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Quantum-invariant processes in phase space
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We show the formal equivalence between the phase-space representations of transformations and quantum
states. We study invariant quantum input-output transformations in phase space and in Hilbert space. We show
that all invariant processes are linear transformations while the converse is not true. Some relevant examples of
application of these ideas are examined.
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[. INTRODUCTION particularly easy to analyze and encompass a great variety of
) ) ) phenomena in very different fields. Focusing on optics we
Quantum physics admits phase-space formulations fullan mention beam splitting, interference, imaging, and even
equivalent to the standard Hilbert formalism. States and obyje|q propagation in nonlinear media driven by strong pumps
servables are replaced by functions on classical phase sp _15.
so that expected values are computed, as in classical statisti- |, sec. || we recall the basis of the phase-space represen-
cal physics, by averaging over the phase space. This is valigion of transformations, focusing on the formal equivalence
for Cartesian and angular as well as finite-dimensional variyin the representation of quantum states. In Sec. Ill we
ables[1-7]. The classical-like appearance of phase-space aRjefine the invariant processes examining their relation with

proaches provides valuable physical insight and allows Us tfnear transformations. In Sec. IV we study some applica-
describe alike classical and quantum processes using one agghs illustrating this formalism.

the same languagis,9]. Moreover, the phase-space repre-
sentative_s can be determined experimentally, allowing direct Il. PHASE-SPACE REPRESENTATION
observation of quantum statgb-7]. OF TRANSFORMATIONS

These techniques usually refer to quantum states, but re-
cently it has been shown that there are also phase-space ap-In this section we briefly outline the phase-space descrip-
proaches for input-output transformatiofis0,11. In this  tion of the most general input-output transformatidr].
work we develop further this idea. More specifically, in Sec.The input and output degrees of freedom of intergse
Il we demonstrate that the correspondence between transfosigna) will be represented by the Hilbert spaceg, and
mations and phase-space distributions admits formally thé{,,, respectively. The corresponding quantum states are rep-
same structure of standard phase-space correspondences riesented by the density matriceg and po,. In order to
quantum states. describe the most general transformation, including open as

Furthermore, we focus on quantum-invariant processes iwell as closed systems, we have to consider possible cou-
phase space. For these transformations the displacement pifngs of the system with additional degrees of freedom ini-
the input variables only produces a displacement of the outtially in a statep,. in a Hilbert spaceH ., The Hilbert
put variableg12]. This idea is very easily embodied on the spaceH, is defined so that;,® H,. IS a closed system
corresponding phase-space representative that must be jusalad the input-output process is a unitary operaiof;,
function of the difference between the input and output vari-® Haux— Hout® Haco WhereH ,..is the Hilbert space needed
ables. We study how this simple structure translates to th&o encompass the image fi, ® Haux
standard description of transformations in the Hilbert-space We assume that the total input state factorizgs.,,. The
picture. More precisely, in Secs. Ill and IV we demonstratefinal density matrix for the signap,, in H,, arises after
two results:(i) all invariant processes are linear transforma-tracing over the variable® ¢
tions, and(ii) the converse is not true and there are linear

transformations that are not invariant. As a by-product we Pout= racd Upinpauld") = 2 Uypin UL, (2.9
derive very general formulas for constructing the phase- k
space representative of invariant processes. where the operators,: H;, — Hoy Verify

Linear transformations are very important since they de-
scribe very fundamental processes governed by quadratic > UlUk:Iin, (2.2
Hamiltonians. They are easy to solve and are the basis for k

meaningful approximations to more complex systems. Fury being the identity irf;
in:

. . d , in
thermore, systems which are both linear and invariant are For definiteness, in what follows(;, and H,,; represent

unbounded, continuous, and a dimensionless Cartesian de-
grees of freedongy;, p;, j=1,...,n andqy, pg, k=1,... 0,
*Electronic address: alluis@fis.ucm.es; URL: http://iwww.ucm.esirespectively. The corresponding operators satisfy the com-
info/gioq mutation relations
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q.a.1=1p.0,1= a.0,1=id . 1
[qjqu] [pjap(f] 0- [q],p({] |5j,€a (2 3) U(Z,S;Z',S,): (2 )ntr[A(z’,s’)UA(z,—s)anXUT]
a
and similarly for@y, p,. These variables can represent me-
chanical position and linear momentum, as well as the =LE troulA(Z',S)UA(Z,~ 9U[].
quadratures of electromagnetic field modes. To simplify the (2m)"
notation we will introduce ther2 and 2v'-dimensional vec- (2.9

