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Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-
Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and
initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to
essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To
go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For
a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force
components that are related to the electronic density matrix elements at a chosen time. Even the force com-
ponent associated with the ground state is not derivable from a potential in the ususal way, because of the
position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent
superposition of energy eigenstates, then temporally oscillating force components are observed, which are due
to the interaction of the atom with both electric and magnetic fields.
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I. INTRODUCTION

It is well known that in the presence of macroscopic bod-
ies an atom in the ground state(or in an excited energy
eigenstate) is subject to a nonvanishing force—the Casimir-
Polder(CP) force—that results from the vacuum fluctuations
of the electromagnetic field. CP forces play an important role
in a variety of processes in physical chemistry, atom optics,
and cavity QED. Moreover, they hold the key to a number of
potential applications in nanotechnology such as the con-
struction of atomic-force microscopes[1] or reflective atom-
optical elements[2]. Over the years, substantial efforts have
been made to improve the understanding of CP forces(for
reviews, see Ref.[3]). Measuring CP forces acting on indi-
vidual particles is a challenging task. Since the early obser-
vation of the deflection of thermal atomic beams by conduct-
ing surfaces[4], measurement techniques and precision have
been improving continuously. More recent experiments have
been performed with atomic beams traversing between par-
allel plates[5]. Other methods include transmission grating
diffraction of molecular beams[6], atomic quantum reflec-
tion [7,8], evanescent-wave atomic mirror techniques[9],
and indirect measurements via spectroscopic means[10].
Proposals have been made on improvements of monitoring
the CP interaction by using atomic interferometry[11].

The theoretical approaches to the problem of determining
the CP force can be roughly divided into two categories. In
the first, first-principle approach explicit field quantization is
performed and perturbation theory is applied to calculate the
body-induced atomic energy shift, which is regarded as the
potential of the force in lowest-order perturbation theory
[12–19]. The calculations have typically been based on mac-

roscopic QED, by beginning with a normal-mode decompo-
sition and including the bodies via the well-known condi-
tions of continuity at the surfaces of discontinuity. Since in
such a(noncausal) approach the frequency dependence of the
bodies’ response to the field cannot be properly taken into
account, material dispersion and absorption are commonly
ignored. As has been shown recently[20], the problem does
not occur within the frame of a generalized quantization
scheme that properly takes into account a Kramers-Kronig
consistent response of the bodies to the field. Clearly, the
problem can also be circumvented in microscopic QED,
where the bodies are treated on a microscopic level by adopt-
ing, e.g., harmonic-oscillator models[14]. In the second,
semiphenomenological approach, the problem is circum-
vented by basing the calculations on linear response theory
(LRT), without explicitly quantizing the electromagnetic
field [21–28]. In the ansatz for the force, either the field
quantities or both the field and the atomic entities are ex-
pressed in terms of correlation functions, which in turn are
related, via the fluctuation-dissipation theorem, to response
functions.

At first glance one would expect the result obtained from
exploiting LRT to be more generally valid than the QED
result obtained in lowest-order perturbation theory. In fact,
this is not the case. In both approaches, it is not the exact
atomic polarizability that enters the expression for the
(ground-state) CP force but the approximate expression
which is obtained in lowest-order perturbation theory and
which effectively corresponds to the atomic polarizability in
free space. Since the structure of the electromagnetic field is
changed in the presence of macroscopic bodies, the atomic
polarizability is expected to change as well. It is well known
that the atomic level shifts and broadenings sensitively de-
pend on the material surroundings. In particular, when an
atom is situated very close to a body, the effect can be quite
significant (see, e.g., Refs.[29,30]) thereby changing the*Electronic address: s.buhmann@tpi.uni-jena.de
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atomic polarizability. As a result, a position-dependent polar-
izability is expected to occur, which prevents the CP force
from being derivable from a potential in the usual way.

A way to derive a more rigorous expression for the CP
force is to base the calculations on the exact quantum-
mechanical center-of-mass equation of motion of the atom as
we shall do in this paper. The calculations are performed for
both minimal and multipolar coupling, and contact is made
with earlier studies of the center-of-mass motion of an atom
in free space, with special emphasis on the so-called Röntgen
interaction term that appears in the multipolar Hamiltonian
[31–35]. After taking the expectation value with respect to
the internal(electronic) quantum state of the atom and the
quantum state of the medium-assisted electromagnetic field,
the resulting force formula can be used to calculate the time-
dependent force acting on a nondriven or driven atom that is
initially prepared in an arbitrary(internal) quantum state. In
this paper, the force formula is further evaluated for the case
of a nondriven, initially arbitrarily prepared atom, by assum-
ing weak atom-field coupling treated in Markovian approxi-
mation. It is worth noting that the theory, being based on the
quantized version of the macroscopic Maxwell field, with the
bodies being described in terms of spatially varying,
Kramers-Kronig consistent complex permittivities and per-
meabilities[36,37], also applies to left-handed materials[38]
where standard quantization runs into difficulties.

The paper is organized as follows. After a brief sketch of
the quantization scheme(Sec. II), in Sec. III attention is fo-
cused on the perturbative treatment of the CP force acting on
an atom in an energy eigenstate, and previous results[20]
obtained for dielectric surroundings of the atom are extended
to magnetodielectric surroundings, including left-handed ma-
terials. In Sec. IV the exact center-of-mass Heisenberg equa-
tion of motion of an atom and the Lorentz force therein are
studied, and Sec. V is devoted to the calculation of the aver-
age force, with special emphasis on a nondriven atom in the
weak-coupling regime. Finally, a summary and some con-
cluding remarks are given in Sec. VI.

II. SKETCH OF THE QUANTIZATION SCHEME

A. Minimal coupling

In Coulomb gauge, the minimal-coupling Hamiltonian of
an atomic system(e.g., an atom or a molecule) consisting of
nonrelativistic charged particles interacting with the electro-
magnetic field in the presence of macroscopic dispersing and
absorbing bodies reads[37]

Ĥ = o
l=e,m

E d3rE
0

`

dvqvf̂l
†sr ,vdf̂lsr ,vd + o

a

1

2ma

3fp̂a − qaÂsr̂ adg2 + 1
2E d3r r̂Asr dŵAsr d

+E d3r r̂Asr dŵsr d, s1d

where

r̂Asr d = o
a

qadsr − r̂ ad s2d

and

ŵAsr d =E d3r8
r̂Asr 8d

4p«0ur − r 8u
s3d

are the charge density and scalar potential of the particles,
respectively. The particle labeleda has chargeqa, massma,
position r̂ a, and canonically conjugated momentump̂a. The

fundamental Bosonic fieldsf̂lsr ,vd [and f̂l
†sr ,vd] which can

be related to noise polarization(for l=e) and noise magne-
tization (for l=m), respectively, are the dynamical variables
for describing the system composed of the electromagnetic
field and the medium including the dissipative system re-
sponsible for absorption,

f f̂lisr ,vd, f̂l8i8
† sr 8,v8dg = dll8dii8dsr − r 8ddsv − v8d, s4d

f f̂lisr ,vd, f̂l8i8sr 8,v8dg = 0. s5d

Note that the first term on the right-hand side of Eq.(1) is the

energy of that system. FurtherÂsr d and ŵsr d are the vector
and scalar potentials of the medium-assisted electromagnetic
field, respectively, which in Coulomb gauge are expressed in

terms of the fundamental fieldsf̂lsr ,vd [and f̂l
†sr ,vd] as

Âsr d =E
0

`

dvsivd−1ÊI
'sr ,vd + H.c., s6d

− ¹ ŵsr d =E
0

`

dvÊI
isr ,vd + H.c., s7d

where

ÊIsr ,vd = o
l=e,m

E d3r8Glsr ,r 8,vdf̂lsr 8,vd, s8d

Gesr ,r 8,vd = i
v2

c2Î q

p«0
Im«sr 8,vdGsr ,r 8,vd, s9d

Gmsr ,r 8,vd = − i
v

c
Î−

q

p«0
Imksr 8,vd

3fGsr ,r 8,vd 3 =ª r8g, s10d

with fGsr ,r 8 ,vd3=Q r8gi j =e jkl]l8Giksr ,r 8 ,vd and ksr ,vd
=m−1sr ,vd. Here and in the following, transverse and longi-
tudinal vector fields are denoted by' and i, respectively,
e.g.,

ÊI
'sidsr ,vd =E d3r8d'sidsr − r 8dÊIsr 8,vd, s11d

with
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di j
i sr d = − ]i] jS 1

4pr
D s12d

and

di j
'sr d = dsr ddi j − di j

i sr d s13d

being the longitudinal and transverse dyadicd functions, re-
spectively.

In Eqs. (9) and (10), Gsr ,r 8 ,vd is the (classical) Green
tensor, which in the case of magnetodielectric matter obeys
the equation

F= 3 ksr ,vd = 3 −
v2

c2 «sr ,vdGGsr ,r 8,vd = dsr − r 8d

s14d

together with the boundary condition

Gsr ,r 8,vd → 0 for ur − r 8u → `. s15d

Note that the(relative) permittivity «sr ,vd and permeability
msr ,vd of the (inhomogeneous) medium are complex func-
tions of frequency, whose real and imaginary parts satisfy the
Kramers-Kronig relations. Since for absorbing media we
have Im«sr ,vd.0 and Immsr ,vd.0⇒ Imksr ,vd,0, the
expressions under the square roots in Eqs.(9) and (10) are
positive. It should be pointed out that the whole space is
assumed to be filled with some(absorbing) media, in which
case the aforementioned conditions for Im«sr ,vd and
Immsr ,vd ensure that the differential equation(14) together
with the boundary condition(15) presents a well-defined
problem. However, as this assumption allows for both
«sr ,vd and msr ,vd to be arbitrarily close to unity(i.e., for
arbitrarily dilute matter), it is naturally possible to include
vacuum regions in the theory, by performing the limit
«sr ,vd→1, msr ,vd→1 in these regions after having calcu-
lated the desired expectation values of the relevant quantities
as functions of«sr ,vd andmsr ,vd.

The Green tensor has the following useful properties[36]:

G*sr ,r 8,vd = Gsr ,r 8,− v*d, s16d

Gsr ,r 8,vd = G{sr ,r 8,− vd, s17d

E d3shImkss,vdfGsr ,s,vd 3 =ª sgf=s 3 G*ss,r 8,vdg

+
v2

c2 Im«ss,vdGsr ,s,vdG*ss,r 8,vdj = ImGsr ,r 8,vd.

s18d

Combining Eq.(18) with Eqs.(9) and (10) yields

o
l=e,m

E d3sGliksr ,s,vdGl jk
* sr 8,s,vd =

qm0

p
v2ImGi jsr ,r 8,vd.

s19d

Note that in Eq.(19) and throughout the remaining part of
this paper, summation over repeated vector indices is under-
stood.

The total electric field is given by

EŴ sr d = Êsr d − = ŵAsr d, s20d

where

Êsr d =E
0

`

dvÊIsr ,vd + H.c., s21d

with ÊIsr ,vd from Eq. (8). Accordingly, the total induction
field reads

BŴ sr d = B̂sr d =E
0

`

dvB̂Isr ,vd + H.c., s22d

where

B̂Isr ,vd = sivd−1 ¹ 3 ÊIsr ,vd. s23d

Finally, the displacement and magnetic fields are given by

DŴ sr d = D̂sr d − «0 = ŵAsr d

=E
0

`

dvfD̂Isr ,vd + H.c.g − «0 = ŵAsr d, s24d

ĤIsr d = Ĥsr d =E
0

`

dvĤIsr ,vd + H.c., s25d

where

D̂Isr ,vd = «0«sr ,vdÊIsr ,vd + iÎq«0

p
Im«sr ,vdf̂esr ,vd,

s26d

ĤIsr ,vd = k0ksr ,vdB̂Isr ,vd −Î−
qk0

p
Imksr ,vdf̂msr ,vd.

s27d

Assuming that the atomic system is sufficiently localized,
and introducing shifted particle coordinates

r̂ a = r̂ a − r̂ A s28d

relative to the center of mass

r̂ A = o
a

ma

mA
r̂ a s29d

smA =oamad, we can apply the long-wavelength approxima-

tion by expanding the fieldsÂsr d andŵsrd around the center
of mass and keeping only the leading nonvanishing terms of
the respective field operators. For a neutral atomic system,

qA = o
a

qa = 0, s30d

this is just the familiar electric dipole approximation, and the
Hamiltonian(1) simplifies to
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Ĥ = ĤF + ĤA + ĤAF, s31d

where

ĤF ; o
l=e,m

E d3rE
0

`

dvqvf̂l
†sr ,vdf̂lsr ,vd, s32d

ĤA ; o
a

p̂a
2

2ma

+ 1
2E d3r r̂Asr dŵAsr d, s33d

ĤAF ; ud̂ = ŵsr dur=r̂ A
− o

a

qa

ma

p̂aÂsr̂ Ad + o
a

qa
2

2ma

Â2sr̂ Ad,

s34d

with

d̂ = o
a

qar̂ a = o
a

qar̂ a s35d

being the total electric dipole moment.

