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We examine weak measurements of arbitrary observables where the object is prepared in a mixed state and
on which measurements with imperfect detectors are made. The weak value of an observable can be expressed
as a conditional expectation value over an infinite class of different generalized Kirkwood quasiprobability
distributions. “Strange” weak values for which the real part exceeds the eigenvalue spectrum of the observable
can only be found if the Terletsky-Margenau-Hill distribution is negative or, equivalently, if the real part of the
weak value of the density operator is negative. We find that a classical model of a weak measurement exists
whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of
the observable and the Terletsky-Margenau-Hill distribution is non-negative. Strange weak values alone are not
sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon
number of the radiation field. Negative weak values of energy contradict all classical stochastic models,
whereas negative weak values of photon number contradict all classical stochastic models where the energy is
bounded from below by the zero-point energy. We examine coherent states in particular and find negative weak
values with probabilities of 16% for kinetic energy(or squared field quadrature), 8% for harmonic oscillator
energy, and 50% for photon number. These experiments are robust against detector inefficiency and thermal
noise.
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I. INTRODUCTION

Physics is an endeavor to construct a mathematical model
of nature. The basic mathematical model of classical physics
is one in which all dynamical variables have definite values
simultaneously. With the advent of statistical mechanics, a
probabilistic description was introduced in which each dy-
namical variable would have some value with a certain prob-
ability. This is the most general description that classical
physics can provide. A great variety of phenomena can be
explained in terms of such a model. For example, most op-
tical phenomena can be described in terms of a model of
complex, stochastic amplitudes. It was not until 1977 that
this model was found to break down in an experiment which
demonstrated the phenomenon of antibunching[1].

In this paper we examine a relatively new type of mea-
surement known as weak measurements[2]. Weak measure-
ments may be performed in exactly the same way as standard
von Neumann measurements, but with a weakened interac-
tion [3]. In a weak measurement, the pointer will on average
register the expectation value of the observable that is mea-
sured. However, when the weak measurement is conditioned
on a second postselection measurement, the pointer registers
the real part of what is known as the “weak value” of the
observable. These weak values have caused a lot of contro-
versy, in particular because they may exceed the eigenvalue
spectrum of the observable.

The main objective of this paper is to discuss the condi-
tions under which a classical description of weak measure-

ments is possible, taking into account practical experimental
limitations and possibilities. In particular, our purpose is to
investigate in further detail the failure of providing a classi-
cal description of coherent states in such experiments and to
propose a feasible experiment demonstrating nonclassical
properties of coherent states.

In Sec. II we give a brief review of the Glauber classical-
ity criterion and discuss its possible limitations.

In Sec. III and Appendixes A and B we consider a general
class of weak measurements where the object may be pre-
pared in a mixed state and where the pointer may be pre-
pared in an arbitrary mixed state of vanishing current density.
We consider detectors of arbitrary quantum efficiency and
derive a generalized weak value.

In Sec. IV we demonstrate that the weak value can be
expressed as a conditional expectation over an infinite set of
different quasiprobability distributions. These distributions
can be regarded as generalizations of the complex Kirkwood
distribution [4] or the standard ordered distribution[5]. We
denote such distributions byS distributions. The Terletsky-
Margenau-Hill distribution[6,7], or T distribution, is the real
parts of theS distribution. We find that strange weak values
(for which the real part exceeds the eigenvalue spectrum of
the observable) can only exist if theT distribution takes
negative values. We demonstrate that a classical model of a
weak measurement exists whenever the representation of the
observable coincides with the classical representation of the
observable and theT distribution is non-negative. We dem-
onstrate in particular that negative weak values of energy
contradict all classical stochastic models and that negative
weak values of photon number contradict a stochastic model
where the energy is bounded from below by the zero-point
energy.
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In Sec. V we propose two feasible practical realizations of
weak measurements of photon number and energy.

In Sec. VI we consider in particular weak measurements
on coherent states. We demonstrate that coherent states dis-
play negative weak values with probabilities of 16% for ki-
netic energy(or squared field quadrature), 8% for harmonic
oscillator energy, and 50% for photon number. We find that
these effects are robust against detector inefficiency and ther-
mal noise.

II. GLAUBER CLASSICALITY CRITERION

Glauber and Sudarshan have demonstrated that any den-
sity operator can be expanded diagonally in terms of coher-
ent states[8,9]

r̂ =E d2aPsadualkau. s1d

The weight functionPsad is known as theP distribution.
Furthermore, one may write the expectation value of any

normal ordered operatorNfÔsâ†,âdg as an integral of the
form

kNfÔsâ†,âdgl =E d2aOsa*, adPsad, s2d

wherea* is the c-number representation ofâ† and a is the
c-number representation ofâ. Therefore, if theP distribution
has the properties of a valid probability distribution, one may
say that a classical representation exists for any normal or-
dered operator product. This is known as the “optical equiva-
lence theorem”[9].

The optical equivalence theorem is the basis of the
Glauber classicality criterion, according to which all states
for which theP distribution is a probability distribution are
regarded as essentially classical. IfP fails to be a probability
distribution, the state is considered as nonclassical[8,10–13].
The Glauber criterion is widely accepted as giving the most
general distinction between quantum and classical states. It is
the basis of various measures of “nonclassicality.” For ex-
ample, Hillery has defined a measure of nonclassicality
based on the distance in Hilbert space between the object
state and coherent states[14]. Lee has defined a nonclassical
depth defined as the minimum average number of thermal
photons that must be added to render theP distribution non-
negative[15]. More recently, Richter and Vogel have derived
a hierarchy of observable conditions to test the Glauber cri-
terion [16,17].