tors, respectively,
Formally, i/ is the output corresponding to an impulse input

a Win(2,9) o 82(z-7).
% . We can show that the transformation-function correspon-
: ) dence can be expressed formally using the same relations
On qr',, valid for quantum states in E¢2.5). To this end we can use

z= , Z'= I B (2.9 the Liouville formulation where operators are represented by

Ffl ;?1 vectors in a suitably doubled Hilbert spajde):
o, 0, A= AgnXm| < [A) = 2 An,m),  (2.10

n nm nm

and the associated quantum operators are denotgd?as where|n) is_ a orthonorr_nal basis_in_the original Hilbert space
There are many complete formulations of the quantur‘rﬁndm'm» is the associated basis in the enlarged space. This

theory on the classical phase space formed by Cartesian vafllows us to express the transformation-function correspon-

ables[2,4,13. One of the most widely studied is the family dence in the form

of p«— W correspondences between density matricg®r

operators in generpbnd distributiondV on phase space la-

beled by a real parametsrin the form[4,13

Uuzs;z',s') = tr[puZ(z,s;z’,s’)],

1 , ~
pu= "0 de"Zde” ZUz,5,2',8)A(z,-8,2,—8'),
WI(z,s) =tr{ pA(z,9)], @mn
(2.11
b= o f P 2W(Z,9A(Z, ), (2.5 Where
r
pu= 2 U(UY (2.12
k
where
and
1 ivTKz, iy TK3 ~ 1
A(z,9) = nfdznyewzme'yTKze Kz, (2.6) A(z,s;2',8') = > «(n'|AZ,S)|m' Ym|A(z,- s)|n)
(277) (27T)n ’ ’
n,n° ,mm
y is a h-dimensional real vector, X", m)m’, m|
1
0, I, = HAEZ . S)®A*(z,-9), (2.13
K=\_\" o) (2.7 (2m)
" where in the last equality it is understood that
and |, is the nX n identity matrix. As particular cases we [, n)ym’,m| = [n"}m'| @ [n)(m|, (2.14)

have theQ function (s=-1), the P representatiofis=1), and
the Wigner function(s=0) [4,13]. Note that the functions
W(z,s) do not necessarily exist as ordinary functions for al
values ofs and for all states.

Not only quantum states, but also processes can be fullx
described by functions on phase sp&8,1]. The input-
output transformatioii2.1) can be expressed alternatively as
a relation between distributions: tr(pypy) =

and the complex conjugation refers to the basis in(Ed.0.
|Note that p,, formally resembles a density matrip;,=p,,

=0, although tp,, # 1.

Among other consequences of the above relations we
ave that, for two transformation$ andV,

dzd® 2’ Uy (z,s,2',S'
[
XU(z,~-s;2',-9') = |tr(UTV)|?, 2.1

Woul(Z',8') = J *2U(z,52 S )Win(z9), (2.9 tA )=IUVIE, - 219

where the first equality is fully general while the last one is
valid only for unitary transformation¥,V: H;,— Hoyur
whereW,, and W, are the distributions associated with The input-output relatiori2.1) can be also expressed as a
and p,,, respectively, and relation between characteristic functiofis3]:
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Xoul(€,S') = f EUE S €, xin(€9), (2.10 Uue) = mm f 'z € Kz, (3.4

dt is clear that the invariant character does not depend on the
values of s, s'. For simplicity we omit these parameters
throughout.

2 £TKS iOniA i
) = ey (pe €KYy 21 . The function/ is the freq_uency response or trgnsfer fu_nc-
X(&9) p ) 217 tion (the analog of the optical transfer function in classical
£and & are real vectors of dimensiomand 2v', respec- optical imaging. From Eq.(3.3) any invariant process can

tively, representing spatial frequencies in phase space, and®® régarded as a frequency filter modifying the phase-space
spatial spectrum of the input state.

1 The experimental determination of invariant systems is

where y;, and y,,; are the characteristic functions associate
with p;, and p,,, respectively,

U(E,s & ,5) = ———e § Merstiy (8 'K 2'ydé'k2, Ty rather simple. Since they formally depend only on one set of
(2m) variables(the difference between inpatand outputz’ vari-
1 o o0y €K aples), .it is sufficient to determin_e the output state for a
= 2m f d Zf dz'e single input statéthe vacuum, for instangigd1].

