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| construct a positive-operator-valued meastf®VM) which has 2 rank-1 elements and which is infor-
mationally complete for generic pure stategdidimensions, thus confirming a conjecture made by Flammia,
Silberfarb, and Cavege-print quant-ph/04041371 show that if a rank-1 POVM is required to be informa-
tionally complete forall pure states i dimensions, it must have at least-32 elements. | also show that, in
a POVM which is informationally complete for all pure stateslidimensions, for any vector there must be at
least 21-1 POVM elements which do not annihilate that vector.
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I. INTRODUCTION The definition of PSI-completeness given above allows
. . o . there to be pure states which cannot be identified uniquely by
Consider the following situation: you are given many cop-ype eynectation values of the POVM elements, but it does

ies of a quantum system; you know they are all in the sam@emang that any such states be confined to a set of measure
state, but you do not know which state that is, and you waners This means that, if a pure state were selected at ran-

to perform measurements in order to find out. If the S.tE:ltiStiC%om’ then with probability 1 itvould be uniquely identified.
of the outcome of these measurements are sufficient teyf course, in practice we could never measure those expec-
uniquely identify the state, the measurements are called “ination values with infinite precision, which means that we
formationally complete|1] (I-complets. In this paper | will  should not expect to identify the state with infinite precision.
present some results for a special case of this situation, i®ne might hope that, if we knew the expectation values to a
which you know that the system is in a pure state, but you dgood approximation, we would then be able, with probability
not know in which pure state. 1, to identify the state to a good approximation, in the sense
A set of measurements can be considered equivalent tothat (outside of a set of measure zgmny two pure states
single “generalized” measurement, which is described by avhich were compatible with the same imprecisely known set
positive operator-valued measufROVM) [2]. | will denote  Of expectation values would necessarily be close toggther
elements of a POVM aB;; they are positive operators which say, the Hilbert-space nopmHowever, PSI-completeness
satisfyS,E;=1, and if the state of the system is denotepas does not guarantee this. Consider two distinct statgsand
then the probability of théth outcome is given by TpE). |y which were both compatible with the same precisely

For a pure statp= , that probability is the expectation 9iven set of expectation values; then imprecisely known ex-
value <F:,/;| E|s) ®=|v)ui P y P pectation values would be compatible with states sufficiently
i| ).

. . close to and also to states sufficiently close .
Pure state I-complete POVM'’s have been discussed in [ V=) y i)

: o 8ince the set of states sufficiently closd#g) or to |i,) has
recent article .by Fl.am.m'a’ S|Ilberfarb, and Cavesq [3]. | finite measure, there would bgsmall buj finite probability
will adopt their definition, which is as follows.

- . . that we would not be able to know if the state was close to
Definition (PSkcompletenegs A pure-state information- |41,) OF 1o |¢)

ally complete(PSI-completg POVM on a finite-dimensional
quantum system is a POVM whose outcome probabilities ar
sufficient to determine any pure stdtg to a global phage
except for a set of pure states that is dense only on a set
measure zero.

Letd denote thefinite) dimension of the Hilbert space for
our quantum system. FSC show that any PSI-complet
POVM must have at leastd2elements; this, together with
their construction of an examplsee also Refl4]) that does
in fact have 2 elements, shows that the minimal number of

. In the third section of this paper | will prove two theorems
elements of a PSI-complete POVM for a system wdthi-
i S . t th f el t f POVM t
mensions is indeedd FSC also conjecture that, for a PSI- about the number of elements necessary for a PO 0 be

.. PSIR-complete.
complete POVM whose elements are all of rank 1, the mini- Theorer$1 I Let {E;} be the elements of a PSIR-complete
1] ” b 1
nme?:tnsuemcggrrm Vg?lter?sbea C(la(:SIeV\t/(i)II c;;ro(ra1\1‘/i(rarrr]1 ?ﬂ;? Lm'zeZtLhrg b POVM for a system of dimensiod. Then for any nonzero
displavin rank-1 ppg| mplete POVM with Jx i zyvector|¢) in the Hilbert space, there are at least-2 ele-
spiaying a rank- -compiete exacti 20 hts which do not annihilatgs) (that is, withE;|¢) # 0).

