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We show the formal equivalence between the phase-space representations of transformations and quantum
states. We study invariant quantum input-output transformations in phase space and in Hilbert space. We show
that all invariant processes are linear transformations while the converse is not true. Some relevant examples of
application of these ideas are examined.
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I. INTRODUCTION

Quantum physics admits phase-space formulations fully
equivalent to the standard Hilbert formalism. States and ob-
servables are replaced by functions on classical phase space
so that expected values are computed, as in classical statisti-
cal physics, by averaging over the phase space. This is valid
for Cartesian and angular as well as finite-dimensional vari-
ables[1–7]. The classical-like appearance of phase-space ap-
proaches provides valuable physical insight and allows us to
describe alike classical and quantum processes using one and
the same language[8,9]. Moreover, the phase-space repre-
sentatives can be determined experimentally, allowing direct
observation of quantum states[1–7].

These techniques usually refer to quantum states, but re-
cently it has been shown that there are also phase-space ap-
proaches for input-output transformations[10,11]. In this
work we develop further this idea. More specifically, in Sec.
II we demonstrate that the correspondence between transfor-
mations and phase-space distributions admits formally the
same structure of standard phase-space correspondences for
quantum states.

Furthermore, we focus on quantum-invariant processes in
phase space. For these transformations the displacement of
the input variables only produces a displacement of the out-
put variables[12]. This idea is very easily embodied on the
corresponding phase-space representative that must be just a
function of the difference between the input and output vari-
ables. We study how this simple structure translates to the
standard description of transformations in the Hilbert-space
picture. More precisely, in Secs. III and IV we demonstrate
two results:(i) all invariant processes are linear transforma-
tions, and(ii ) the converse is not true and there are linear
transformations that are not invariant. As a by-product we
derive very general formulas for constructing the phase-
space representative of invariant processes.

Linear transformations are very important since they de-
scribe very fundamental processes governed by quadratic
Hamiltonians. They are easy to solve and are the basis for
meaningful approximations to more complex systems. Fur-
thermore, systems which are both linear and invariant are

particularly easy to analyze and encompass a great variety of
phenomena in very different fields. Focusing on optics we
can mention beam splitting, interference, imaging, and even
field propagation in nonlinear media driven by strong pumps
[12–15].

In Sec. II we recall the basis of the phase-space represen-
tation of transformations, focusing on the formal equivalence
with the representation of quantum states. In Sec. III we
define the invariant processes examining their relation with
linear transformations. In Sec. IV we study some applica-
tions illustrating this formalism.

II. PHASE-SPACE REPRESENTATION
OF TRANSFORMATIONS

In this section we briefly outline the phase-space descrip-
tion of the most general input-output transformation[11].
The input and output degrees of freedom of interest(the
signal) will be represented by the Hilbert spacesHin and
Hout, respectively. The corresponding quantum states are rep-
resented by the density matricesrin and rout. In order to
describe the most general transformation, including open as
well as closed systems, we have to consider possible cou-
plings of the system with additional degrees of freedom ini-
tially in a stateraux in a Hilbert spaceHaux. The Hilbert
spaceHaux is defined so thatHin ^ Haux is a closed system
and the input-output process is a unitary operatorU :Hin
^ Haux→Hout^ Hacc, whereHacc is the Hilbert space needed
to encompass the image ofHin ^ Haux.

We assume that the total input state factorizesrinraux. The
final density matrix for the signalrout in Hout arises after
tracing over the variablesHacc:

rout = traccsUrinrauxU
†d = o

k

UkrinUk
†, s2.1d

where the operatorsUk:Hin→Hout verify

o
k

Uk
†Uk = I in, s2.2d

I in being the identity inHin.
For definiteness, in what followsHin and Hout represent

unbounded, continuous, and a dimensionless Cartesian de-
grees of freedomqj, pj, j =1, . . . ,n and qk8, pk8, k=1, . . . ,n8,
respectively. The corresponding operators satisfy the com-
mutation relations
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fq̂j,q̂,g = fp̂j,p̂,g = 0, fq̂j,p̂,g = id j ,,, s2.3d

