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Nonclassicality in weak measurements
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We examine weak measurements of arbitrary observables where the object is prepared in a mixed state and
on which measurements with imperfect detectors are made. The weak value of an observable can be expressed
as a conditional expectation value over an infinite class of different generalized Kirkwood quasiprobability
distributions. “Strange” weak values for which the real part exceeds the eigenvalue spectrum of the observable
can only be found if the Terletsky-Margenau-Hill distribution is negative or, equivalently, if the real part of the
weak value of the density operator is negative. We find that a classical model of a weak measurement exists
whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of
the observable and the Terletsky-Margenau-Hill distribution is non-negative. Strange weak values alone are not
sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon
number of the radiation field. Negative weak values of energy contradict all classical stochastic models,
whereas negative weak values of photon number contradict all classical stochastic models where the energy is
bounded from below by the zero-point energy. We examine coherent states in particular and find negative weak
values with probabilities of 16% for kinetic energgr squared field quadratyre8% for harmonic oscillator
energy, and 50% for photon number. These experiments are robust against detector inefficiency and thermal
noise.
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I. INTRODUCTION ments is possible, taking into account practical experimental

limitations and possibilities. In particular, our purpose is to

f PhyS|csT|ﬁ ag er)deav?]r to ansltrucgalm?tk;ema“clalr:no.d?rllvestigate in further detail the failure of providing a classi-
of nature. The basic mathematical model of classical physiCg,| gescription of coherent states in such experiments and to

IS onle n Wh'?h z\a/l\l/_dhynr?mlcgl vana]E)Ies haye ldeflmtr? vglue ropose a feasible experiment demonstrating nonclassical
simultaneously. With the advent of statistical mechanics, roperties of coherent states.

probabilistic description was introduced in which each dy- In Sec. Il we give a brief review of the Glauber classical-
namical variable would have some value with a certain prob-W criterion and discuss its possible limitations

ability. This is the most general description that classicalI In Sec. Il and Appendixes A and B we consider a general
physics can provide. A great variety of phenomena can b | '

) . €lass of weak measurements where the object may be pre-
explained in terms of such a model. For example, most op:

cal oh be d ived | ¢ del ared in a mixed state and where the pointer may be pre-
tical phenomena can be described in terms of & model b, eq in gn arbitrary mixed state of vanishing current density.
complex, stochastic amplitudes. It was not until 1977 tha

. . . . “We consider detectors of arbitrary quantum efficiency and
this model was found to break down in an experiment whichyq e o generalized weak value
demonstrated the phenomenon of antibunchitig :

In thi ; lativel f In Sec. IV we demonstrate that the weak value can be
n this paper we examine a relatively new type of mea-g, ,-osseq as a conditional expectation over an infinite set of

surement known as weak measuremggis\Weak measure- igerent quasiprobability distributions. These distributions

menth may be performed in exacl;tly th_ehsame Wsy asds.tanda[:gjm be regarded as generalizations of the complex Kirkwood
von 3eu|mann mkeasurements, Uthw't a wea.”ene INterafgstribution [4] or the standard ordered distributip]. We
tion [3]. In a weak measurement, the pointer will on averaggyeoie such distributions b distributions. The Terletsky-
register the expectation value of the observable that is meggaqenay-Hill distributior(6,7], or T distribution, is the real
sured. However, when Fhe weak measurement IS condmc_)n rts of theS distribution. We find that strange weak values
on a second postselection measurement, the pointer registqfs, \yhich the real part exceeds the eigenvalue spectrum of

thbe real b;?artTcr)]f what |skknolwn a;’ the “WeaI:j va:ue" fOf the e observablecan only exist if theT distribution takes
observable. These weak values have caused a lot of contrge, ;e values. We demonstrate that a classical model of a
versy, in particular because they may exceed the eigenval

Yfeak measurement exists whenever the representation of the
spectrum Qf the_ ob_servable_. . . .observable coincides with the classical representation of the
_ The main objective of this paper is to discuss the condisoraple and the distribution is non-negative. We dem-
tions under which a classical description of weak measuresctrate in particular that negative weak values of energy

contradict all classical stochastic models and that negative

weak values of photon number contradict a stochastic model
*Electronic address: lars.m.johansen@hibu.no where the energy is bounded from below by the zero-point
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In Sec. V we propose two feasible practical realizations ofTherefore, theP distribution is most “sensitive” to nonclas-
weak measurements of photon number and energy. sicality among alls-ordered distributions.

In Sec. VI we consider in particular weak measurements It is puzzling that a definition of nonclassicality depends
on coherent states. We demonstrate that coherent states dist the ability to represent expectationsrafrmally ordered
play negative weak values with probabilities of 16% for ki- operator expressions as classical expectation values over a
netic energy(or squared field quadratyreB8% for harmonic  probability distribution. This is sometimes attributed to the
oscillator energy, and 50% for photon number. We find thaffact that normal ordering of operators is closely associated to
these effects are robust against detector inefficiency and thethe theory of photodetection.
mal noise. However, we may devise experimental procedures related

to operator orderings different from normal ordering of an-
Il. GLAUBER CLASSICALITY CRITERION nihilation and creation operators, which may display clear
contradictions between the classical and quantum descrip-