B. Multipolar coupling

Let us turn to the multipolar coupling scheme widely used
for studying the interaction of electromagnetic fields with
atoms and molecules. Just as in standard QED, so in the
present formalism[36,37], the multipolar Hamiltonian can
be obtained from the minimal-coupling Hamiltonian by
means of a Power-Zienau transformation,

Û = expF i

q
E d3rP̂AsrdÂsr dG , s36d

where

P̂Asr d = o
a

qar̂ aE
0

1

dldsr − r̂ A − lr̂ ad. s37d

For a neutral atomic system, the multipolar Hamiltonian
[which is obtained by expressing the Hamiltonian(1) in
terms of the transformed variables] can be given in the form
of (see Appendix A)

Ĥ = o
l=e,m

E d3rE
0

`

dvqvf̂l8
†sr ,vdf̂l8sr ,vd +

1

2«0
E d3rP̂A

2 sr d

−E d3rP̂Asr dÊ8sr d + o
a

1

2ma
Fp̂a8 +E d3rĴasr d

3 B̂8sr dG2

, s38d

where

Ĵasr d = qaQ̂asr d −
ma

mA
o
b

qbQ̂bsr d +
ma

mA
P̂Asr d s39d

and

Q̂asr d = r̂ aE
0

1

dlldsr − r̂ A − lr̂ ad. s40d

Note that due to the unitarity of the transformation(36), the
transformed variables of the atomic systemr̂ a8 = r̂ a and p̂a8

and the transformed field variablesf̂l8sr ,vd and f̂l8
†sr ,vd

obey the same commutation relations as the untransformed

ones. Needless to say that the transformed fieldsÊ8sr d and

B̂8sr d are related to the transformed fieldsf̂l8sr ,vd and

f̂l8
†sr ,vd according to Eq.(8) and Eqs. (21)–(23), with

primed quantities instead of the unprimed ones. The Hamil-
tonian(38) can be regarded as the generalization of the mul-
tipolar Hamiltonian obtained earlier for moving atoms in
vacuum[31–35] to the case where dispersing and absorbing
magnetodielectric bodies are present. In particular, it can be
used to describe effects specifically due to the translational
motion of an atomic system such as Doppler and recoil ef-
fects.

Applying the long-wavelength approximation to the fields

Ê8sr d andB̂8sr d in Eq. (38), which is equivalent to approxi-

matingdsr − r̂ A −lr̂ ad by dsr − r̂ Ad in Eqs.(37) and (40), re-
spectively, i.e.,

P̂Asrd = d̂dsr − r̂ Ad, s41d

Q̂asr d = 1
2 r̂ adsr − r̂ Ad, s42d

thus

Ĵasr d = 1
2qar̂ adsr − r̂ Ad +

ma

2mA
d̂dsr − r̂ Ad, s43d

we obtain the multipolar Hamiltonian in long-wavelength ap-
proximation,

Ĥ = ĤF8 + ĤA8 + ĤAF8 , s44d

with

ĤF8 ; o
l=e,m

E d3rE
0

`

dvqvf̂l8
†sr ,vdf̂l8sr ,vd, s45d

ĤA8 ; o
a

p̂a8
2

2ma

+
1

2«0
E d3rP̂A

2 sr d, s46d

ĤAF8 ; − d̂Ê8sr̂ Ad + o
a

qa

4ma

fp̂a8, r̂ a 3 B̂8sr̂ Adg+

+ o
a

qa
2

8ma

fr̂ a 3 B̂8sr̂ Adg2 +
3

8mA
fd̂ 3 B̂8sr̂ Adg2

+
1

2mA
fp̂A8 ,d̂ 3 B̂8sr̂ Adg+ s47d

(fâ,b̂g+= âb̂+ b̂â, anticommutator), where
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p̂A8 = o
a

p̂a8 s48d

is the (canonical) momentum of the center of mass, and

p̂a8 = p̂a8 −
ma

mA
p̂A8 s49d

denote shifted momenta of the particles relative to the center
of mass. The first two terms on the right-hand side of Eq.
(47) represent electric and magnetic dipole interactions, re-
spectively, the next two terms describe the(generalized) dia-
magnetic interaction of the charged particles with the
medium-assisted electromagnetic fields, while the last term
describes the Röntgen interaction due to the translational
motion of the center of mass. In particular, in(generalized)
electric dipole approximation, Eq.(47) reads

ĤAF8 = − d̂Ê8sr̂ Ad +
1

2mA
fp̂A8 ,d̂ 3 B̂8sr̂ Adg+. s50d

Recall that the transformed medium-assisted electric field

Ê8sr̂ d is related to the physical one,Êsr̂ d, according to Eq.
(A4).

If the center-of-mass coordinate is treated as a(classical)
parametersr̂ A ° r Ad, then Eq.(39) reduces to

Ĵasr d = qaQ̂asr d, s51d

which corresponds to the limitma /mA→0. Hence Eq.(47)
becomes

ĤAF8 = − d̂Ê8sr Ad + o
a

qa

4ma

fp̂a8, r̂ a 3 B̂8sr Adg+

+ o
a

qa
2

8ma

fr̂ a 3 B̂8sr Adg2. s52d

If the paramagnetic and diamagnetic terms are omitted, the
interaction Hamiltonian simply reduces to the first term on
the right-hand side of Eq.(52).

III. VAN DER WAALS POTENTIAL

According to Casimir’s and Polder’s pioneering concept
[12], the CP force on an atomic system near macroscopic
bodies is commonly regarded as being a conservative force.
In particular, it is assumed that for an atom in an eigenstate
ull of the atomic Hamiltonian the position-dependent shift of
the corresponding eigenvalue due to the(electric-dipole) in-
teraction of the atomic system with the body-assisted elec-
tromagnetic field is the potential, also referred to as van der
Waals(vdW) potential, from which the CP force can be de-
rived, where the calculations are usually performed within
the frame of lowest-order perturbation theory. In this picture,
the center-of-mass coordinate is a parameter rather than a
dynamical variablesr̂ A ° r Ad. Following this line, we first
extend previous results[20], and show that minimal and
multipolar coupling schemes yield essentially the same ex-
pression for the force.

A. Minimal coupling

We start from the minimal-coupling Hamiltonian in elec-
tric dipole approximation as given by Eqs.(31)–(34) together
with Eq. (35) sr̂ A ° r Ad. Let unl denote the eigenstates of the

multilevel atomic system and writeĤA [Eq. (33)] as

ĤA = o
n

Enunlknu. s53d

To calculate the leading-order correction to the unperturbed
eigenvalue of a stateulluh0jl due to the perturbation Hamil-
tonian (34) [uh0jl, ground state of the fundamental fields

f̂lsr ,vd], we first note that the first two terms have no diag-
onal elements. Thus they start to contribute in second order,

D2El = −
1

q
o
k

o
l=e,m

PE
0

` dv

vkl + v
E d3r

3 Ukl ukh0jud̂ ¹ ŵsr dur=r A
− o

a

qa

ma

p̂aÂsr Ad

3 uh1lsr ,vdjluklU2

s54d

(P, principal part), whereas the third term starts to contribute
in first order,

D1El = kl ukh0juo
a

qa
2

2ma

Â2sr Aduh0jlull. s55d

Here, uh1lsr ,vdjl; f̂l
†sr ,vduh0jl denotes single-quantum

Fock states of the fundamental fields, and

vkl ; sEk − Eld/q s56d

are the atomic transition frequencies. SinceD1El and D2El
are quadratic in the coupling constant[Eqs.(B9) and (B10)
in Appendix B], thus being of the same order of magnitude,
the leading-order correction to the eigenvalue is given by

DEl = D1El + D2El . s57d

A straightforward but somewhat lengthy calculation yields
(see Appendix C)

DEl =
m0

p
o
k

PE
0

` dv

vkl + v
dlkhvklvfImGsr A,r A,vd

− ImiGisr A,r A,vdg − v2ImiGisr A,r A,vdjdkl,

s58d

with

dlk = kl ud̂ukl s59d

being the dipole matrix elements.
Since the atomic system should be located in a free-space

region, the Green tensor in this region is a linear superposi-
tion of the (translationally invariant) vacuum Green tensor
Gs0d and the scattering Green tensorGs1d that accounts for the
spatial variation of the permittivity and permeability,
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Gsr ,r 8,vd = Gs0dsr ,r 8,vd + Gs1dsr ,r 8,vd. s60d

As a consequence, the eigenvalue correctionDEl can be de-
composed into two parts,

DEl = DEl
s0d + DEl

s1dsr Ad. s61d

The r A-independent termDEl
s0d associated with the vacuum

Green tensor gives rise to the vacuum Lamb shift and is not
of interest here. Ther A-dependent termDEl

s1dsr Ad, associated
with the scattering Green tensor, is just the vdW potential
sought,

Ulsr Ad = DEl
s1dsr Ad = D1El

s1dsr Ad + D2El
s1dsr Ad. s62d

Hence from Eq.(58) fGsr A ,r A ,vd°Gs1dsr A ,r A ,vdg we de-
rive, on recalling Eq.(16) and changing the integration vari-
able from −v to v,

Ulsr Ad =
m0

2ip
o
k

dlkFPE
0

` dv

vkl + v
hvklvfGs1dsr A,r A,vd

− iGs1disr A,r A,vdg − v2iGs1disr A,r A,vdj

− PE
0

−` dv

vkl − v
hvklvfGs1dsr A,r Avd

− iGs1disr A,r A,vdg + v2iGs1disr A,r A,vdjGdkl.

s63d

This equation can be greatly simplified by using contour-
integral techniques.Gs1dsr A ,r A ,vd is an analytic function in
the upper half of the complex frequency plane, including the
real axis(apart from a possible pole atv=0). Furthermore,
knowing the asymptotic behaviour of the Green tensor in the
limit v→0 (cf. Ref. [37]), one can verify that all integrands
in Eq. (63) remain finite in this limit. We may therefore apply
Cauchy’s theorem, and replace the principal value integral
over the positive(negative) real half axis by a contour inte-
gral along the positive imaginary half axis(introducing the
purely imaginary coordinatev= iu) and along a quarter circle
with infinitely large radius in the first(second) quadrant of
the complex frequency plane plus, in the case ofvlk.0, a
contour integral along an infinitesimally small half circle
aroundv=vlksv=−vlkd in the first (second) quadrant of the
complex frequency plane. The integrals along the infinitely
large quarter circles vanish due to the asymptotic property

lim
uvu→`

v2

c2 Gs1dsr ,r ,vd = 0 s64d

(cf. Ref. [37]), so we finally arrive at

Ulsr Ad = Ul
orsr Ad + Ul

rsr Ad, s65d

where

Ul
orsr Ad =

m0

p
o
k
E

0

`

du
vklu

2

vkl
2 + u2dlkG

s1dsr A,r A,iuddkl

s66d

is the off-resonant part of the vdW potential, and

Ul
rsr Ad = − m0o

k

Qsvlkdvlk
2 dlkReGs1dsr A,r A,vlkddkl

s67d

[Qszd, unit step function] is the resonant part arising from the
contribution from the residua at the poles. Note thatUl

rsr Ad
vanishes when the atomic system is in the ground state. For
an atomic system in an excited state,Ul

rsr Ad may dominate
Ul

orsr Ad.
The CP force can be derived from Eq.(65) according to

Flsr Ad = − =AUlsr Ad s68d

s=A ;=r A
d. A formula of the type of Eq.(65) together with

Eqs. (66) and (67) was first given in Ref.[23] within the
frame of LRT.