and similarly for q̂k8, p̂k8. These variables can represent me-
chanical position and linear momentum, as well as the
quadratures of electromagnetic field modes. To simplify the
notation we will introduce the 2n- and 2n8-dimensional vec-
tors, respectively,

z =1
q1

A
qn

p1

A
pn

2, z8 =1
q18

A

qn8
8

p18

A

pn8
8

2 , s2.4d

and the associated quantum operators are denoted asẑ, ẑ8.
There are many complete formulations of the quantum

theory on the classical phase space formed by Cartesian vari-
ables[2,4,13]. One of the most widely studied is the family
of r↔W correspondences between density matricesr (or
operators in general) and distributionsW on phase space la-
beled by a real parameters in the form [4,13]

Wsz,sd = trfrDsz,sdg,

r =
1

s2pdn E d2nzWsz,sdDsz,− sd, s2.5d

where

Dsz,sd =
1

s2pdn E d2nyesy2/4eiyTKze−iyTKẑ, s2.6d

y is a 2n-dimensional real vector,

K = S 0, In

− In, 0,
D , s2.7d

and In is the n3n identity matrix. As particular cases we
have theQ function ss=−1d, theP representationss=1d, and
the Wigner functionss=0d [4,13]. Note that the functions
Wsz,sd do not necessarily exist as ordinary functions for all
values ofs and for all states.

Not only quantum states, but also processes can be fully
described by functions on phase space[8,9,11]. The input-
output transformation(2.1) can be expressed alternatively as
a relation between distributions:

Woutsz8,s8d =E d2nzUsz,s;z8,s8dWinsz,sd, s2.8d

whereWin andWout are the distributions associated withrin
androut, respectively, and

Usz,s;z8,s8d =
1

s2pdntrfDsz8,s8dUDsz,− sdrauxU
†g

=
1

s2pdno
k

troutfDsz8,s8dUkDsz,− sdUk
†g.

s2.9d

Formally,U is the output corresponding to an impulse input
Winsz,sd~ds2ndsz−z0d.

We can show that the transformation-function correspon-
dence can be expressed formally using the same relations
valid for quantum states in Eq.(2.5). To this end we can use
the Liouville formulation where operators are represented by
vectors in a suitably doubled Hilbert space[16]:

A = o
n,m

Anmunlkmu ↔ uAll = o
n,m

Anmun,mll, s2.10d

whereunl is a orthonormal basis in the original Hilbert space
andun,mll is the associated basis in the enlarged space. This
allows us to express the transformation-function correspon-
dence in the form

Usz,s;z8,s8d = trfrUD̃sz,s;z8,s8dg,

rU =
1

s2pdn8−n
E d2nzE d2n8z8Usz,s;z8,s8dD̃sz,− s;z8,− s8d,

s2.11d

where

rU = o
k

uUkllkkUku s2.12d

and

D̃sz,s;z8,s8d =
1

s2pdn o
n,n8,m,m8

kn8uDsz8,s8dum8lkmuDsz,− sdunl

3un8,nllkkm8,mu

=
1

s2pdnDsz8,s8d ^ D * sz,− sd, s2.13d

where in the last equality it is understood that

un8,nllkkm8,mu = un8lkm8u ^ unlkmu, s2.14d

and the complex conjugation refers to the basis in Eq.(2.10).
Note that rU formally resembles a density matrix,rU

† =rU
ù0, although trrUÞ1.

Among other consequences of the above relations we
have that, for two transformationsU andV,

trsrUrVd =
1

s2pdn8−n
E d2nzd2n8z8UUsz,s;z8,s8d

3UVsz,− s;z8,− s8d = utrsU†Vdu2, s2.15d

where the first equality is fully general while the last one is
valid only for unitary transformationsU ,V:Hin→Hout.