As far as we refer to the phase-space picture, the above
XeigTKzu(Z,S;Z/'S/), (2.18 definit_ion applies to the classical as well as to Fhe qu_antum
domains alike. In order to fully develop these ideas in the

whereK' is the matrix in Eq(2.7) replacingn by n’. Char- quantum domain it is necessary to find out which quantum

acteristic functions and distributions are Fourier transformProcesses are actually invariant in phase space and how are
pairs, so bothW(z,s) and x(£,9) provide full information represented in the Hilbert-space picture. This point is ad-

. ~ dressed next.
about the system state. Equivalently, the funcéivim Egs.

. . ) In principle, the very same definition of phase-space in-
(2.16 and(2.18 is a Fourier transform i and determines  51ance suggests that they might be related to linear trans-

completely the transformation. The uselobr i is a matter  formations. In this sense previous results show that linear
of convenience and, in fact, many practical schemes measutgitary transformations between closed systems are actually
characteristic functions instead of distributiofd¥]. In par-  invariant. In particularl/ becomes as function fors=s'=0
ticular, phase-space tomography relies on measurement g 9]. In what follows we examine the equivalence between
the s=0 characteristic functiofi’]. The practical determina- |inear and invariant processes in full generality, including
tion of phase-space representatives of transformations ispen systems and even output Hilbert spaces not unitarily
studied in Ref.[11]. Moreover, characteristic functions al- equivalent to the input ong.e., H;, # Ho,) because of dif-
ways exist for everyp ands even when the corresponding ferent dimensionality#n’ for example. We will show that
distribution W(z,s) does not exist. Most of the ensuing the invariant processes are a subset of the linear input-output
analysis is carried out using characteristic functions instea¢tansformations
of distributions. R

utzu=Mz+V, (3.5

lll. QUANTUM-INVARIANT PROCESSES whereU is the global unitary operatol\A(I is a n' X2n ma-

Invariant transformationglso referred to as shift invari- trix, andV is a 2n’-dimensional vector. Botiv andV are
ant, stationary, or isoplanatid2]) are defined to be of the independent of, but they can be still operators acting on
form H auxe

In most cases the unitary representatibin the extended
Uuz',z)=Uz' - Mz, (3.1 spaceH;, ® Haux iS not available, so it would be desirable to
deal with another characterization of linear transformations
whereM is a 20’ X 2n constant matrix. The relation between equivalent to Eq(3.5). For transformations of the forii8.5)
input and output distributions is a convolution in phasethe mean value of the product kf output operators will be
space, a linear function of the mean value of products koinput
operators withk=<k’,

Woie) = [ @ MW@, 82K o
@G )=S T MEE 2V,
k=1, Gl
or a filtering in the frequency domain a6
Youl &) =UE ) xin(NE), (3.3  for some constant coefficientd1"{k, V| ;. depending

_ only on M, V, and Paux This generalized expression is a
whereN=KM'K'T, and/ is the Fourier transform df{(z’)  suitable alternative definition particularly useful for our pur-
in Eq. (3.1): poses.
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Next we demonstrate that every invariant quantum proimon in quantum physics. Throughout we will focus on a
cess is a linear input output transformation. We consider firssingle degree of freedom describable by an annihilation op-
the case&k’=1. From Eq.(2.16), eratora=(q+ip)/\2 as the only input and output variable
Hin=Houe This can be representing the one-dimensional mo-

o _.Zzn . IXoul€) tion of a material system or the complex amplitude of a
(Z0= Ij:l Kik | oo (37 single mode of the electromagnetic field.
while from Eq.(3.3) A. Linear transformations with constant coefficients
~ Maybe the most frequent situation arising in real physical
IXoul &) _ ) Ixin(NE') processes corresponds to the case of transformations of the
agj’ £=0 55{ =0 35," =0 form (3..5) with constant coefficients and linear in the auxil-
iary variables
(3.8
~ 511 = M5 S
and we have used tha{(0) = x(0)=1. The right-hand side of UTZ’U=M2+Vz, (4.
Eq. (3.8) can be expressed using E@3.4) and(2.16) as whereM is a 0’ X 2n constant matrix is a 2n’ X 2m con-
~ o stant matrix, the @rdimensional vector is made ofm po-
UE') =—iem™S k! fdzn/z’z’u(z’) sition G; operators, andm momentum p; operators j
9 | g=0 o ¢ ’ =1,...m, as in Eq.(2.4) acting on the auxiliary system
space with commutation relatiofig;, z,]=iK; ;, whereK is
Ixin(NE") n given by Eq.(2.7) after replacind, by I, The preservation
— =—i > Ng Ko m(Zm), (3.9 of the commutation relations imposes
65,- £'=0 €,m=1 ~
T T — !
where the matriXN has been defined after E(.3). From MKM?+VKVE=K". 4.2
the above equations we finally get From Eq.(3.12 we have that the transformation is of the
- - form (3.3) with
@) =M@+, (3.10 9 A
~ , P er2in _ et TNTN £/ et Tt
where U(E) = e &g sE NINElayy(p, 7€ KV - (4.3)
B (n-n') Ny s where it can be appreciated théat is proportional to the
Vv =(2m) d Z’Uz')z". (31D characteristic function of the state of the auxiliary system,
Thus we have obtained that for invariant systems the UE)=et 02y (), (4.4