We could strengthen the definition of PSI-completeness
By insisting thatall pure states be uniquely identified by the
expectation values of the POVM elements. | will say that
ich a POVM is PSteally complete:

Definition (PSI really-completenessA pure-state infor-
mationally really complete (PSIR-completge POVM on a
finite-dimensional guantum system is a POVM whose out-
come probabilities are sufficient to determine any pure state
(up to a global phase

elements. Since a POVM which is I-complete for all states, whether
pure or mixed, isa fortiori PSIR-complete, the conclusion of
Theorem | holds for those POVM’s also.
*Electronic address: JLFINKELSTEIN@Ibl.gov Theorem Il A PSIR-complete rank-1 POVM for a system
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of dimensiond must have at leastd3-2 elements. We have the expectation values
Together with the rank-1 PSI-complete POVM withl 2 .
elements presented in the second section, Theorem Il shows (i(leXeDly) =l 2)

that allowing failure of state identification on a set of mea-this gives us the value dt| for i=1,... d-1 and(since
sure zero does decrease the minimum number of elements ¢3> 0) the value ofc,. Fori=1,... d—1, we also have the

a rank-1 POVM, for alld> 2. expectation values
There has been some interest in discussing I-complete . ) 2 ) )
measurements utilizing “mutually unbiased bas@dUB’s) (¥ (leo) +ile)) (eol ~i{a)|) =co + [ci|* + 2co Im ¢i; (3)

[5-7. Two orthonormal base&el}} a”d{!fj>} for a space of  together with the values af, and of g, this gives us the
dimensiond are mutually unbiased if, for all and j,  value of Imc. And since (Rec)?=|c|?-(Imc)?, at this

d-1

o

(& fj)|*=1/d. It is known that, for some values of there  point we know everything except for the signs(&ec;) for
existd+1 MUB'’s and that in those cases the set of projector§=1, ... d-1.
on all of those basis elements is I-complg That would We still have one more expectation value—namely,

be a total of(d+1)d=d?+d projectors, but because not all of 41 41

the expectation values of these projectors are independent,

this set can be related to a rank-1 POVM withelements, <¢|<i§) |e,)) (gf) (ej|>|¢>

which is the minimum number of elements of a I-complete o g o g 5

POVM [8]. It is also known[9] that for any value ofl there

does exist at least 3 MUBI&nNd it is conjecturefll0,17] that = (E Reci> + (E Imci) NG

for some values ofl no more than that which can be related =0 =0

to a rank-1 POVM with 8-2 elements. This is the smallest and so we know the value ¢f£% Rec;)|. | will show that,
number not ruled out by Theorem II, and so one might hopen the generic case, this is enough to tell us the sign of each
that this POVM could be PSIR-complete. However, thisRec; and hence to uniquely identifjty). Suppose for ex-
would certainly not be true if there were a fourth basis mu-ample that we knew thaty=+5, |Rec,|=8, |Rec,|=4, and
tually unbiased with respect to the other three, since the exhat |c,+Rec, +Rec,|=7; this would tell us that Rg=-8
pectation values for any two elements of this fourth basisand that Re,=—4. To see in general what ambiguities are
would coincide, and hence those two elements could not bgllowed by all of the expectation values, suppose that a given
uniquely identified. Furthermore, while Theorem Il estab-set of expectation values was compatible with two distinct
lishes that any rank-1 PSIR-complete POVM has at leasfectors|) and|y'), with coordinates; andc/, respectively.
3d-2 elements, it does not assert that a greater numbef would then be true thaty=c/, that |Rec|=|Rec/| for i
might not in fact be required. To my knowledge, the mini-=1 ... d-1, and tha{(S%] Rec)|=|(Z%3 Rec!)|. | will di-
mum number of elements of a rank-1 PSIR-complete POVM,ide the coordinates into two sets, according to whether

is at present unknown. Reci=+Re/ or Reci=—Rec/. Define E:={i|Rec;=Rec/};
since Rey=Recy, E is not empty. Also defindJ:={i|Rec;
Il. RANK-1 PSI-COMPLETE POVM #Rec/}; note that Re=-Rec/ for i € U and that, sincéy)

WITH 2d ELEMENTS and |¢/) were assumed to be distindf, is not empty. We

H d-1 — d-1 ’ d-1 —
In this section | will show that, for any dimensiaf there kno‘é‘flthat ,e'.the'@'fg Reci)_— +(E'fg Rec/i) or (Zizy Reg) =
exists a rank-1 PSl-complete POVM witld 2lements, thus ~(Zizo R&G); if (2izg Rec)) = +(2i Recy), then

confirming the conjecture made by FSC. _ - / ’
Let{|g)|i=0, ... d-1} be an orthonormal basis for a Hil- > Reg+ X Regi= 2 Ret + 2 Reg/, (5

