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Casimir-Polder forces: A nonperturbative approach

Stefan Yoshi Buhmanh,Ludwig Knoll, and Dirk-Gunnar Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitat Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Ho Trung Dung
Institute of Physics, National Center for Sciences and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietham
(Received 16 June 2004; published 29 November 2004

Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-
Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and
initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to
essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To
go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For
a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force
components that are related to the electronic density matrix elements at a chosen time. Even the force com-
ponent associated with the ground state is not derivable from a potential in the ususal way, because of the
position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent
superposition of energy eigenstates, then temporally oscillating force components are observed, which are due
to the interaction of the atom with both electric and magnetic fields.
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[. INTRODUCTION roscopic QED, by beginning with a normal-mode decompo-
sition and including the bodies via the well-known condi-
It is well known that in the presence of macroscopic bod-tions of continuity at the surfaces of discontinuity. Since in
ies an atom in the ground stater in an excited energy such anoncausglapproach the frequency dependence of the
eigenstatgis subject to a nonvanishing force—the Casimir- bodies’ response to the field cannot be properly taken into
Polder(CP) force—that results from the vacuum fluctuations account, material dispersion and absorption are commonly
of the electromagnetic field. CP forces play an important rolégnored. As has been shown recerity], the problem does
in a variety of processes in physical chemistry, atom opticsnot occur within the frame of a generalized quantization
and cavity QED. Moreover, they hold the key to a number ofscheme that properly takes into account a Kramers-Kronig
potential applications in nanotechnology such as the conconsistent response of the bodies to the field. Clearly, the
struction of atomic-force microscopgs or reflective atom-  problem can also be circumvented in microscopic QED,
optical element§2]. Over the years, substantial efforts have Where the bodies are treated on a microscopic level by adopt-
been made to improve the understanding of CP fofees N9 €.9., harmomc'-oscnlator mode[d4]. In the second,
reviews, see Ref3]). Measuring CP forces acting on indi- S€mMiphenomenological approach, the problem is circum-
vidual particles is a challenging task. Since the early obser/€nted by basing the calculations on linear response theory
vation of the deflection of thermal atomic beams by conduct{-RT); without explicitly quantizing the electromagnetic
ing surfaceg4], measurement techniques and precision hav&€/d [21-28. In the ansatz for the force, either the field
been improving continuously. More recent experiments havguant|t|e§ or both the field and the atomic entities are ex-
been performed with atomic.beams traversing between pa ressed in terms of cor.relat|_on.fun.ct|ons, which in turn are
; o - ."related, via the fluctuation-dissipation theorem, to response
allel plates[5]. Other methods include transmission grating

diffracti £ molecular b ) ﬂ unctions.

. rac7t|on of molecular beamg], a}toml_c quantlr,:rr! refiec- At first glance one would expect the result obtained from
tion [ 8] evanescent-wave atomic mirror tec niques exploiting LRT to be more generally valid than the QED
and indirect measurements via spectroscopic mdafk

. > result obtained in lowest-order perturbation theory. In fact,
Proposa_tls ha"‘? been mgde on improvements of mOoNItoringis is not the case. In both approaches, it is not the exact
the CP interaction by using atomic interferomefhy].

- Séeltomic polarizability that enters the expression for the
O ) . ground-state CP force but the approximate expression
the ?P fo_rce can _be roughly lelded_ Into two categor!es._lr\Nhich is obtained in lowest-order perturbation theory and
the first, first-principle approach explicit field quantization ispich effectively corresponds to the atomic polarizability in
performed and perturbation theory is applied to calculate thgqo space. Since the structure of the electromagnetic field is

body-i_ndluc;adhatofmic ef‘efﬁy shift, V&'hiCh is fegafded I‘;"s th‘?:hanged in the presence of macroscopic bodies, the atomic
potential of the force in lowest-order perturbation t €01Y holarizability is expected to change as well. It is well known

[12-19. The calculations have typically been based on MaCthat the atomic level shifts and broadenings sensitively de-

pend on the material surroundings. In particular, when an
atom is situated very close to a body, the effect can be quite
*Electronic address: s.buhmann@tpi.uni-jena.de significant (see, e.g., Refs[29,3(0) thereby changing the

1050-2947/2004/18)/05211723)/$22.50 70052117-1 ©2004 The American Physical Society



BUHMANN et al. PHYSICAL REVIEW A 70, 052117(2004

atomic polarizability. As a result, a position-dependent polar- a(r)=>q,8r -F,) )
izability is expected to occur, which prevents the CP force — “
from being derivable from a potential in the usual way.

A way to derive a more rigorous expression for the cpand
force is to base the calculations on the exact quantum- -,
mechanical center-of-mass equation of motion of the atom as oar) = f dsr/M (3)
we shall do in this paper. The calculations are performed for Amreglr — 1’|

both minimal and multipolar coupling, and contact is made . . .
with earlier studies of the center-of-mass motion of an atonf'© the charge density and scalar potential of the particles,

in free space, with special emphasis on the so-called Rdntgéﬁspfcu\fely' T(;]e partl_clelllabele_dha? fjharge]a, TAaSS'_:]ﬁ’
interaction term that appears in the multipolar HamiltonianPOS!!ONT«, @and canonically conjugated momentymp 1he

[31-39. After taking the expectation value with respect to fundamental Bosonic field(r , w) [andf](r, )] which can

the internal(electronig quantum state of the atom and the be related to noise polarizatigfor =€) and noise magne-
quantum state of the medium-assisted electromagnetic fieldization (for A\=m), respectively, are the dynamical variables
the resulting force formula can be used to calculate the timefor describing the system composed of the electromagnetic
dependent force acting on a nondriven or driven atom that i§eld and the medium including the dissipative system re-
initially prepared in an arbitrarginterna) quantum state. In  Sponsible for absorption,

this paper, the force formula is further evaluated for the case . .

of a nondriven, initially arbitrarily prepared atom, by assum- [Fi(r @), 8,0 @)1= 881/ 8r = 1) 8= w'), (4)

ing weak atom-field coupling treated in Markovian approxi-

mation. It is worth noting that the theory, being based on the - -

quantized version of the macroscopic Maxwell field, with the [fxi(r, @), fii (1", 0")] = 0. (5)
bodies being described in terms of spatially varying, ) . . .
Kramers-Kronig consistent complex permittivities and per-'\IOte that the first term on the right-hand side of E.is the

meabilities[36,37, also applies to left-handed materighg] ~ €nergy of that system. Furthév(r) and ¢(r) are the vector

where standard quantization runs into difficulties. and scalar potentials of the medium-assisted electromagnetic
The paper is organized as follows. After a brief sketch offield, respectively, which in Coulomb gauge are expressed in

the quantization schem@&ec. 1)), in Sec. Il attention is fo- terms of the fundamental fields(r , ) [andf{(r ,w)] as

cused on the perturbative treatment of the CP force acting on

an atom in an energy eigenstate, and previous ref2lis

obtained for dielectric surroundings of the atom are extended

to magnetodielectric surroundings, including left-handed ma-

terials. In Sec. 1V the exact center-of-mass Heisenberg equa- "

tion of motion of an atom and the Lorentz force therein are U Al — =l

studied, and Sec. V is devoted to the calculation of the aver- Vel = JO duE(r,w) +H.C., 0

age force, with special emphasis on a nondriven atom in the

weak-coupling regime. Finally, a summary and some conwhere

cluding remarks are given in Sec. VI.

A(r)= r do(iw)EX(r,0) +H.c., (6)
0

Ero)= > | &G, of (), (8)

A=e,m

Il. SKETCH OF THE QUANTIZATION SCHEME

A. Minimal coupling w2 [ h
In Coulomb gauge, the minimal-coupling Hamiltonian of Gelrr’w) = s 77_80|m8(r W)G(rre), - (9)

an atomic systente.g., an atom or a molecyleonsisting of

nonrelativistic charged particles interacting with the electro- ® h
magnetic field in the presence of macroscopic dispersing and G(r,r', ) =—i— A - —Imk(r', w)
C TEeQ

absorbing bodies read87]

; . X[G(r,r", @) X V,/], (10)
H= d3rfdthr, fu(r,w) + > —— -
)\:Eem 0 ohoh(r,@fi(r,e) % 2m, with  [G(r,r", @) XV ]j=€d Gy(r,r',w) and «(r,w)
=uXr,w). Here and in the following, transverse and longi-

X[Po— QAR )P+ %f Arpar) ear) tudinal vector fields are denoted hy andll, respectively,

e.g.,
+fd3rf)A(r)§o(r), () EMD(r,w):fd?'r'a“")(r—r’)E(r’,w). (11)

where with
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and

ar(r) = alr)&; - &,(n) (13

being the longitudinal and transverse dyadifunctions, re-

spectively.

In Egs.(9) and (10), G(r,r’,w) is the(classical Green
tensor, which in the case of magnetodielectric matter obey@’

the equation

PHYSICAL REVIEW A 70, 052117(2004)
The total electric field is given by

E(N) =E(r) - V ), (20

where
E(r)= r dwE(r,w) +H.c., (21)
0

ith E(r ,w) from Eq. (8). Accordingly, the total induction
field reads

2 s ~ N
V X k(r,o) V X—%s(r,w) G(r,r', ) =6 -r") B(r):B(r):f dwB(r,w) +H.c., (22)
0
(14 where
together with the boundary condition A o -
B(r,w)=(iw)™V X E(r,m). (23
G(r,r',w) — 0 for|r —r'| — co. (15) - -

) o N Finally, the displacement and magnetic fields are given by
Note that the(relative) permittivity e(r ,w) and permeability

u(r,w) of the (inhomogeneoysmedium are complex func-
tions of frequency, whose real and imaginary parts satisfy the
Kramers-Kronig relations. Since for absorbing media we
have Ine(r,w)>0 and Imu(r,w)>00 Imx(r,w) <0, the
expressions under the square roots in Egs.and(10) are
positive. It should be pointed out that the whole space is
assumed to be filled with som@bsorbing media, in which
case the aforementioned conditions for elm ) and
Imu(r,w) ensure that the differential equati¢i4) together
with the boundary condition15) presents a well-defined where

problem. However, as this assumption allows for both ) e -

e(r,w) and u(r,w) to be arbitrarily close to unityi.e., for D(r,w) = gpe(r,m)E(r,w) +i —()Ims(r,w)fe(r,w),
arbitrarily dilute mattey, it is naturally possible to include N B 77

vacuum regions in the theory, by performing the limit (26)
e(r,w)—1, u(r,w)— 1 in these regions after having calcu-

lated the desired expectation values of the relevant quantities _ ~ hig R
as functions ofs(r,w) and u(r, w). H(r,w) = kok(r,w)B(r,w) = /- 7Imf<(r,w)fm(r,w).