Glauber and Sudarshan have demonstrated that any defions for the same experiment. This is actually the case of
sity operator can be expanded diagonally in terms of cohefweak measurements, whose statistics are relat@ddistri-
ent state48,9] butions instead of to the more standaxdrdered distribu-

tions. We show below that weak measurements lead to
p= f d?aP(a)|a)al. (1) strange outputs provided that tiedistribution takes nega-
tive values. Moreover, we will show in this paper that a

The weight functionP(«) is known as theP distribution classical stochastic model may fail to describe weak mea-
Furthermore, one may write the expectation value of an);urements even when dt distribution is a non-negative

N robability distribution.
normal ordered operatok[O(a",a)] as an integral of the P y

form
I1l. WEAK MEASUREMENTS

(MO(@",a)]) =f d*aO(a*, a)P(a), (2 A “measurement” comes about when an auxiliary system
interacts with an object. By examining the properties of the
wherea* is the c-number representation @ anda is the  auxiliary system after the interaction, it may be possible to
c-number representation af Therefore, if theP distribution  extract information about the object. The auxiliary system is
has the properties of a valid probability distribution, one mayfrequently called a “measurement apparatus” or a “pointer
say that a classical representation exists for any normal osystem.” The basic theory of quantum measurement was ex-
dered operator product. This is known as the “optical equivaamined by von Neumann in his seminal work on the math-
lence theoremT9]. ematical foundations of quantum mechan|ds]. In this
The optical equivalence theorem is the basis of thework, von Neumann represented the interaction between the
Glauber classicality criterion, according to which all statesobject and pointer by an interaction Hamiltonian of the form
for which theP distribution is a probability distribution are (throughout we will use units in which=1)
regarded as essentially classicalPIfails to be a probability . .
distribution, the state is considered as nonclas§g;ab—13. H.=est)re P. (3
The Glauber criterion is widely accepted as giving the mosh

eneral distinction between quantum and classical states. It is short explanation of the terms involved is in place. The
9 . . q W R " nstante represents the interaction strength. The interaction
the basis of various measures of “nonclassicality.” For ex-

. i . 1s of short duration, represented in idealized form by the
ample, Hillery has defined a measure of nonclassmaht;{?rm_ The Hermitian observablebelongs to the object Hil-

based on the distance in Hilbert space between the obje : “
state and coherent statgd<l]. Lee has defined a nonclassical Bert systent; and is the observable that we want to "mea

depth defined as the minimum average number of thermaure.” The observabl® is the pointer momentum and be-
photons that must be added to render Rheistribution non-  10ngs to the pointer Hilbert spack,. Although seemingly
negative[15]. More recently, Richter and Vogel have derived artificially constructeq, this |_nteract|on mode_l has served as
a hierarchy of observable conditions to test the Glauber cri@n archetype of the interaction mechanism in quantum mea-
terion [16,17. surements. It h.as been found that t_he conclusions that can be
The Glauber criterion must be considered a conjecturérawn from this model are generic to a number of other
rather than a proven theorem. It is based on some plausibigtéraction mechanismgor a closer discussion of the spe-
arguments. First, due to the multitude of arguments in favofific properties of this interaction Hamiltonian, see Ref.
of coherent states as the only classical-like pure states, it i) o ) )
natural to assume that also classical mixtures of coherent N & standard, projective measurement, the pointer posi-
states are classical. This is in fact equivalent to Glauber’sion Q, with [Q, P]=i, displays one of the eigenvalues of the
classicality criterion, as can be seen from E. If the P object observablé after the measurement interaction. It was
distribution is a probability distribution, the density matrix demonstrated by von Neumann that in order to accomplish
can be expressed as a classical mixture of coherent statdhis, the state of the pointer prior to the interaction should
Second, a non-negati distribution ensures that the whole have a small position spregd8]. The same effect can be
range ofs-ordered Wigner distributions is also non-negative.accomplished by allowing the interaction strengttio be
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sufficiently large[19]. For this reason, this type of measure- .
ment is frequently called a “strong measurement.” f dop'TI4(d' ) ¢'[vpe P')
Until recently, it was thought that strong measurements v P) = ) (6)
are the only useful type of measurements in quantum me- , U
chanics. However, in 1988 Aharon@t al. proposed a new fd¢ My(&')(8'lpd4")
type of measurement that they called “weak measurementi’/’v .
[2]. Such measurements also employ the von Neumann inl/é €mploy an arbitrary complete set of staigs
teraction mechanisit8), the difference being that the pointer
is assumed to be in an initial state of large position uncer- fd§|§><§| =1. (7)
tainty. More specifically, they assumed that the initial state of
the pointer was a Gaussian with large spread. We may then write Eq(6) in the form
Recently, it was shown that weak measurements can be
performed also when the pointer is in an arbitrary mixed J / ’ ’ ’
state, provided that the interaction strengtfs sufficiently _ dedPTI4(¢)5(6", O3,
small and the current density of the pointer vanigt®sThis vl #) = ’ (8)
description can be generalized further by taking into account f déde' I 4(¢")S(¢', &)

finite efficiency of the detectors. A detector of finite effi-

ciency can be represented by positive-operator-valued meahere

sure(POVM) (see Appendix A In this case, the weak value .

of the observablé conditioned on an imperfect postselec- S, é) = (l718) (9)

tion of the observablg on the object igsee Appendix B (¢l&)
oo is ac-number representation of the observ act, it is
Tr(fLpg ' ber rep ion of the observahlén fact, it |
v (@) = + (4) the weak value for the observable preselected in the Kfate
Tr(I14ps) and postselected in the stdi®). Also,
whereTl, is a diagonal POVM representing the imperfect S(¢,é) =(P|EXE|pdl ) (10)
postselection ang, is the initial state of the objedsee Eq.