To give Eq.(66) in a more compact form, we introduce
the generalized atomic polarizability tensor

amnsvd =
1

q
o
k
F dmk ^ dkn

ṽkn − v − isGk + Gmd/2

+
dkn ^ dmk

ṽkm+ v + isGk + Gnd/2G , s69d

whereṽkm are the shifted(renormalized) transition frequen-
cies andGk are the excited-state widths. Following Ref.[39],
we may regard

alsvd = allsvd s70d

as being the ordinary(Kramers-Kronig-consistent) polariz-
ability tensor of an atom in stateull. Hence we may rewrite
Eq. (66) as

Ul
orsr Ad =

qm0

2p
E

0

`

duu2 Trfa1
s0dsiudGs1dsr A,r A,iudg,

s71d

where

al
s0dsvd = lim

e→0

2

q
o
k

vkl

vkl
2 − v2 − ive

dlk ^ dkl s72d

is the polarizability tensor in lowest-order perturbation
theory, which can be obtained from Eq.(70) together with
Eq. (69) by ignoring both the level shifts and broadenings. In
particular for an atom in a spherically symmetric state, we
have

al
s0dsvd = al

s0dsvdI = lim
e→0

2

3q
o
k

vkl

vkl
2 − v2 − ive

udlku2I

s73d

(I , unit tensor), so that Eq.(71) reduces to

Ul
orsr Ad =

qm0

2p
E

0

`

duu2al
s0dsiud TrGs1dsr A,r A,iud, s74d

and Eq.(67) simplifies to
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Ul
rsr Ad = −

m0

3 o
k

Qsvlkdvlk
2 udlku2TrfReGs1dsr A,r A,vlkdg.

s75d

Note that

alsiud . al
s0dsiud s76d

is typically valid for an atomic system in free space, because
of the smallness of the level shifts and broadenings that re-
sult from the interaction of the atomic system with the
vacuum electromagnetic field.

Equation (65) together with Eqs.(66) and (67) can be
regarded as being the natural extension of the QED results
obtained on the basis of the familiar normal-mode formal-
ism, which ignores material absorption. Moreover, it does
not only apply to arbitrary causal dielectric bodies, but, to
our knowledge, it first proves applicable to magnetodielectric
matter such as left-handed material, for which standard quan-
tization concepts run into difficulties. Note that all informa-
tion about the electric and magnetic properties of the matter
is contained in the scattering Green tensor.

Finally, let us briefly comment on the ground-state poten-
tial as given by Eq.(71) for l =0. In terms of an integral
along the positive frequency axis, it reads

U0sr Ad = −
qm0

2p
E

0

`

dvv2ImhTrfa0
s0dsvdGs1dsr A,r A,vdgj.

s77d

An expression of this type can also be obtained by using the
methods of LRT[23,25]. It allows for a simple physical in-
terpretation for the ground-state CP force as being due to
correlations of the fluctuating electromagnetic field with the
corresponding induced electric dipole of the atomic system
plus the correlations of the fluctuating electric dipole mo-
ment with its induced electric field[28].

B. Multipolar coupling

Let us now consider the multipolar Hamiltonian in long-
wavelength approximation as given by Eqs.(44)–(46) to-

gether with Eq.(52), and writeĤA8 [Eq. (46)] in the form of
Eq. (53). In contrast to the electric dipole approximation con-
sidered in the minimal coupling scheme, the present Hamil-
tonian also includes magnetic interactions. One might there-
fore expect that the leading-order corrections to the
unperturbed eigenvalues are given by the second-order cor-
rections due to the dipole interactions(linear in the field
variables) plus the first-order correction due to the diamag-
netic interaction(quadratic in the field variables), all of these
contributions being quadratic in the coupling constant. How-
ever, one can show[Eqs. (B16)–(B18) in Appendix B] that
the second-order eigenvalue correction due to magnetic di-
pole interaction is smaller than that due to the electric dipole
interaction by a factor ofsZeffa0d2, whereZeff is the effective
nucleus charge felt by the electrons giving the main contri-
bution to the energy shift, anda0 is the fine-structure con-
stant. The current formalism based on Hamiltonian(1) only

treats nonrelativistic atomic systems, which are characterized
by Zeffa0!1 [40], so we can safely neglect the correction
arising from the magnetic dipole interaction. Furthermore,
the first-order correction arising from the diamagnetic term
can be shown to be smaller than the second-order correction
due to the electric dipole interaction by the same factor
sZeffa0d2, so we can disregard it for the same reason.

In summary, the main contribution to the eigenvalue shift
of a stateulluh08jl [uh08jl, ground state of the transformed

fundamental fieldsf̂l8sr ,vd] is the second-order correction
due to the electric dipole interaction in Eq.(52), i.e.,

DEl = D2El = −
1

q
o
k

o
l=e,m

PE
0

` dv

vkl + v

3E d3r ukl ukh08ju − d̂Ê8sr Aduh1l8sr ,vdjluklu2 s78d

fuh1l8sr ,vdjl; f̂l8
†sr ,vduh08jlg. After some algebra it can be

found that(see Appendix C)

DEl = −
m0

p
o
k

PE
0

`

dv
v2

vkl + v
dlk ImGsr A,r A,vddkl.

s79d

We now apply the same procedure as in Sec. III A, below
Eq. (58). Replacing the Green tensor by its scattering part
and transforming the frequency integral to imaginary fre-
quencies using contour integral techniques, we arrive at ex-
actly the same form of the vdW potential as given in Eq.(65)
together with Eqs.(66) and (67). It is worth noting that the
two schemes lead to equivalent results only if in the

minimal-coupling scheme theÂ2 coupling term is properly
taken into account.

IV. CENTER-OF-MASS MOTION AND LORENTZ FORCE

Atomic quantities that are related to the atom-field inter-
action can drastically change when the atomic system comes
close to a macroscopic body, the spontaneous decay thus
becoming purely radiationless, with decay rates and level
shifts being inversely proportional to the atom-surface sepa-
ration to the third power[29]. Clearly, in this case approxi-
mations of the type(76) cannot be made in general and the
perturbative approach to the calculation of the CP force be-
comes questionable. Moreover, when the atomic system is
not in the ground state, then dynamical effects can no longer
be disregarded. To go beyond perturbation theory, let us first
consider the center-of-mass Newtonian equation of motion
and the Lorentz force therein.

A. Minimal coupling

As has been shown[37], the Heisenberg equations of mo-
tion governed by the minimal-coupling Hamiltonian(1),

r̂̈ a = S 1

iq
D2

ffr̂ a,Ĥg,Ĥg, s80d

lead to the well-known Newtonian equations of motion for
the individual charged particles,
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mar̂̈ a = qahEŴ sr ad + 1
2fr̂̇ a 3 BŴ sr ad − BŴ sr ad 3 r̂̇ agj. s81d

Summing Eq.(81) over a, recalling definition(29), and us-
ing Eqs.(20) and (22) together with the relationship

o
a

qa=aŵAsr̂ ad = 0 s82d

s=a;=r̂ a
d, we derive

mA r̂̈ A = F̂, s83d

where the Lorentz force takes the form

F̂ =E d3rfr̂Asr dÊsr d + ĵ Asr d 3 B̂sr dg, s84d

with charge densityr̂Asr d and current densityĵ Asr d being
defined by Eq.(2) and

ĵ Asr d = 1
2o

a

qafr̂̇ adsr − r̂ ad + dsr − r̂ adr̂̇ ag, s85d

respectively. It can be shown[31,36,41] that for neutral at-
oms the atomic charge and current densities can be expressed
in terms of atomic polarization and magnetization according
to

r̂Asr d = − = P̂Asr d s86d

and

ĵ Asr d = P̂
˙

Asr d + = 3 M̂ Asr d + = 3 M̂ Rsr d, s87d

respectively, where

M̂ Asr d = 1
2o

a

qafQ̂asr d 3 r̂
˙

a − r̂
˙

a 3 Q̂asr dg, s88d

M̂ Rsr d = 1
2fP̂Asr d 3 r̂̇ A − r̂̇ A 3 P̂Asr dg, s89d

with P̂Asr d andQ̂asr d from Eqs.(37) and(40), respectively.
Note that the last term in Eq.(87) represents the so-called
Röntgen current[41,42], which is a feature of the overall
translational motion of any aggregate of charges.

Inspection of Eqs.(37), (40), (88), and(89) shows that the
relations

= ^ P̂Asr d = − =A ^ P̂Asr d, s90d

= ^ M̂ AsRdsr d = − =A ^ M̂ AsRdsr d s91d

s=A ;=r̂ A
d are valid. We therefore may write, on recalling

Maxwell’s equations,

−E d3rf=P̂Asr dgÊsr d = =AE d3rfP̂Asr dÊsr dg

+E d3rP̂Asr d 3 B̂
˙ sr d, s92d

E d3rf= 3 M̂ AsRdsr dg 3 B̂sr d = =AE d3rfM̂ AsRdsr dB̂sr dg.

s93d

Substituting Eqs.(86) and (87) into Eq. (84) and using Eqs.
(92) and(93), we may equivalently express the Lorentz force
as

F̂ = =AHE d3rP̂Asr dÊsr d +E d3rfM̂ Asr d + M̂ Rsr dgB̂sr dJ
+

d

dt
E d3rP̂Asr d 3 B̂sr d. s94d

In long-wavelength approximation, Eqs.(88) and (89) sim-
plify to [recall Eqs.(41) and (42)]

M̂ Asr d = 1
4o

a

qafdsr − r̂ Adr̂ a 3 r̂
˙

a − r̂
˙

a 3 r̂ adsr − r̂ Adg

s95d

and

M̂ Rsr d = 1
2fdsr − r̂ Add̂ 3 r̂̇ A − r̂̇ A 3 d̂dsr − r̂ Adg, s96d

respectively, so that the Lorentz force(94) can be written as

F̂ = =AHd̂Êsr̂̇ Ad + 1
4o

a

qafr̂̇ a,B̂sr̂ Ad 3 r̂ ag+

+ 1
4fr̂̇ A,B̂sr̂ Ad 3 d̂g+J +

d

dt
fd̂ 3 B̂sr̂ Adg. s97d

Further, we calculate

d

dt
fd̂ 3 B̂sr̂ Adg =

i

q
fĤ,d̂ 3 B̂sr̂ Adg

= ud̂˙ 3 B̂sr̂ Ad + d̂ 3 B̂
˙ sr dur=r̂ A

+ d̂

3
1
2fr̂̇ A=A ^ B̂sr̂ Ad + B̂sr̂ Ad ^ =ª A r̂̇ Ag.

s98d

Comparing the different terms in Eq.(97), one can show
[Eqs.(B19), (B20), and(B22)–(B24) in Appendix B] that the
second term in curly brackets is typically smaller than the
first one by a factor ofv /c+Zeffa0 (v , velocity of the center
of mass), while the third term is smaller than the first one by
a factor of v /c . Similarly, we find [Eqs. (B25)–(B27) in
Appendix B] that the third term in Eq.(98) is smaller than
the first two terms by a factor ofv /c. Thus in the nonrela-
tivistic limit considered throughout the current work[cf.
Hamiltonian(1)] we can set

F̂ = H=fd̂Êsr dg +
d

dt
fd̂ 3 B̂sr dgJ

r=r̂ A

. s99d

In the absence of magnetodielectric bodies, Eq.(99) re-
duces to earlier results derived within the multipolar cou-
pling scheme for an atom interacting with the electromag-
netic field in free space[32,33]. However, it should be

pointed out that here the electric and magnetic fieldsÊsr d
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andB̂sr d, respectively, are the medium-assisted fields as de-
fined by Eqs.(21) and(22) [together with Eqs.(8) and(23)].
Thus Eq.(94) or, in electric dipole approximation, Eq.(99)
determine the force acting on an atomic system in the very
general case of dispersing and absorbing magnetodielectric
bodies being present—a result that has not yet been derived
elsewhere.