The Green tensor has the following useful propeit3&:

D(r) =D(r) - £ V &alr)

= f do[D(r, ) + H.cl-eoV oalr),  (24)
0

ﬂ(r):ﬁ(r):fwdwﬂ(r,w)+H.c., (25)
0

27
G(r,r',w=G(r,r',-w), (16) 27
Assuming that the atomic system is sufficiently localized,
G(r,r',w)=G(r,r',- ), (17)  and introducing shifted particle coordinates
« « = fa_ I’;A (28)
J d3s{imk(s, 0)[G(r,s,w) X VJ[Vs X G (s,r',w)]

2

w * ’ — ’
+ ?Ims(s,w)G(r,s, )G (51", w)}=ImG(r,r',w). Pa= > —ap (29)
(18) .
(my=2,m,), we can apply the long-wavelength approxima-
tion by expanding the field&(r) and ¢(r) around the center
of mass and keeping only the leading nonvanishing terms of
the respective field operators. For a neutral atomic system,

Combining Eq.(18) with Egs.(9) and(10) yields

" h
Z dssG)\ik(r ,S, O))G)\jk(r ’,S, Q)) = ﬂwzlmG”— (r ,r ,,0)) .
A=e,m ™

(19 a=>0,=0, (30)

Note that in Eq.(19) and throughout the remaining part of
this paper, summation over repeated vector indices is undethis is just the familiar electric dipole approximation, and the
stood. Hamiltonian(1) simplifies to
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A ~ ~ 1
H=He+Ha+ Hag, (32) (1) :raf ANNS(T = Fp = \F,). (40)
where 0
© Note that due to the unitarity of the transformati@®), the
= > | dr J dwhwf{(r,w)f)\(r,w), (32  transformed variables of the atomic systéglzf%and Pl
A=e,m 0 and the transformed field variabld$(r,») and f;T(r,w)
obey the same commutation relations as the untransformed

ones. Needless to say that the transformed fiélds) and
I§’(r) are related to the transformed fielci’,g(r,w) and
f/'(r,w) according to Eq.(8) and Egs.(21)<(23), with

~2
Ha=2> ng +1 f dPrpa(r)@alr), (33

- Qoo ~ o qi ~ primed quantities instead of the unprimed ones. The Hamil-
Hap = d Vo=, = > m—paA(rA) + (Fa), tonian(38) can be regarded as the generalization of the mul-
@« “ “ tipolar Hamiltonian obtained earlier for moving atoms in
(34) vacuum([31-35 to the case where dispersing and absorbing
ith magnetodielectric bodies are present. In particular, it can be
wi used to describe effects specifically due to the translational
N . ~ motion of an atomic system such as Doppler and recoil ef-
= E Aol o= E Aol « (35) fects.
“ “ Applylng the long-wavelength approximation to the fields
being the total electric dipole moment. E’ (r) andB’ (r) in Eq (38), which is equivalent to approxi-
mating 8(r —=f o — AT ) by 8(r=F,) in Egs.(37) and(40), re-
B. Multipolar coupling spectively, i.e.,
Let us turn to the multipolar coupling scheme widely used - - .
for studying the interaction of electromagnetic fields with Pa(r)=da(r —Fa), (41
atoms and molecules. Just as in standard QED, so in the
present formalisn{36,37, the multipolar Hamiltonian can A _1z _a
be obtained from the minimal-coupling Hamiltonian by Oa(r) = 3Tadl = Ta) (42)
means of a Power-Zienau transformation, thus
- i A A A A m, -
U= exp{— f d‘”’rPA(r)A(r)} : (36) Eo(r) = 30uT 80 —=Fp) + ——=dé(r —F), (43
h 2my
where we obtain the multipolar Hamiltonian in long-wavelength ap-
1 proximation,
PA(r) = jaJ ANS(r =T = AT ). 37 A A A A
AN=Z A | NS -fa-NT). (37 = fe i + i s

For a neutral atomic system, the multipolar Hamiltonianwith
[which is obtained by expressing the Hamiltoniéh) in
terms of the transformed variablesan be given in the form " D

[ 3
of (see Appendix A Hp= 2 d f da)hwf T(r, w)f)\(r w), (45)
. * - . 1 R
H= > dgrf dwhwf’T(r,w)f’(r,w)+—f d*rP2(r) . 52 1 .
A=e,m 0 . : 2gq A Hy=>, L —f d*rPa(r), (46)
@ 2ma 0
3rPA(r)E’ f =
- [ b (r)+22mi dr=, (1) o L
2 Hap=—dE'(fa) + X 2 “[p..T, X B'(Fa)l.
~ ma
X B'(r)} , (38) “
- 2
where +2 + [d X8 (Fal
£1)=0.0,0) - T2 40,00 + T2Bar)  (39) + —1 [P X B ()], (a7)
« a™~ a mA 5 BB mA ZmA
and ([a,b],=8b+ba, anticommutato; where
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PA= E ﬁ; (48) A. Minimal coupling

a We start from the minimal-coupling Hamiltonian in elec-
tric dipole approximation as given by Eq81)—34) together
with Eq. (35) (fa—T ). Let|n) denote the eigenstates of the

multilevel atomic system and writd, [EqQ. (33)] as

Ha = > Eqln)n]. (53)

is the (canonical momentum of the center of mass, and
~ m
7 =R — —2RK' 49
pa pa mA pA ( )

denote shifted momenta of the particles relative to the center

of mass. The first two terms on the right-hand side of EqT lculate the leadi d tion to th turbed
(47) represent electric and magnetic dipole interactions, re- 0 caiculate the leading-order correction to the unperturbe

spectively, the next two terms describe {generalizegldia- eigenvalue of a stat)|{0}) due to the perturbation Hamil-

magnetic interaction of the charged particles with theloMan (34 [[{0}), ground state of the fundamental fields

medium-assisted electromagnetic fields, while the last terdfi(r, )], we first note that the first two terms have no diag-
describes the Rontgen interaction due to the translationalnal elements. Thus they start to contribute in second order,

motion of the center of mass. In particular, (generalizey

electric dipole approximation, E@47) reads AE = - EE s Pfo dow fd3r
1 hy r=em Jo Wkt
Hae=—dE'(Fa) + 5 —[ppd X B/l (50) . Q. -
2 X AIHOHA V @], = 2 - EPeA(T)
Recall that the transformed medium-assisted electric field ) “r
E'(f) is related to the physical on&(f), according to Eq. X {1,(r, ) DIk (54)
(Ad).

If the center-of-mass coordinate is treated gslassica)

parametel? ,—r ), then Eq.(39) reduces to (P, principal part, whereas the third term starts to contribute

in first order,

A1) =0,0,(1), (51) 2
ME =GOS !

I

| - S EAXrHONI. (55)
which corresponds to the limin,/my— 0. Hence Eq(47) m,
becomes

Here, |{1A(r,w)}>zf1(r,w)|{0}> denotes single-quantum

Fie=—dE (r) + > 4‘::: [PLT. % B/ (r )], Fock states of the fundamental fields, and
, © o wy = (Ex—E)/h (56)
+> &[?a X B'(ra)]. (52)  are the atomic transition frequencies. SinkgE, and ALE,
« 8M, are quadratic in the coupling constdiigs. (B9) and (B10)

_ _ _ _ in Appendix B, thus being of the same order of magnitude,
If the paramagnetic and diamagnetic terms are omitted, thge |eading-order correction to the eigenvalue is given by
interaction Hamiltonian simply reduces to the first term on

the right-hand side of Eq52). AE,; = AE + ASE,. (57)

A straightforward but somewhat lengthy calculation yields
Ill. VAN DER WAALS POTENTIAL (see Appendix ©

According to Casimir’s and Polder’s pioneering concept “ do
[12], the CP force on an atomic system near macroscopic  AE, :@E Pf ——dy{ogelIMG(r 5,1 A, )
bodies is commonly regarded as being a conservative force. Tk Jo wutw

In particular, it is assumed that for an atom in an eigenstate
|I) of the atomic Hamiltonian the position-dependent shift of
the corresponding eigenvalue due to te&ctric-dipolg in- (58
teraction of the atomic system with the body-assisted elec\ivith

tromagnetic field is the potential, also referred to as van der

Waals(vdW) potential, from which the CP force can be de- du = <||a|k> (59)
rived, where the calculations are usually performed within Ik

the frame of lowest-order perturbation theory. In this picture being the dipole matrix elements.

the center-of-mass coordinate is a parameter rather than a Since the atomic system should be located in a free-space
dynamical variable(f o+ ,). Following this line, we first region, the Green tensor in this region is a linear superposi-
extend previous resultf20], and show that minimal and tion of the (translationally invariantvacuum Green tensor
multipolar coupling schemes yield essentially the same exG® and the scattering Green tens@” that accounts for the
pression for the force. spatial variation of the permittivity and permeability,

- ImHGH(rAIrAaw)] - wzlm”G”(rAvrA!w)}dk|a
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G(r,r',w) =GO, r',0) +GO(rr', w). (60)

As a consequence, the eigenvalue correctiéi can be de-
composed into two parts,

AE = AE? + AEV(r ). (61)

Ther 5-independent ternzLEl(c” associated with the vacuum
Green tensor gives rise to the vacuum Lamb shift and is n
of interest here. The,-dependent termE(l)(rA) associated

with the scattering Green tensor, is just the vdW potential

sought,
Ui(ra) =AEP(ra) = A ED(ra) + AEN(ra).  (62)

Hence from Eq(58) [G(r5,ra,w)—>GY(r 5,1 A, )] we de-
rive, on recalling Eq(16) and changing the integration vari-
able from -w t0 w,

Mo Y de
Uira) = =2 dy| P
I(rA) 2|’7T% Ikl fo Wy +

SIGD(r ot a0 )] = @2 GVr o1 pr0))
f_x dw

-P
0 Wk~

- ”G(l)H(rA!rAv(‘))] + wzue(l)”(rAarAvw)} dk|'

{wk|w[G(l)(rA7 rA,C!))
w

{wklw[c':‘(l)(rA: raw)
w

(63)

This equation can be greatly simplified by using contour-

integral techniquesG(r,,r 5, ) is an analytic function in

PHYSICAL REVIEW A 70, 052117(2004

Uj(ra) = = 10> O () 0fdiREGI(r o, 1 4, i) dig
k

(67)