The Glauber criterion must be considered a conjecture
rather than a proven theorem. It is based on some plausible
arguments. First, due to the multitude of arguments in favor
of coherent states as the only classical-like pure states, it is
natural to assume that also classical mixtures of coherent
states are classical. This is in fact equivalent to Glauber’s
classicality criterion, as can be seen from Eq.(1). If the P
distribution is a probability distribution, the density matrix
can be expressed as a classical mixture of coherent states.
Second, a non-negativeP distribution ensures that the whole
range ofs-ordered Wigner distributions is also non-negative.

Therefore, theP distribution is most “sensitive” to nonclas-
sicality among alls-ordered distributions.

It is puzzling that a definition of nonclassicality depends
on the ability to represent expectations ofnormally ordered
operator expressions as classical expectation values over a
probability distribution. This is sometimes attributed to the
fact that normal ordering of operators is closely associated to
the theory of photodetection.

However, we may devise experimental procedures related
to operator orderings different from normal ordering of an-
nihilation and creation operators, which may display clear
contradictions between the classical and quantum descrip-
tions for the same experiment. This is actually the case of
weak measurements, whose statistics are related toT distri-
butions instead of to the more standards-ordered distribu-
tions. We show below that weak measurements lead to
strange outputs provided that theT distribution takes nega-
tive values. Moreover, we will show in this paper that a
classical stochastic model may fail to describe weak mea-
surements even when theP distribution is a non-negative
probability distribution.

III. WEAK MEASUREMENTS

A “measurement” comes about when an auxiliary system
interacts with an object. By examining the properties of the
auxiliary system after the interaction, it may be possible to
extract information about the object. The auxiliary system is
frequently called a “measurement apparatus” or a “pointer
system.” The basic theory of quantum measurement was ex-
amined by von Neumann in his seminal work on the math-
ematical foundations of quantum mechanics[18]. In this
work, von Neumann represented the interaction between the
object and pointer by an interaction Hamiltonian of the form
(throughout we will use units in which"=1)

Ĥe = edstdn̂ ^ P̂. s3d

A short explanation of the terms involved is in place. The
constante represents the interaction strength. The interaction
is of short duration, represented in idealized form by thed
term. The Hermitian observablen̂ belongs to the object Hil-
bert systemHs and is the observable that we want to “mea-

sure.” The observableP̂ is the pointer momentum and be-
longs to the pointer Hilbert spaceHa. Although seemingly
artificially constructed, this interaction model has served as
an archetype of the interaction mechanism in quantum mea-
surements. It has been found that the conclusions that can be
drawn from this model are generic to a number of other
interaction mechanisms(for a closer discussion of the spe-
cific properties of this interaction Hamiltonian, see Ref.
[19]).

In a standard, projective measurement, the pointer posi-

tion Q̂, with fQ̂, P̂g= i, displays one of the eigenvalues of the
object observablen̂ after the measurement interaction. It was
demonstrated by von Neumann that in order to accomplish
this, the state of the pointer prior to the interaction should
have a small position spread[18]. The same effect can be
accomplished by allowing the interaction strengthe to be
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sufficiently large[19]. For this reason, this type of measure-
ment is frequently called a “strong measurement.”

Until recently, it was thought that strong measurements
are the only useful type of measurements in quantum me-
chanics. However, in 1988 Aharonovet al. proposed a new
type of measurement that they called “weak measurements”
[2]. Such measurements also employ the von Neumann in-
teraction mechanism(3), the difference being that the pointer
is assumed to be in an initial state of large position uncer-
tainty. More specifically, they assumed that the initial state of
the pointer was a Gaussian with large spread.

Recently, it was shown that weak measurements can be
performed also when the pointer is in an arbitrary mixed
state, provided that the interaction strengthe is sufficiently
small and the current density of the pointer vanishes[3]. This
description can be generalized further by taking into account
finite efficiency of the detectors. A detector of finite effi-
ciency can be represented by positive-operator-valued mea-
sure(POVM) (see Appendix A). In this case, the weak value
of the observablen̂ conditioned on an imperfect postselec-
tion of the observablef̂ on the object is(see Appendix B)

nwsfd =
TrsP̂fn̂r̂sd

TrsP̂fr̂sd
, s4d

where P̂f is a diagonal POVM representing the imperfect
postselection andr̂s is the initial state of the object[see Eq.
(B5)].

It has been noted that weak values are conditional expec-
tation values of a complex quasiprobability distribution
[20,21]. Furthermore, weak values have been examined in
other contexts than under weak measurements. For example,
they are sometimes called “local values”[22]. The relation
between such local values and quasiprobability distributions
has been examined in several settings[23–25]. The weak
value of an observable is also the optimal estimator of the
observable between preselection and postselection[26]. The
relation between the optimal estimator of an observable and
phase-space distributions was examined in[27].

IV. CLASSICAL MODELS OF WEAK MEASUREMENTS

Under what circumstances is it possible to find a classical
representation of a weak measurement? Or put differently,
under what circumstances can the outcome of a weak mea-
surement be modeled in terms of a classical, stochastic
model? By answering this question, we will also understand
under what circumstances weak measurements demonstrate
nonclassical properties of the quantum state under consider-
ation.