B. Multipolar coupling

Using the multipolar Hamiltonian(38), we obtain, on re-
calling that r̂ a8 = r̂ a,

mar̂̇ a =
i

q
fĤ,mar̂ ag = p̂a8 +E d3rĴasr d 3 B̂8sr d.

s100d

Summing Eq.(100) overa and taking into account Eqs.(20)
and (48) yields

mA r̂̇ A = p̂A8 +E d3rp̂Asr d 3 B̂8sr d. s101d

Equation(101) leads to

mA r̂̈ A = F̂ =
i

q
FĤ,p̂A8 +E d3rP̂Asr d 3 B̂8sr dG

=
i

q
fĤ,p̂A8 g +

d

dt
E d3rP̂Asr d 3 B̂8sr d. s102d

To evaluate the different contributions to the first term in Eq.
(102), we first recall Eq.(90) and note that

i

q
F 1

2«0
E d3rP̂A

2 sr d,p̂A8G =
1

2«0
E d3r = P̂A

2 sr d = 0.

s103d

Further, we derive, on recalling Eq.(100),

i

qFo
a

1

2ma
Sp̂a8 +E d3rĴbsr d 3 B̂8sr dD2

,p̂A8G
= − =AE d3r 1

2o
a

fr̂̇ a 3 Ĵasr d − Ĵasr d 3 r̂̇ agB̂8sr d.

s104d

Substituting Eqs.(103) and (104) into Eq. (102), with Ĥ as
given in Eq.(38), we eventually obtain

F̂ = =AHE d3rP̂Asr dÊ8sr d + 1
2E d3ro

a

fĴasr d 3 r̂̇ a − r̂̇ a

3 Ĵasr dgB̂8sr dJ +
d

dt
E d3rP̂Asrd 3 B̂8srd. s105d

It can be shown(see Appendix. D) that Eq.(105) is identical
to Eq. (94).

It is not difficult to see[recall Eqs.(41) and (43)] that in
long-wavelength approximation Eq.(105) takes the form of

Eq. (97), but with Ê8sr̂ Ad andB̂8sr̂ Ad in place ofÊ8sr̂ Ad and

B̂8sr̂ Ad, respectively. The time derivativedfd̂3 B̂8sr Adg /dt
can then be calculated to give an expression of the form of

Eq. (98) with B̂8sr̂ Ad replaced byB̂8sr̂ Ad. Obviously, in the
nonrelativistic limit we are left with an expression similar to
Eq. (99). It should be pointed out that Eqs.(97) and(99) with

Ê8sr̂ Ad and B̂8sr̂ Ad replaced byB̂8sr̂ Ad and B̂8sr̂ Ad, respec-
tively, yield exactly the same force as the equations with the
unprimed quantities, although the physical meaning of

Ê8sr̂ Ad is different from that ofÊ8sr̂ Ad [recall thatB̂8sr̂ Ad
=B̂sr̂ Ad].

It is worth noting that the results of this section can serve
as an example to illustrate that the electric dipole approxi-
mation has to be employed with great care. If in electric
dipole approximation the Röntgen interaction primarily re-
lated to the induction field had been disregarded and Eq.(50)
without the second term on the right-hand side had been
used, then in the resulting expression for the force the time-
derivative term, i.e., the magnetic part of the force, would
have been lost. Note that the pressure exerted by external
laser fields on macroscopic bodies can be dominated by this
magnetic force[43,44], which contrasts with arguments
[32,45] that the contribution of this term to the radiation
force on atoms can be neglected.

V. AVERAGE LORENTZ FORCE

Let us now turn to the problem of determining the elec-
tromagnetic force acting on an atomic system that is initially
prepared in an arbitrary internal(electronic) quantum state.
For convenience, we shall employ the multipolar formalism.
On recalling Eqs.(21) and (22) together with Eq.(23), we

find that Eq.(99) [with Êsr̂ Ad andB̂sr̂ Ad replaced byÊ8sr̂ Ad
and B̂8sr̂ Ad, respectively] can be rewritten as

F̂ =HE
0

`

dv ¹ fd̂ÊI8sr ,vdg +
1

iv

d

dt
d̂ 3 f¹ 3 Êw8sr ,vdgJ

r=r̂ A

+ H.c., s106d

whereÊI8sr ,vd is defined according to Eq.(8). Decomposing

F̂ into an average componentkF̂l (where the expectation
valuek¯l is taken with respect to the internal atomic motion
and the medium-assisted electromagnetic field only) and a
fluctuating component

DF̂ = F̂ − kF̂l, s107d

we may write

F̂ = kF̂l + DF̂. s108d

In the following, we will only consider the average forcekF̂l
(for a discussion of the force fluctuationkDF̂2l, see, e.g., Ref.
[19]). Note that we are free to choose a convenient operator

ordering in Eq.(106), becauseÊI8sr ,vd commutes withd̂.
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A. General case

In order to calculate the average force as a function of
time, we first formally integrate the Heisenberg equations of

motion for the fundamental fieldsf̂l8sr ,v ,td to obtain the

source-quantity representation ofEÎ8sr ,v ,td. The result reads
(see Appendix E)

EÎ8sr ,v,td = EÎfree8 sr ,v,td + EÎsource8 sr ,v,td, s109d

where

EÎfree8 sr ,v,td = EÎ8sr ,vde−ivt s110d

and

ÊIsource8 sr ,v,td =
im0

p
v2E

0

t

dt8e−ivst−t8d ImG(r , r̂ Ast8d,v)d̂st8d.

s111d

Substituting Eq.(109) together with Eqs.(110) and (111)
into Eq. (106), we arrive at

kF̂stdl = kF̂freestdl + kF̂sourcestdl, s112d

where

kF̂freestdl =HE
0

`

dv = kd̂stdEÎfree8 sr ,v,tdl +
1

iv

d

dt
kd̂std

3f= 3 EÎfree8 sr ,v,tdglJ
r=r̂ Astd

+ H.c. s113d

and

kF̂sourcestdl = kF̂source
el stdl + kF̂source

mag stdl. s114d

Here,

kF̂source
el stdl =H im0

p
E

0

`

dvv2E
0

t

dt8e−ivst−t8d

3 = kd̂std ImG(r , r̂ Ast8d,v)d̂st8dlJ
r=r̂ Astd

+ H.c.

s115d

is the electric part of the average force associated with the
source-field part of the medium-assisted electromagnetic
field, and

kF̂source
mag stdl =Hm0

p
E

0

`

dvv
d

dt
E

0

t

dt8e−ivst−t8d 3 kd̂std

3h= 3 ImG(r , r̂Ast8d,v)j d̂st8dlJ
r=r̂ Astd

+ H.c.

s116d

is the respective magnetic part. Equations(112)–(116) are
still general in the sense that they apply to both driven and
nondriven atomic systems and to both weak and strong atom-
field coupling.

B. Nondriven atom in the weak-coupling regime

When the atomic system is not driven, i.e.,

k¯ÊIfree8 (r̂ Astd,v,t)l = kÊIfree8† (r̂ Astd,v,t) ¯ l = 0, s117d

then kF̂freestdl=0. Consequently, the average force, referred
to as CP force, is determined by the source-field part only,

kF̂stdl = kF̂sourcestdl. s118d

Even more specifically, we assume that the density opera-
tor of the initial quantum state of the field and the internal
(electronic) motion of the atomic system reads

%̂ = uh08jlkh08ju ^ ŝ, s119d

where the density operator of the internal motion of the
atomic systemŝ can be written as

ŝ = o
m,n

smnÂmn s120d

(Âmn= umlknu, with unl, uml being the internal atomic energy
eigenstates). In order to calculate the dipole-dipole correla-
tion function appearing in Eqs.(115) and(116), we make use
of the expansion

d̂std = o
m,n

dmnÂmnstd s121d

and write

kd̂std ^ d̂st8dl = o
m,n

o
m8,n8

dmn ^ dm8n8kÂmnstdÂm8n8st8dl.

s122d

In the weak-coupling regime, the Markov approximation
can be exploited and the correlation functions

kÂmnstdÂm8n8st8dl can be calculated by means of the quantum
regression theorem(see, e.g., Ref.[46]). For this purpose, the
(intra-atomic) master equation has to be solved for arbitray
initial conditions, which in general requires knowledge of the
specific level structure of the atomic system under consider-
ation. Only if the relevant atomic transition frequencies are
well separated from each other, one can go a step forward
constructing a general solution. In this case, the off-diagonal
density matrix elements can be regarded as being decoupled
from each other and from the diagonal elements. We find
(Appendix F)

kÂmnstdÂm8n8st8dl = dnm8kÂmn8st8dl

3 ehiṽmnsr̂ Ad−fGmsr̂ Ad+Gnsr̂ Adg/2jst−t8d

s123d

(tù t8, mÞn). Here,

ṽmnsr̂ Ad = vmn+ dvmsr̂ Ad − dvnsr̂ Ad s124d

are the body-induced position-dependent shifted transition
frequenciesfr̂ A = r̂ Astdg, where
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dvmsr̂ Ad = o
k

dvm
k sr̂ Ad, s125d

with

dvm
k sr̂ Ad =

m0

pq
PE

0

`

dvv2dkmImGs1dsr̂ A, r̂ A,vddmk

ṽmksr̂ Ad − v
,

s126d

and

Gmsr̂ Ad = o
k

Gm
k sr̂ Ad s127d

are the position-dependent level widths, with

Gm
k sr̂ Ad =

2m0

q
Qfṽmksr̂ Adgfṽmksr̂ Adg2

3 dkmImGfr̂ A, r̂ A,ṽmksr̂ Adgdmk. s128d

One should point out that the position-independent(infi-
nite) Lamb-shift terms resulting fromGs0dsr̂ A , r̂ A ,vd [recall
Eq. (60)] have been thought to be absorbed in the transitions
frequenciesvmn. Equation(126) can be rewritten by chang-
ing to imaginary frequencies[cf. the discussion below Eq.
(63)], resulting in

dvm
k sr̂ Ad = −

m0

q
Qfṽmksr̂ Adgfṽmksr̂ Adg2

3 dkmReGs1d(r̂ A, r̂ A,ṽmksr̂ Ad)dmk

+
m0

pq
E

0

`

duu2ṽkmsr̂ Ad
dkmGs1dsr̂ A, r̂ A,iuddmk

fṽkmsr̂ Adg2 + u2 .

s129d

Recall that in the perturbative treatment the vdW potential
of an atomic system in a stateuml is identified with the
energy shiftqdvm, so it is not surprising that Eq.(125) to-
gether with Eq.(129) corresponds to Eq.(65) together with
Eqs.(66) and(67), if in Eq. (129) the ṽmk are replaced with
vmk. The calculation of

kÂmnstdl = snmstd s130d

fsnms0d=snmg then leads(under the assumptions made) to

snmstd = ehiṽmnsr̂ Ad−fGmsr̂ Ad+Gnsr̂ Adg/2jtsnm s131d

for mÞn [cf. Eq. (123)], so the remaining task consists in
solving the balance equations