[®(2), unit step functiohis the resonant part arising from the
contribution from the residua at the poles. Note tbiatr »)
vanishes when the atomic system is in the ground state. For

%4n atomic system in an excited stat#(r o) may dominate

UP(ra).
The CP force can be derived from E&5) according to

Fi(ra) ==VaUi(ra) (68)

(VAEV,A). A formula of the type of Eq(65) together with
Egs. (66) and (67) was first given in Ref[23] within the
frame of LRT.
To give EqQ.(66) in a more compact form, we introduce
the generalized atomic polarizability tensor
dmk® dkn

|:Z’kn_w_i(rk+rm)/2

dkn ® dmk ]
Oymt 0+ +T)12]°

1
an(w) = EE
k

(69)

wherew,, are the shiftedrenormalizegl transition frequen-
cies andl’, are the excited-state widths. Following REE9],
we may regard

(70)

as being the ordinaryKramers-Kronig-consistentpolariz-

() = a(w)

the upper half of the complex frequency plane, including theability tensor of an atom in sta{§). Hence we may rewrite

real axis(apart from a possible pole at=0). Furthermore,

Eg. (66) as

knowing the asymptotic behaviour of the Green tensor in the

limit w— 0 (cf. Ref.[37]), one can verify that all integrands
in Eq. (63) remain finite in this limit. We may therefore apply

Cauchy’s theorem, and replace the principal value integral

over the positivgnegative real half axis by a contour inte-
gral along the positive imaginary half axigtroducing the
purely imaginary coordinate=iu) and along a quarter circle
with infinitely large radius in the firsgsecong quadrant of
the complex frequency plane plus, in the casevf>0, a

contour integral along an infinitesimally small half circle

aroundw =y (w=-wy) in the first(second quadrant of the

U2(r ) = “0 duuzTr[a(lo)(iu)G(l)(rA,rA,iu)],
(71
where
a9 () = wy
(w) =1lim E—dlk®dkl (72)
e—>0h K wk| (z) —lwe

is the polarizability tensor in lowest-order perturbation

complex frequency plane. The integrals along the infinitelytheory, which can be obtained from E0) together with
large quarter circles vanish due to the asymptotic property Eq.(69) by ignoring both the level shifts and broadenings. In

‘I||m —G D(r,r,w)=0 (64)
(cf. Ref. [37]), so we finally arrive at
U(ra) = UP(ra) + Uj(ra), (65)

where

dIkG(l (1 ast a,iU)dy

or( NE MOEJ

(66)

is the off-resonant part of the vdW potential, and

particular for an atom in a spherically symmetric state, we
have

() = () = lim =3 — i |duf™
e—03h 7 wk| - w?
(73)
(I, unit tensoy, so that Eq(71) reduces to
or huo [~ (0)(; (6] i
U (ra) = dULFa, (iu) TrIGO(r o, iu), (74)

and Eq.(67) simplifies to
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) Mo 214 12 " treats nonrelativistic atomic systems, which are characterized
Ui(ra) =~ 32 O (i) widi “TITREG(r p, 1 2, 010 ]- by Zewao<1 [40], so we can safely neglect the correction
k arising from the magnetic dipole interaction. Furthermore,
(75) the first-order correction arising from the diamagnetic term
can be shown to be smaller than the second-order correction
due to the electric dipole interaction by the same factor
a(iu) = al(o)(iu) (76) (Zesrrg)?, SO wWe can disregard it for the same reason.
) . ) ) . In summary, the main contribution to the eigenvalue shift
is typically valid for an atomic system in free space, becausgy 4 state|1)[{0'}) [{0’}), ground state of the transformed

of the smallness of the level shifts and broadenings that ref- d | fieldd’ is th d-ord .
sult from the interaction of the atomic system with the fundamental fieldsf,(r,w)] is the second-order correction

vacuum electromagnetic field. due to the electric dipole interaction in E&2), i.e.,
Equation (65) together with Eqs(66) and (67) can be 1 * dw

regarded as being the natural extension of the QED results ~ AE=AE=-=-> > P

obtained on the basis of the familiar normal-mode formal- h0Zem Jo ot o

ism, which ignores material absorption. Moreover, it does .

not only apply to arbitrary causal dielectric bodies, but, to Xf &Br|(1|{0} = dE"(r p) {11(r, ) DIK)?  (78)

our knowledge, it first proves applicable to magnetodielectric

matter such as left-handed material, for which standard quany; 4 _rt / ;

tization concepts run into difficulties. Note that all informa—rgj{j?‘(dr ’tfc:;izs_efek ,i;pa;)rtg?x}é After some algebra it can be

tion about the electric and magnetic properties of the matter

is contained in the scattering Green tensor. o °° w2
Finally, let us briefly comment on the ground-state poten- ~ AE=-"—"2, Pf do=——di IMG(r ," a, @)di-

tial as given by Eq(71) for 1=0. In terms of an integral Tk Joo @uTO

along the positive frequency axis, it reads (79

Note that

o hy (7 5 © @ We now apply the same procedure as in Sec. lll A, below
Uora)=--—"| dwo IM{Trlap”(@)GH(r a,f 4, @)} Eq. (58). Replacing the Green tensor by its scattering part
0 and transforming the frequency integral to imaginary fre-

(77 guencies using contour integral techniques, we arrive at ex-

actly the same form of the vdW potential as given in &)

An expression of this type can also be obtained by using th . : )
methods of LRT[23,25. It allows for a simple physical in- ?ogether with Eqs(66) and (6.7)' It is worth noting that'the

: : two schemes lead to equivalent results only if in the
terpretation for the ground-state CP force as being due to

correlations of the fluctuating electromagnetic field with theMinimal-coupling scheme th&? coupling term is properly
corresponding induced electric dipole of the atomic systent@ken into account.
plus thg cprr(_alations of the_ flqctuating electric dipole mo- IV CENTER-OF-MASS MOTION AND LORENTZ FORCE
ment with its induced electric fielf28].
Atomic quantities that are related to the atom-field inter-
action can drastically change when the atomic system comes
B. Multipolar coupling close to a macroscopic body, the spontaneous decay thus

Let us now consider the multipolar Hamiltonian in long- becoming purely radiationless, with decay rates and level
wavelength approximation as given by Eqd4)—(46) to-  shifts bemhg mr\]/e(;sely proportlolnal Ito thehatom-surface sepa-
: ) ; tion to the third powef29]. Clearly, in this case approxi-
gether with Eq(52), and writeH, [EQ. (46)] in the form of ratio :
Eq.(53). In contrast to the electric dipole approximation con-mations of the type76) cannot be made in general and the

sidered in the minimal coupling scheme, the present Ham”perturbative gpproach to the calculation of the C.P force be.'
tonian also includes magnetic interactions. One might theret0Mes questionable. Moreover, wh'en the atomic system is
fore expect that the leading-order corrections to th ot In the ground state, then dynamical _effects can no Ionger

e disregarded. To go beyond perturbation theory, let us first

unperturbed eigenvalues are given by the second-order cor-~ ~ X ) .
rections due to the dipole interactioinear in the field consider the center-of-mass Newtonian equation of motion

variableg plus the first-order correction due to the diamag-and the Lorentz force therein.

netic interactior(quadratic in the field variablgsall of these A. Minimal coupling
contributions being quadratic in the coupling constant. How- . )
ever, one can shofEgs. (B16)B18) in Appendix B that As has been showii87], the Heisenberg equations of mo-

the second-order eigenvalue correction due to magnetic dfion governed by the minimal-coupling Hamiltoniah),

pole interaction is smaller than that due to the electric dipole . 1)\2 A

interaction by a factor ofZxag)?, WhereZq is the effective Fo= (E) [[F o, H],HI, (80)
nucleus charge felt by the electrons giving the main contri- !

bution to the energy shift, and is the fine-structure con- lead to the well-known Newtonian equations of motion for
stant. The current formalism based on Hamiltonjanonly  the individual charged particles,
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Mef o = QulE(r o) + 20 X B(ro) —B(r) X ]}, (81)

Summing Eq(81) over «, recalling definition(29), and us-
ing Egs.(20) and(22) together with the relationship

> AaVadalfa) =0 (82)
(VaEVfa), we derive
Mafa =F, (83)
where the Lorentz force takes the form
F= f FPr{pa(NEM) +]aN) X B, (84)

with charge densityp,(r) and current density(r) being
defined by Eq(2) and
IA) =53 Aulfo8r =T )+ 80 =7, (85)

respectively. It can be showi31,36,4] that for neutral at-

PHYSICAL REVIEW A 70, 052117(2004

J [V X Mg (r)] X B(r) =V, J &r[M aw (HB()].

(93

Substituting Eqs(86) and(87) into Eq.(84) and using Egs.
(92) and(93), we may equivalently express the Lorentz force
as

ﬁ=vA{ J d*rPA(E(r) + f d3r[MA<r>+MR<r>]é(r>}

d « -
+ d—J d3rPa(r) X B(r). (94)

In long-wavelength approximation, Eq®8) and (89) sim-
plify to [recall Egs.(41) and(42)]

M) = 23 QLA = Fa)Fu X To=Tu X Fadlr — )]

and

MR(r) = 3[8(r =Fa)d X Fo—Ta X dO(r =74)], (96)

oms the atomic charge and current densities can be expressed ) _
in terms of atomic polarization and magnetization according€spectively, so that the Lorentz for(@4) can be written as

to

pa(r) == VPA(r) (86)

and

TA)=PAM) + V X KA+ V X M), (87)

respectively, where

M) =23 quOu() X Tu-Tax O,1)], (88

MR(r) = 3[PA(r) X T =T X PA(N)], (89)

with I5A(r) and (:)a(r) from Egs.(37) and(40), respectively.