We begin by inserting the definition(B5) for the diagonal
postselection POVM into Eq.(4). We then have

nwsfd =

TrfE df8Pfsf8duf8lkf8un̂r̂sg

TrfE df8Pfsf8duf8lkf8ur̂sg
. s5d

By performing the trace over any complete set of states we
obtain

nwsfd =
E df8Pfsf8dkf8un̂r̂suf8l

E df8Pfsf8dkf8ur̂suf8l
. s6d

We employ an arbitrary complete set of statesujl:

E djujlkju = I. s7d

We may then write Eq.(6) in the form

nwsfd =
E djdf8Pfsf8dSn̂sf8,jdSsf8,jd

E djdf8Pfsf8dSsf8,jd
, s8d

where

Sn̂sf,jd =
kfun̂ujl
kfujl

s9d

is ac-number representation of the observablen̂. In fact, it is
the weak value for the observable preselected in the stateujl
and postselected in the stateufl. Also,

Ssf,jd = kfujlkjur̂sufl s10d

is a generalization of the Kirkwood distribution for arbitrary

observablesĵ and f̂ [4]. The Kirkwood distribution is also
known as the antistandard ordered distribution[5]. S is also a
generalization of the standard ordered distribution, which is
the complex conjugate of the Kirkwood distribution[5]. In
this paper, we will simply denote it by theSdistribution, and
we will refer to Sn̂ as theS representation of the observable
n̂.

TheSdistributions are in general complex and as such are
quasiprobability distributions. Nevertheless, they possess
some of the properties of classical joint distributions. For
example, assuming that both eigenstatesufl and ujl consti-
tute complete sets, it is straightforward to show that they
yield correct marginal distributions when integrated over ei-
ther variable:

kfur̂sufl =E djSsf,jd, s11d

kjur̂sujl =E dfSsf,jd. s12d

It is straightforward to show that also the complex conjugate
distributionS* sf ,jd fulfills such marginality conditions.

The S distribution can be expressed in the form

Ssf,jd = ukfujlu2
kjur̂sufl

kjufl
. s13d

In this form, theSdistribution is a product of a non-negative
probability distribution and the weak value of the density
operator. Ifujl or ufl are eigenstates of the density operator,
S will be real and non-negative.
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Classically, the weak value of an observable is the condi-
tional expectation of that observable[3]. Expression(8)
demonstrates that there exists an infinite set of representa-
tions under which the weak value can be expressed as a
conditional expectation of ac-number variableSn̂ over anS
distribution. For each choice of basisujl, a differentS distri-
bution is obtained. However, some of these representations
bear little resemblance to any classical model. For example,
in some models theS representation of the Hermitian observ-
able n̂ is complex. As a basic requirement on aclassical
model, we shall in the following restrict our attention to the
subset of representations for which Hermitian observables
have real representations:

Im Sn̂sf,jd = 0. s14d

We also introduce theT representation ofn̂ and theT distri-
bution [6,7]:

Tn̂sf,jd = ReSn̂sf,jd, s15d

Tsf,jd = ReSsf,jd. s16d

It is straightforward to show that also these provide correct
marginal distributions

kfur̂sufl =E djTsf,jd, s17d

kjur̂sujl =E dfTsf,jd. s18d

Because of the classicality condition(14), the S and T rep-
resentations of the observable are the same:

Tn̂sf,jd =
kfun̂ujl
kfujl

. s19d

The distribution of the postselection observablef̂, taking
into account the finite detector efficiency represented byPf,
can be found from both the complexS distribution and the
real T distribution through the integrals

TrsPfr̂sd =E djdf8Pfsf8dSsf8,jd

=E djdf8Pfsf8dTsf8,jd. s20d

In a weak measurement, the real part of the weak valuenw is
registered by the pointer. Under the assumption(14), we may
write

Resnwd =
E djdf8Pfsf8dTn̂sf8,jdTsf8,jd

E djdf8Pfsf8dTsf8,jd
. s21d

This expression, which reflects the expectation of the pointer
displacement in a weak measurement, bears a formal resem-
blance to a classical conditional expectation. The difference
is that theT distribution may take negative values and that

the T representation of the observable may differ strongly
from the representation of the observable in classical theory.
A classical representation of the pointer displacement can be
said to exist ifTn̂ equals the classical representation of the
observable and if also theT distribution is non-negative.

What determines the sign of theT distribution? From Eqs.
(13) and (16) it follows that

Tsf,jd = ukfujlu2ReS kjur̂sufl
kjufl

D . s22d

Thus, the sign of theT distribution equals the sign of the real
part of the weak value of the density operator. Therefore, a
requirement for nonclassicality is that the real part of the
weak value of the density operator should be negative.