(B5)] is a generalization of the Kirkwood distribution for arbitrary

It has been noted that weak values are conditional expe@PServablest and ¢ [4]. The Kirkwood distribution is also
tation values of a complex quasiprobability distribution KnOWn as the antistandard ordered distribufisp Sis alsoa
[20,21. Furthermore, weak values have been examined jigeneralization of_the standard o_rdered dls_trlb_utlo_n, which is
other contexts than under weak measurements. For exampl@€ complex conjugate of the Kirkwood distributi¢g]. In
they are sometimes called “local valug€?]. The relation  this paper, we will simply denote it by ttdistribution, and
between such local values and quasiprobability distributiond/€ Will refer to'S; as theS representation of the observable
has been examined in several settiig8—25. The weak V- o _

value of an observable is also the optimal estimator of the TheSdistributions are in general complex and as such are
observable between preselection and postselef2iéh The quasiprobability dlstnbutlons. N.ever.th_elesg, '_[hey possess
relation between the optimal estimator of an observable ang®me Of the properties of classical joint distributions. For

phase-space distributions was examineg2i. example, assuming t'ha_lt both. eigenstdigsand |£€) consti-
tute complete sets, it is straightforward to show that they
IV. CLASSICAL MODELS OF WEAK MEASUREMENTS yield correct marginal distributions when integrated over ei-

Under what circumstances is it possible to find a classical'e" variable:
representation of a weak measurement? Or put differently,
under what circumstances can the outcome of a weak mea- (¢lpe P :f déS(¢,8), (11
surement be modeled in terms of a classical, stochastic
model? By answering this question, we will also understand
under what circumstances weak measurements demonstrate (Epde :f doS(b,8). (12)
nonclassical properties of the quantum state under consider-
ation.

We begin by inserting the definitioiB5) for the diagonal
postselection POVM into Eq4). We then have

It is straightforward to show that also the complex conjugate
distribution S* (¢, ¢) fulfills such marginality conditions.
The S distribution can be expressed in the form

Tf[f dop'TLy(¢")|¢' ) ¢'[vpé] _ {Elbd ) 13
vl ) = _ 5) S(¢,é) =[¢|&)| A (13
TF[J dop'TLy(¢") "X ¢'|ps] In this form, theS distribution is a product of a non-negative

probability distribution and the weak value of the density
By performing the trace over any complete set of states weperator. If|é) or |¢) are eigenstates of the density operator,
obtain S will be real and non-negative.

052115-3



L. M. JOHANSEN AND A. LUIS

Classically, the weak value of an observable is the condi
tional expectation of that observab|8]. Expression(8)
demonstrates that there exists an infinite set of represent
tions under which the weak value can be expressed as
conditional expectation of e-number variables, over anS
distribution. For each choice of bas®, a differentS distri-

PHYSICAL REVIEW A70, 052115(2004)

the T representation of the observable may differ strongly
from the representation of the observable in classical theory.
& classical representation of the pointer displacement can be
said to exist ifT; equals the classical representation of the
observable and if also the distribution is non-negative.

bution is obtained. However, some of these representationd3) and(16) it follows that

bear little resemblance to any classical model. For example,

in some models th& representation of the Hermitian observ-
able v is complex. As a basic requirement onckassical
model, we shall in the following restrict our attention to the
subset of representations for which Hermitian observable
have real representations:

Im S;(¢,£) = 0.

We also introduce th& representation ob and theT distri-
bution[6,7]:

(14)
Tf/(d’i g) = Re&,(qﬁ,é), (15)

T(¢.§) =ReS(¢,9). (16)

It is straightforward to show that also these provide correct

marginal distributions

(Blpd &) =fd§T(¢,§), 17)

(élpdé) = f doT(,é). (18)
Because of the classicality conditigh4), the Sand T rep-
resentations of the observable are the same:

(#l11®

(ple) -

The distribution of the postselection observalﬁie taking
into account the finite detector efficiency representedihy
can be found from both the compléxdistribution and the
real T distribution through the integrals

T, = (19

TF(H(JJS):f dédg'I1,(4")S(¢', &)

=f déde' I y(¢")T(',4). (20)

In a weak measurement, the real part of the weak va|uie

registered by the pointer. Under the assump(ibt), we may
write

fd§d¢’H¢(¢’)Ta(¢',§)T(¢’,§)

Re(wy,) = (21)

f dédo'I1,(4")T(¢', )

What determines the sign of tAedistribution? From Egs.

(&l¢) )

;’hus, the sign of th@ distribution equals the sign of the real
part of the weak value of the density operator. Therefore, a
requirement for nonclassicality is that the real part of the
weak value of the density operator should be negative.