input-output relation is clearly of the forr(8.6) for k' =1. . .
Following this same procedure we can see that this is alstyNereG is a symmetric 8
always valid for higher orderkf>1. Therefore, invariant G= %K,(§VVT+SM M™ - s)K'T, (4.5)
systems are linear transformations.
However, the converse is not true, and not all linear transs is the s value for the characteristic functiog,,, and

formations are invariant processes. This can be seen by ex- -

amining the output characteristic function when the input- n=KV'K'T¢". (4.6)
output transformation is of the forif8.5):

X 2n' constant matrix,

This implies that the phase-space representative of the trans-
N — oS E A (&' Tk M2+£ TK'V) formationi/(z’) is proportional to a Gaussian convolution of

Xoul&') =€ Ul pinpaue 1312 the phase-space representativegf,

In the most general cadd andV are operators acting on

H.ux @nd the right-hand side of the above equation does not Uz = (277)“’-"-"1J d?"ZH(z' -VZ2)Wa(2), (4.7)

factorize in the form(3.3) required for invariance. A particu-

lar simple example is presented in Sec. IV. Nevertheless,nere

there are many important situations where the right-hand

side factorizes, as demonstrated also by some examples in ,

the next section. H(Z') = (27T)2n’

J g2 ¢ eig'TK'z'e—g’TGg’/z

IV. EXAMPLES 1 et (4.8)
2n’ '
In this section we present some examples illustrating the V2m)™ detG
results of the preceding sections by applying this formalisnprovided that the corresponding integrals can be performed.
to some linear(invariant and noninvariaptquantum pro- These expressions are valid for arbitrary transformations
cesses. As we have mentioned above, linear transformationgith constant coefficients. For instance this includes losses
(the only candidates to be invariant progeaee very com- and amplification as we shall show below.
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The above expressions simplify for the usual case 0f13,18. In quantum theory there is no input-output transfor-
phase-insensitive transformatiogiis]. These are transforma- mation a’=ua since commutations relations would not be
tions for which the output annihilation operatofsropor-  preserved. Then, the quantum phase-insensitive amplifier
tional toq; +ip;) are proportional to just annihilation opera- must be an open system implicating auxiliary degrees of
tors for the input(proportional tog;+ip; and@;+ip;). This  freedom?, In the most simple realization the signal to be
implies further constraints okl andV. More specifically, if —amplified is represented by a ladder operadoacting on
we express these matrices in terms of the submatrices actiftd,=Hoy, While the auxiliary system is represented by a

on the position and momentum variables, ladder operatob acting onH ,,,=Hace The coupling is gov-
erned by the interaction Hamiltonidg#=7%«(a'b’+ab) where

" :(Ml M2>, V:<V1 Vz), (4.9 «is a coupling constant. In the case of field modes this
M; My Vi V, interaction occurs in nonlinear crystdlk3], while in the case

of ion traps it can be implemented by using the methods in
Ref. [19]. After a time 7 the unitary operator representing
the interaction in the total Hilbert spackl,® Hau iS

we get that for phase-insensitive transformatidvig=M 4,
My;=-M, andV,=V,, V3=-V,. Among other consequences

this implies U=exd-ikr(@'b’+ab)], leading to a’=UTaU=ua+vb’,
MKMT=K’'MMT, VKVT = K/'VVT, (4.10 where u=coslx7) and v=-isinh(x7). While classically it
would be possible to fix the initial conditions such that

so that relation4.2) becomes =0, this is not possible in the quantum domain whietis a

quantum fluctuating variable. Its effects can be minimized by
a proper choice of the initial state it,,, Such asp.uy
This simplifies notably the expression f&rwhens=s'=s,  =|0)(0| where|0) is the vacuunb|0)=0. This leads to

since in such a cas8=0 and then we have

MMT+VVT = 1,,. (4.11)