In the following, we consider two representations that
may provide classical-like models of weak measurements.
The first representation, which we shall call theeigenvalue
representation,is found when the basisujl is chosen as
eigenstates of the observablen̂. In this representation theS
andT representations of the observablen̂ are the eigenvalues
n:

Sn̂sf,nd = Tn̂sf,nd = n. s23d

By using this representation, we have

nwsfd =E dn nShsnufd, s24d

Renwsfd =E dn nThsnufd, s25d

where

Shsnufd =
Shsn,fd

E dnShsn,fd
, s26d

Thsnufd =
Thsn,fd

E dnThsn,fd
s27d

are “effective,” conditional distributions and where

Shsf,nd =E df8Pfsf8dSsf8,nd, s28d

Thsf,nd =E df8Pfsf8dTsf8,nd s29d

are “effective”S andT distributions forn andf.
It follows straightforwardly from Eq.(25) that “strange

weak values” where the real part ofnw exceeds the eigen-
value spectrum are only possible for quantum states for
which the T distribution in the eigenvalue representation
takes negative values. But it is of course well known that
classical models may allow observables to exceed the eigen-
value spectrum of the observable. This means also that
“strange” weak values may sometimes be supported by a
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classical model. In particular, this may be the case for ob-
servables with a discrete spectrum.

The otherc-number representation that we shall consider
is thephase-space representation.In this case, the basisujl
should be chosen as eigenstates of the observable canoni-
cally conjugate to the postselection observablef̂. This may
provide the possibility of a comparison with a classical
phase-space description of weak measurements.

We give a couple of examples illustrating the use of these
two representations. First, we consider a weak measurement
of a field squared quadrature(or kinetic energy for material
particles) n̂= p̂2 postselected on the canonically conjugate
field quadrature(or position for material particles) f̂= q̂
[28,29]. In this case, the eigenvalue representation and the
phase-space representation are one and the same, sinceq̂ and
p̂ are canonically conjugate variables. From Eq.(19) follows
that both the eigenvalue representation and the phase-space
representation ofp̂2 postselected onq̂ are

Tp̂2sq,pd = p2. s30d

Obviously,Tp̂2sq,pdù0. From Eq.(25) and the classicality
assumptionTsq,pdù0 follows the inequality

Respw
2dsqd ù 0. s31d

In this case, a “strange” negative weak value implies a fail-
ure of the classical model wherep2 takes the positive con-
tinuum. It can be noted that a negative weak value of kinetic
energyp̂2 contradictsall stochasticc-number models where
kinetic energy takes only non-negative values, even models
where theT representation of the kinetic energy may differ
from the expression(30).

Consider next a weak measurement of the energy of a
harmonic oscillator(we use units so thatv=1)

Ĥ =
1

2
sp̂2 + q̂2d = n̂ +

1

2
, s32d

assuming postselection on one of the quadratures(or position
for a material particle). In the eigenvalue representation,

TĤsq,nd = n +
1

2
. s33d

Obviously,TĤsq,ndù
1
2. In the eigenvalue representation, the

T representation of the Hamiltonian is bounded from below
by the zero-point energy. From Eq.(25) and by imposing the
classicality criterionTsq,ndù0, we may derive the inequal-
ity

ResHwdsqd ù
1

2
. s34d

Violation of this inequality implies “strange” weak values. It
can only take place if theT distributionTsq,nd takes nega-
tive values. We can split the strange values into two catego-
ries. (i) Outputs of the form1

2 ùResHwdsqdù0 contradict
exclusively those classical stochastic models for which the
excitation number takes positive valuesnù0 or, equiva-
lently, for which the energy is larger than or equal to 1/2.
These outputs do not contradict classical models where the

energy takes positive values starting from zero.(ii ) On the
other hand, outputs of the form 0.ResHwdsqd contradict all
the classical stochastic models where the energy takes posi-
tive values.

In the phase-space representation, a weak measurement of
the energy of a harmonic oscillator postselected on one of the
quadratures calls for theT representation

TĤsq,pd =
1

2
sp2 + q2d. s35d

This representation of harmonic oscillator energy coincides
with the classical representation and therefore permits an in-
vestigation of the limits of classical models. Obviously we
haveTĤsq,pdù0. By assuming that also the state represen-
tation is classical,Tsq,pdù0, one may derive from Eq.(21)
the inequality

ResHwdsqd ù 0. s36d

This inequality should be compared with inequality(34). We
may say that the phase-space representation highlights just
the second category(ii ) above: Violation of inequality(36)
rules out all the classical stochastic models where the energy
takes positive values. Note that the probability of infringing
inequality(36) and the probability of the second category(ii )
above are equal, since the probability of ResHwdsqd,0 does
not depend on the representation. On the other hand, the
probability that ResHwdsqd,0 is less than the probability of
ResHwdsqd,1/2 in agreement with the fact that the first one
excludes a larger class of classical models.

We have not mentioned the correspondence principle
here. Our purpose is to investigate under what conditions
quantum mechanics can be reproduced by a classical sto-
chastic theory. This is not related directly to the classical
limit of quantum mechanics.

V. WEAK MEASUREMENT OF THE PHOTON NUMBER

The realization of weak measurements requires the cou-
pling of the system to be observed with auxiliary degrees of
freedom. The output of the weak measurement is inferred
from measurements carried out on the auxiliary system and
on the object system itself. In this work we will consider the
weak measurement of two observables with non-negative
spectra. The boundedness of the spectra is mandatory in or-
der to reveal the appearance of strange values. These observ-
ables aren̂= p̂2 and the number operatorn̂= â†â, where â
=sq̂+ ip̂d /Î2 andq̂, p̂, with fq̂, p̂g= i are the standard position
and linear momentum or field quadratures. For both ex-
amples ofn̂ we will consider the same postselection strategy
given by the measurement of the operatorf̂= q̂.