In the following, we consider two representations that
may provide classical-like models of weak measurements.
The first representation, which we shall call thigenvalue
representation,is found when the basi§) is chosen as
eigenstates of the observaliteln this representation th®
andT representations of the observablare the eigenvalues
v

(&lpd &)

T(¢,6) = (lOIR (22)

Si(hv) =Ty(p,v) = v. (23
By using this representation, we have
V() = f dv vS,(1|¢), (24)
Re v, () = f dv T, (v]¢), (25)
where
S, (v,
s,(1l¢) = 22D (26)
fde,?(V,d))
T, (v,
T (ofy = — 22 27)
deTn(V,(f))
are “effective,” conditional distributions and where
Sn(¢,V)=fd¢’H¢(¢’)S(¢>’,V), (28)
Tn(¢,v)=fd¢’H¢(¢’)T(¢’,v) (29)

are “effective”S and T distributions fory and ¢.

It follows straightforwardly from Eq(25) that “strange
weak values” where the real part of, exceeds the eigen-
value spectrum are only possible for quantum states for
which the T distribution in the eigenvalue representation

This expression, which reflects the expectation of the pointetakes negative values. But it is of course well known that

displacement in a weak measurement, bears a formal reserlassical models may allow observables to exceed the eigen-
blance to a classical conditional expectation. The differenc@alue spectrum of the observable. This means also that
is that theT distribution may take negative values and that“strange” weak values may sometimes be supported by a
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classical model. In particular, this may be the case for obenergy takes positive values starting from z&io. On the
servables with a discrete spectrum. other hand, outputs of the form>0Re(H,,)(q) contradict all

The otherc-number representation that we shall considerthe classical stochastic models where the energy takes posi-
is the phase-space representatidn. this case, the basig) tive values.
should be chosen as eigenstates of the observable canoni-In the phase-space representation, a weak measurement of
cally conjugate to the postselection observa?:leThis may the energy of a harmonic oscillator postselected on one of the
provide the possibility of a comparison with a classicalquadratures calls for th€ representation
phase-space description of weak measurements.

We give a couple of examples illustrating the use of these To(q,p) = l(p2+ P). (35)
two representations. First, we consider a weak measurement ' 2
of a field squared quadratucer kinetic energy for material . ] ) ) o
particleg 7=p? postselected on the canonically conjugateTh'S representation of harmo_nlc oscillator energy c_ommde_:s
field quadrature(or position for material particle)sgb:q Wlth_the_classmal re_pr_esentatlon_and therefore permits an in-
[28,29. In this case, the eigenvalue representation and th estlgqtlon of the limits of c_:lassmal models. Obviously we
phase-space representation are one and the samegsinde ayeT_H(q,p) 2_0‘ By assuming that also Fhe state represen-
p are canonically conjugate variables. From Exg) follows ~ tation is classicall(q,p)=0, one may derive from Eq21)
that both the eigenvalue representation and the phase-spaf inequality

representation op? postselected of are Re(H,)(q) = 0 (36)
W. = .

Tse(a,p) = p. (30) . _ o
. o This inequality should be compared with inequalid#). We
Obviously, Tg2(q,p)=0. From Eq.(25) and the classicality may say that the phase-space representation highlights just

assumptionT(q,p) =0 follows the inequality the second categorgi) above: Violation of inequality36)
Re(p2)(q) = 0 31 rules out all the classical stochastic models where the energy
&Pl (@) = 0. (3D takes positive values. Note that the probability of infringing

In this case, a “strange” negative weak value implies a failinequality(36) and the probability of the second categ@iry

ure of the classical model wheg# takes the positive con- above are equal, since the probability of(Rg)(q) <0 does
tinuum. It can be noted that a negative weak value of kineti¢iot depend on the representation. On the other hand, the
energyp? contradictsall stochastiac-number models where probability that RéH,,)(q) <O is less than the probability of
kinetic energy takes only non-negative values, even modelBe(H,,)(q) <1/2 in agreement with the fact that the first one
where theT representation of the kinetic energy may differ excludes a larger class of classical models.

from the expressiol30). We have not mentioned the correspondence principle
Consider next a weak measurement of the energy of &ere. Our purpose is to investigate under what conditions
harmonic oscillatokwe use units so thab=1) quantum mechanics can be reproduced by a classical sto-
.1 1 chastic theory. This is not related directly to the classical
H= E(@Z +&) =n+ > (32)  limit of quantum mechanics.

assuming postselection on one of the quadrat(@eposition V. WEAK MEASUREMENT OF THE PHOTON NUMBER

for a material particlg In the eigenvalue representation, o )
The realization of weak measurements requires the cou-

