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I construct a positive-operator-valued measure(POVM) which has 2d rank-1 elements and which is infor-
mationally complete for generic pure states ind dimensions, thus confirming a conjecture made by Flammia,
Silberfarb, and Caves(e-print quant-ph/0404137). I show that if a rank-1 POVM is required to be informa-
tionally complete forall pure states ind dimensions, it must have at least 3d−2 elements. I also show that, in
a POVM which is informationally complete for all pure states ind dimensions, for any vector there must be at
least 2d−1 POVM elements which do not annihilate that vector.
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I. INTRODUCTION

Consider the following situation: you are given many cop-
ies of a quantum system; you know they are all in the same
state, but you do not know which state that is, and you want
to perform measurements in order to find out. If the statistics
of the outcome of these measurements are sufficient to
uniquely identify the state, the measurements are called “in-
formationally complete”[1] (I-complete). In this paper I will
present some results for a special case of this situation, in
which you know that the system is in a pure state, but you do
not know in which pure state.

A set of measurements can be considered equivalent to a
single “generalized” measurement, which is described by a
positive operator-valued measure(POVM) [2]. I will denote
elements of a POVM asEi; they are positive operators which
satisfyoiEi = I, and if the state of the system is denoted asr,
then the probability of theith outcome is given by TrsrEid.
For a pure stater= uclkcu, that probability is the expectation
value kcuEiucl.

Pure state I-complete POVM’s have been discussed in a
recent article by Flammia, Silberfarb, and Caves(FSC) [3]. I
will adopt their definition, which is as follows.

Definition (PSI-completeness). A pure-state information-
ally complete(PSI-complete) POVM on a finite-dimensional
quantum system is a POVM whose outcome probabilities are
sufficient to determine any pure state(up to a global phase),
except for a set of pure states that is dense only on a set of
measure zero.

Let d denote the(finite) dimension of the Hilbert space for
our quantum system. FSC show that any PSI-complete
POVM must have at least 2d elements; this, together with
their construction of an example(see also Ref.[4]) that does
in fact have 2d elements, shows that the minimal number of
elements of a PSI-complete POVM for a system withd di-
mensions is indeed 2d. FSC also conjecture that, for a PSI-
complete POVM whose elements are all of rank 1, the mini-
mal number would be “close to or even equal to 2d.” In the
next section of this paper I will confirm that conjecture by
displaying a rank-1 PSI-complete POVM with exactly 2d
elements.

The definition of PSI-completeness given above allows
there to be pure states which cannot be identified uniquely by
the expectation values of the POVM elements, but it does
demand that any such states be confined to a set of measure
zero. This means that, if a pure state were selected at ran-
dom, then with probability 1 itwouldbe uniquely identified.
Of course, in practice we could never measure those expec-
tation values with infinite precision, which means that we
should not expect to identify the state with infinite precision.
One might hope that, if we knew the expectation values to a
good approximation, we would then be able, with probability
1, to identify the state to a good approximation, in the sense
that (outside of a set of measure zero) any two pure states
which were compatible with the same imprecisely known set
of expectation values would necessarily be close together(in,
say, the Hilbert-space norm). However, PSI-completeness
does not guarantee this. Consider two distinct statesucal and
ucbl which were both compatible with the same precisely
given set of expectation values; then imprecisely known ex-
pectation values would be compatible with states sufficiently
close to ucal and also to states sufficiently close toucbl.
Since the set of states sufficiently close toucal or to ucbl has
finite measure, there would be a(small but) finite probability
that we would not be able to know if the state was close to
ucal or to ucbl.

We could strengthen the definition of PSI-completeness
by insisting thatall pure states be uniquely identified by the
expectation values of the POVM elements. I will say that
such a POVM is PSIreally complete:

Definition (PSI really-completeness). A pure-state infor-
mationally really complete (PSIR-complete) POVM on a
finite-dimensional quantum system is a POVM whose out-
come probabilities are sufficient to determine any pure state
(up to a global phase).

In the third section of this paper I will prove two theorems
about the number of elements necessary for a POVM to be
PSIR-complete.

Theorem I. Let hEij be the elements of a PSIR-complete
POVM for a system of dimensiond. Then for any nonzero
vector ufl in the Hilbert space, there are at least 2d−1 ele-
ments which do not annihilateufl (that is, withEiuflÞ0).

Since a POVM which is I-complete for all states, whether
pure or mixed, isa fortiori PSIR-complete, the conclusion of
Theorem I holds for those POVM’s also.

Theorem II. A PSIR-complete rank-1 POVM for a system*Electronic address: JLFINKELSTEIN@lbl.gov
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of dimensiond must have at least 3d−2 elements.
Together with the rank-1 PSI-complete POVM with 2d

elements presented in the second section, Theorem II shows
that allowing failure of state identification on a set of mea-
sure zero does decrease the minimum number of elements in
a rank-1 POVM, for alld.2.