ṡmmstd = − Gmsr̂ Adsmmstd + o
n

Gn
msr̂ Adsnnstd. s132d

With these preparations at hand, the CP force can be cal-
culated in the following steps. We first substitute Eq.(122)
together with Eqs.(123) and(130) into Eqs.(115) and(116)
and perform the time derivative in Eq.(116). Introducing
slowly varying density matrix elementss̃nmstd=eiṽnmtsnmstd,
we then perform the time integrals in the spirit of the Markov
approximation, by making the replacementss̃nmst8d° s̃nmstd
as well asr̂ Ast8d° r̂ Astd and letting the upper limit of inte-

gration tend to infinity. Recalling Eq.(118) together with Eq.
(114), we derive

kF̂stdl = o
m,n

snmstdFmnsr̂ Ad, s133d

Fmnsr̂ Ad = Fmn
el sr̂ Ad + Fmn

magsr̂ Ad, s134d

where

Fmn
el sr̂ Ad =Hm0

p
o
k
E

0

`

dvv2

3
¹ ^ dmkImGs1dsr , r̂ A,vddkn

v + ṽknsr̂ Ad − ifGksr̂ Ad + Gmsr̂ Adg/2Jr=r̂ A

+ H.c., s135d

and

Fmn
magsr̂ Ad =Hm0

p
o
k
E

0

`

dv vṽmnsr̂ Ad

3
dmk3 f¹ 3 Im Gs1dsr , r̂ A,vdgdkn

v + ṽknsr̂ Ad − ifGksr̂ Ad + Gmsr̂ Adg/2Jr=r̂ A

+ H.c.

s136d

.
This result requires two comments. First, in Eqs.(135)

and (136) and the replacementGsr , r̂ A ,vd°Gs1dsr , r̂ A ,vd
has again been made, which can be justified by similar argu-
ments as in Sec. III[ cf. the discussion preceding Eq.(62)].
Second, from the derivation of Eqs.(133)–(136) it is clear
that these equations are valid provided that the center-of-
mass motion can be regarded as being sufficiently slow.
More precisely, they hold if the condition

G(r , r̂ Ast + Dtd,v) < G(r , r̂ Astd,v) for Dt ø GC
−1

s137d

is satisfied, whereGC is a characteristic intra-atomic decay
rate. Under this condition, the internal(electronic) and exter-
nal (center-of-mass) motion of the atomic system decouple in
the spirit of a Born-Oppenheimer approximation. As a result,
r̂ A effectively enters the equations as a parameter, so that the
caret will be removed in the followingsr̂ A ° r Ad.

We finally rewrite Eqs.(135) and(136), by using contour
integration and going over to imaginary frequencies[cf. the
discussion below Eq.(63)]. Recalling the definition of
amnsvd=anmsr A ,vd as given in Eq.(69) and introducing the
abbreviating notation

Vmnksr Ad = ṽnksr Ad + ifGmsr Ad + Gksr Adg/2, s138d

we derive

Fmn
el sr Ad = Fmn

el,orsr Ad + Fmn
el,rsr Ad, s139d

Fmn
magsr Ad = Fmn

mag,orsr Ad + Fmn
mag,rsr Ad, s140d

where
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Fmn
el,orsr Ad = −Hqm0

2p
E

0

`

duu2fsamndi jsr A,iud

+ samndi jsr A,− iudg

· ¹ Gi j
s1dsr ,r A,iudJ

r=r A

, s141d

Fmn
el,rsrAd = Hm0o

k

QsṽnkdVmnk
2 sr Ad ¹

^ dmkG
s1dfr ,r A,Vmnksr AdgdknJ

r=r A

+ H.c., s142d

and

Fmn
mag,orsr Ad =Hqm0

2p
E

0

`

duu2TrSF ṽmnsr Ad
iu

amn
T sr A,iud

−
ṽmnsr Ad

iu
amn

T sr A,− iudG
3f¹ 3 Gs1dsr ,r A,iudgDJ

r=r A

, s143d

Fmn
mag,rsr Ad = Hm0o

k

Qsṽnkdṽmnsr AdVmnksr Addmk3 s¹

3 Gs1dfr ,r A,Vmnksr AdgdkndJ
r=r A

+ H.c. s144d

fsTr Td j =T l jl g. Equation(133) together with Eq.(134) and
Eqs. (139)–(144) is the natural generalization of Eq.(68)
together with Eqs.(65), (67), and (71). The above result is
the first nonperturbative expression for the CP force that in-
corporates its time dependence in case of excited atoms and
correctly accounts for body-induced shifting and broadening
of atomic transition lines.

In the short-time limit,GCt!1, Eq. (133) reads

kF̂stdl . kF̂s0dl = o
m,n

snms0dFmnsr Ad, s145d

which for snms0d=dnldml reduces to

kF̂stdl . kF̂s0dl = Fll
elsr Ad. s146d

For the nonrelativistic Hamiltonian(46), we can always
choose real dipole matrix elementssdmn=dnmd, revealing that
dmn^ dnm is a symmetric tensor so that, recalling Eq.(17),
we may exploit the rule

Sij = Gij
s1dsr ,r ,vd = u2Sij=sGij

s1dss,r ,vdus=r , s147d

which is valid for any symmetric tensorS. Hence Eqs.(141)
and (142) [together with Eq.(70)] lead to

Fll
el,orsr Ad = −

qm0

4p
E

0

`

duu2fsaldi jsr A,iud + saldi jsr A,− iudg

3=AGij
s1dsr A,r A,iud s148d

and

Fll
el,rsr Ad =

m0

2 o
k

QsṽlkdVlk
2 sr Adh=

^ dlkG
s1d(r ,r ,Vlksr Ad)dkljr=r A

+ H.c. s149d

fVlksr Ad;Vllksr Adg. Ignoring the position-dependent shifts
and broadenings of the atomic energy levels, i.e., disregard-
ing the position dependence of the atomic polarizability
[alsr A , iud°al

s0dsiud], Eqs. (148) and (149) reduce to the
perturbative result in Eq.(68) together with Eqs.(65), (67),
and (71) fFll

elsr Ad°Flsr Adg. Note that this result can be ob-
tained without choosing real dipole matrix elements[alsiud
+als−iud being symmetric in this case]. In the long-time
limit, GCt@1, Eq. (133) obviously reduces to ground-state
force

kF̂stdl . o
m,n

snms`dFmnsr Ad = F00
el,orsr Ad s150d

fF00
el,rsr Ad=0g, because ofsnms`d=dn0dm0 .
As already mentioned, the expression for the ground-state

CP force F00sr Ad obtained in lowest-order perturbation
theory, Eq.(77), agrees with the expression obtained from
LRT. However, its naive extrapolation in the sense of the
replacementa0

s0dsvd°a0sr A ,vd in Eq. (77) [25] is wrong,
because it results in Eq.(148) with 2sa0di jsr A , iud instead of
sa0di jsr A , iud+sa0di jsr A ,−iud. As a result, a noticeable influ-
ence of the level broadening on the off-resonant part of the
CP force is erroneously predicted in Ref.[25] (cf. Sec. V C),
thus demonstrating that body-induced level broadening is a
nonperturbative effect which lies beyond the scope of the
LRT approach to the problem.

Equation (148) reveals that even the ground-state CP
force cannot be derived from a potential in the usual way,
because of the position dependence of the atomic polarizabil-
ity. Nevertheless, it is a potential force, provided that it is an
irrotational vector, i.e.,

=A 3 F00sr Ad =E
0

`

duu2o
k
Hf=Aṽk0sr Adg

]

] ṽk0

+ f=AGksr Adg
]

] Gk
Jfsa0di jsr A,iud

+ sa0di jsr A,− iudg 3 =AGij
s1dsr A,r A,iud

= 0. s151d

While for effectively one-dimensional problems(e.g., for an
atom in the presence of planarly, spherically, or cylindrically
multilayered media) this condition is satisfied, there are of
course situations where it is violated, implying that Eq.(148)
is inaccessible to perturbative methods in principle.
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When the atomic system is initially prepared in a coherent
superposition of states such thatsnms0dÞ0 is valid for cer-
tain valuesn and m with nÞm, then—according to Eq.
(133)—the corresponding off-diagonal force components
snmstdFmnsr Ad can also contribute to the total force acting on
the atomic system. Interestingly, such transient off-diagonal
force components contain contributions not only from the
electric part of the Lorentz force but also from the magnetic
part, as can be easily seen from inspection of Eqs.(143) and
(144). Thus an atomic qubitucl=su0l+ u1ld /Î2 (cf., e.g., Ref.
[47]) near a body feels, in electric dipole approximation,
both an electric and a magnetic force in general.

Let us briefly comment on atomic systems displaying
(quasi)degeneracies, i.e., systems exhibiting transitions with
vmn.vm8n8 (mÞm8 and/ornÞn8). In such a case, the as-
sumption that the(relevant) off-diagonal density matrix ele-
ments decouple from each other as well as from the diagonal
ones can no longer be made. Let us assume that the degen-
erate sublevels are not connected via electric dipole transi-
tions (dmm8=0 if vmm8.0). The degeneracy related to the
different possible projections of the angular momentum of an
atom (in free space) onto a chosen direction is a typical ex-
ample. Taking into account that the degeneracy is removed
when the atom is close to a body, it may be advantageous to
change the basis within each degenerate sublevel accordingly
and consider the master equation in the new basis. An equa-
tion of the form of Eq.(123) is then valid in the new basis.
Note that the new basis will in general depend on the posi-
tion of the atom, thus introducing an additional position de-
pendence of the CP force. While Eq.(131) also remains valid
in the new basis forvmnÞ0, this is not in general true for the
temporal evolution of the density-matrix elements with
vmm8.0 so that, instead of the balance equations(132), a
system of equations has to be solved in which diagonal
density-matrix elements and off-diagonal elements with
vmm8.0 are coupled to each other.

C. Example: Excited atom near an interface

To illustrate the effects of body-induced level shifting and
broadening, let us consider a two-level atom with(real) tran-
sition dipole matrix element dA ;d10=dAscosf sinuex

+sinf sinuey+cosuezd sd00=d11=0d, which is situated at po-
sition zA very close abovesz.0d a semi-infinite half space
sz,0d containing a homogeneous dispersing and absorbing
magnetodielectric medium. Letdv=dv1−dv0 denote the
(position-dependent) shift of the transition frequency. Using
the Green tensor in the short-distance limit, from Eqs.(124),
(125), and(129) we derive(see Appendix G)

dvszAd = dvrszAd + dvorszAd, s152d

dvrszAd = −
C

qzA
3

u«fṽ10szAdgu2 − 1

u«fṽ10szAdg + 1u2
, s153d

dvorszAd =
2Cṽ10szAd

qpzA
3 E

0

` du

ṽ10
2 szAd + u2

«siud − 1

«siud + 1
,

s154d

where

C =
dA

2 s1 + cos2ud
32p«0

. s155d

Note that in the short-distance limit the medium effectively
acts like a dielectric one. Since the relationṽ10=v10+dv is
valid, Eq. (152) together with Eqs.(153) and (154) is a
highly transcendental equation for the determination ofdv.
To solve it, we first note that the off-resonant termdvor may
be neglected in most practical situations. For example, for a
single-resonance medium of Drude-Lorentz type,

«svd = 1 +
vP

2

vT
2 − v2 − igv

, s156d

and the parameter values in Fig. 1, one can easily verify the
inequality

dvorszAd
ṽ10szAd

ø
CvP

2

2qzA
3 vT

2ṽ10szAd
& 10−4. s157d

Thus, keeping only the resonant part of the frequency shift,
we may set

FIG. 1. (a) Transition frequency shift(solid and dotted lines)
and (b) decay rate(solid and dotted lines) versus bare transition
frequency for a two-level atom that is situated at distancezA from a
semi-infinite half space medium of complex permittivity according
to Eq.(156) and whose transition dipole moment is perpendicular to
the interface[vP/vT=0.75, g /vT=0.01; vT

2dA
2 / s3pq«0c

3d=10−7;
zA/lT=0.0075(solid and dashed lines), zA/lT=0.009 (dotted and
dot-dashed lines)]. For comparison, the approximate results ob-
tained by using the bare frequencies in Eqs.(158) and(159) are also
displayed(dashed and dot-dashed lines).
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dvszAd = −
C

qzA
3

u«fṽ10szAdgu2 − 1

u«fṽ10szAdg + 1u2
. s158d

For «sṽ10d from Eq.(156), Eq. (158) is a fifth-order poly-
nomial conditional equation fordv, which may be solved
numerically. Having calculateddv, we may calculate the
(position-dependent) decay rateG;G1. Neglecting the small
free-space decay rate, we replace the Green tensor by its
scattering part as given by Eq.(G4), hence from Eqs.(127)
and (128) we obtain

GszAd =
4C

qzA
3

Im«fṽ10szAdg
u«fṽ10szAdg + 1u2

. s159d

The resonant part of the CP force on the excited atom in
the short-distance limit can be found by taking the derivative
of the scattering part of the Green tensor[Eq. (G4)] with
respect tozA and substituting the result into Eq.(149)
sl =1d. We derivesF11

r =F11
r ezd

F11
r szAd = −

3C

zA
4

u«fV10szAdgu2 − 1

u«fV10szAdg + 1u2
, s160d

where, according to Eq.(138),

V10szAd = ṽ10szAd + iGszAd/2. s161d

Using Eq.(156), we see that(g, G!vT)

«fV10szAdg = 1 +
vP

2

vT
2 − ṽ10

2 szAd − ifGszAd + ggṽ10szAd
.

s162d

Equation (160) differs from the perturbative result in two
respects. First, the bare atomic transition frequencyv10 is
replaced with the(position-dependent) shifted frequencyṽ10.
Second, the absorption parameterg of the medium is re-
placed with the sum ofg and the (position-dependent)
atomic decay rateG. The sumg+G obviously plays the role
of the total absorption parameter.