1t | t
=~ ~ 1T et -_,"aa _aTk _ ak -a'a 41
U :Xaux(KVTK Tf) (4.12) Pout /~L2M g} Kl Pind U (4.15
and The phase-space representation of this transformation can be

easily obtained by computing th@ function for the output
Uz =02n n’—n—mf d?"Z8(z - V)W, (7). (4.13  field Q=(a|po @), where|a) are coherent states, so that

For the particular but frequent case that the makixs Woul(z',s'=-1) :izvvi (Z—,s:— 1)_ (4.19
square and invertible we get H H

In the frequency domain this leads to an input-output relation
W,V 12'). (4.14  of the form(3.3) with

a(g’) = e(S’+l—M23—#2)§'2/4 (4.17

(27T)n’—n—m

|detV|

This last expression agrees with recent results obtained
when studying real phys_ical situatioﬁm,la._ In Re_f. [14] andN=p.
the quantum transformation performed by dispersive and ab-
sorbing four-port deviceguch as real beam splittgiis con-
structed. In such a case the varial#eg’ represent the two- C. Losses
mode input and output fields, re;pecﬂvgly, whaleepresent Losses are often conveniently described by the master
the inner state of the transforming device. When the transé uation(for a reservoir at zero temperatiire
formation is expressed in the phase-space pidtage(82) in q P
Ref. [14]] the expression obtained is of the fo@.2) with p=-«(@'ap + pa'a- 2apa'), (4.18
U(z') given by Eq.(4.14. Another example that fits this ) ] . . .
model studies the quantum-state extraction from ig@gh- which after an interaction time leads to the input-output

cavities [15]. In this example the variables represent the ~elation

Uuz'=

field inside a cavity, and’ represent the field leaving the % (1= 2"
cavity whileZ represent the field incident on the cavity as Pout= MaTaE —':La“pma’mﬂaTa, (4.19
well as any other variables required to account for absorp- n=0 N

tion. Also in this case the relation between the field inside o wr , ,
and outside the cavity in the phase-space pictice (54) in where u=€e7%". The phase-space representative of this trans-

Ref.[15]] is of the form(3.2) with 2/(z’) given by Eq.(4.14). Ig[irgﬁt(fflﬁgrb; easily computed by using teepresen-
- in-

N 1
B. Amplification Pn=" f PaPy(@)|a)el, (4.20
Classically an amplifier transforms an input phase space 7

point « (i.e., the complex amplitude of an electromagneticwhere|a) are the coherent state$a)=ca|a). With the help
field mods in the output onex’ = ua, whereu is constant  of this representation it is easy to arrive at
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In the frequency domain this leads to an input-output relation
of the form (3.3) with

PHYSICAL REVIEW A70, 052118(2004)

UTaU=e %53,

(4.21) (4.29

Z/
—,szl).
)73

1
Wout(z/-sl = 1) = _2\N|n( L. . .
M where ¢=k7. The output characteristic function is

Xoul €)= €594 p yi (RTE) + p_xin(RE)],

(4.295
U(E) = &S ~LuPsrud)g 1 (4.22  where
and N=u. We can appreciate a formal similarity between :(COS¢’ sin¢) (4.26)
amplification and losses. —sing cos¢

andp. =(t|pa.,£) are the probabilities that the auxiliary sys-
tem is initially in |£).
If p,p-=0 or sing=0, the transformation is clearly in-

D. Linear noninvariant transformation

The next example shows that the invariant character of

the transformation can rely upon the particular initial state ofvariant. On the other hand, #.p-#0 and sing+0, the
the auxiliary degrees of freedom and not only on the natur€xpPressiori4.29 is not of the form(3.3) and the transforma-

of the coupling. This is the case of an interaction governedion is not invariant.

by the Hamiltonian

H=7«a'as,, (4.23
wheres,=|+)(+|—|-)(-| and|+) are two orthogonal states of
a two-dimensional auxiliary systefi,,,=H.cc The input-
output transformation after an interaction timés always a
linear transformation of the forni3.5) for the signal vari-
ables

V. CONCLUSIONS

We have shown the formal equivalence between the
phase-space representation of quantum states and transfor-
mations. We have introduced and studied the main properties
of the invariant quantum input-output transformations. We
have demonstrated that all invariant processes are linear
while the converse is not true. Some relevant examples of
application of these ideas have been examined.
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