In this section we propose two simple and feasible
schemes for the weak measurement ofâ†â conditioned on
the measurement ofq̂ in the field of quantum optics, where
â†â represents the number of photons andq̂ is a field quadra-
ture. The two possibilities involve different realizations of
the auxiliary system. These are another field mode and two-
level atoms.
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A. Coupling to a field mode

Let us assume that the auxiliary system is another field

mode with complex amplitude operatorb̂. A suitable cou-
pling between the systemâ and the auxiliary variables allow-
ing a weak measurement of the number operatorâ†â is of the
form

He = eâ†âb̂†b̂. s37d

This coupling can be achieved in practice by propagation
of both field modes in crystals with nonlinear optical prop-
erties(cross-Kerr interaction) so thate is proportional to the
nonlinear susceptibility of the medium and the length of the

crystal. This coupling causes a phase shift of the modeb̂
proportional to the photon number in modeâ, which can be
then detected simply by measuring a quadrature of the mode

b̂ (homodyne detection) [30,31]. This example has the ad-
vantage that nonlinear effects are usually very weak, so that
the requiremente→0 for a weak measurement is naturally
satisfied. In Fig. 1 we outline the scheme of the weak mea-
surement of photon number via cross-Kerr coupling condi-
tioned on a quadrature measurement.

B. Coupling to a two-level atom

The weak measurement of the photon number can also be
carried out by coupling the field mode to a two-level atom
with internal energy levelsu± l. If the frequency of the field
and the resonant frequency of the atom are detuned enough,
the atom-field interaction Hamiltonian becomes[30,31]

He = eâ†âsz, s38d

wheresz= u+lk+u− u−lk−u. In this case we have thate is in-
versely proportional to the detuning, so the conditione→0
can be easily achieved.

The atom-field interaction causes a phase shift of the co-
efficients of an atomic superposition of the statesu± l. The
shift is proportional to the photon number and can be de-
tected by measuring, for example, the observable

sx = u + lk− u + u + lk− u. s39d

The measurement ofsx can be carried out by determining
the population of the levelsu± l after applying to the atom a
resonant pulse transforming the eigenstatesu± lx of sx into
u± l.

The condition of null current density(B9) becomes in this
case

xk± usszra + raszdu ± lx = 0, s40d

which is verified always provided that

ra =
1

2
s1 + sxsx + sysyd, s41d

wheresx,sy are real constants such thatsx
2+sy

2ø1 and

sy = isu + lk− u − u + lk− ud. s42d

Besides quantum optics, this scheme can be also imple-
mented in the context of trapped ions, whereâ would repre-
sent the complex amplitude of the one-dimensional harmonic
motion of the center of mass of the trapped ion andu± l are
two internal levels of the same ion.

VI. COHERENT STATES

In this section, we turn to the study of weak measure-
ments on coherent states, taking into consideration the effect
of thermal noise and finite detector efficiency. It is of par-
ticular interest to study the possible nonclassical properties
of coherent states, since coherent states are the only pure
states that satisfy the Glauber criterion of possessing a non-
negativeP distribution.

We shall consider the thermalized coherent state(also
known as the displaced thermal state)

r̂ = D̂sadr̂thD̂
†sad. s43d

Here r̂th is the density operator for the thermal state and

D̂sad is the displacement operator. This state has a non-
negativeP distribution [32]

Psgd =
1

pnth
e−ug − au2/nth, s44d

wherea is the coherent amplitude whennth vanishes andnth
is the expected thermal photon number whena vanishes.
Since theP distribution is non-negative, this state is essen-
tially classical according to the Glauber criterion.

In this section, we consider weak measurements with
postselection on position. The phase space for this experi-
ment consists of position and momentum. In the phase-space
representation, theS distribution for this state is

Ssq,pd = Sthsq − ar,p − aid, s45d

wherea=sar + iaid /Î2,

Sthsq,pd =

expF−
2sth

2 sp2 + q2d − 2ipq

1 + 4sth
4 G

pÎ1 + 4sth
4

s46d

is theS distribution of a thermal state[33], and

sth
2 = nth +

1

2
s47d

is the variance of each quadrature for the thermal distribu-
tion. Clearly, theT distribution for this state takes negative
values. It is worth emphasizing that the lack of positivity
persists for everynth, in sharp contrast to the case of
s-ordered distributions for which there is always a value of
nth that renders the distribution positive.

FIG. 1. Scheme for a weak measurement via cross-Kerr cou-
pling in a nonlinear crystal.
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In the following, we assume an imperfect measurement of
the operator q̂ represented by a Gaussian postselection
POVM [see also Eq.(B5)]

Pqsq8d =
1

Î2psh

e−sq − q8d2/s2sh
2d, s48d

where the widthsh is determined by detector efficiencies.
For example, for a homodyne detector,sh

2 =s1−hd / s2hd,
whereh is the quantum efficiency of a single detector. We
may then derive an effective marginal distribution for the
postselection observable:

rhsqd = TrfP̂qr̂sg =
e−sq − ard

2/f2ssth
2 +sh

2dg

Î2pssth
2 + sh

2d
. s49d

A. Negative weak value of the kinetic energy

In this subsection, we consider weak measurements of the
observablep̂2, which is essentially the kinetic energy[28].
The weak value ofp̂2 conditioned on the measurement ofq̂
was found to take negative values for coherent states in Ref.
[29]. Here, this treatment will be generalized to include the
effects of thermal noise and imperfect detectors.