The dependence ofdv andG on v10 in the short-distance
limit is shown in Figs. 1(a) and 1(b), respectively, and Fig. 2
displays the resonant part of the CP force as a function of
v10. From Fig. 2 it is seen that in the vicinity of the(surface-
plasmon induced) frequencyvS=ÎvT

2 +vP
2/2 an enhanced

force is observed, which is attractive(repulsive) for red
(blue) detuned atomic transition frequenciesv10,vS
=sv10.vSd—a result already known from perturbation
theory(dashed curves in the figure). However, it is also seen
that due to body-induced level shifting and broadening the
absolute value of the force can be noticeably reduced(solid
curves in the figure). Interestingly, the positions of the ex-
trema of the force remain nearly unchanged, because level
shifting and broadening give rise to competing effects that
almost cancel.

In order to calculate the off-resonant part of the CP force
on the excited atom in the short-distance limit, we first note
that, according to Eq.(69),

a1szA,iud + a1szA,-iud

= −
4dA ^ dA

q

ṽ10szAd
ṽ10

2 szAd + fu + GszAd/2g2

3
ṽ10

2 szAd + u2 + G2szAd/4
ṽ10

2 szAd + fu − GszAd/2g2 . s163d

Substituing Eq.(163) into Eq. (148) and making use of Eq.
(G7) [where fsud is given byu2 times Eq.(163)], we derive
sF11

or =F11
orezd

F11
orszAd =

3C

pzA
4 E

0

`

du
«siud − 1

«siud + 1

ṽ10szAd
ṽ10

2 szAd + fu + GszAd/2g2

3
ṽ10

2 szAd + u2 + G2szAd/4
ṽ10

2 szAd + fu − GszAd/2g2 . s164d

Note that for a two-level atom the relation

F00
orszAd = − F11

orszAd s165d

is valid.
In Fig. 3, the off-resonant part of the CP force is shown as

a function of the bare atomic transition frequency. Obviously,
the shift of the transition frequency has the effect of raising
and lowering the perturbative values of the force(dashed
curves) for v10,vS and v10.vS, respectively, which is in

FIG. 2. The resonant part of the CP forceF11
r lT

4 310−9/ s3Cd on
a two-level atom that is situated at distance(a) zA /lT=0.0075 and
(b) zA /lT=0.009 of a semi-infinite half space medium of complex
permittivity according to Eq.(156) and whose transition dipole mo-
ment is perpendicular to the interface(solid lines). The parameters
are the same as in Fig. 1. For comparison, both the perturbative
result(dashed lines) and the separate effects of level shifting(dotted
lines) and level broadening(dash-dotted lines) are shown.
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full agreement with the frequency response of the frequency
shift shown in Fig. 1(a). The influence of the decay rate on
the CP force is extremely weak, as it can be seen from the
insets in the figure. This may be understood by the fact that
in contrast to the case of the resonant part of the CP force,
where the decay rate enters directly via the Green tensor, the
influence on the off-resonant part is more indirect via the
atomic polarizability. Due to the specific dependence on the
atomic polarizability, the leading-order dependence is qua-
dratic inG and not linear inG as erroneously predicted from
LRT [25]. Physically, the weak influence of the level broad-
ening on the off-resonant part of the CP force may be re-
garded as being a consequence of the fact that this part cor-
responds to energy nonconserving processes(the energy
denominators being nonzero), which implies that they hap-
pen on(extremely short) time scales where real photon emis-
sion does not play a role.

Comparing the magnitudes of the resonant and off-
resonant components of the CP force, we see that the off-
resonant component is smaller than the resonant one by
about two orders of magnitude. However, this observation
should be considered with great care. While the two-level
atom is a good model for calculating the resonant part of an
atom in an excited state, such a simplification is not justified
in general when all higher levels can contribute to the off-
resonant force component. However, provided that the con-
vergence of the corresponding sum is sufficiently fast, we
can still conclude that the resonant part of the CP force is
dominant.

VI. SUMMARY

Basing on electromagnetic-field quantization that allows
for the presence of dispersing and absorbing linear media,
and starting with the Lorentz force acting on a neutral atom,
we have extended the concept of CP force beyond the well-
known results derived on the basis of normal-mode quanti-
zation or LRT in leading order of pertubation theory to allow
for (i) magnetodielectric bodies,(ii ) an atom that is initially
prepared in an arbitrary internal(electronic) quantum state,
thereby being subjected to a time-dependent force,(iii ) the
position dependence of the force via the atomic response,
and (iv) arbitrary strength of the atom-field coupling. The
basic formulas also apply to the calculation of the radiation
forces arising from excited fields such as the force acting on
a driven atom.

For a first analysis, we have restricted our attention to a
nondriven atom in the weak-coupling regime, so that the
internal atomic dynamics can be treated in Markov approxi-
mation. It turns out that the force is a superposition of force
components weighted by the time-dependent intra-atomic
density-matrix elements that solve the intra-atomic master
equation. Each force component is expressed in terms of the
Green tensor of the electromagnetic field and the atomic po-
larizability, which—through the position-dependent energy
level shifts and broadenings—now depends on the position
of the atomic system. In consequence even the force compo-
nents resulting from the electric part of the Lorentz force
cannot be derived from potentials in the usual way. Clearly,
the position dependence of the atomic polarizability become
noticeable only for very small atom-body separations. In or-
der to illustrate the effect, we have considered a two-level
atom in the vicinity of a planar semi-infinite medium.

When the atomic system is initially prepared in an eigen-
state of its internal Hamiltonian, then only force components
associated with diagonal density-matrix elements appear.
They solely result from the electric part of the Lorentz force
and reduce to the CP forces obtained in lowest-order pertur-
bation theory if the atomic polarizability is replaced with its
position-independent perturbative expression. Force compo-
nents that are associated with excited intra-atomic energy
levels are of course transient. As in the course of time an
initially excited level is depopulated and lower-lying levels
are populated, the force that initially acts on the atomic sys-
tem in the excited state changes with time to the force that
acts on the atomic system in the ground state.

FIG. 3. The off-resonant part of the CP forceF11
r lT

4

310−9/ s3Cd on a two-level atom that is situated at distance(a)
zA/lT=0.0075 and(b) zA /lT=0.009 of a semi-infinite half space
medium of complex permittivity according to Eq.(156) and whose
transition dipole moment is perpendicular to the interface(solid
lines). The parameters are the same as in Fig. 1. For comparison,
the perturbative result(dashed lines) is shown. The insets display
the difference between the force with and without consideration of
the level broadening(solid lines). For comparison, we show this
difference in the case where the level shifts are ignored(dashed
lines).
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The results further show that when the atomic system is
initially prepared in an intra-atomic quantum state that is a
coherent superposition of energy eigenstates, then additional
force components associated with the corresponding off-
diagonal density-matrix elements are observed. Thus an
atomic qubit would typically feel such off-diagonal force
components. It should be pointed out that not only the elec-
tric but also the magnetic part of the Lorentz force can con-
tribute to the off-diagonal force components, with the mag-
netic contributions being proportional to the transition
frequencies. Clearly, off-diagonal force components are tran-
sient.

In contrast to the transient force components that are as-
sociated with excited energy levels, off-diagonal force com-
ponents carry an additional harmonic time dependence.
Clearly, if the oscillations are too fast, it can be difficult to
detect them experimentally, since they may effectively aver-
age to zero. In this case it may be advisable to assign them to
the fluctuating part of the force rather than to the average
force. The situation may be different in cases where strong
atom-field coupling(not considered here) gives rise to Rabi
oscillations.

ACKNOWLEDGMENTS

S.Y.B. acknowledges valuable discussions with O. P.
Sushkov as well as M.-P. Gorza. This work was supported by
the Deutsche Forschungsgemeinschaft. S.Y.B. is grateful for
financial support.

APPENDIX A: DERIVATION OF THE MULTIPOLAR
HAMILTONIAN (38)

To perform transformations of the type

Ô8 = ÛÔÛ†, sA1d

with Û being given by Eq.(36) together with Eq.(37), we
apply the operator identity

eŜÔe−Ŝ= Ô + fŜ,Ôg +
1

2!
[Ŝ,fŜ,Ôg] + … . sA2d

Recalling the commutation relations(4) and (5), it is not

difficult to prove that the basic fieldsf̂sr ,vd are transformed
as

f̂l8sr ,vd = f̂lsr ,vd +
1

qv
E d3r8P̂A

'sr 8dGl
psr 8,r ,vd.

sA3d

Using Eq. (A2) together with the commutation relation

[«0Êksr d ,Âlsr d] = iqdkl
'sr −r 8d, cf. Ref. [37], we find that

Ê8sr d = Êsr d +
1

«0
P̂A

'sr d. sA4d

To transform the momenta of the charged particles, the
identities

¹adsr − r̂ A − lr̂ bd = Fsl − 1d
ma

mA
− ldabG ¹ dsr − r̂ A − lr̂ bd,

sA5d

E
0

1

dl r̂ a ¹ dsr − r̂ A − lr̂ ad = dsr − r̂ Ad − dsr − r̂ ad,

sA6d

E
0

1

dllr̂ a ¹ dsr − r̂ A − lr̂ ad = − dsr − r̂ ad

+E
0

1

dldsr − r̂ A − lr̂ ad

sA7d

are helpful. They can be proved with the aid of the defini-
tions (28) and(29), and via(partial) integration with respect
to l. Using Eqs.(A5) and (A7) we derive

p̂a8 = p̂a − qaÂsr̂ ad −E d3rĴasr d 3 B̂sr d, sA8d

whereĴasr d is defined as in Eq.(39). Further, the following
quantities remain unchanged under the transformation(A1),
because they commute with bothÂsr d (cf. Ref. [37]) and r̂ a:

Â8sr d = Âsr d, B̂8sr d = B̂sr d, ŵ8sr d = ŵsr d, sA9d

r̂ a8 = r̂ a, r̂ A8 = r̂ A, r̂A8 sr d = r̂Asr d, ŵA8 sr d = ŵAsr d,

sA10d

P̂A8 sr d = P̂Asr d, Q̂a8sr d = Q̂asr d, Ĵa8sr d = Ĵasr d.

sA11d

Applying the transformation rules(A3) and (A8)–(A11),
we may now express the minimal-coupling Hamiltonian(1)
in terms of the transformed variables. Recalling Eq.(21) to-
gether with Eqs.(8)–(10) and making use of the relations
(19) and

E
0

`

dv
v

c2 Im Gsr ,r 8,vd =
p

2
dsr − r 8d sA12d

(cf. Ref. [36]), we derive

Ĥ = o
l=e,m

E d3rE
0

`

dv qv f̂l8
†sr ,vdf̂l8sr ,vd

+
1

2«0
E d3r P̂A8

'sr dP̂A8
'sr d −E d3r P̂A8

'sr dÊ8'sr d

+ o
a

1

2ma
Fp̂a8 +E d3r Ĵa8sr d 3 B̂8sr dG2

+ 1
2E d3r r̂A8 sr dŵA8 sr d +E d3r r̂A8 sr dŵ8sr d. sA13d

In order to simplify the last two terms of Eq.(A13), we recall
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Eq. (86) as well asP̂A8
isr d=«0= ŵA8 sr d andÊ8isr d=−= ŵ8sr d,

obtaining with the aid of partial integration

1
2E d3r r̂A8 sr dŵA8 sr d +E d3r r̂A8 sr dŵ8sr d

= 1
2E d3rP̂A8 sr d = ŵA8 sr d +E d3rP̂A8 sr d = ŵ8sr d

=
1

2«0
E d3rP̂A8 sr dP̂A8

isr d −E d3rP̂A8 sr dÊ8isr d. sA14d

Combining Eqs.(A13) and (A14), and noting that integrals
containing mixed products of transverse and longitudinal
vector fields vanish, we obtain Eq.(38), where we have
made use of Eqs.(A10) and (A11) and hence dropped the
primes of all quantities containing the particle coordinates
only.