The input-output relation(2.1) can be also expressed as a
relation between characteristic functions[13]:
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xoutsj8,s8d =E d2njŨsj,s;j8,s8dxinsj,sd, s2.16d

wherexin andxout are the characteristic functions associated
with rin androut, respectively,

xsj,sd = esj2/4trsre−ijTKẑd, s2.17d

j and j8 are real vectors of dimension 2n and 2n8, respec-
tively, representing spatial frequencies in phase space, and

Ũsj,s;j8,s8d =
1

s2pdnes8j82/4e−sj2/4trse−ijT8K8ẑ8UeijTKẑrauxU
†d

=
1

s2pdn+n8
E d2nzE d2n8z8e−ijT8K8z8

3eijTKzUsz,s;z8,s8d, s2.18d

whereK8 is the matrix in Eq.(2.7) replacingn by n8. Char-
acteristic functions and distributions are Fourier transform
pairs, so bothWsz,sd and xsj ,sd provide full information

about the system state. Equivalently, the functionŨ in Eqs.
(2.16) and(2.18) is a Fourier transform ofU and determines

completely the transformation. The use ofŨ or U is a matter
of convenience and, in fact, many practical schemes measure
characteristic functions instead of distributions[17]. In par-
ticular, phase-space tomography relies on measurement of
the s=0 characteristic function[7]. The practical determina-
tion of phase-space representatives of transformations is
studied in Ref.[11]. Moreover, characteristic functions al-
ways exist for everyr and s even when the corresponding
distribution Wsz,sd does not exist. Most of the ensuing
analysis is carried out using characteristic functions instead
of distributions.

III. QUANTUM-INVARIANT PROCESSES

Invariant transformations(also referred to as shift invari-
ant, stationary, or isoplanatic[12]) are defined to be of the
form

Usz8,zd = Usz8 − Mzd, s3.1d

whereM is a 2n832n constant matrix. The relation between
input and output distributions is a convolution in phase
space,

Woutsz8d =E d2nzUsz8 − MzdWinszd, s3.2d

or a filtering in the frequency domain

xoutsj8d = Ũsj8dxinsNj8d, s3.3d

whereN=KMTK8T, and Ũ is the Fourier transform ofUsz8d
in Eq. (3.1):

Ũsj8d = s2pdn−n8E d2n8z8e−ij8TK8z8Usz8d. s3.4d

It is clear that the invariant character does not depend on the
values of s, s8. For simplicity we omit these parameters
throughout.

The functionŨ is the frequency response or transfer func-
tion (the analog of the optical transfer function in classical
optical imaging). From Eq.(3.3) any invariant process can
be regarded as a frequency filter modifying the phase-space
spatial spectrum of the input state.

The experimental determination of invariant systems is
rather simple. Since they formally depend only on one set of
variables(the difference between inputz and outputz8 vari-
ables), it is sufficient to determine the output state for a
single input state(the vacuum, for instance)[11].

As far as we refer to the phase-space picture, the above
definition applies to the classical as well as to the quantum
domains alike. In order to fully develop these ideas in the
quantum domain it is necessary to find out which quantum
processes are actually invariant in phase space and how are
represented in the Hilbert-space picture. This point is ad-
dressed next.

In principle, the very same definition of phase-space in-
variance suggests that they might be related to linear trans-
formations. In this sense previous results show that linear
unitary transformations between closed systems are actually
invariant. In particular,U becomes ad function for s=s8=0
[8,9]. In what follows we examine the equivalence between
linear and invariant processes in full generality, including
open systems and even output Hilbert spaces not unitarily
equivalent to the input one(i.e., HinÞHout) because of dif-
ferent dimensionalitynÞn8 for example. We will show that
the invariant processes are a subset of the linear input-output
transformations

U†ẑ8U = M̂ẑ + V̂, s3.5d

whereU is the global unitary operator,M̂ is a 2n832n ma-

trix, and V̂ is a 2n8-dimensional vector. BothM̂ and V̂ are
independent ofẑ, but they can be still operators acting on
Haux.