Since we are considering weak measurements ofp̂2, the
phase-space representation and the eigenvalue representation
of the S distribution coincide. It is then useful to define an
effectiveS distribution by using Eqs.(28) and (46). The re-
sult is

Shsq,pd = Sh
thsq − ar,p − aid, s50d

with

Sh
thsq,pd =

expF−
2sth

2 sp2 + q2d + 2p2sh
2 − 2ipq

1 + 4sth
4 + 4sth

2 sh
2 G

pÎ1 + 4sth
4 + 4sth

2 sh
2

s51d

being the effectiveS distribution. Using Eqs.(25) and (51)
we find that

Refsp2dwg =
1 + 4sai

2 + sth
2 dssth

2 + sh
2d

4ssth
2 + sh

2d
−

sq − ard2

4ssth
2 + sh

2d2 .

s52d

The roots of this polynomial are

q± = ar ± Îssth
2 + sh

2df1 + 4sai
2 + sth

2 dssth
2 + sh

2dg. s53d

The probability of postselecting a positionq which on aver-
age gives a negative weak value ofp̂2 then is

PfResp2dw , 0g = 1 −E
q−

q+

dqrhsqd. s54d

The result is

PfResp2dw , 0g = erfcÎ1

2
+ 2sai

2 + sth
2 dssth

2 + sh
2d.

s55d

The complementary error function erfcsxd is monotonically
decreasing. Therefore, this probability is maximized when
ai

2, sth
2 , and sh

2 are as small as possible. The state can be
chosen so thatai =0. For a perfect detectorsh=0. The
quadrature variancesth

2 is bounded below by 1/2. Therefore,
the maximum probability for a negative weak value ofp̂2 is
erfc 1<0.16[29]. It is particularly interesting to note that the
effect is independent of the real part of the amplitude,ar. A
negative weak value therefore can be observed for a macro-
scopic occupation of the mode.

This probability has been plotted as a function of detector
efficiencyh and thermal occupation numbernth in Fig. 2. As
noted in Sec. IV, the negativity of Respw

2d contradicts all
classical stochastic models. A weak value of the kinetic en-
ergy might be observed for material particles at low tempera-
tures. However, a realizable quantum optical experiment is
not known to the authors. To investigate a feasible quantum
optical experiment, we turn to the weak measurement of
photon number and energy.

B. Negative weak value of the energy

In this subsection we study weak measurements of energy
conditioned on the postselection of a quadrature observable.
As demonstrated in Sec. IV, a negative weak value of the
energy for a harmonic oscillator contradicts classical sto-
chastic models.

By combining Eqs.(21), (46), and(48) we find that

RefHwsqdg = aq2 + bq+ c, s56d

where

FIG. 2. The probability for observing a negative weak value of
p̂2 as a function of the detector efficiencyh and the average thermal
occupation numbernth. It is assumed thatai =0, whereasar may
take any value. This effect therefore is present even for macroscopic
excitationsar.
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a =
4sth

4 − 1

8ssth
2 + sh

2d2 , s57d

b =
ars4sth

2 sh
2 + 1d

4ssth
2 + sh

2d2 , s58d

c =
sth

2

2
+

ai
2

2
+

1 + 4sth
2 sh

2

8ssth
2 + sh

2d
+

ar
2s4sh

4 − 1d
8ssth

2 + sh
2d2 . s59d

Two real rootsq± exist provided thatb2ù4ac (only one if
a=0). This establishes a necessary condition to be fulfilled
by sth, sh , ar, and ai for the existence of negative values
for RefHwsqdg. If this is satisfied, the probability of observ-
ing a negative ResHwd is

PfResHwd , 0g =E
Q−

Q+

dqrhsqd. s60d

For ideal detectorssh=0 and vanishing thermal noisenth
=0 this probability can be written as

PfResHwd , 0g =
1

2
erfcS1 + ar

2 + ai
2

2uaru
D . s61d

This probability has been plotted in Fig. 3. It reaches a maxi-
mum at ar =1 and ai =0, at which the probability is
s1/2derfc 1<0.08. This is half of the probability for observ-
ing a negative weak value of kinetic energy.

A more complex expression for the probability can be
obtained for arbitrary detector efficiency and thermal excita-
tion. This has been plotted in Fig. 4. We see thatar now must
reach a minimum value in order to see nonclassical negative
weak values. In Fig. 5, the probability is plotted as a function
of detector efficiencyh and average thermal occupation
numbernth.

The negativity of weak values of the kinetic energy and of
the total energy both contradict a classical, stochastic model
of light. Negative weak values of the kinetic energy persist
also for macroscopic coherent amplitudes. This does not oc-
cur for a weak value of the energy. On the other hand, a weak
measurement of the energy has a feasible practical measuring
scheme as outlined in Sec. V.

C. Negative weak value of the photon number

It was demonstrated in Sec. IV that a negative weak value
of the photon number contradicts a classical stochastic model
where the energy is bounded from below by the zero-point
energy. We study this further here.

The weak value of the photon number is simply

FIG. 3. The probability for observing a negative weak value of
energy as a function of the coherent state amplitudesar andai. We
assume perfect detectorssh=0 and no thermal noisenth=0. The
probability has a maximum atar =1, ai =0, at which the probability
is s1/2derfc 1<0.079.