pling of the system to be observed with auxiliary degrees of
freedom. The output of the weak measurement is inferred
. R 1 ] ) from measurements carried out on the auxiliary system and
Obviously, Tiy(g,n) = 3. In the eigenvalue representation, the o, the object system itself. In this work we will consider the
T representation of the Hamiltonian is bounded from belowyyeak measurement of two observables with non-negative
by the zero-point energy. From E@5) and by imposing the  spectra. The boundedness of the spectra is mandatory in or-
classicality criterionT(q,n)=0, we may derive the inequal- der to reveal the appearance of strange values. These observ-
ity ables arev=p? and the number operatér=a'a, wherea
1 =(§+ip)/+2 andg, p, with [§,p]=i are the standard position
Re(H,)(q) = > (34)  and linear momentum or field quadratures. For both ex-
amples ofv we will consider the same postselection strategy
Violation of this inequality implies “strange” weak values. It given by the measurement of the opera&mq
can only take place if th& distributionT(q,n) takes nega- In this section we propose two simple and feasible
tive values. We can split the strange values into two categoschemes for the weak measurementadd conditioned on
ries. (i) Outputs of the form%zRe(HW)(q)BO contradict the measurement d@f in the field of quantum optics, where
exclusively those classical stochastic models for which théi'a represents the number of photons @rid a field quadra-
excitation number takes positive values=0 or, equiva- ture. The two possibilities involve different realizations of
lently, for which the energy is larger than or equal to 1/2.the auxiliary system. These are another field mode and two-
These outputs do not contradict classical models where thievel atoms.

Tian=n+>. (33)
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a quadrature 1
- —~ =Lt sch o) (a1
_b, | nonlinear crystal —>—D\ wheres,,s, are real constants such thgt-s;<1 and
dratu .
R oy =i(|+ )= =[+)(-). (42)

FIG. 1. Scheme for a weak measurement via cross-Kerr cou-

pling in a nonlinear crystal Besides quantum optics, this scheme can be also imple-

mented in the context of trapped ions, wharevould repre-

sent the complex amplitude of the one-dimensional harmonic
A. Coupling to a field mode motion of the center of mass of the trapped ion &ayl are

Let us assume that the auxiliary system is another fieldwo internal levels of the same ion.

mode with complex amplitude operatBr A suitable cou-

pling between the systefnand the auxiliary variables allow- VI. COHERENT STATES
ing a weak measurement of the number operatais of the i .
form In this section, we turn to the study of weak measure-
ments on coherent states, taking into consideration the effect
H.= eatab'p. (37)  of thermal noise and finite detector efficiency. It is of par-

) ) ) ) . _ fticular interest to study the possible nonclassical properties

This coupling can be achieved in practice by propagationyf coherent states, since coherent states are the only pure
of both field modes in crystals with nonlinear optical prop-states that satisfy the Glauber criterion of possessing a non-
erties(cross-Kerr interactionso thate is proportional to the negativeP distribution.
nonlinear susceptibility of the medium and the length qf the We shall consider the thermalized coherent statiso
crystal. This coupling causes a phase shift of the mbde known as the displaced thermal spate
proportional to the photon number in modewhich can be . .
then detected simply by measuring a quadrature of the mode p=D(a)ppD'(e). (43)

b (homodyne detection[30,31. This example has the ad- Here p,, is the density operator for the thermal state and

vantage .that nonlinear effects are usually very \(veak, so th (a) is the displacement operator. This state has a non-
the requirement— 0 for a weak measurement is naturally . Co '
negativeP distribution[32]

satisfied. In Fig. 1 we outline the scheme of the weak mea-

surement of photon number via cross-Kerr coupling condi- 1 = af2in
H e - -
tioned on a quadrature measurement. P(y) = - he ¥ o hn, (44)
t
B. Coupling to a two-level atom wherea is the coherent amplitude whew, vanishes and,

The weak measurement of the photon number can also be the expected thermal photon number whervanishes.
carried out by coupling the field mode to a two-level atomSince theP distribution is non-negative, this state is essen-
with internal energy levelst). If the frequency of the field tially classical according to the Glauber criterion.
and the resonant frequency of the atom are detuned enough, In this section, we consider weak measurements with

the atom-field interaction Hamiltonian becon{€$,31] postselection on position. The phase space for this experi-
At ment consists of position and momentum. In the phase-space
H.=ed'ao, (38)  representation, ths distribution for this state is
Whereaz=\+><+_|—|—><—|. In this case we have tha_ti_s in- S(@,p) = Si(Q - app- @), (45)
versely proportional to the detuning, so the conditia 0 ) =
can be easily achieved. wherea=(a; +ia;) /12,
The atom-field interaction causes a phase shift of the co- 202(0% + ) = 2
efficients of an atomic superposition of the stafte$. The p{— P~ *t g _ Pq
shift is proportional to the photon number and can be de- SH(a.p) = 1+ 4oy, (46)
tected by measuring, for example, the observable i w1+ 40,
o=+ )=+ (39 s the Sdistribution of a thermal stat83], and
The measurement af, can be carried out by determining
the population of the levelst) after applying to the atom a otzh: nth+§ (47
resonant pulse transforming the eigenstdtes of o, into
|£). N _ ~ is the variance of each quadrature for the thermal distribu-
The condition of null current densi(B9) becomes in this  tion. Clearly, theT distribution for this state takes negative
case values. It is worth emphasizing that the lack of positivity

_ persists for everyny, in sharp contrast to the case of
+ + +), = . N i X )

{E[(0spa+ pa)| £ =0, (40) s-ordered distributions for which there is always a value of

which is verified always provided that Ny, that renders the distribution positive.
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In the following, we assume an imperfect measurement of
the operatord represented by a Gaussian postselection
POVM [see also Eq(B5)]

1 '
My(q') = —=——e @~ @), (48)
\N2mo

7

where the widtho, is determined by detector efficiencies.
For example, for a homodyne detect@tz,7:(1—17)/(217),

where 7 is the quantum efficiency of a single detector. We
may then derive an effective marginal distribution for the

postselection observable:

& (@~ a)?[2af+a%)]

p,(Q) = T Tlgpg] = (49)
7 a V/27,.(0.t2h + U'E,)
FIG. 2. The probability for observing a negative weak value of
) o p? as a function of the detector efficiengyand the average thermal
A. Negative weak value of the kinetic energy occupation numbeny,. It is assumed that; =0, whereasy, may
In this subsection, we consider weak measurements of tht@kgtatr_ly value. This effect therefore is present even for macroscopic
excitationsa;.

observablep?, which is essentially the kinetic energg8].
The weak value of? conditioned on the measurementdpf
was found to take negative values for coherent states in Ref. ) 1 )
[29]. Here, this treatment will be generalized to include the ~ PIRe&(p%), < 0]=erfc 57 2(af + o) (0 + 0.
effects of thermal noise and imperfect detectors.

Since we are considering weak measurementg’pthe (59
phase-space representation and the eigenvalue representation . . .
of the S distribution coincide. It is then useful to define an | '€ complementary error function efg is monotonically

effective S distribution by using Eqs(28) and(46). The re- dgcrezasing. Therefore, this probabilit.y is maximized when
sult is o, of, andozv are as small as possible. The state can be
chosen so that;=0. For a perfect detector,=0. The
S,(a.p) = S‘,';(q - a,p-a), (50) quadratL_Jre vanancefh_l_s bounded beI_ow by 1/2. TheArefore,
the maximum probability for a negative weak valuepdfis
with erfc 1=0.16[29]. It is particularly interesting to note that the
effect is independent of the real part of the amplitude A
202 (p? + R) + 2p> 027] - 2ipq negative weak value therefore can be observed for a macro-
- 1+ 20% + 40202 scopic occupation of the mode.
th ™ 9ty (52) This probability has been plotted as a function of detector
w1+ 4ol + 405,05 efficiency » and thermal occupation numbey, in Fig. 2. As
noted in Sec. IV, the negativity of I{Qpﬁ,) contradicts all
being the effectiveS distribution. Using Eqs(25) and(51)  classical stochastic models. A weak value of the kinetic en-

Sh(a.p) =

we find that ergy might be observed for material particles at low tempera-
tures. However, a realizable quantum optical experiment is
o 1 1+ Aal+op)(0h+0%)  (q-a)? not known to the authors. To investigate a feasible quantum
ReL(p)u] = 402+ 0?) - 402+ 02)? optical experiment, we turn to the weak measurement of
e R photon number and energy.
(52
The roots of this polynomial are B. Negative weak value of the energy

In this subsection we study weak measurements of energy
conditioned on the postselection of a quadrature observable.
As demonstrated in Sec. IV, a negative weak value of the
energy for a harmonic oscillator contradicts classical sto-
chastic models.

By combining Eqs(21), (46), and(48) we find that

J:=a, % \'/(O'tzh + 0'3])[1 + 4o+ ob) (05 + 0'3])]. (53

The probability of postselecting a positigpwhich on aver-
age gives a negative weak valueffthen is

O+
2 w 0l = —f d .
P[Re(p?)y <0]=1 7 9, (Q) (54) ReH,(q)]=ag +bg+c, (56)

The result is where
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FIG. 3. The probability for observing a negative weak value of  FIG. 4. The probability for observing a negative weak value of
energy as a function of the coherent state amplitugesnd «;. We energy as a function of the coherent state amplitugesnd «;. We
assume perfect detectoes,=0 and no thermal noise;=0. The  assume detectors with quantum efficiengy0.7 and thermal oc-
probability has a maximum ai, =1, ;=0, at which the probability  cupation numbeny,=0.3. There is a minimuna, required in order
is (1/2)erfc 1=0.079. to see nonclassical behavior.

4gfh -1 The negativity of weak values of the kinetic energy and of
= m, (57 the total energy both contradict a classical, stochastic model
th ™ My of light. Negative weak values of the kinetic energy persist
also for macroscopic coherent amplitudes. This does not oc-
b= ar(40%h0‘2ﬁ +1) (59) cur for a weak value of the energy. On the other hand, a weak
4(at2h + 037)2 ' measurement of the energy has a feasible practical measuring
scheme as outlined in Sec. V.
B a'tzh ai2 1+ 40't2h037 ar2(404;7 -1
c= 3 + 2 8(Ut2h+ 037) 8(<Tt2h N 031)2' (59 C. Negative weak value of the photon number

- | . ided thab?= 4 | i It was demonstrated in Sec. IV that a negative weak value
wo real rootsq. exist provided thab®=4ac (only one if ¢ e hhaton number contradicts a classical stochastic model

a=0). This establishes a necessary condition to be fulfilled, o6 the energy is bounded from below by the zero-point
by ow, o, a;, and a; for the existence of negative values energy. We study this further here.

for RegH,(q)]. If this is satisfied, the probability of observ- 1.4 eak value of the photon number is simply
ing a negative R@,) is

Q
P[RG(HW)<0]=f dap,(Q). (60)
Q-

For ideal detectorsr,=0 and vanishing thermal noisg;
=0 this probability can be written as

M_a) 6

1
P[ReH,) <0]= 5erfc( e
,

This probability has been plotted in Fig. 3. It reaches a maxi-
mum at «,=1 and «;=0, at which the probability is
(1/2)erfc 1=0.08. This is half of the probability for observ-
ing a negative weak value of kinetic energy.