Note that the last term in Eq87) represents the so-called
Rontgen currenf41,42, which is a feature of the overall

translational motion of any aggregate of charges.
Inspection of Eqs(37), (40), (88), and(89) shows that the
relations

V @ Pa(r) ==V, @ Pa(r), (90)

Ve MA(R)(r) =-VaA® MA(R)(r) (91)

(Va=V;,) are valid. We therefore may write, on recalling

Maxwell’s equations,
- f d*r[VPA(N]IE(r) =V, f d*r[PA(NE(N)]

+Jd3rI5A(r) X B(r), (92

F= VA{aé(fA) + 33 QulF 0 B(Fa) X Tl

XA A d~ -
+ %[rAnB(rA) X d]+} + d_t[d X B(Fa)l. (97)
Further, we calculate

FCRLEOVE rll‘[H’d X B(f )]
= a X L5>(FA)+a X Ii%(r) r:fA+cAi

X3[FAVA @ B(Fa) +B(Fa) ® Vafal.
(99)

Comparing the different terms in E¢97), one can show
[Egs.(B19), (B20), and(B22)—«(B24) in Appendix B that the
second term in curly brackets is typically smaller than the
first one by a factor of /c+Z. (v , velocity of the center

of mas$, while the third term is smaller than the first one by
a factor ofv/c . Similarly, we find [Egs. (B25)—<B27) in
Appendix B that the third term in Eq(98) is smaller than
the first two terms by a factor af/c. Thus in the nonrela-
tivistic limit considered throughout the current wofkf.
Hamiltonian(1)] we can set

(99)

- A d -~ -
F= {V[dE(r)] +—[d X B(r)]}
dt r=f
In the absence of magnetodielectric bodies, B§) re-
duces to earlier results derived within the multipolar cou-
pling scheme for an atom interacting with the electromag-

netic field in free spacd32,33. However, it should be
pointed out that here the electric and magnetic fickgs)
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andB(r), respectively, are the medium-assisted fields as dekEg. (97), but with é’(fA) and é’(fA) in place oflé’(FA) and
fined by Eqs(21) and(22) [together with Eqs(8) and(23)]. B/ (f,), respectively. The time derivative[d x B'(r ,)]/dt
Thus Eq.(94) or, in electric dipole approximation, EG99)  can then be calculated to give an expression of the form of

determine the force acting on an atomic system in the ver
general case of dispersing and absorbing magnetodielectn)écq (98) with B’ (Fa) replaced byB (Fa). Obviously, in the
nrelativistic limit we are left with an expression similar to

bodies being present—a result that has not yet been derivééo (99). It should be pointed out that EC{97) and(99) with

elsewhere.
E’ (fa) and B’ (f5) replaced byB (fFa) and B’ (f5), respec-
tively, yield exactly the same force as the equations with the
B. Multipolar coupling unprimed quantities, although the physical meaning of
Using the multipolar Hamiltonia38), we obtain, on re- E'A(fA) is different from that ofE’(7,) [recall thatB'(f»)
calling thatf| =f,, =B(fa)].
) It is worth noting that the results of this section can serve
ma*a:'_[g m,f.]=p’ +fd3réa(f) X B'(r). as an example to illustrate that the electric dipole approxi-
“ mation has to be employed with great care. If in electric

(100  dipole approximation the Rontgen interaction primarily re-
. o lated to the induction field had been disregarded and ).
Summing Eq(100) over a and taking into account Eq&20)  without the second term on the right-hand side had been

and(48) yields used, then in the resulting expression for the force the time-
_ A derivative term, i.e., the magnetic part of the force, would
mAfA:f)A*'JdBFf)A(r) X B'(r). (101 have been lost. Note that the pressure exerted by external
laser fields on macroscopic bodies can be dominated by this
Equation(102) leads to magnetic force[43,44, which contrasts with arguments

[32,45 that the contribution of this term to the radiation
PO I B 3 force on atoms can be neglected.
mArA:F:T—1 H,p, + drPA(r)xB(r)

V. AVERAGE LORENTZ FORCE

— I T A d 3D D !
B h[H’pA] " dJ drPA(r) X B'(n). (102 Let us now turn to the problem of determining the elec-

. N i , tromagnetic force acting on an atomic system that is initially
To evaluate the different contributions to the first term in Eq'prepared in an arbitrary internéélectronig quantum state.

(102, we first recall Eq(90) and note that For convenience, we shall employ the multipolar formalism.
il 1 . 1 o On recalling Eqgs(21) and (22) together with Eq(23) we
h ZJ drPa(r) jd rVPA(r)=0 find that Eq.(99) [with E(7 ») andB(f ») replaced byE' (7 »)
(103 andB’ (f5), respectively can be rewritten as
. . N *® A 1d-~ =
Further, we derive, on recalling E¢LOO0), Fo f oo V [AB'(r.0)]+ ——d X [V X E'(r, )]
i 1 ( 3 2 : )2 i ) od r=fa
— — | p.+ | drE4r) XB'(r)] ,p:
n| = 2m\Pe f (1) X B0 | P +Hc., (106)
- _VAJ d3r%2 ['f X B (r) - = (r) x 7 ]é’(r). WhereE (r,w) is defined accordlng to E@8). Decomposing

F into an average compone(lF) (where the expectation
(104)  value(:--) is taken with respect to the internal atomic motion

o ) . and the medium-assisted electromagnetic field oalyd a
Substituting Eqs(103) and (104) into Eq. (102, with H as  flyctuating component
given in Eq.(38), we eventually obtain

ﬁ:vA{f d3rl5A(r)I§’(r)+%f B> [E () XT,-T,

AF=F - (F), (107

we may write

X éa(r)]é'(r)} + d%J derPA(r) X B'(r). (105) F=(F)+AF. (108)

. . _ In the following, we will only consider the average for(fé)
It can be showrisee Appendix. Dthat Eq.(105) is identical . ) 2
to Eq. (94). (for a discussion of the force fluctuatidAF<), see, e.g., Ref.

It is not difficult to see[recall Eqs.(41) and(43)] that in  [19]). Note that we are free to choose a convenient operator
long-wavelength approximation E@¢LO5) takes the form of ordering in Eq.(106), becauséE’(r, w) commutes withd.
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A. General case B. Nondriven atom in the weak-coupling regime

In order to calculate the average force as a function of When the atomic system is not driven, i.e.,
time, we first formally integrate the Heisenberg equations of
motion for the fundamental field§ (r,w,t) to obtain the

source-quantity representation@f(r ,w,t). The result reads

(- Efedfat), 0,)) = (EfLdfa®), 0,t) ---) =0, (117)

(see Appendix E

E'(r,o,t) = Efedl,0,1) + ElouredT 0,1), (109

where

Ef,ree(rvw!t) :Er(r,w)e—iwt (110

and

: t
~ | : ’ A "
Bt 0.1) = 202 f dt e 1) ImG(r o (1), 0)A(1).

0
(112
Substituting Eq.(109) together with Eqs(110 and (111
into EqQ.(106), we arrive at

<|E(t)> = <|Efree(t)> + <[A:sourcét)>a (112

where

. °° .. 1d -
<Ffree(t)> = {f doV <d(t)Ef,ree(r ,w,t)) + Ed_t<d(t)

0

X[V % Ef’ree(r,w,t)b}

+H.c. (113
r:fA(t)
and
(Feourcd)) = (FE ) + (FT29_(1)). (114
Here,
: S t
<|A:§:)urcét)> = {Iﬂf dw(ozf dt'e_iw(t_t/)
™ Jo 0
X V{d(t) ImG(r,fA(t’),w)a(t’»} +H.c.
r=f (1)
(115

then<l5free(t)>:o. Consequently, the average force, referred
to as CP force, is determined by the source-field part only,

(F(1)) = (Fsourcd?))- (118

Even more specifically, we assume that the density opera-
tor of the initial quantum state of the field and the internal
(electronig motion of the atomic system reads

e=H{oh{o} e a,

where the density operator of the internal motion of the
atomic systent can be written as

(119

o= E O'mr‘Amn (120

(Amn=|m)n|, with |n), |m) being the internal atomic energy
eigenstates In order to calculate the dipole-dipole correla-
tion function appearing in Eq¢115) and(116), we make use
of the expansion

dv = mE ArnrArr(t) (121)
and write
@ @ dt')= mE 2 A ® Ay A Ay (1)),
o (122

In the weak-coupling regime, the Markov approximation
can be exploited and the correlation functions
(AmnOAy (1)) can be calculated by means of the quantum
regression theorelfsee, e.g., Ref46]). For this purpose, the
(intra-atomig master equation has to be solved for arbitray
initial conditions, which in general requires knowledge of the
specific level structure of the atomic system under consider-
ation. Only if the relevant atomic transition frequencies are
well separated from each other, one can go a step forward

is the electric part of the average force associated with théonstructing a general solution. In this case, the off-diagonal
source-field part of the medium-assisted electromagnetigensity matrix elements can be regarded as being decoupled

field, and

~ - d(* . , A
<F2‘o%grc&t)>={%’ f dwo f dt’e et x (d(t)
0

0

X{V x ImG(r,fA(t’),w)}a(t’))}

from each other and from the diagonal elements. We find
(Appendix B

A DA (t)) = Sy Ay (£))

X e{iZ’mn(FA)_[Fm(fA)+Fn(fA)]/2}(t_t/)

+H.c.
r=f () (123)
(116 (t=t', m#n). Here,
is the respective magnetic part. Equatiqid2—116) are DrF A) = O+ (T ) = oy (F p) (124)

still general in the sense that they apply to both driven and
nondriven atomic systems and to both weak and strong atonare the body-induced position-dependent shifted transition
field coupling. frequenciegf o =F (t)], where
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Soon(fa) = 2 Swn(Fa), (125
k
with
el = 22 [ g eetMO )
mh Jo OmdTa) — @
(126)
and
Ti(fa) = 2 Th(P ) (127
k
are the position-dependent level widths, with
o 2Mo e s e o
ThPa) = =200 ) [Gmd )1
X AgrdMG[T T s DT ) . (128)

One should point out that the position-independgmift-
nite) Lamb-shift terms resulting fron®Q(f 5,f o, ) [recall

Eq. (60)] have been thought to be absorbed in the transitions
frequenciesw,,, Equation(126) can be rewritten by chang-
ing to imaginary frequenciegf. the discussion below Eq.

(63)], resulting in

86 ) = = - OBl o) LT )

X dka@u)(anfAyZ’mI(FA))dmk
dka(l)(FAi an iu)dmk
[Drrf P )1+ 1

(129

4y Ho
7h

d Ul'lzz"‘)km(FA)
0

PHYSICAL REVIEW A 70, 052117(2004

gration tend to infinity. Recalling Eq118) together with Eg.
(114), we derive

(F()= 2 onmOFmelFa), (133
Frr(Fa) = FEL(Fa) + FIa4F ), (134)

where
. ,u -
Femln(rA) = {_OE dww?
T k Jo

V &® dmkImG(l)(rifA'w)dkn
W+ @n(Fa) = i[C(Fa) + Tin(Fa) 112 r=fs

(139

+H.c.,

and

Fmﬁg(FA) = {M_;)E dow wa’mn(fA)
k J0

A X [V X Im GO(r ,f 5, @) ]dyn T He
w+ o(fa) —i[T(Fa) +T(Fa)1/2 =t '

(136)

This result requires two comments. First, in E¢s35
and (136) and the replacemer®(r,f,w)—GY(r,fa, w)
has again been made, which can be justified by similar argu-
ments as in Sec. ] cf. the discussion preceding E@®2)].
Second, from the derivation of EqEl33—(136) it is clear
that these equations are valid provided that the center-of-
mass motion can be regarded as being sufficiently slow.