FIG. 4. The probability for observing a negative weak value of
energy as a function of the coherent state amplitudesar andai. We
assume detectors with quantum efficiencyh=0.7 and thermal oc-
cupation numbernth=0.3. There is a minimumar required in order
to see nonclassical behavior.

FIG. 5. The probability for observing a negative weak value of
energy as a function of the detector efficiencyh and the average
thermal occupation numbernth. The coherent excitation is assumed
to bear =1, ai =0.
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nwsqd = Hwsqd −
1

2
. s62d

Two real rootsq± of nw exist provided thatb2ù4asc−1/2d.
In the case that this condition is satisfied the probability of
observing a negative Refnwsqdg is

PfResnwd , 0g =E
q−

q+

dqrhsqd. s63d

For ideal detectors and vanishing thermal noise this probabil-
ity can be written as

PfResnwd , 0g =
1

2
erfcSar

2 + ai
2

2uaru
D . s64d

This function has been plotted in Fig. 6. The probability is
always maximized by lettingai →0. It approaches a maxi-
mum of 0.5 for vanishingar. However, it has a singularity in
ar =0 and actually vanishes in this point. Thus, there is zero
probability of observing a negative weak value ofn̂ for the
vacuumstate. There must be a finitesmall coherent ampli-
tude to see this.

A more complex expression is obtained for finite detector
efficiency and finite thermal noise. The probability has been
plotted in this case in Fig. 7. We see thatar now must reach
a minimum value in order to see nonclassical negative weak
values.

The probability has been plotted as a function of detector
efficiencyh and the average thermal occupation numbernth
in Fig. 8. We see that for finite thermal occupation number
nth there is a lower bound on the detector efficiencyh to see
nonclassical behavior. This bound vanishes whennth→0.

VII. CONCLUSIONS

In this work we have examined a very general form of
weak measurements focusing on the emergence of nonclas-

sical features. We have shown that the appearance of strange
weak values is equivalent to the existence of negative values
for a generalized Terletsky-Margenau-Hill distribution.

We have presented some feasible practical implementa-
tions of this kind of measurement in the field of quantum
optics focusing on the weak measurement of photon number
and energy. We have demonstrated that negative weak values
of the energy contradict all classical models of light and that
negative weak values of the photon number contradict a clas-
sical model where the energy is bounded from below by the
zero-point energy.

As a particular but striking enough example we have con-
sidered weak measurements of coherent states. We have

FIG. 6. The probability for observing a negative weak value of
the photon numbern̂ as a function of the coherent-state amplitudes
ar andai. We assume perfect detectorssh=0 and no thermal noise
nth=0. The probability increases with decreasinguau, but has a sin-
gularity at uau=0.

FIG. 7. The probability for observing a negative weak value of
the photon numbern̂ as a function of the coherent-state amplitudes
ar andai. We assume detectors with quantum efficiencyh=0.7 and
thermal occupation numbernth=0.3. We see that there is a mini-
mum ar required in order to see nonclassical behavior.

FIG. 8. The probability for observing a negative weak value of
the photon numbern̂ as a function of detector efficiencyh and
average thermal occupation numbernth. The coherent excitation is
assumed to bear =0.1, ai =0. A minimum detector efficiency(and a
maximum thermal occupation number) is required to observe a
negative weak value.
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found that negative weak values can be observed with a
probability of 16% for the kinetic energy(or squared field
quadrature), 8% for the harmonic oscillator energy, and 50%
for the photon number.

We have analyzed the persistence of the effect under prac-
tical experimental conditions by considering degrading im-
perfections such as the presence of thermal fluctuations and
the use of inefficient detectors. All these results confirm the
possibility of a practical observation of nonclassical effects
for states previously considered as firm examples of classical
behavior.

APPENDIX A: IMPERFECT DETECTORS

An imperfect detector may be represented by a positive-
operator-valued measure. To represent imperfect detection of
an observablef̂, we study the class of diagonal POVM’s

P̂f =E df8Pfsf8duf8lkf8u, sA1d

whereufl are eigenstates off̂. These states are assumed to
constitute a complete set:

E dfuflkfu = I. sA2d

The diagonal form is assumed because interference between
different detector states should not occur. We assume that
Pfsf8d is a non-negative function.

The POVM should provide a resolution of the identity
operator

E dfP̂f = I. sA3d

This implies that

E dfPfsf8d = 1. sA4d

Thus, Pfsf8d should be a normalized distribution overf.

The probability distribution for the observablef̂, taking into
account the imperfect detector represented byPf, is

TrfP̂fr̂g =E df8Pfsf8dkf8ur̂uf8l. sA5d

We require that the imperfect detector should give the same
expected reading as a perfect detector. This condition of un-
biasedness can be written as

E dff TrfP̂fr̂g =E dffkfur̂ufl, sA6d

and it implies that

f8 =E dffPfsf8d. sA7d

Thus, unbiasedness is equivalent to requiring that the param-
eter f8 should be the expectation value of the distribution
Pf.

A typical diagonal POVM satisfying the properties(A4)
and (A7) is the Gaussian

Pfsf8d =
1

Î2ps2
e−sf − f8d2/s2s2d. sA8d

For this POVM and for the subset of POVM’s wherePfsf8d
is a function ofsf−f8d only, the transformation(A5) is a
convolution. However, in the most general case the POVM
does not depend onsf−f8d only. For example, the condi-
tions (A4) and (A7) are also satisfied by all Gaussian
POVM’s of the type(A8) even when the standard deviation
s is an arbitrary function off8.