A more complex expression for the probability can be
obtained for arbitrary detector efficiency and thermal excita-
tion. This has been plotted in Fig. 4. We see taabow must
reach a minimum value in order to see nonclassical negative F|G. 5. The probability for observing a negative weak value of
weak values. In Fig. 5, the probability is plotted as a functionenergy as a function of the detector efficiengyand the average
of detector efficiencyn and average thermal occupation thermal occupation numbey,. The coherent excitation is assumed
numberny,. to bea,=1, o;=0.
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FIG. 7. The probability for observing a negative weak value of
the photon numbeii as a function of the coherent-state amplitudes
a, and ;. We assume detectors with quantum efficiemey0.7 and
thermal occupation numbet,=0.3. We see that there is a mini-
mum «, required in order to see nonclassical behavior.

FIG. 6. The probability for observing a negative weak value of
the photon numbei as a function of the coherent-state amplitudes
o, and e;. We assume perfect detectarg=0 and no thermal noise
nx=0. The probability increases with decreasjng but has a sin-
gularity at|a|=0.

sical features. We have shown that the appearance of strange
(62) weak values is equivalent to the existence of negative values
for a generalized Terletsky-Margenau-Hill distribution.

We have presented some feasible practical implementa-
ftions of this kind of measurement in the field of quantum
optics focusing on the weak measurement of photon number
and energy. We have demonstrated that negative weak values

(@ =Hy(@) - 3.

Two real rootsq, of n,, exist provided thab®=4a(c-1/2).
In the case that this condition is satisfied the probability o
observing a negative Re,(q)] is

G« of the energy contradict all classical models of light and that
P[Re(n,) <0]=| dgo,(Q). (63)  negative weak values of the photon number contradict a clas-
9 sical model where the energy is bounded from below by the
For ideal detectors and vanishing thermal noise this probabiero-point energy.
ity can be written as As a particular but striking enough example we have con-
1 2, 2 sidered weak measurements of coherent states. We have
, ;
P[Ren,,) < 0]= —erfc(¥> . (64)
2 2|ar|

This function has been plotted in Fig. 6. The probability is
always maximized by lettingy, — 0. It approaches a maxi-
mum of 0.5 for vanishingy,. However, it has a singularity in
a,=0 and actually vanishes in this point. Thus, there is zero
probability of observing a negative weak valuefofor the
vacuumstate. There must be a finigmall coherent ampli-
tude to see this.

A more complex expression is obtained for finite detector
efficiency and finite thermal noise. The probability has been
plotted in this case in Fig. 7. We see thatnow must reach
a minimum value in order to see nonclassical negative weak
values.

The probability has been plotted as a function of detector
efficiency » and the average thermal occupation nungr
in Fig. 8. We see that for finite thermal occupation number
Ny, there is a lower bound on the detector efficiencto see FIG. 8. The probability for observing a negative weak value of
nonclassical behavior. This bound vanishes whgh- 0. the photon numbef as a function of detector efficiency and

average thermal occupation numbrgy. The coherent excitation is
Vil. CONCLUSIONS assumed to be,=0.1, a;=0. A minimum detector efficiencgand a

In this work we have examined a very general form of maximum thermal occupation numbeis required to observe a

weak measurements focusing on the emergence of nonclasegative weak value.
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found that negative weak values can be observed with a A typical diagonal POVM satisfying the properti¢a4)

probability of 16% for the kinetic energgor squared field and(A7) is the Gaussian

quadraturg 8% for the harmonic oscillator energy, and 50%

for the photon number. (') = yl_e—(gb—tb’)z/(zoz)_ (A8)
We have analyzed the persistence of the effect under prac- V21T

tical experimental conditions by considering degrading im- . ) ,

perfections such as the presence of thermal fluctuations ar{:aDr this P.OVM and fo/r the subset of POVM S.thﬂg’(.(f’ )

the use of inefficient detectors. All these results confirm thd> & funqtlon of(¢-¢ )_onIy, the transformationfA5) is a

possibility of a practical observation of nonclassical effectsconvolution. However, in the most general case the POVM

for states previously considered as firm examples of classic4°€S Not depend ofy—¢’) only. For example, the condi-

behavior. tions (A4) and (A7) are also satisfied by all Gaussian
POVM's of the type(A8) even when the standard deviation
APPENDIX A: IMPERFECT DETECTORS o is an arbitrary function ofp’.