In most cases the unitary representationU in the extended
spaceHin ^ Haux is not available, so it would be desirable to
deal with another characterization of linear transformations
equivalent to Eq.(3.5). For transformations of the form(3.5)
the mean value of the product ofk8 output operators will be
a linear function of the mean value of products ofk input
operators withkøk8,

kẑj1
8 ¯ ẑjk8

8 l = o
k=1

k8

o
,1,. . .,,k=1

2n

Mj1,. . .,jk8

,1,. . .,,kkẑ,1
¯ ẑ,k

l + Vj1,. . .,jk8
,

s3.6d

for some constant coefficientsMj1,. . .,jk8

,1,. . .,,k, Vj1,. . .,jk8
depending

only on M̂, V̂, and raux. This generalized expression is a
suitable alternative definition particularly useful for our pur-
poses.
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Next we demonstrate that every invariant quantum pro-
cess is a linear input output transformation. We consider first
the casek8=1. From Eq.(2.16),

kẑk8l = io
j=1

2n8

Kj ,k8 U ]xoutsj8d
]j j8

U
j8=0

, s3.7d

while from Eq.(3.3)

U ]xoutsj8d
]j j8

U
j8=0

= U ]Ũsj8d

]j j8
U

j8=0

+ U ]xinsNj8d
]j j8

U
j8=0

,

s3.8d

and we have used thatŨs0d=xs0d=1. The right-hand side of
Eq. (3.8) can be expressed using Eqs.(3.4) and (2.16) as

U ]Ũsj8d

]j j8
U

j8=0

= − is2pdsn−n8do
,=1

n8

Kj ,,8 E d2n8z8z,8Usz8d,

U ]xinsNj8d
]j j8

U
j8=0

= − i o
,,m=1

n

N,,jK,,mkzml, s3.9d

where the matrixN has been defined after Eq.(3.3). From
the above equations we finally get

kẑ8l = Mkẑl + V, s3.10d

where

V = s2pdsn−n8d E d2n8z8Usz8dz8. s3.11d

Thus we have obtained that for invariant systems the
input-output relation is clearly of the form(3.6) for k8=1.
Following this same procedure we can see that this is also
always valid for higher ordersk8.1. Therefore, invariant
systems are linear transformations.

However, the converse is not true, and not all linear trans-
formations are invariant processes. This can be seen by ex-
amining the output characteristic function when the input-
output transformation is of the form(3.5):

xoutsj8d = es8j82/4trfrinrauxe
−isj8TK8M̂ẑ+j8TK8V̂dg. s3.12d

In the most general caseM̂ and V̂ are operators acting on
Haux and the right-hand side of the above equation does not
factorize in the form(3.3) required for invariance. A particu-
lar simple example is presented in Sec. IV. Nevertheless,
there are many important situations where the right-hand
side factorizes, as demonstrated also by some examples in
the next section.

IV. EXAMPLES

In this section we present some examples illustrating the
results of the preceding sections by applying this formalism
to some linear(invariant and noninvariant) quantum pro-
cesses. As we have mentioned above, linear transformations
(the only candidates to be invariant process) are very com-

mon in quantum physics. Throughout we will focus on a
single degree of freedom describable by an annihilation op-
erator a=sq+ ipd /Î2 as the only input and output variable
Hin=Hout. This can be representing the one-dimensional mo-
tion of a material system or the complex amplitude of a
single mode of the electromagnetic field.