Recall that in the perturbative treatment the vdW potentialviore precisely, they hold if the condition

of an atomic system in a staten) is identified with the
energy shifthdw,, so it is not surprising that Eq125) to-
gether with Eq(129) corresponds to Eq65) together with
Egs.(66) and(67), if in Eq. (129 the @, are replaced with
wme The calculation of

(Amr(D)) = Tan(t) (130
[07(0)=0,m] then leadgunder the assumptions made

o, m(t) - e{iZ’omn(fA)—[l"m(FA)+Fn(FA)]l2}ta_nm (131)

for m#n [cf. EQ. (123)], so the remaining task consists in

solving the balance equations

(-Tmm(t) == 1—‘m(i:A)a'mm(t) + E an(fA)o'nn(t)-

n

(132

With these preparations at hand, the CP force can be cal-

culated in the following steps. We first substitute EtR2)
together with Eqs(123) and(130) into Egs.(115) and(116)
and perform the time derivative in E@116). Introducing
slowly varying density matrix elements,(t)=€“mio, (1),

we then perform the time integrals in the spirit of the Markov

approximation, by making the replacemets(t’) — (1)

as well asf5(t")—TA(t) and letting the upper limit of inte-

G(r,fa(t+At),w) = G(r,Fa(1),w) for At<Tg
(137

is satisfied, wherd' is a characteristic intra-atomic decay
rate. Under this condition, the intern@lectronig and exter-

nal (center-of-magsmotion of the atomic system decouple in
the spirit of a Born-Oppenheimer approximation. As a result,

f o effectively enters the equations as a parameter, so that the
caret will be removed in the followin¢f s ,).

We finally rewrite Eqs(135) and(136), by using contour
integration and going over to imaginary frequendies the
discussion below Eq(63)]. Recalling the definition of
(@)= a1 a, ) as given in Eq(69) and introducing the
abbreviating notation

Q) = onra) +i[Tn(ra) +T(ra)l/2, (138

we derive
Forra) = Fad(ra) + Foi(ra), (139
Foedra) = Fedolr,) + Fd'r), (140

where
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Frn(ra) =~ {MJOC dUUZ[(Can)ij(rA,iU)

2w Jg
+ (amp)ij(ra,—iu)]

' VGl(jl)(rvrAalu)} ’

(142
Feli(r) = {MOE (@)1 ) ¥
k
® dmkG(l)[rarAernl(rA)]dkn}
+H.c., (142
and
FMag.ofr ) = {%fo du&Tr({—amﬁ(rA) ap (1 a,iu)
2w J, iu
_ Z’mn(rA) T s
iu amn(rAr IU):|
X[V X G(l)(r,rA,iu)])} , (143

Fmasy ) = {MOE O n) Do ) Ll ) X (¥
k

X G(l)[r ’ rAernl&rA)]dkn)}
r=rp

+H.c. (144)

[(Tr T);=T;]. Equation(133) together with Eq(134) and
Egs. (139144 is the natural generalization of E@68)

together with Eqs(65), (67), and(71). The above result is

PHYSICAL REVIEW A 70, 052117(2004

h 0
Fﬁl'or(rA) =— ﬂf duuz[(cq)ij(l’A,iU) + (a|)ij(rA.— iu)]

477 0
XVAG(r a,F pi) (148
and
Fi(ra) = 223 0@ Qv
k
® dy G (r, 1, Qu(r ) digh=r ,
+H.c. (149

[Q(ra)=Qu(ra)]. Ignoring the position-dependent shifts
and broadenings of the atomic energy levels, i.e., disregard-
ing the position dependence of the atomic polarizability
[ay(r a,iu)—a®(iU)], Egs. (148 and (149 reduce to the
perturbative result in Eq:68) together with Eqs(65), (67),

and (71) [Fﬁ'(rA)HH(rA)]. Note that this result can be ob-
tained without choosing real dipole matrix elemepdg(iu)
+a(-iu) being symmetric in this caieln the long-time
limit, I'ct>1, Eq. (133 obviously reduces to ground-state
force

(FO) = o) Fmdra) =F&(ra) (150

[FE (ra)=0], because ofr (%)= 8ro0mo -

As already mentioned, the expression for the ground-state
CP force Fgo(ra) obtained in lowest-order perturbation
theory, Eq.(77), agrees with the expression obtained from
LRT. However, its naive extrapolation in the sense of the
replacemeniaY(w)— aq(r o, ) in Eq. (77) [25] is wrong,
because it results in Eq148) with 2(ay);j(r a,iu) instead of
(ag)ij(ra,iu) +(ap)ij(r o, —iu). As a result, a noticeable influ-
ence of the level broadening on the off-resonant part of the
CP force is erroneously predicted in REZ5] (cf. Sec. V q,
thus demonstrating that body-induced level broadening is a

the first nonperturbative expression for the CP force that inhonperturbative effect which lies beyond the scope of the
corporates its time dependence in case of excited atoms ahkdRT approach to the problem.

correctly accounts for body-induced shifting and broadenin

of atomic transition lines.
In the short-time limit,'ct<1, Eq.(133) reads

(FV) = (F(0)) = 2 0 OF my(T a), (145
which for o,,,{0) = 8,6, reduces to
(F(1) = (F(0)) = FE(r ). (146)

For the nonrelativistic Hamiltonia46), we can always
choose real dipole matrix elemertth,,=d,), revealing that

dmn®dym is @ symmetric tensor so that, recalling Ed7),
we may exploit the rule

S VGI(r.rm=25VG (sro)ls, (147

which is valid for any symmetric tens& Hence Eqs(141)
and (142 [together with Eq(70)] lead to

% Equation (148) reveals that even the ground-state CP
or

ce cannot be derived from a potential in the usual way,
because of the position dependence of the atomic polarizabil-
ity. Nevertheless, it is a potential force, provided that it is an
irrotational vector, i.e.,

Va X Foo(ra) :f dUUz% {[VAZ)kO(rA)]_
0

d
d W
Jd .
+ [VAFk(rA)]&_Fk}[(aO)ij (r asiu)

+ (ao)ij(l‘A,— |u)] X VAGi(jl)(I’A,I’A,iu)
=0. (151)

While for effectively one-dimensional problengs.g., for an
atom in the presence of planarly, spherically, or cylindrically
multilayered medipthis condition is satisfied, there are of
course situations where it is violated, implying that E18)

is inaccessible to perturbative methods in principle.
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When the atomic system is initially prepared in a coherent '
superposition of states such that,(0) # 0 is valid for cer- 0.002
tain valuesn and m with n#m, then—according to Eq.

(133—the corresponding off-diagonal force components

aamlH)Fmr(r a) can also contribute to the total force acting on g

the atomic system. Interestingly, such transient off-diagonal 3 0
force components contain contributions not only from the ©
electric part of the Lorentz force but also from the magnetic

part, as can be easily seen from inspection of E3) and -
(144). Thus an atomic qubity)=(|0)+|1))/\2 (cf., e.g., Ref. -0.002

[47]) near a body feels, in electric dipole approximation,
both an electric and a magnetic force in general. (@) 1.
Let us briefly comment on atomic systems displaying 0.008

(quasjdegeneracies, i.e., systems exhibiting transitions with
Omn= oy (M#m’ and/orn#n’). In such a case, the as- o
sumption that thérelevanj off-diagonal density matrix ele- S
ments decouple from each other as well as from the diagonal
ones can no longer be made. Let us assume that the degen-
erate sublevels are not connected via electric dipole transi-
tions (d,,w=0 if w,y=0). The degeneracy related to the
different possible projections of the angular momentum of an
atom(in free spacgonto a chosen direction is a typical ex-

ample. Taking into account that the degeneracy is removed
when the atom is close to a body, it may be advantageous to 0
change the basis within each degenerate sublevel accordingly b) 112 1.13 /07 1.14

and consider the master equation in the new basis. An equa-

tion of the form of Eq.(123) is then valid in the new basis.  F|G. 1. (a) Transition frequency shiftsolid and dotted lings
Note that the new basis will in general depend on the posiand (b) decay rate(solid and dotted linésversus bare transition
tion of the atom, thus introducing an additional position de-frequency for a two-level atom that is situated at distancéom a
pendence of the CP force. While EG31) also remains valid  semi-infinite half space medium of complex permittivity according
in the new basis fow,,,# 0, this is not in general true for the to Eq.(156) and whose transition dipole moment is perpendicular to
temporal evolution of the density-matrix elements withthe interface[wp/ wr=0.75, y/wr=0.01; w%di/(3wheoc3)=1(r7;
wmmy =0 so that, instead of the balance equatiot32), a za/\1=0.0075(solid and dashed lingsz,/A\+=0.009 (dotted and
system of equations has to be solved in which diagonagiot-dashed ling$. For comparison, the approximate results ob-
density-matrix elements and off-diagonal elements withtained by using the bare frequencies in E3$8) and(159 are also
Omny 20 are Coupled to each Other displayed(dashed and dot-dashed |iI)|.eS

0.004

C. Example: Excited atom near an interface ) di(l + co§0)

To illustrate the effects of body-induced level shifting and
broadening, let us consider a two-level atom witkal) tran-
sition dipole matrix elementd,=d;o=da(cOSpSinfe;  Note that in the short-distance limit the medium effectively
+sing sinde, +coge,) (doo=d13=0), which is situated at po-  acts like a dielectric one. Since the relati®p=w;o*+ dw is
sition z, very close abovéz>0) a semi-infinite half space valid, Eq. (152 together with Eqs(153 and (154 is a
(z<0) containing a homogeneous dispersing and absorbingighly transcendental equation for the determinatiorsef
magnetodielectric medium. Lefw=4Jw;-dw, denote the To solve it, we first note that the off-resonant teém,, may
(position-dependeptshift of the transition frequency. Using be neglected in most practical situations. For example, for a
the Green tensor in the short-distance limit, from EG24), single-resonance medium of Drude-Lorentz type,

(125, and (129 we derive(see Appendix ¢

00(Z) = Sw(Zn) + Swo(Zn), (152 elw)=1+

15
32meg (159

2
wp

2 2 . ’
C()T_(l) _|'y(1)