In the simpler case in which the center-of-mass coordinate
is treated as a parameter, the transformation law(A8)
changes to

p̂a8 = p̂a − qaÂsr̂ ad −E d3rQ̂asr d 3 B̂sr d. sA15d

Equations(A3), (A4), and (A9)–(A11) remain formally the
same, provided that the replacementr̂ A ° r A is made.

APPENDIX B: ORDERS OF MAGNITUDE
OF INTERACTION TERMS

To estimate the order of magnitude of atom-field interac-
tions, let us introduce the typical atomic length and energy
scales

a0 =
aB

Zeff
=

q

Zeffa0mec
, sB1d

E0 = Zeff
2 ER =

Zeff
2 q2

2meaB
2 < Zeff

2 13.6 eV sB2d

(aB, Bohr radius;ER, Rydberg energy), whereme and −e are
the electron mass and charge, respectively,Zeffe is the typical
effective nucleus charge felt by the electrons giving the main
contributions to the interaction terms to be calculated, and
a0=e2/ s4p«0qcd is the fine-structure constant. As a rough
estimate we can then make the replacements

qa → e, ma → me, vkl → E0/q, sB3d

r̂ a → a0, r̂̇ A → v, p̂a
s8d → p = meE0a0/q sB4d

[for the last replacement, see Eq.(C7)]. With regard to the
length scale of variation of the medium-assisted electromag-
netic field we may make the replacements

= → l−1 , v/c, = ŵ → = w , vA, sB5d

Ês8d → E , vA, B̂s8d → B , sv/cdA sB6d

sÂ s8d→Ad. Noting that materials typically become transpar-
ent for frequencies greater than 20 ev(cf. Ref. [48]),

«sr ,vd < 1 ⇒ Gs1dsr ,r 8,vd < 0 for qv * 20 eV,

sB7d

we should require that

qv & 20 eV ⇒
qv

E0
& 1. sB8d

With these approximations at hand, the orders of magni-
tude ofD1E defined by Eq.(55) andD2E defined by Eq.(54)
in Sec. III A can be estimated to be

D1E ,
e2A2

2me
=

e2a0
2A2

q2 E0 = g2E0 = Osg2d sB9d

and

D2E ,
1

E0 + qv
Se2p2A2

me
2 + 2

ea0 ¹ wepA

me
+ e2a0

2 ¹ w2D
= g2F1 + 2Sqv

E0
D + Sqv

E0
D2G E0

1 + qv/E0
= Osg2d ,

sB10d

where the dimensionless coupling constant

g ; ea0A/q sB11d

has been introduced. Note that in Eq.(B10) we have ap-
proximatedp̂a→p, because in Sec. III we treat an atom at
rest, hence relative and absolute momenta are identical.

In order to give a rough idea of the magnitude of the
coupling constantg, we need to estimate the magnitude of
the field strengthA. In the context of the current work we
consider interactions of an atomic system with the vacuum
electromagnetic field, so the relevant quantity is the vacuum
fluctuation of the field strength. Recalling Eqs.(8) and (21)
and making use of the commutation relations(4) and (5) as
well as the integral relation(19), we find

kfDÊsr Adg2l = kh0juÊ2sr Aduh0jl − kh0juÊsr Aduh0jl2

=
q

p«0
E

0

`

dv8
v82

c2 Im TrGsr A,r A,v8d.

sB12d

When the atomic system is placed sufficiently far away from
all macroscopic bodies, a good estimate for the integral can
be given by using the vacuum Green tensor ImGs0dsr ,r ,vd
=v / s6pcdI , leading to

kfDÊsr Adg2l ,
qv4

6p2«0c
3 , sB13d

wherev is a characteristic frequency contributing to the in-
teraction, cf. Eq.(B8). Hence making the replacement

A ,Î qv2

6p2«0c
3 sB14d

[cf. Eq. (B6)], we find
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g , ZeffÎ a0

6p
Sqv

E0
Da0 , 10−2, sB15d

depending on the specific atomic system considered and the
characteristic frequencies of the medium. When the atom is
situated close to some macroscopic body, the scattering
Green tensor becomes much larger than the vacuum Green
tensor, and the approximation leading to Eq.(B13) is not
valid anymore. The increased value of the coupling constant
g is reflected by the failure of the perturbative result for
small atom-surface separations.

The orders of magnitude of the contributions of the three
terms in Eq.(52) to the eigenvalue shift in Sec. III B can be
estimated according to

ud̂Ê8sr Adu2

qsvkl + vd
, sea0Ed2 E0

1 + qv/E0
= g2Sqv

E0
D2 E0

1 + qv/E0

= Osg2d, sB16d

Uo
a

qa

4ma

fp̂8a 3 r̂ a − r̂ a 3 p̂8agB̂8sr AdU2

qsvkl + vd

, Sea0pB

2me
D2 E0

1 + qv/E0
= sZeffa0gd21

4Sqv

E0
D2

3
E0

1 + qv/E0
= O(sZeffa0gd2), sB17d

o
a

qa
2

8ma

ur̂ a 3 B̂8sr Adu2 ,
sea0Bd2

8me
= sZeffa0gd21

8Sqv

E0
D2

E0

= O(sZeffa0gd2). sB18d

Next, let us estimate the orders of magnitude of the various
contributions to the Lorentz force given in Sec. IV A. The
magnitudes of the first and third terms in curly brackets in
Eq. (97) can be approximated according to

ud̂Êsr̂ Adu , ea0E = gsqvd = Osgd, sB19d

1
4ufr̂̇ A,B̂s8dsr̂ Ad 3 d̂g+u , 1

2ea0Bv = 1
2Sv

c
gDsqvd = Osgv/cd.

sB20d

In order to estimate the magnitude of the second term, we
make use of the relation

mar̂̇ a = p̂a − qaÂsr̂ ad sB21d

in order to introduce relative momenta[recall Eq.(49)], lead-
ing to

o
a

qa

4
fr̂̇ a,B̂sr Ad 3 r̂ ag+ = o

a

qa

4ma

fp̂a,B̂sr̂ Ad 3 r̂ ag+

+ o
a

qa
2

2ma

r̂ aB̂sr̂ Ad 3 Âsr̂ Ad

+ 1
4fr̂̇ A,B̂sr̂ Ad 3 d̂g+. sB22d

Combining this with

Uo
a

qa

4ma

fp̂a,B̂sr̂ Ad 3 r̂ ag+U ,
eBa0p

2me
= sZeffa0gd 1

4sqvd

= OsZeffa0gd, sB23d

Uo
a

qa
2

2ma

r̂ aB̂sr̂ Ad 3 Âsr̂ AdU ,
e2a0AB

2me
= sZeffa0g

2d 1
2sqvd

= OsZeffa0g
2d, sB24d

and Eq.(B20), we see that the magnitude of the second term
in curly brackets in Eq.(97) is OsZeffa0g+Zeffa0g

2+gv /cd
=O(sZeffa0+v /cdg). The magnitudes of the different contri-
butions to Eq.(98) are

ud̂˙ 3 B̂sr̂ Adu = Uo
a

qa

ma

fp̂a − qaÂsr̂ Adg 3 B̂sr̂ AdU
, SepB

me
+

e2AB

me
D = gs1 + 2gdSvE0

c
D

= Osgd, sB25d

ud̂ 3 B̂
˙ sr̂ Adu , ea0vB = gSqv

E0
DSvE0

c
D = Osgd,

sB26d

1
2
ud̂ 3 fr̂̇ A=A ^ B̂sr̂ Ad + B̂sr̂ Ad ^ =ªA r̂̇ Agu ,

ea0vvB

c

= Sv
c

gDSqv

E0
DSvE0

c
D = Osgv/cd. sB27d

Finally, let us compare the contributions of the Röntgen

interaction to the temporal evolutionf̂lsr ,v ,td with that
from the electric dipole interaction,

U 1

2qv
†r̂̇ Astd,d̂std 3 f¹A 3 Gl

* (r Astd,r ,v)g‡+U
u i

q d̂stdGl
* (r̂ Astd,r ,v)u

, Svea0

qc
DYSea0

q
D = Osv/cd, sB28d
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U 1

qvmA
d̂std 3 B̂(r Astd,t)d̂std 3 f¹A 3 Gl

* (r Astd,r ,v)gU
u i

q d̂stdGl
* (r̂ Astd,r ,v)u

, Se2a0
2B

qmAc
DYSea0

q
D = sZeffa0d2g1

2Sqv

E0
DS me

mA
D

= OfsZeffa0d2gg. sB29d

APPENDIX C: CALCULATION OF THE PERTURBATIVE
CORRECTIONS (58) AND (79)

Recalling Eq.(6) together with Eqs.(8)–(10), making use
of the commutation relations(4) and (5), and applying Eq.
(19) and (55) leads to

D1El = o
a

qa
2

2ma
o

l=e,m
E

0

`

dv

3E d3r
1

v2s'Gldi jsr A,r ,vds'Gl
* di jsr A,r ,vd

=
qm0

p
o
a

qa
2

2ma
E

0

`

dv Ims'G'diisr A,r A,vd, sC1d

where we have introduced the notation

'sidG'sidsr ,r 8,vd ; E d3sE d3s8d'sidsr − sd

3Gss,s8,vdd'sidss8 − r 8d. sC2d

Applying the sum rule

o
a

qa
2

2ma

I =
1

2q
o
k

vklsdlk ^ dkl + dkl ^ dlkd, sC3d

we can rewrite Eq.(C1) as

D1El =
m0

p
o
k
E

0

`

dvvkldlk Im'G'sr A,r A,vddkl. sC4d

To calculateD2E, as given by Eq.(54), we first calculate the
matrix elements therein. Recalling Eqs.(4)–(10), we obtain

kl ukh0jud̂ ¹ ŵsr dr=r A
uh1lsr ,vdjlukl = − dlk

iGlsr A,r ,vd,

sC5d

− kl ukh0juo
a

qa

ma

p̂aÂsr Aduh1lsr ,vdjlukl =
vkl

v
dlk

'Glsr A,r ,vd,

sC6d

where the second matrix element has been obtained by
means of the identity

o
a

qa

ma

kl up̂aukl = − ivkldlk. sC7d

Substituting Eqs.(C5) and(C6) into Eq.(54), we then derive

D2El = −
1

q
o
k

o
l=e,m

PE
0

` dv

vkl + v
E d3r sdlkdisdkld jFsiGldinsr A,r ,vdsiGl

* d jnsr A,r ,vd −
vkl

v
siGldinsr A,r ,vds'Gl

* d jnsr A,r ,vd

−
vkl

v
s'Gldinsr A,r ,vdsiGl

* d jnsr A,r ,vd +
vkl

2

v2 s'Gldinsr A,r ,vds'Gl
* d jnsr A,r ,vdG =

m0

p
o
k

PE
0

` dv

vkl + v
dlk

3h− v2 Im iGisr A,r A,vd + vklvfIm iG'sr A,r A,vd + Im 'Gisr A,r A,vsr A,r A,vdg − vkl
2 Im 'G'sr A,r A,vdjdkl, sC8d

where we have again made use of the identity(19). Adding
Eqs.(C4) and(C8) according to Eq.(57), on using the iden-
tity G='G'+'Gi+ iG'+ iGi [which directly follows from
the definition (C2) together with dsr d=disr d+d'sr d], we
eventually arrive at Eq.(58).

