold
temperature for systems withL=4,5, . . . , 12numerically.
The threshold temperature for the concurrence of nearest-
neighbor sites is plotted in Fig. 3. Apparently, it converges
rapidly asL increases. This is due to the fact that the con-
currence studied here is only related to the nearest-neighbor
correlation function, so even a system as small asL=10 can
describe the physical properties of the thermodynamic sys-
tem well. The system with up toL=12 sites is sufficient to
specify the threshold temperature for the infinite system. We
also observe that the system with an even(or odd) number of
sites manifests different features. IfJ,0, the threshold tem-
perature of the system with an even number of sites is larger
than that with an odd number of sites just like in the tradi-
tional isotropic Heisenberg model[26]. This is because a
ferromagnetic couplingJ does not frustrate the tendency of
singlet formation between nearest neighbors. IfJ.0, how-
ever, the situation becomes different due to the frustration.
From the left panel Fig. 3, we see that the line ofL=5
crosses with the other lines aroundJ=0.125, so doesL=4.

We plotted our numerical results for the threshold tem-
perature for the case of next-nearest neighbors in Fig. 4. We
can see that there is no entanglement at any temperatureT
and any couplingJ when L=6. This is because the system
can be partitioned into two parts forL=6, i.e., the part of
sites h1,3,5j and that ofh2,4,6j. For each part, the next-
nearest-neighbor interaction does not assist the entanglement
of formation because of the inside frustration. For other
cases, the threshold temperature exhibits “down-down-up-
up” behavior as the number of sites increases, which differs
from that of the nearest-neighbor sites completely, and it
converges rapidly afterL exceeds 10. We can therefore rea-
sonably assume that the threshold temperature of a system
with L=12 is sufficient to capture the feature of the infinite
system. As is well known, in spin-1/2 systems, the nearest-
neighbor superexchange interaction is estimated in the order
of 1000 K. Our result shows that the threshold temperature is
above that magnitude. Thus the entanglement of formation
for spin systems may always exist at room temperature.

As we indicated before, the entanglement of a small sys-
tem can well characterize the behavior of a large system. We
plotted the thermal concurrence for nearest neighbors versus
the temperature and the interactionJ in Fig. 5. The thermal

FIG. 2. The ground concurrenceC1 andC2 versusJ for various
lattices. Their singularities aroundJ=1/2 arecaused by the level
crossing(or degeneracy).

FIG. 3. Threshold temperature of the concurrence of the nearest-
neighbor sitesC1 as a function ofJ for different lattices. Clearly, it
converges quickly asL exceeds 10.

FIG. 4. Threshold temperature of the concurrence between the
next-nearest-neighbor sitesC2 as a function ofJ for different lat-
tices. Clearly, it converges quickly asL exceeds 10.
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fluctuation usually suppresses the pairwise entanglement.
However, aroundJ=0.6 where the ground-state concurrence
tends to zero, thermal fluctuations may enhance the concur-
rence. In Fig. 6, we gave the results of the thermal concur-
rence for the next-nearest neighbors. From Fig. 6, we ob-
serve that no next-nearest-neighbor spin entanglement occurs
at any temperature as long asJ is smaller than a threshold
valueJth, while for J.Jth, thermal fluctuation suppresses it
in most regions.

V. SUMMARY AND DISCUSSION

In this work, we studied the entanglement features of the
Heisenberg chain in the presence of next-nearest-neighbor
coupling. Both the entanglement between nearest-neighbor
sites and that between next-nearest-neighbor sites are calcu-
lated for the ground state and for finite temperatures, respec-
tively. We found that the frustrated interactionJ.0 sup-
presses the nearest-neighbor concurrence substantially, while
it induces the entanglement of formation between the next-
nearest-neighbor sites. Naturally, one expects that the en-
tanglement between spins located at sitei and j will arise
from a sufficiently large interaction between the two spins.
However, this may not be true. Take the Haldane-Shastry

model [27,28] as an example. This is a soluble model de-
scribing the long-range spin interactionH=onm Jnsmsm+n
with Jn=J0/ f2sin2snp /Ndg. Its correlation functionks0snl
decreases rapidly asn increases and the concurrence between
any pair of two sites is zero. This example demonstrates that
the concurrence is a unwonted resource in condensed matter
physics. We also noted that the interaction with a third party
generally suppresses the entanglement between the original
biparties, regardless of whether the coupling is ferromagnetic
or antiferromagnetic.

We also investigated the entanglement arising from ther-
mal fluctuations at a finite temperature. The threshold tem-
perature of the entanglement was calculated for systems with
different sizes. We found that the dependence ofTth on J for
systems with an even number of sites differs from that with
an odd number of sites. Except in the region aroundJ=0.6,
the thermal fluctuation usually suppresses the entanglement
at finite temperatures.
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