There has been some interest in discussing I-complete
measurements utilizing “mutually unbiased bases”(MUB’s)
[5–7]. Two orthonormal baseshueilj and huf jlj for a space of
dimension d are mutually unbiased if, for alli and j ,
ukei u f jlu2=1/d. It is known that, for some values ofd, there
existd+1 MUB’s and that in those cases the set of projectors
on all of those basis elements is I-complete[5]. That would
be a total ofsd+1dd=d2+d projectors, but because not all of
the expectation values of these projectors are independent,
this set can be related to a rank-1 POVM withd2 elements,
which is the minimum number of elements of a I-complete
POVM [8]. It is also known[9] that for any value ofd there
does exist at least 3 MUB’s(and it is conjectured[10,11] that
for some values ofd no more than that), which can be related
to a rank-1 POVM with 3d−2 elements. This is the smallest
number not ruled out by Theorem II, and so one might hope
that this POVM could be PSIR-complete. However, this
would certainly not be true if there were a fourth basis mu-
tually unbiased with respect to the other three, since the ex-
pectation values for any two elements of this fourth basis
would coincide, and hence those two elements could not be
uniquely identified. Furthermore, while Theorem II estab-
lishes that any rank-1 PSIR-complete POVM has at least
3d−2 elements, it does not assert that a greater number
might not in fact be required. To my knowledge, the mini-
mum number of elements of a rank-1 PSIR-complete POVM
is at present unknown.

II. RANK-1 PSI-COMPLETE POVM
WITH 2 d ELEMENTS

In this section I will show that, for any dimensiond, there
exists a rank-1 PSI-complete POVM with 2d elements, thus
confirming the conjecture made by FSC.

Let hueil u i =0, . . . ,d−1j be an orthonormal basis for a Hil-
bert space of dimensiond. Write a vector in this space as

ucl = o
i=0

d−1

ciueil. s1d

I will use the global phase freedom, and the indifference to
sets of measure zero in the definition of PSI-completeness, to
assert thatc0 is real and strictly positive. Now consider the
following set of operators.

The d operatorsueilkeiu, for i =0, . . . ,d−1.
The sd−1d operators sue0l+ i ueildske0u− ikeiud for i

=1, . . . ,d−1.
The single operatorsoi=0

d−1ueildso j=0
d−1kejud.

This is a set of 2d operators, which I will show is PSI-
complete; that is, for any vectorucl outside of a set of mea-
sure zero, knowledge of the expectation values of these op-
erators would enable one to calculate the values of the
coefficientsci.

We have the expectation values

kcusueilkeiuducl = uciu2; s2d

this gives us the value ofuciu for i =1, . . . ,d−1 and (since
c0.0) the value ofc0. For i =1, . . . ,d−1, we also have the
expectation values

kcusue0l + i ueildske0u − ikeiuducl = c0
2 + uciu2 + 2c0 Im ci; s3d

together with the values ofc0 and of uciu, this gives us the
value of Imci. And since sRecid2= uciu2−sIm cid2, at this
point we know everything except for the signs ofsRecid for
i =1, . . . ,d−1.

We still have one more expectation value—namely,

kcuSo
i=0

d−1

ueilDSo
j=0

d−1

kejuDucl

= Uo
i=0

d−1

ciU2

= So
i=0

d−1

ReciD2

+ So
i=0

d−1

ImciD2

, s4d

and so we know the value ofusoi=0
d−1 Recidu. I will show that,

in the generic case, this is enough to tell us the sign of each
Reci and hence to uniquely identifyucl. Suppose for ex-
ample that we knew thatc0= +5, uRec1u=8, uRec2u=4, and
that uc0+Rec1+Rec2u=7; this would tell us that Rec1=−8
and that Rec2=−4. To see in general what ambiguities are
allowed by all of the expectation values, suppose that a given
set of expectation values was compatible with two distinct
vectorsucl anduc8l, with coordinatesci andci8, respectively.
It would then be true thatc0=c08, that uReciu= uReci8u for i
=1, . . . ,d−1, and thatusoi=0

d−1 Recidu= usoi=0
d−1 Reci8du. I will di-

vide the coordinates into two sets, according to whether
Reci = +Reci8 or Reci =−Reci8. Define Eªhi uReci =Reci8j;
since Rec0=Rec08, E is not empty. Also defineUªhi uReci