A. Linear transformations with constant coefficients

Maybe the most frequent situation arising in real physical
processes corresponds to the case of transformations of the
form (3.5) with constant coefficients and linear in the auxil-
iary variables

U†ẑ8U = Mẑ + Vẑ̃, s4.1d

whereM is a 2n832n constant matrix,V is a 2n832m con-

stant matrix, the 2m-dimensional vectorẑ̃ is made ofm po-
sition q̃j operators, andm momentum p̃j operators j
=1, . . . ,m, as in Eq. (2.4) acting on the auxiliary system

space with commutation relationsfẑ̃j , ẑ̃,g= iK̃ j ,,, whereK̃ is
given by Eq.(2.7) after replacingIn by Im. The preservation
of the commutation relations imposes

MKMT + VK̃VT = K8. s4.2d

From Eq.(3.12) we have that the transformation is of the
form (3.3) with

Ũsj8d = es8j82/4e−sj8TNTNj8/4trsrauxe
−ij8TK8Vẑ̃d, s4.3d

where it can be appreciated thatŨ is proportional to the
characteristic function of the state of the auxiliary system,

Ũsj8d = e−j8TGj8/2xauxshd, s4.4d

whereG is a symmetric 2n832n8 constant matrix,

G = 1
2K8ss̃VVT + sMMT − s8dK8T, s4.5d

s̃ is thes value for the characteristic functionxaux, and

h = K̃VTK8Tj8. s4.6d

This implies that the phase-space representative of the trans-
formationUsz8d is proportional to a Gaussian convolution of
the phase-space representative ofraux,

Usz8d = s2pdn8−n−mE d2mz̃Hsz8 − Vz̃dWauxsz̃d, s4.7d

where

Hsz8d =
1

s2pd2n8
E d2n8j8eij8TK8z8e−j8TGj8/2

=
1

Îs2pd2n8 detG
e−z8TG−1z8/2, s4.8d

provided that the corresponding integrals can be performed.
These expressions are valid for arbitrary transformations

with constant coefficients. For instance this includes losses
and amplification as we shall show below.
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The above expressions simplify for the usual case of
phase-insensitive transformations[18]. These are transforma-
tions for which the output annihilation operators(propor-
tional to qj8+ ipj8) are proportional to just annihilation opera-
tors for the input(proportional toqj + ipj and q̃j + ip̃ j). This
implies further constraints onM andV. More specifically, if
we express these matrices in terms of the submatrices acting
on the position and momentum variables,

M = SM1 M2

M3 M4
D, V = SV1 V2

V3 V4
D , s4.9d

we get that for phase-insensitive transformationsM4=M1,
M3=−M2 and V4=V1, V3=−V2. Among other consequences
this implies

MKMT = K8MMT, VK̃VT = K8VVT, s4.10d

so that relation(4.2) becomes

MMT + VVT = I2n8. s4.11d

This simplifies notably the expression forG when s̃=s8=s,
since in such a caseG=0 and then we have

Ũsj8d = xauxsK̃VTK8Tj8d s4.12d

and

Usz8d = s2pdn8−n−mE d2mz̃dsz8 − Vz̃dWauxsz̃d. s4.13d

For the particular but frequent case that the matrixV is
square and invertible we get

Usz8d =
s2pdn8−n−m

udetVu
WauxsV−1z8d. s4.14d

This last expression agrees with recent results obtained
when studying real physical situations[14,15]. In Ref. [14]
the quantum transformation performed by dispersive and ab-
sorbing four-port devices(such as real beam splitters) is con-
structed. In such a case the variablesz, z8 represent the two-
mode input and output fields, respectively, whilez̃ represent
the inner state of the transforming device. When the trans-
formation is expressed in the phase-space picture[Eq. (82) in
Ref. [14]] the expression obtained is of the form(3.2) with
Usz8d given by Eq. (4.14). Another example that fits this
model studies the quantum-state extraction from high-Q
cavities [15]. In this example the variablesz represent the
field inside a cavity, andz8 represent the field leaving the
cavity while z̃ represent the field incident on the cavity as
well as any other variables required to account for absorp-
tion. Also in this case the relation between the field inside
and outside the cavity in the phase-space picture[Eq. (54) in
Ref. [15]] is of the form(3.2) with Usz8d given by Eq.(4.14).