(156

Cc |e[@10(za) ] - 1

Sw(Zp) = - — T (153 and the parameter values in Fig. 1, one can easily verify the
hz; e[@10(24)] + 1] inequality
Buglzy) = 250z [ U __eW7L duolts) . Cub 44 sy
hrza  Jo @i(za) +uPeiu) +1 AR A
(154 Thus, keeping only the resonant part of the frequency shift,
where we may set
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C |e[@9(za)]? -1
So(zy) = - _|8[i)10( A)]| . (158
hzi le[@10(za)] + 1]
For e(wqg) from Eq.(156), Eq.(158) is a fifth-order poly- "
nomial conditional equation fobw, which may be solved s
numerically. Having calculatedw, we may calculate the E
(position-dependentecay ratd"=1I";. Neglecting the small
free-space decay rate, we replace the Green tensor by its
scattering part as given by E@54), hence from Eqs(127)
and(128) we obtain
(a)
4C  Ime[wio(Z
I(zy) = — ~8[w10( )] - (159
1z |e{@10(za)] + 1
The resonant part of the CP force on the excited atom in
the short-distance limit can be found by taking the derivative 5
of the scattering part of the Green teng&q. (G4)] with £
respect toz, and substituting the result into Eq149 @
(1=1). We derive(F},=F},e,)
3C|e[Qug(za) ]~ 1 3l 1
Wz = - e, (160) . .
Zy [e[Q10(za)] + 1] 1.12 113 1.14
(b) (,01()/0)T
where, according to Eq138), FIG. 2. The resonant part of the CP forleg\3 < 107%/(3C) on
- ) a two-level atom that is situated at distari@ez,/\+=0.0075 and
Q0(2) = W10(za) +1T(z4)/2. (16D (b) 2,/Ar=0.009 of a semi-infinite half space medium of complex
. permittivity according to Eq(156) and whose transition dipole mo-
Using Eq.(156), we see thaty, I'<wr) ment is perpendicular to the interfacsolid lines. The parameters
5 are the same as in Fig. 1. For comparison, both the perturbative
Q 14 wp result(dashed lingsand the separate effects of level shiftifptted
elolz))] = 0% = @2yza) = i[T(za) + Y]oro(za) lines) and level broadeningdash-dotted lingsare shown.
(162

@;(Zp,1U) + ay(za,-iu)

Equatlon(1§0) differs from the' perturbgtlve result in .two _ Ad,®d, D10(Z8)
respects. First, the bare atomic transition frequengy is =- por >
replaced with theposition-dependenshifted frequencyo, . h o wi(za) +[u+T(za)2]
Second, the absorption parameterof the medium is re- D2y(zn) + P+ T(z0)/4
placed with the sum ofy and the (position-dependeint = F[u-T(z)/2P
atomic decay rat&'. The sumy+I" obviously plays the role wig(za) +[u Za)
of the total absorption parameter. . Substituing Eq(163) into Eq. (148 and making use of Eq.

The dependence @lw andl’ on wyq in the short-distance  (G7) [wheref(u) is given byu? times Eq.(163)], we derive
limit is shown in Figs. 1a) and Xb), respectively, and Fig. 2 (F =F%e )

. . 11 11
displays the resonant part of the CP force as a function of
w10 From Fig. 2 it is seen that in the vicinity of tiisurface- or 3C (7, e(iu)-1 010(Zp)
. _[2 2 Fll(ZA) = _4 U—; ~ 2

plasmon inducedfrequency ws=VwT+wp/2 an enhanced 7y Jo  e(iu) + 10%y(za) + [u+T(z4)/2]
force is observed, which is attractiveepulsive for red — S
(blue) detuned atomic transition frequencies;o< ws « w10(Za) + U +1(z4)/4 (164
=(w19>wg)—a result _alread_y known from .perturbation Wa(z) +[U-T(za)/2]?
theory(dashed curves in the figyreHowever, it is also seen )
that due to body-induced level shifting and broadening thé\ote that for a two-level atom the relation
absolute value of the force can be noticeably redusetid or = _for 16
curves in the figure Interestingly, the positions of the ex- o) 11(2) (169
trema of the force remain nearly unchanged, because leved valid.
shifting and broadening give rise to competing effects that In Fig. 3, the off-resonant part of the CP force is shown as
almost cancel. a function of the bare atomic transition frequency. Obviously,

In order to calculate the off-resonant part of the CP forcethe shift of the transition frequency has the effect of raising
on the excited atom in the short-distance limit, we first noteand lowering the perturbative values of the forcmshed
that, according to Eq69), curvey for w1p< wg and wp> wg, respectively, which is in

(163
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Comparing the magnitudes of the resonant and off-
resonant components of the CP force, we see that the off-
resonant component is smaller than the resonant one by
about two orders of magnitude. However, this observation
should be considered with great care. While the two-level
atom is a good model for calculating the resonant part of an
atom in an excited state, such a simplification is not justified
in general when all higher levels can contribute to the off-
resonant force component. However, provided that the con-
vergence of the corresponding sum is sufficiently fast, we
can still conclude that the resonant part of the CP force is
dominant.

VI. SUMMARY

Basing on electromagnetic-field quantization that allows
for the presence of dispersing and absorbing linear media,
and starting with the Lorentz force acting on a neutral atom,
we have extended the concept of CP force beyond the well-
known results derived on the basis of normal-mode quanti-
zation or LRT in leading order of pertubation theory to allow
for (i) magnetodielectric bodiesij) an atom that is initially
prepared in an arbitrary interné&lectronig quantum state,
thereby being subjected to a time-dependent fofitig, the
position dependence of the force via the atomic response,
and (iv) arbitrary strength of the atom-field coupling. The
basic formulas also apply to the calculation of the radiation
forces arising from excited fields such as the force acting on
a driven atom.

(b) 10/®T For a first analysis, we have restricted our attention to a
nondriven atom in the weak-coupling regime, so that the
internal atomic dynamics can be treated in Markov approxi-
mation. It turns out that the force is a superposition of force
components weighted by the time-dependent intra-atomic

density-matrix elements that solve the intra-atomic master

lines). The parameters are the same as in Fig. 1. For comparisoﬁquat'on' Each force component 'S_ expressed In termS,Of the
the perturbative resulidashed linesis shown. The insets display Grgen .tgnsor C,’f the electromagnetlcl f,'eld and the atomic po-
the difference between the force with and without consideration of@rizability, which—through the position-dependent energy

the level broadeningsolid lineg. For comparison, we show this €Vel shifts and broadenings—now depends on the position

difference in the case where the level shifts are ignquashed ~ Of the atomic system. In consequence even the force compo-
lines). nents resulting from the electric part of the Lorentz force

cannot be derived from potentials in the usual way. Clearly,
full agreement with the frequency response of the frequencthe position dependence of the atomic polarizability become
shift shown in Fig. 1a). The influence of the decay rate on noticeable only for very small atom-body separations. In or-
the CP force is extremely weak, as it can be seen from thder to illustrate the effect, we have considered a two-level
insets in the figure. This may be understood by the fact thaatom in the vicinity of a planar semi-infinite medium.
in contrast to the case of the resonant part of the CP force, When the atomic system is initially prepared in an eigen-
where the decay rate enters directly via the Green tensor, theate of its internal Hamiltonian, then only force components
influence on the off-resonant part is more indirect via theassociated with diagonal density-matrix elements appear.
atomic polarizability. Due to the specific dependence on th&hey solely result from the electric part of the Lorentz force
atomic polarizability, the leading-order dependence is quaand reduce to the CP forces obtained in lowest-order pertur-
dratic inT" and not linear il as erroneously predicted from bation theory if the atomic polarizability is replaced with its
LRT [25]. Physically, the weak influence of the level broad- position-independent perturbative expression. Force compo-
ening on the off-resonant part of the CP force may be renents that are associated with excited intra-atomic energy
garded as being a consequence of the fact that this part cdevels are of course transient. As in the course of time an
responds to energy nonconserving procesdks energy initially excited level is depopulated and lower-lying levels
denominators being nonzgravhich implies that they hap- are populated, the force that initially acts on the atomic sys-
pen on(extremely shoittime scales where real photon emis- tem in the excited state changes with time to the force that
sion does not play a role. acts on the atomic system in the ground state.

FIG. 3. The off-resonant part of the CP forcEj\}
X 107%/(3C) on a two-level atom that is situated at distar(ep
Z,/\7=0.0075 andb) z,/\7=0.009 of a semi-infinite half space
medium of complex permittivity according to EGL56) and whose
transition dipole moment is perpendicular to the interféselid
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The results further show that when the atomic system is ~ ~
initially prepared in an intra-atomic quantum state that is aVad(r =fa = 7“,8) = [(7\ 1)_ ~ NS, B} Vo(r=fa=AFp),
coherent superposition of energy eigenstates, then additional M
force components associated with the corresponding off- (A5)
diagonal density-matrix elements are observed. Thus an N
atomic qubit would typically feel such off-diagonal force 2 N 2 A A
components. It should be pointed out that not only the elec- J AT, VO =Ta=ATo) = Ar =Fa) = &r =To),
tric but also the magnetic part of the Lorentz force can con-
tribute to the off-diagonal force components, with the mag-
netic contributions being proportional to the transition 1
fr_equencies. Clearly, off-diagonal force components are tran- f AV Sr—Fp- N y=—8(r —F.)
sient. * *

In contrast to the transient force components that are as- 1
sociated with excited energy levels, off-diagonal force com- +f ANS(r = T s - G )
ponents carry an additional harmonic time dependence. 0 A
Clearly, if the oscillations are too fast, it can be difficult to
detect them experimentally, since they may effectively aver- (A7)
age to zero. In this case it may be advisable to assign them tgre helpful. They can be proved with the aid of the defini-
the fluctuating part of the force rather than to the averageions (28) and(29), and via(partial) integration with respect
force. The situation may be different in cases where strongo \. Using Eqgs.(A5) and (A7) we derive
atom-field couplinginot considered heyagives rise to Rabi

oscillations. QLA®F,) - Jd3 A1) X B(r), (A8)

0
(A6)

0
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APPENDIX A: DERIVATION OF THE MULTIPOLAR (A10)
HAMILTONIAN (38) A . . A . .
PA(N =Pa(r), Oy(r)=0,4r), E.r)=Er).
(Al11)

Applying the transformation ruleA3) and (A8)—(Al1l),
with U being given by Eq(36) together with Eq(37), we W€ May NOW express the minimal-coupling Hamilton(a.m
apply the operator identity in terms (_)f the transformed varlab_les. Recalling Ex1) to-

gether with Eqs(8)—(10) and making use of the relations
(19 and

To perform transformations of the type

O’ =UO0uUT, (A1)