The derivation of Eq.(79) is completely analogous. The
relevant matrix elements can be calculated with the aid of
Eq. (21) together with Eqs.(8)–(10) and the commutation
relations (4) and (5), cf. the remarks below Eq.(40). The
result is

− kl ukh08jud̂Ê8sr Aduh18lsr ,vdjlukl = − dlkGlsr A,r ,vd.

sC9d

Substituting Eq.(C9) into Eq. (78) yields

D2El = −
1

q
o
k

o
l=e,m

PE
0

` dv

vkl + v
E d3r

3 sdlkdisdkld jsGldinsr A,r ,vdsGl
* d jnsr A,r ,vd,

sC10d

from which Eq.(79) follows by means of Eq.(19).

APPENDIX D: EQUIVALENCE OF LORENTZ FORCES
(94) AND (105)

To transform the first term in Eq.(105), we apply the the
rule (A4), recall that integrals over mixed products of trans-
verse and longitudinal vector fields vanish, and use the iden-
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tity for the first term in Eq.(A14) as well as Eqs.(82) and
(103). We thus derive

=AE d3rfP̂Asr dÊ8sr dg

= =AE d3rfP̂Asr dÊsr dg +
1

«0
=AE d3rfP̂Asr dP̂A

'sr dg

= =AE d3rfP̂Asr dÊsr dg +
1

«0
=AE d3rP̂A

2 sr d

− =AE d3r r̂Asr dŵAsr d = =AE d3rP̂Asr dÊsr d. sD1d

In order to simplify the second term in Eq.(105), we use the
definitions(29), (39), (88), and(89) to calculate

1
2o

a

fĴasr d 3 r̂̇ a − r̂̇ a 3 Ĵasr dg

= 1
2o

a

qafQ̂asr d 3 r̂̇ a − r̂̇ a 3 Q̂asr dg − 1
2o

b

qafQ̂asr d

3 r̂̇ A − r̂̇ A 3 Q̂asr dg + 1
2fP̂Asr d 3 r̂̇ A − ṙ̂A 3 P̂Asr dg

= M̂ Asr d + M̂ Rsr d. sD2d

Consequently, recalling thatB̂8sr d=B̂sr d, we may write

=AE d3r 1
2o

a

fĴasr d 3 r̂̇ a − r̂̇ a 3 Ĵasr dgB̂8sr d

= =AE d3rfM̂ Asr d + M̂ Rsr dgB̂sr d sD3d

as well as

d

dt
FE d3rP̂Asr d 3 B̂8sr dG =

d

dt
FE d3rP̂Asr d 3 B̂sr dG .

sD4d

Substituting Eqs.(D1), (D3), and(D4) into Eq.(105), we see
that Eq.(105) is equivalent to Eq.(94).

APPENDIX E: EQUATIONS OF MOTION FOR f ˆ
l8„r , v ,t…

In electric dipole approximation, the temporal evolution

of the basic fieldsf̂l8sr ,v ,td is governed by the Hamiltonian
given in Eq. (44) together with Eqs.(45), (46), and (50).
Using Eqs.(8) and(21)–(23) (with the unprimed fields being
replaced with the primed ones) and applying the commuta-
tion relations(4) and (5), we obtain

f̂
˙

l8sr ,v,td =
i

q
fĤ, f̂l8sr ,v,tdg

= − ivf̂l8sr ,v,td +
i

q
d̂stdGl

p(r̂ Astd,r ,v)

−
1

2qv
†r̂̇ Astd,d̂std 3 f=A 3 Gl

p(r̂ Astd,r ,v)g‡+

−
1

qvmA
hd̂std 3 B̂8(r̂ Astd,t)d̂std 3 f¹A

3 Gl
p(r̂ Astd,r ,v)gj. sE1d

The third and fourth terms in Eq.(E1), which are due to the
Röntgen interaction, are smaller than the second one by fac-
tors of v /c and gsZeffa0d2, respectively[Eqs. (B28) and
(B29) in Appendix B], so according to the nonrelativistic
approximation, Eq.(E1) reduces to

f̂
˙

l8sr ,v,td = − ivf̂l8sr ,v,td +
i

q
d̂stdGl

* (r̂ Astd,r ,v), sE2d

which can be integrated to yieldff̂l8sr ,v ,0d; f̂l8sr ,vdg

f̂l8sr ,v,td = f̂l free8 sr ,v,td + f̂l source8 sr ,v,td, sE3d

where

f̂l free8 sr ,v,td = e−ivtf̂l8sr ,vd sE4d

and

f̂l source8 sr ,v,td =
i

q
E dt8e−ivtst−t8dd̂st8dGl

* (r̂ Ast8d,r ,v).

sE5d

Substituting Eqs. (E3)–(E5) into Eq. (8)
fÊIsr ,v ,td° ÊI8sr ,v ,tdg and using the identity(19), we ar-
rive at Eqs.(109)–(111).

APPENDIX F: INTRA-ATOMIC EQUATIONS OF MOTION

An estimation similar to that given for the fieldsf̂8sr ,v ,td
shows that in the nonrelativistic limit the second term in the
interaction Hamiltonian in electric dipole approximation(50)
can be disregarded in the calculation of the temporal evolu-

tion of the intra-atomic operatorsÂmnstd. By representing the
(unperturbed) intra-atomic Hamiltonian in the form of Eq.
(53), recalling Eqs.(8) and (121), and applying standard
commutation relations, it is not difficult to prove that the

Âmnstd obey the equations of motion

Â
˙

mn=
i

q
fĤ,Âmng = ivmnÂmn+

i

q
o
k
FsdnkÂmk

− dkmÂkndE
0

`

dvEÎ8sr̂ A,vd +E
0

`

dvÊI8†sr̂ A,vd

· sdnkÂmk− dkmÂkndG . sF1d

We now substitute the source-quantity representation for

ÊI8sr̂ A ,vd=ÊI8fr̂ Astd ,v ,tg (and its Hermitian conjugate) ac-
cording to Eqs.(109)–(111) into Eq. (F1). Carrying out the
time integral in the source-field part in Eq.(F1) in the Mar-
kov approximation, we may set, on regardingr̂ A = r̂ Astd as
being slowly varying,
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E
0

`

dvÊIsource8 sr̂ A,vd = o
m,n

gmnsr̂ AdÂmn, sF2d

where

gmnsr̂ Ad =
im0

p
E

0

`

dvv2 Im Gsr̂ A, r̂ A,vddmnzfṽnmsr̂ Ad − vg

sF3d

fzsxd=pdsxd+ iP/xg, with ṽnmsr̂ Ad being the shifted transi-
tion frequencies. Substituting Eq.(F2) into Eq. (F1), we ob-
tain

Â
˙

mn= Hivmn+
i

q
o
k

fdnkgkn − dkmgkm
p gJÂmn+ B̂mn+ F̂mn,

sF4d

with

B̂mn=
i

q
o

k,lÞn

dnkgklÂml −
i

q
o
k,l

dkmgnlÂkl +
i

q
o
k,l

dnkgml
p Âlk

−
i

q
o

k,lÞm

dkmgkl
p Âln sF5d

smÞnd, and

Â
˙

mm=
i

q
o
k

fdmkgkm− dkmgkm
* gÂmm−

i

q
o
k

fdkmgmk

− dmkgmk
* gÂkk + Ĉmm+ F̂mm, sF6d

with

Ĉmm=
i

q
o

k,lÞm

hdmkgklÂml − dkmgkl
* Âlmj −

i

q
o

k,lÞk

hdkmgmlÂkl

− dnkgml
* Âlkj , sF7d

where F̂mn denotes contributions from the free-field part in
Eq. (109). Taking expectation values with respect to the in-
ternal atomic motion and the medium-assisted electromag-
netic field, with the density matrix given by Eq.(119), we

can use the property(117), finding that the termsF̂mn do not
contribute. In the absence of(quasi) degeneracies such that

uṽmn− ṽm8n8u @
1
2uGm + Gn − Gm8 − Gn8u, sF8d

we may disregard couplings between different off-diagonal
transitions and between off-diagonal and diagonal transitions

and thus omit the termsB̂mn andĈmm, hence upon using the
decomposition

i
qdnkgknsr̂ Ad = − idvn

ksr̂ Ad − 1
2Gn

ksr̂ Ad, sF9d

wheredvn
ksr̂ Ad andGn

ksr̂ Ad, respectively, are defined accord-
ing to Eqs.(126) and (128) [with Gs1dsr̂ A , r̂ A ,vd instead of
Gsr̂ A , r̂ A ,vd in Eq. (126)], Eqs. (F4) and (F6) lead to Eqs.
(123), (131), and(132).

APPENDIX G: HALF SPACE MEDIUM

The equal-position scattering Green tensor for a semi-
infinite half space which contains forz,0 a homogeneous,
dispersing, and absorbing magnetodielectric medium reads
for z.0 [49]

Gs1dsr ,r ,vd =
i

8p
E

0

`

dq
q

b0
e2ib0z5rs11 0 0

0 1 0

0 0 0
2

+ rp
c2

v21− b0
2 0 0

0 − b0
2 0

0 0 2q226 , sG1d

where

rs =
mb0 − b

mb0 + b
, rp =

«b0 − b

«b0 + b
sG2d

are the reflection coefficients fors- and p-polarized waves,
respectively (b0

2=v2/c2−q2 with Im b0.0, b2=«mv2/c2

−q2 with Im b.0). For q@ uvu /c and q@Îu«muuvu /c, re-
spectively, the approximations

b0 . iq, b . iq sG3d

can be made. Due to the exponential factor the integration
interval is effectively limited to valuesq&1/z. In the short-
distance limit zÎu«muuvu /c!1, we therefore introduce a
small error, if we extrapolate the approximations(G3) to the
whole integral, resulting in

Gs1dsr ,r ,vd =
c2

32pv2z3

«svd − 1

«svd + 111 0 0

0 1 0

0 0 2
2 . sG4d

Note that the magnetic properties of the medium represented
by the permeabilitym begin to contribute via terms propor-
tional to 1/z. Substitution of Eq.(G4) into the first term of
Eq. (129) for dvnk=dv10 yields Eq.(153).

In order to obtain Eq.(154), we recall Eq.(G1) to write

E
0

`

dufsudGs1dsr ,r ,iud

=
1

8p
E

0

`

dufsudE
u/c

`

db0e
−2b0z5rs11 0 0

0 1 0

0 0 0
2

− rp
c2

u21b0
2 0 0

0 b0
2 0

0 0 2b0
2 − s u

cd226 , sG5d

having changed the integration variable to the imaginary part
of b0sb0= ib0d. Let vM be a characteristic frequency of the
medium such that

«siud − 1 ! 1 for u . vM. sG6d
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For u.vM, the approximationb,b0 holds, and conse-
quently the reflection coefficientsrs, rp are independent of
b0. The frequency integral effectively extends up to frequen-
cies of the orderc/z, hence in the short-range limitzvM /c

!1s⇒c/z@vMd we introduce only a small error by extrapo-
lating this approximation to the whole frequency integral.
Performing the b0 integral, retaining only leading-order
terms inuz/c (in consistency withzvM /c!1) we derive

E
0

`

dufsudGs1dsr ,r ,iud = −
c2

32pz3E
0

`

du
fsud
u2

«siud − 1

«siud + 111 0 0

0 1 0

0 0 2
2 . sG7d

Using Eq.(G7) [with fsud=u2/ sṽ2
A+u2d] together with Eq.(129), we obtain Eq.(154).
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