ieE ieU ieE ieU
bert space of dimensioth Write a vector in this space as ) )
- which gives
[y =2 cile). 1) > Reci+ 2 Reci= X Regi— 2, Reg (6)
i=0 ieE ieU ieE ieU
I will use the global phase freedom, and the indifference teand so
sets of measure zero in the definition of PSI-completeness, to B
assert thaty is real and strictly positive. Now consider the % Rec; = 0. (7)
following set of operators. ‘e
The d operatorge)e|, fori=0,... d-1. On the other hand, S~} Rec)=-(2% ) Rec)), then
The (d-1) operators (|ey)+ile))((ey|—i(g|) for i
=1,...d-1. o le(e il S Re+ Y Reci:—(E Rec/ + 3 Rec(), (8)
ieE ieU ieE ieU

The single operatofSgle))(S{-x(e)).
This is a set of @ operators, which | will show is PSI- which gives
complete; that is, for any vectdg) outside of a set of mea-

sure zero, knowledge of the expectation values of these op- EE Rec; + EU Rec; = - (EE Rec; - EU Reci> ©)
erators would enable one to calculate the values of the e ‘e '© '
coefficientsc;. and so
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S Reg; =0. (10)  Space orthogonal tpp); then, for each value df, Eq. (11)
e can be written

So either Eq(7) or (10) must be correct. For fixed sefsand ¢l

U, states satisfying either of these equations are confined to E [Re(HIE|e)Re( g)|x) — Im(¢|Ei[e))Im( g[x)] = 0.
closed sets of measure zero. And since there are only a finite 1=!
number of possibilities foE and U, all states outside of a (13
closed set of measure zero can be unambiguously identifie
and so our operators are PSI-complete.

Given these rank-1 PSI-complete operators, we can for
a rank-1 PSl-complete POVM withd2elements with the
same procedure used by FSC: denoting our operatoi,by

?—“or each value of, this is a real, linear homogeneous equa-
tion for the Z1-2 real parameters Rg|x) and Im(g]x).
néince no more thakK ,— 1 of these equations are independent
and sinceK ,—1<2d-2, there must be a nontrivial solution.

with i=1,...,21, defineG=3% P;; this is nonsingular since >0 W€ ¢an choosfy) to satisfy Eq.(11) and then define
the P; are PSl-complete, so we can defiee=G2P,G™%/2, ) = ) [x). (14)
These operators are then thd @lements of a rank-1 PSI- _

complete POVM. The expectation values are

(Y|Eil¢n) = (¢|Ei|d) + (XIEilx) £ 2 Re(H|Ei|x). (15

Equations(11) and(15) together imply that

In this section | will prove the two theorems stated in the
Introduction. (WlEil) =(y|Eil ) (16)

Theorem I Let {E;} be the elements of a PSIR-complete for all i. Finally, letN be the(common norm of |i4,) and of
POVM for a system of dimensiod. Then for any nonzero |); then, the normalized vectordN™%)|«,) represent two
vector|4) in the Hilbert space, there are at least-2 ele-  gistinct states whose expectation values for all of the POVM
ments which do not annihilates) (that is, withE;|¢) # 0). elements agree, and so the POVM is not PSIR-complete.

Proof. Let {E;} be the elements of a POVM for a system  Theorem Il A rank-1 PSIR-complete POVM for a system
of dimensiond. For any vectot¢), let K, be the number of  of dimensiond must have at leastd3-2 elements.

POVM elements witE;|4) # 0. | will show that if there is a Proof. Let{E;} be the elements of a rank-1 PSIR-complete

Ill. PROOF OF THE THEOREMS

PSIR-complete. . since eaclE; has rank 1, the rank df is no greater thad
Let |¢) be a nonzero vector witK ,< 2d-1, and letx) -1, This means that there must hat least a one-
denote a nonzero vector orthogonal|#. | will show that  gimensional subspace annihilated Byand hence, since the
[x) can be chosen so that POVM elements are positive, by eaBhfor i=1,... d-1.

Re(|E|y) = 0 11 et |#) be any nonzero vector in that subspaes. is anni-

hilated by eacl; fori=1, ... d-1; in addition, according to
for all elementsE;. For thoseE; which annihilate|¢), Eq.  Theorem | there must be at leasi-21 elements which do
(11) is valid for any|x), so Eq.(11) represent& , conditions  notannihilate|¢). Therefore the POVM must contain at least
which |y) must satisfy. These conditions are not all indepen<{(d-1)+(2d-1)=3d-2 elements.
dent; sinceX;E;=1 implies that
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