APPENDIX B: DERIVATION OF WEAK VALUES

Prior to the measurement interaction, we assume that the
object is in the stater̂s and the pointer is in an arbitrary
mixed stater̂a. The total density operator prior to the inter-
action has the product formr̂0= r̂s^ r̂a.

After the interaction, the total density operator has
evolved to

r̂e = Ûer̂0Ûe
†, sB1d

where Ûe is a unitary evolution operator. Since the Hamil-
tonian does not depend explicitly on time, we can write

Ûe = e−ieĤdt = e−ien̂^ P̂. sB2d

We may expand this evolution operator to first order ine as

Ûe < 1 − ien̂ ^ P̂. sB3d

To first order ine, the density operator after the interaction
then can be written as

r̂e = r̂0 + iefr̂0,n̂ ^ P̂g. sB4d

After the interaction, we assume that imperfect measure-

ments are made of the pointer observableQ̂ and the object
observablef̂. Each observable is represented by a diagonal
POVM

P̂f =E df8Pfsf8duf8lkf8u, sB5d

P̂Q =E dQ8PQsQ8duQ8lkQ8u. sB6d

Both Pf andPQ are assumed to be classical distributions. In
this way, the detectors are assumed to be in a statistical mix-
ture of pure projector states. We also have assumed that the
observablef has a continuous spectrum. There is no loss of
generality in this.

The joint probability density forf andQ after the inter-
action is

resf,Qd = TrsP̂fP̂Qr̂ed, sB7d

where the trace is taken over bothHs and Ha. Using the
expression(B4) for the first-order density operator, we find
that
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resf,Qd = TrsP̂fr̂sdTrsP̂Qr̂ad + ie TrsP̂fP̂Qfr̂0,n̂ ^ P̂gd

= TrsP̂fr̂sdTrsP̂Qr̂ad + iefTrsP̂fr̂sn̂dTrsP̂Qr̂aP̂d

− TrsP̂fn̂r̂sdTrsP̂QP̂r̂adg. sB8d

We require that the current density of the pointer vanish:

kQusP̂r̂a + r̂aP̂duQl = 0. sB9d

This implies that

TrfP̂QsP̂r̂a + r̂aP̂dg = 0. sB10d

Therefore we can write

resf,Qd = TrsP̂fr̂sdTrsP̂Qr̂ad

+ ie TrfP̂fsr̂sn̂ + n̂r̂sdgTrsP̂Qr̂aP̂d. sB11d

The marginal distribution for the object observablef after
the interaction is

resfd =E dQresf,Qd. sB12d

Due to the vanishing of the current density of the probe, it is
found that

resfd = TrsP̂fr̂sd. sB13d

Therefore, the probability distribution for the postselection
observablef is unaffected by the measurement interaction.
Note that we have considered an arbitrary postselection mea-
surement. This means in fact that the probability distribution
for every possible object observable is unaffected by the
measurement interaction.

The conditional probability density for the pointer posi-
tion Q given the postselection outcomef is defined as

rsQufd =
resf,Qd

resfd
. sB14d

We find that

rsQufd = TrsP̂Qr̂ad + 2ie ResnwdTrsP̂Qr̂aP̂d, sB15d

where

nwsfd =
TrsP̂fn̂r̂sd

TrsP̂fr̂sd
sB16d

is the weak value ofn̂ for an unsharp postselection repre-

sented by the POVMP̂f. Using Eq.(B9) it can be shown
that

kQur̂aP̂uQl =
i

2

]

] Q
kQur̂auQl. sB17d

Hence we can write

TrsP̂Qr̂aP̂d =E dQ9E dQ8PQsQ8dkQ9uQ8lkQ8ur̂aP̂uQ9l

=E dQ8PQsQ8dkQ8ur̂aP̂uQ8l

=
i

2
E dQ8PQsQ8d

]

] Q8
kQ8ur̂auQ8l

= −
i

2
E dQ8

] PQsQ8d
] Q8

kQ8ur̂auQ8l, sB18d

where we have assumed thatkQ8 u r̂auQ8l vanishes at the in-
tegration borders.

The conditional probability density for the pointer posi-
tion Q given the outcomef of the postselection is

resQufd =E dQ8PQsQ8 + eRenwdkQ8ur̂auQ8l, sB19d

where

PQsQ8 + eRenwd = F1 + eResnwd
]

] Q8
GPQsQ8d.

sB20d

We introduce the expectation value of the pointer position
conditioned on the postselection outcome:

EesQufd =E dQ QresQufd. sB21d

By using Eqs.(B19) and (B20) we find that

EesQufd = E0sQufd + eResnwd

3E dQ QE dQ8
] PQsQ8d

] Q8
kQ8ur̂auQ8l.

sB22d

A reorganization of terms gives

EesQufd = E0sQufd + eResnwd

3E dQ8kQ8ur̂auQ8l
]

] Q8
E dQ QPQsQ8d.

sB23d

We assume that the POVM is unbiased, fulfilling condition
(A7). This, together with the normalization property of the
position distribution, implies that

EesQufd = E0sQufd + eResnwd. sB24d

This shows that the pointer observableQ has been translated
a distanceeResnwd, and this setup therefore allows for a mea-
surement of Resnwd. The only restriction on the auxiliary
pointer system is that the current density should vanish.
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