B. Amplification

Classically an amplifier transforms an input phase space
point a (i.e., the complex amplitude of an electromagnetic
field mode) in the output onea8=ma, wherem is constant

[13,18]. In quantum theory there is no input-output transfor-
mation a8=ma since commutations relations would not be
preserved. Then, the quantum phase-insensitive amplifier
must be an open system implicating auxiliary degrees of
freedomHaux. In the most simple realization the signal to be
amplified is represented by a ladder operatora acting on
Hin=Hout, while the auxiliary system is represented by a
ladder operatorb acting onHaux=Hacc. The coupling is gov-
erned by the interaction HamiltonianH="ksa†b†+abd where
k is a coupling constant. In the case of field modes this
interaction occurs in nonlinear crystals[13], while in the case
of ion traps it can be implemented by using the methods in
Ref. [19]. After a time t the unitary operator representing
the interaction in the total Hilbert spaceHin ^ Haux is
U=expf−iktsa†b†+abdg, leading to a8=U†aU=ma+nb†,
where m=coshsktd and n=−isinhsktd. While classically it
would be possible to fix the initial conditions such thatb
=0, this is not possible in the quantum domain whereb is a
quantum fluctuating variable. Its effects can be minimized by
a proper choice of the initial state inHaux such asraux
= u0lk0u whereu0l is the vacuumbu0l=0. This leads to

rout =
1

m2m−a†ao
k=0

` unu2k

k!
a†krina

km−a†a. s4.15d

The phase-space representation of this transformation can be
easily obtained by computing theQ function for the output
field Q=kauroutual, whereual are coherent states, so that

Woutsz8,s8 = − 1d =
1

m2WinSz8

m
,s= − 1D . s4.16d

In the frequency domain this leads to an input-output relation
of the form (3.3) with

Ũsj8d = ess8+1−m2s−m2dj82/4 s4.17d

andN=m.

C. Losses

Losses are often conveniently described by the master
equation(for a reservoir at zero temperature)

ṙ = − ksa†ar + ra†a − 2ara†d, s4.18d

which after an interaction timet leads to the input-output
relation

rout = ma†ao
n=0

`
s1 − m2dn

n!
anrina

†nma†a, s4.19d

wherem=e−kt. The phase-space representative of this trans-
formation can be easily computed by using theP represen-
tation ss=1d for rin:

rin =
1

p
E d2aPinsadualkau, s4.20d

where ual are the coherent statesaual=aual. With the help
of this representation it is easy to arrive at
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Woutsz8,s8 = 1d =
1

m2WinSz8

m
,s= 1D . s4.21d

In the frequency domain this leads to an input-output relation
of the form (3.3) with

Ũsj8d = ess8−1−m2s+m2dj82/4 s4.22d

and N=m. We can appreciate a formal similarity between
amplification and losses.

D. Linear noninvariant transformation

The next example shows that the invariant character of
the transformation can rely upon the particular initial state of
the auxiliary degrees of freedom and not only on the nature
of the coupling. This is the case of an interaction governed
by the Hamiltonian

H = "ka†asz, s4.23d

wheresz= u+lk+u− u−lk−u andu6l are two orthogonal states of
a two-dimensional auxiliary systemHaux=Hacc. The input-
output transformation after an interaction timet is always a
linear transformation of the form(3.5) for the signal vari-
ables

U†aU = e−ifsza, s4.24d

wheref=kt. The output characteristic function is

xoutsj8d = ess8−sdj82/4fp+xinsRTj8d + p−xinsRj8dg,

s4.25d

where

R= S cosf, sinf

− sinf cosf
D s4.26d

andp±=k±urauxu± l are the probabilities that the auxiliary sys-
tem is initially in u6l.

If p+p−=0 or sinf=0, the transformation is clearly in-
variant. On the other hand, ifp+p−Þ0 and sinfÞ0, the
expression(4.25) is not of the form(3.3) and the transforma-
tion is not invariant.

V. CONCLUSIONS

We have shown the formal equivalence between the
phase-space representation of quantum states and transfor-
mations. We have introduced and studied the main properties
of the invariant quantum input-output transformations. We
have demonstrated that all invariant processes are linear
while the converse is not true. Some relevant examples of
application of these ideas have been examined.
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