A a ~ ~ A A 1 ~ n o~
e0eS=0+[S 0]+ —[S[SO]] +... . (A2)
2! - w T
. . . L f do— ImG(r,r’,w)=—-4&r -r’) (A12)
Recalling the commutation relationg) and (5), it is not o C 2

difficult to prove that the basic field$r , ) are transformed (cf. Ref. [36]), we derive

as
. . 1 . H= d3rfd ho £1(r, 0)f/(r,
f;(r,w):fk(r,w)+h—f Br'Pa(r)Gi(r',r, o). Azm 0 o ho K11 wh(r o)
w
1 - R R R
(A3) +o— | dr Pﬁ(r)Pﬁ(r)—fd?*r PAL(NE (1)
Using Eq.(A2) together with the commutation relation 0 )
[e0E(r), A ()] =ihsS(r—r"), cf. Ref.[37], we find that +Ei{|ﬁ’ +fd3r 27(r) x é’(r)}
2 (23 [e3
N R 1 R a a
E'(r) =E(r) + —Pa(r). (A4) N )
° *3 f L AGEAGR f &’ pA(N@'(r).  (AL3)
To transform the momenta of the charged particles, the
identities In order to simplify the last two terms of EGA13), we recall
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Eq. (86) as well asP,(r) =,V a(r) andE'(r)=-V &' (r), er,w)=1 0 GY(r,r',0)=0 forhw=20eV,
obtaining with the aid of partial integration (B7)
%J dsrﬁ/&(r)%(fHJ drpa(n)d'(r) we should require that
ho
‘1f e N f e ., ho=20eV O E—sl. (B8)
=3 | @rPA(N) V oa(r) + | drPA(r) V ¢'(r) 0

With these approximations at hand, the orders of magni-

1 - A A - tude ofA,E defined by Eq(55) andA,E defined by Eq(54)
- 3D’ il _ 3D’ 7l 1 2
B 280J d*rPA(MPALr) Jd rPAMNE"(r). (Al4) in Sec. Il A can be estimated to be

Combining Eqs(A13) and (A14), and noting that integrals A2 acp?

containing mixed products of transverse and longitudinal AE~ ﬁ: ;%A Eo=g’Eo=0(g?) (B9)
vector fields vanish, we obtain E@38), where we have

made use of EqgA10) and (A1l) and hence dropped the and

primes of all quantities containing the particle coordinates

1 [ep’A?  _eqV gepA
only. . o _ AE ~ ( p2 4 pS% Y ¢eP +e%a3 Vv <P2)
In the simpler case in which the center-of-mass coordinate Eo+tho\ mg me
is treated as a parameter, the transformation @) h he 2 E
changes to :92{14.2(_‘”) (_“’) }—Ozo(gz),
0 EO 1 +h(1)/E0
Pi=Pa= AAR,) - f Fr@,(r) X B(r).  (A15) (B10)

i ) where the dimensionless coupling constant
Equations(A3), (A4), and (A9)—Al1l1) remain formally the

same, provided that the replacemépt>r , is made. g=egAh (B11)
APPENDIX B: ORDERS OF MAGNITUDE has been introduced. Note that in E®10) we have ap-
OF INTERACTION TERMS proximatedp,— p, because in Sec. Il we treat an atom at

To estimate the order of magnitude of atom-field interac—reSt’ hence relat.|ve and absollute momenta are.ldentlcal.
In order to give a rough idea of the magnitude of the

tions, let us introduce the typical atomic length and energyCOupling constang, we need to estimate the magnitude of

scales the field strengthA. In the context of the current work we
ap h consider interactions of an atomic system with the vacuum
%= Z_eff = m’ (B1) electromagnetic field, so the relevant quantity is the vacuum
fluctuation of the field strength. Recalling Eq8) and (21)
72 12 and making use of the commutation relatiqd$ and (5) as
Eo= zgﬁER = 2:(1612 ~ Z§ﬁ13.6 eV (B2)  well as the integral relatioi19), we find
B
(ag, Bohr radiusEg, Rydberg energy wherem, and -e are ([AE(r ) 1% = {O}EX(r ) [{O}) — ({O}E(r ) [{O})?
the electron mass and charge, respecti&e is the typical h o[~ w2
effective nucleus charge felt by the electrons giving the main =— | do'—5 IMTIG(ra,ra,e’).
contributions to the interaction terms to be calculated, and 700 ¢
ap=€/(4meghc) is the fine-structure constant. As a rough (B12)

estimate we can then make the replacements ) , -
When the atomic system is placed sufficiently far away from

Qe — € M,— M, og— Egh, (B3) all macroscopic bodies, a good estimate for the integral can
be given by using the vacuum Green tensorGi(r ,r , w)

To—ay fa—v, pU—p=mEa/h (B4 =l/(6mo)l, leading to
4

[for the last replacement, see H7)]. With regard to the AR > 1)
length scale of variation of the medium-assisted electromag- (AE(r)I) ~ 612eC3 (B13)
netic field we may make the replacements
1 R wherew is a characteristic frequency contributing to the in-
VoNT~ole, Vo= Vo~ oA, (BS)  teraction, cf. Eq(B8). Hence making the replacement
EV) S E~wA B —B~ (wl0A (B6) A o] Do’ (B14)
~ 672eoC
(A" = A). Noting that materials typically become transpar- 0
ent for frequencies greater than 20 (e¥. Ref. [48]), [cf. Eq.(B6)], we find
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ho Oo o (2 2,2 2
g~ Zeﬁ\/6 (Eo)a0~102 (B15) %Z rA)><r o= %4% B(Fa) X Tols
depending on the specific atomic system considered and the + 2 r B(fA) X A(rA)

characteristic frequencies of the medium. When the atom is
situated close to some macroscopic body, the scattering 1 oAl A
Green tensor becomes much larger than the vacuum Green +3[fa,B(Fa) X d]..  (B22)
tensor, and the approximation leading to EB13) is not
valid anymore. The increased value of the coupling constantombining this with
g is reflected by the failure of the perturbative result for
small atom-surface separations.

The orders of magnitude of the contributions of the three
terms in Eq.(52) to the eigenvalue shift in Sec. 11l B can be
estimated according to

P A - eB
S BB X Tls| ~ 5 = Zenaod) 3(00)

a 4m0(

= O(Zefrao9), (B23)
[dE’(r )2 ,  Eo ,(ho)\? Eg
h(wg + ) ~ (B’ wEy I\E,) 1+helE, Romn ?a,AB -
25 TBER) X AR | ~ = = = (Zerg?) 5 (ho)
=0(¢?, (B16) o M Me
= O(Zero@?) (B24)
2
qDl A’ = = A7 ! .
> am [P0 XTo=TeXp'a]B'(ra) and Eq.(B20), we see that the magnitude of the second term
“ @ in curly brackets in Eq(97) is O(Zad+ Zegod*+gu/C)
h(wy + ) =0O((Zssrap+v/c)g). The magnitudes of the different contri-
(eang)z E, 2. - (hw) butions to Eq(98) are
om, ) 1+helE, 09 A\
~ N Qo 2 NS N
Eo 2 [d X B(fa)l= | 2 —*[Pa= QAT A)] X B(fa)
X —— =
TrhorE, - OZeac0?), (B17) ~m,
epB, e€’AB
(e a3
- | (ea)B)Z h 2 Me Mg
am Al ~—g m. = (Zefrro0) s E Eo =0(g), (B25)
= O((Zefi09)?) - (B19)

)
Next, let us estimate the orders of magnitude of the various |d x B (Fa)l ~ ea0B =g C 0@
contributions to the Lorentz force given in Sec. IV A. The (B26)
magnitudes of the first and third terms in curly brackets in

Eq. (97) can be approximated according to

eguwB

13 X [FAVa © B(Fp) + B(Fp) ® Vo all ~

_(2g)(Pe)( @B
()00 e

Finally, let us compare the contributions of the Réntgen

(B20) interaction to the temporal evolutioﬁ(r,w,t) with that
from the electric dipole interaction,
In order to estimate the magnitude of the second term, we
make use of the relation

|dE(7 )| ~ e&E = g(hw) = O(g), (B19)

2P B () X d1.| ~ SeaBu = %(%g)(hw) =0(gu/c).

‘ S {PA0,0(0) X [Va X GL a1 )]

Mof o= Bo = QA ) (B21) ——
|G, Fa) 1)
in order to introduce relative momertecall Eq.(49)], lead- e
ing to ~ (%)/( 1:0) O(vl/c), (B28)
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‘hwmAaa) X B(r a(),)d(t) X [V X G;(rAu),r,w)]‘

LG F AT, )

o) /() = e )
N(WAC / Y = (Zeio)°95 E/\ms

= O[(Zesrcxo) 9] (B29)

APPENDIX C: CALCULATION OF THE PERTURBATIVE
CORRECTIONS (58) AND (79)

Recalling Eq(6) together with Eqs(8)—«10), making use
of the commutation relation&}) and (5), and applying Eq.
(19) and(55) leads to

2 o0
Y
d
2m, 2 @

A1E|:E
@ ax=em <0
1 *
XfdsrE(lG)\)ij(rAvrvw)(LGA)ii(rA’r’w)

h Z o[
:ﬂiif do Im(*G*),(rafaw), (CD)
T . 2my,Jo

where we have introduced the notation

EEPW dw

1
A2E| =—-
h k x=em Jo Wt w

PHYSICAL REVIEW A 70, 052117(2004

l“G“')(r,r’,w)Efd%f s’ 50 (r - s)

XG(s,s,w)5" (s’ =r"). (C2)

Applying the sum rule

2
9o, _ 1
> om I = EE w(dy ® dig +dg @ dy),  (C3)
« 2m, k

we can rewrite Eq(C1) as

AR = @2
T Kk

o0

dwwk|d|k ImJ‘GJ‘(rA,I’A, U))dk| . (C4)
0

To calculateA,E, as given by Eq(54), we first calculate the
matrix elements therein. Recalling Eq4)—10), we obtain

([OHA V ()=, KL (r @)DIK) = = di/G (a1, @),

(9
~ (OIS 2B AT LT @k = "G, (rar ),
(o

where the second matrix element has been obtained by

means of the identity

> :]_Z<||F5a|k> = —lody. (C7

a

Substituting Eqs(C5) and(C6) into Eq.(54), we then derive

J d3r (dlk)i(dkl)j |:(G)\)in(rA1r vw)(”G;\)jn(rA! r, (1)) - %(HG)\)in(rAvr vw)(LG;)jn(rAvr ,(,l))

2 %
[0) . 1) . dw
- f(lG)\)in(rA!r!w)(”G)\)jn(rAvriw) + ;kzl(LG)\)in(rAvrvw)(LG)\)jn(rArrrw):| = %)2 PJ dlk
k

X{_ w2 Im “GH(rArrA:(l)) + wk|w[|m ”Gl(rA!rArw) +1Im J‘GH(rArrA!(’)(rAerva)):l - wil Im LGJ‘("‘A!rAv(U)}dkh

where we have again made use of the identl§). Adding

Egs.(C4) and(C8) according to Eq(57), on using the iden-
tity G='G*+'G'+'G*+'G' [which directly follows from
the definition (C2) together with &(r)=8'(r)+8(r)], we

eventually arrive at E58).