ÞReci8j; note that Reci =−Reci8 for i PU and that, sinceucl
and uc8l were assumed to be distinct,U is not empty. We
know that eithersoi=0

d−1 Recid= +soi=0
d−1 Reci8d or soi=0

d−1 Recid=
−soi=0

d−1 Reci8d; if soi=0
d−1 Recid= +soi=0

d−1 Reci8d, then

o
iPE

Reci + o
iPU

Reci = o
iPE

Reci8 + o
iPU

Reci8, s5d

which gives

o
iPE

Reci + o
iPU

Reci = o
iPE

Reci − o
iPU

Reci s6d

and so

o
iPU

Reci = 0. s7d

On the other hand, ifsoi=0
d−1 Recid=−soi=0

d−1 Reci8d, then

o
iPE

Reci + o
iPU

Reci = − So
iPE

Reci8 + o
iPU

Reci8D , s8d

which gives

o
iPE

Reci + o
iPU

Reci = − So
iPE

Reci − o
iPU

ReciD s9d

and so
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o
iPE

Reci = 0. s10d

So either Eq.(7) or (10) must be correct. For fixed setsE and
U, states satisfying either of these equations are confined to
closed sets of measure zero. And since there are only a finite
number of possibilities forE and U, all states outside of a
closed set of measure zero can be unambiguously identified,
and so our operators are PSI-complete.

Given these rank-1 PSI-complete operators, we can form
a rank-1 PSI-complete POVM with 2d elements with the
same procedure used by FSC: denoting our operators byPi,
with i =1, . . . ,2d, defineG=oi=1

2d Pi; this is nonsingular since
the Pi are PSI-complete, so we can defineEiªG−1/2PiG

−1/2.
These operators are then the 2d elements of a rank-1 PSI-
complete POVM.

III. PROOF OF THE THEOREMS

In this section I will prove the two theorems stated in the
Introduction.

Theorem I. Let hEij be the elements of a PSIR-complete
POVM for a system of dimensiond. Then for any nonzero
vector ufl in the Hilbert space, there are at least 2d−1 ele-
ments which do not annihilateufl (that is, withEiuflÞ0).

Proof. Let hEij be the elements of a POVM for a system
of dimensiond. For any vectorufl, let Kf be the number of
POVM elements withEiuflÞ0. I will show that if there is a
nonzero vector withKf,2d−1, then this POVM is not
PSIR-complete.

Let ufl be a nonzero vector withKf,2d−1, and letuxl
denote a nonzero vector orthogonal toufl. I will show that
uxl can be chosen so that

RekfuEiuxl = 0 s11d

for all elementsEi. For thoseEi which annihilateufl, Eq.
(11) is valid for anyuxl, so Eq.(11) representsKf conditions
which uxl must satisfy. These conditions are not all indepen-
dent; sinceoiEi = I implies that

o
i

RekfuEiuxl = Rekufuxl = 0, s12d

there are not more thanKf−1 independent conditions. Now
let huejl u j =1, . . . ,d−1j be an orthonormal basis for the sub-

space orthogonal toufl; then, for each value ofi, Eq. (11)
can be written

o
j=1

d−1

fRekfuEiuejlRekuejuxl − ImkfuEiuejlImkuejuxlg = 0.

s13d

For each value ofi, this is a real, linear homogeneous equa-
tion for the 2d−2 real parameters Rekej uxl and Imkej uxl.
Since no more thanKf−1 of these equations are independent
and sinceKf−1,2d−2, there must be a nontrivial solution.

So we can chooseuxl to satisfy Eq.(11) and then define

uc±l = ufl ± uxl. s14d

The expectation values are

kc±uEiuc±l = kfuEiufl + kxuEiuxl ± 2 RekfuEiuxl. s15d

Equations(11) and (15) together imply that

kc+uEiuc+l = kc−uEiuc−l s16d

for all i. Finally, let N be the(common) norm of uc+l and of
uc−l; then, the normalized vectorssN−1duc±l represent two
distinct states whose expectation values for all of the POVM
elements agree, and so the POVM is not PSIR-complete.

Theorem II. A rank-1 PSIR-complete POVM for a system
of dimensiond must have at least 3d−2 elements.

Proof. Let hEij be the elements of a rank-1 PSIR-complete
POVM for a system of dimensiond. Define Fªoi=1

d−1Ei;
since eachEi has rank 1, the rank ofF is no greater thand
−1. This means that there must be(at least) a one-
dimensional subspace annihilated byF, and hence, since the
POVM elements are positive, by eachEi for i =1, . . . ,d−1.
Let ufl be any nonzero vector in that subspace.ufl is anni-
hilated by eachEi for i =1, . . . ,d−1; in addition, according to
Theorem I there must be at least 2d−1 elements which do
not annihilateufl. Therefore the POVM must contain at least
sd−1d+s2d−1d=3d−2 elements.
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