An imperfect detector may be represented by a positive- APPENDIX B: DERIVATION OF WEAK VALUES
operator-valued measure. To represent imperfect detection of

~ . Prior to the measurement interaction, we assume that the
an observableb, we study the class of diagonal POVM’s

object is in the stateh; and the pointer is in an arbitrary
. mixed statep,. The total density operator prior to the inter-
= f dep' I 4(¢)| '], (A1)  action has the product fory=ps® pa.
After the interaction, the total density operator has
where|¢) are eigenstates a. These states are assumed to®volved to
constitute a complete set:

ﬁE:UEZ)OUZ’ (Bl)
fd¢| &Pl =1. (A2)  whereU, is a unitary evolution operator. Since the Hamil-
tonian does not depend explicitly on time, we can write
The diagonal form is assumed because interference between _ _ifdt_ cicheP
different detector states should not occur. We assume that Uc=e =€ ' (B2)
I14(¢") is & non-negative function. _ ~_ We may expand this evolution operator to first ordekias
The POVM should provide a resolution of the identity R R
operator U~=1-iev® P. (B3)
- To first order ine, the density operator after the interaction
doll,=1. (A3) then can be written as

This implies that p.=po+iepo® Pl. (B4)
After the interaction, we assume that imperfect measure-

Jd¢1‘[¢(¢’) =1. (A4) ments are made of the pointer observaf?leand the object

Thus, I1(¢') should be a normalized distribution ovek gt())s\?a/ablezﬁ. Each observable is represented by a diagonal

The probability distribution for the observab&e taking into

account the imperfect detector represented iy is ﬁ"’:f d¢>’H¢(¢>’)|¢>’><¢’|, (B5)
Til el = [ @@l )
- = !H ! ! ! . B
We require that the imperfect detector should give the same o J dQT(@ Q] (B6)

expected reading as a perfect detector. This condition of u

biasedness can be written as "Both IT, andIlg are assumed to be classical distributions. In

this way, the detectors are assumed to be in a statistical mix-

~ . ture of pure projector states. We also have assumed that the
fd¢¢’ T 4p] :f depd{dlpl¢), (AB) observablep has a continuous spectrum. There is no loss of
generality in this.
and it implies that The joint probability density fokp and Q after the inter-
action is
o= [ s (A7 p($,Q) = Tr(iT 15, ®7)

Thus, unbiasedness is equivalent to requiring that the paramvhere the trace is taken over boti; and H,. Using the
eter ¢’ should be the expectation value of the distributionexpressionB4) for the first-order density operator, we find
I1,. that

¢
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p¢.Q) = Tr(lALgps)Tr(rAIQpa) + IeTr<fAI¢HQ[po, ve PJ} Tr(flgp.P) = f dqQ’ f dQTI(QXQQ'XQ'5PIQ")
=Tr(I1,pg) Tr(Ilgpy) + i€ Tr(I1,ps) Tr(Ilgp,P)
= Tr(I1 4 7p Tr(IToPp,)]. (B8) = f dQ'T4(Q"XQ'|paPIQ")
We require that the current density of the pointer vanish:
o -3 [ seng@) 5 @ipie)

<Q|(Ppa+ PaP)|Q> =0. (B9)

This implies that __ f dor Q) (e 1o B18
- 2 ) QTG @) (B1Y)
Tr{IIo(Pp, + p4P)]=0. B10
[Mo(Ppa* £aP)] (B10) where we have assumed tH&' |p,|Q’) vanishes at the in-
Therefore we can write tegration borders.
S S The conditional probability density for the pointer posi-
p¢,Q) = Tr(I1ypg) Tr(I1gp,) tion Q given the outcomes of the postselection is

+ie T 4(psh + vp ITr([IopaP). (B1)

The marginal distribution for the object observalgleafter
the interaction is

pe(Q|¢>)=fdQ’Hq(Q’+€Revw)<Q'|f)a|Q’>, (B19)

where

pdb) = f dQp.($.Q). (B12) 1(Q' + eReny) = { PRIEE }HQ@ 5

Due to the vanishing of the current density of the probe, it is (B20)
found that
. We introduce the expectation value of the pointer position
pd @) =Tr(II4pg). (B13) conditioned on the postselection outcome:

Therefore, the probability distribution for the postselection

observableg is unaffected by the measurement interaction. E.Ql¢) :f dQ Qp.(Ql¢). (B21)
Note that we have considered an arbitrary postselection mea-

surement. This means in fact that the probability distributionBy using Eqs(B19) and(B20) we find that

for every possible object observable is unaffected by the

measurement interaction. E(Q|¢) =Eo(Q|¢) + eRe(ny,)
The conditional probability density for the pointer posi- ITlo(Q'
tion Q given the postselection outcongeis defined as fdQ QJ dQ’%'—@ 1palQ").
p(Qg) = Pe2< . Q) (B14) (B22)
pdd) - .
A reorganization of terms gives
We find that
. .. E{Q|¢) =Eo(Ql¢) + eRe(v,,)
p(Q|¢) = Tr(Tlgpa) + 2i € Re(w,) Tr(IlgpaP), (B15)
where fdQ (Q'|pal Q' >— f dQ QIIn(Q).
Tr(IT,p (B23)
() = L) (B16) - " y
Tr(I14p) We assume that the POVM is unbiased, fulfilling condition

(A7). This, together with the normalization property of the
is the weak value ofy for an unsharp postselection repre- position distribution, implies that

sented by the POVI\/H¢ Using Eq.(B9) it can be shown

that EQl#) = Eo(Ql¢) + eRe(w). (B24)
This shows that the pointer observakléhas been translated
(QlpPIQ) = > &Q<Q|Pa|Q> (B17)  adistanceRe(v,,), and this setup therefore allows for a mea-
surement of R@y,). The only restriction on the auxiliary
Hence we can write pointer system is that the current density should vanish.
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