The derivation of Eq(79) is completely analogous. The

0 Wtw
(C8)
1 “ do
AZEIZ_EEk E Pfo k|+wfd?’r
A=em W,
X (A)i(d)j(Gin(r AT, @) (GYjn(T AT, @),
(C10

relevant matrix elements can be calculated with the aid ofrom which Eq.(79) follows by means of Eq(19).

Eqg. (21) together with Eqs(8)—(10) and the commutation
relations(4) and (5), cf. the remarks below Eq40). The
result is
~ (GO HAE (r) {1\ (r, @)DIK) = = dyGy(r aT, ).
(C9

APPENDIX D: EQUIVALENCE OF LORENTZ FORCES
(94) AND (105)

To transform the first term in Eq105), we apply the the

rule (A4), recall that integrals over mixed products of trans-

Substituting Eq(C9) into Eq.(78) yields verse and longitudinal vector fields vanish, and use the iden-
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tity for the first term in Eq.(A14) as well as Eqs(82) and
(103). We thus derive

Va f d*r[PA(NE' ()]
=Va f d*r[PA(rE(r)] + SivA f &*r[PA(r)PA(r)]
0
=V, f d3r[PA(1)E(r)] + sivA f d3rP2(r)
0

-Va f d*rpa(n)@alr) = Va f *rPA(NE(). (DY)

In order to simplify the second term in EGLO5), we use the
definitions(29), (39), (88), and(89) to calculate

ISE L) X Py o X Ey(1)]
=22 0u0,(r) X F o= o X 0,(N] - 32 Au[O,(r)
a B

X Fa=TaX Our)]+[Pa(r) X Fa=Ta X Pa(r)]
=Ma(r) + Mg(r). (D2)

Consequently, recalling thé’(r)=l§(r), we may write
Va J Fr3 X [Ear) X To=F o X Zo(r)]B'(1)

=V, f d*[MA(r) + Mg(r)]B(r) (D3)

as well as

dﬂtU dBrPA(r) X é’(r)} = dﬂtU dBrPA(r) X é(r)].

(D4)

Substituting Eqs(D1), (D3), and(D4) into Eq.(105), we see
that Eq.(105) is equivalent to Eq(94).

APPENDIX E: EQUATIONS OF MOTION FOR fA)'\(r, w,t)

In electric dipole approximation, the temporal evolution

of the basic fieldd,(r,w,t) is governed by the Hamiltonian
given in Eq.(44) together with Eqs(45), (46), and (50).
Using Eqs(8) and(21)—(23) (with the unprimed fields being
replaced with the primed oneand applying the commuta-
tion relations(4) and(5), we obtain

ot = T'—l[ﬁ,f;(r )]
= —iwfl(r,wt) + ri—la(t)ei(fA(t),r,w)

1 . A .
- R[FA(t)!d(t) X [VA X G;\(rA(t)vrvw)]]+

PHYSICAL REVIEW A 70, 052117(2004

1 q - A
- 1Tm/-\{d('[) X B'(Fo(1),0)d(t) X [Va

X GL(FA(0), 1, w)]} (ED)

The third and fourth terms in EQE1), which are due to the
Roéntgen interaction, are smaller than the second one by fac-
tors of v/c and g(Z.sap)?, respectively[Egs. (B28) and
(B29) in Appendix B|, so according to the nonrelativistic
approximation, Eq(E1) reduces to

?;(r,w,t) = —iof(r o)+ %a(t)eg(fA(t),r ), (E2)

which can be integrated to yie[cﬁ;\(r ,w,O)Ef;(r ,w)]

1ot =f rodr o)+ uredl @,1), (E3)

where

£ el ) = €79 (1, ) (E4)

and

Ar i I ittt J 4 r (8 (47
f sourcd @, 1) = Ef dt' e gt G (Falt)),r, ).
(E9)

Substituting Egs. (E3HEDH into Eq. (8)
[E(r,0,t)—E'(r,0,t)] and using the identity19), we ar-
rive at Eqs.(109—(111).

APPENDIX F: INTRA-ATOMIC EQUATIONS OF MOTION

An estimation similar to that given for the fiel@l{r , w,t)
shows that in the nonrelativistic limit the second term in the
interaction Hamiltonian in electric dipole approximati@0)
can be disregarded in the calculation of the temporal evolu-
tion of the intra-atomic operatos,,(t). By representing the
(unperturbed intra-atomic Hamiltonian in the form of Eq.
(53), recalling Egs.(8) and (121), and applying standard
commutation relations, it is not difficult to prove that the

Amn(t) obey the equations of motion
X i~ A ) ~ i ~
Ann=Z[H, Al =1 0mAmn + _E (dniAmk
h h*g
= diri) f o' (Fa,0) + J dwE"T(F p, )
0 0

- (Aogrmc— dkn‘(&kn):| : (F1

We now substitute the source-quantity representation for
E'(FA,w)zé’[FA(t),w,t] (and its Hermitian conjugateac-
cording to Eqs(109—(111) into Eq. (F1). Carrying out the
time integral in the source-field part in EGz1) in the Mar-

kov approximation, we may set, on regarding=rf(t) as
being slowly varying,
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f“’ APPENDIX G: HALF SPACE MEDIUM

dwEéourcéanw) = 2 gmn(fA)Amna (F2) L. . .
mn The equal-position scattering Green tensor for a semi-

infinite half space which contains fa<0 a homogeneous,
where dispersing, and absorbing magnetodielectric medium reads
for z>0 [49]

0

Omn(fa) = Iﬂj dww? Im G(F a,f a, @)dmpdl @nnfT ) — ]
a

0 R 100
(F3) G(l)(r,r,w)=8l—J dqﬁﬂeﬁﬁoZ r0 1 0
TJo 0
[{(X)=md(x)+iP/x], with @,,(fa) being the shifted transi- 000
tion frequencies. Substituting E¢F2) into Eq. (F1), we ob- 5 —,83 0 0
tain s 0 -85 0 |y, (GY
B ' i AN U 0 0 2
Ann= 9 lompt EE [dniGkn— dkmgkm] Amnt Bmnt Frp,
k where
(F4 Bo— B Bo— B
MBo— efo =
with (== rp=— (G2
mBot B efot B
- i A A . A he reflection coefficients far and p-polarized waves
Bmn=7 2 d --2>,d +-=>d are the . p-p :
mn hk%n kA h% G h% G respectively (85=w?/c?~g? with Im B,>0, B?=euw?/c?
_ -g? with Im 8>0). For g>|w|/c and q>\|eu||w|/c, re-
_r > dengiAn (F5)  Spectively, the approximations
kl#m . .
Bo=ia, B=iq (G3)
(m#n), and ) i .
can be made. Due to the exponential factor the integration
X i . A i interval is effectively limited to valueg=<1/z In the short-
Amm= EE [dmiim = Akl Amm EE [dimGmi distance limit zy|eu||lw|/c<1, we therefore introduce a
g K small error, if we extrapolate the approximatiqi@3) to the
~ A A+ Conm+ e (F6)  Whole integral, resulting in
with 2 100
c -1
i i G(l>(r,r,w)=32 22382(”;” 010 (G4
- ~ * ~ W E\w
Com=1 2 {dmkgkIAmI_dkmgkIAlm}__ > {dkmgmlAkl 002
h k,l#m h kI #k

. - Note that the magnetic properties of the medium represented
- danmIAIk}! (F7) by the permeabilityu begin to contribute via terms propor-
- o ] ~ tional to 1/z. Substitution of Eq(G4) into the first term of
whereF,, denotes contributions from the free-field part in gq (129 for sw, = sw,, yields Eq.(153).
Eq. (109. Taking expectation values with respect to the in- |5 order to obtain Eq(154), we recall Eq(G1) to write
ternal atomic motion and the medium-assisted electromag-
netic field, with the density matrix given by E¢l19), we f

can use the propertyl17), finding that the term§&,,, do not
contribute. In the absence @juas) degeneracies such that

duf(u)GY(r,r,iu)
0

w w0 100
| @ = Dy | > %|Fm+ Fp=To =Tl (F8) = Sif duf(u)f dbe % rJ0 1 0
a
we may disregard couplings between different off-diagonal 0 ue 00O
transitions and between off-diagonal and diagonal transitions B2 0 0
and thus omit the termB,,, andC,,, hence upon using the 2l ° 5
decomposition - rpF 0 bg 0 ) (G5)
i . e o 0 0 2b3-(Y)?
Ednkgkn(rA) =—idwy(Tp) - Ern(rA)y (F9)

Ko Coa _ ) having changed the integration variable to the imaginary part
where dwi(Fa) andT'(F ), respectively, are defined accord- of g (8,=ib,). Let wy be a characteristic frequency of the
ing to Egs.(126) and (128) [with GY(f,f s, ) instead of  edium such that
G(f,Ta,w) in EqQ. (126)], Egs.(F4) and (F6) lead to Egs.

(123), (131), and(132. e(iu)-1<1 foru> wy. (G6)
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For u>wy,, the approximation~ B, holds, and conse- <1(0 c¢/z> wy) we introduce only a small error by extrapo-
quently the reflection coefficients, r, are independent of lating this approximation to the whole frequency integral.
by. The frequency integral effectively extends up to frequenPerforming theb, integral, retaining only leading-order

cies of the orderc/z, hence in the short-range limiwy,/c  terms inuz/c (in consistency witlew,,/c<1) we derive

” ¢ (7, fue(iu)-1 L oo
f duf(wG(r,r,iu) = - f du _ 010 (G7)
0 3272),  u? s(iu)+1
00 2
Using Eq.(G7) [with f(u)=u?/(@5+u?)] together with Eq(129), we obtain Eq(154).
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