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Renormalized semiclassical quantization for rescalable Hamiltonians
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A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical
Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic
potential can have a scale invariance in its extended phase gplaase space plus timeConsequently,
infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of
a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence
of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above
sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their
own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among
themselves to produce a quantized spectrum.
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I. INTRODUCTION an electron is observed quite frequently in the classical He

Semiclassical quantization of Coulombic three—bodysyStem'(EVen for the three-body gravity problem a similar

PG ejection of a constituent body results quite frequent§o
problems, such as the He atop'e’e), is an extremely one is puzzled: How can 1 be quantized to have such a

estrong chemical bonding with such small number of bounded
) ) N . :
all-particle dynamics of b (p*p*e”) and its muon substitu- classical trajectories?

tion of electrongp*p*x”) in terms of a semiclassical theory 5, easy-going answer is to ascribe the quantization to
to examine the validity of the Born-Oppenheimer approxi-ynknown “tunneling trajectories.” We do not disagree that
mation, a deeper understanding of chemical bonding, and §9,nclassical path could contribute more or less. However, no
on. The primary target there is simultaneous quantization of -, huge tunneling effect has been actually quantified be-
vibronic states. In this problem, two very difficult and inter- fore, and no systematic study of which kind of tunneling
esting problems of classical-quantum correspondence appegihs are invoived is available in the literature. Moreover,
explicitly. One is the problem of the energy quantization of o, hreliminary study of semiclassical quantization using our
chaos, sincgnot only) the Coulombic three-body system gemiciassical theorysee below has successfully produced
(but also the three-body problem of the gravity fielte-  he ground-state vibronic level without the use of a tunneling
comes strongly chaotic very easily. The associated phasgyin Byt at the same time, our spectrum suffers from ghost
space is mostly filled with chaot@c zones. The guantization o spurious peaks presumably because only a small number of
the energy spectrum for a classically chaotic system has longgnded trajectories are available to realize a good interfer-
been one of the central _subjects in quantum mecham(_:s anthce among quantum phases on the trajectories. For a semi-
chaos theory, and we still do not have a “perfect” semiclasgagsical theory to be able to give a correct spectrum, both
sical methodology that can be applied to many-body Sysgonsiryctive and destructive quantum interferences are re-
tems. The other one is less mathematical but more puzzling ireq. |n this sense, modern theories of semiclassical quan-
Even if we had a perfect semiclassical method based on clags ation such as the Gutzwiller trace formula,2] are far
sical trajectories, one faces a difficulty that most classicaly,qre difficult to apply than the old quantization conditions

trajectories sampled in the range of to-be-quantized energie Bohr's and the EBK conditiong3]. The role of destruc-
are not bounded within the molecular site. Very many trajecyjye interference has been studied in detail by Inoue-

tories !ead to a_dis_sociation of the hydrogen_ai_(qn?e‘) and Ushiyama and Takatsukgd]. It is well known that very

p*. This behavior is more or less characteristic of the COUmany trajectories are necessary to materialize a proper de-
lomb problem, since a swing-by motion due to a close ensyctive interference in numerical calculations.

counter between the electron and one of the protons can repel Tpis paper is an outcome of the above study of quantiza-
the other proton to the asymptotic region. Beside, many qu&jon of H," (p*p*e). While troubled with the aforemen-
siseparatrices that distinguish bounded and dissociation Mm@yneq puzzle, we noticed that the Coulombic potential was

tions are densely packed in the narrow zone of the closgqgaple in the sense that it is a homogeneous function of the
encounter, and therefore this phenomenon is coupled Wit o dinates

chaos. This is not a pathological phenomenon. On the con-
trary, it has been known for a long time that the escaping of U(afy,...,afy) = @ lU(Fy, ..., Fy) (1)

wherer; are the relevant coordinates ands a scaling pa-
*Electronic address: takahasi@mns2.c.u-tokyo.ac.jp rameter. For these systems, any single path on this potential
"Electronic address: kaztak@mnsz2.c.u-tokyo.ac.jp has its infinitely many copies in the extended phase space,
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which are readily reproduced by scaling time, coordinates, Thus, a simultaneous scaling
momenta, action integrals, and so on. They are essentially
indistinguishable from one another in classical mechanics, (X1, X0y + 2 Xp) — (X, Xy, ..., CXp) (5)
since they exactly coincide with each other by simply chang-
ing the scales. On the other hand, quantum mechanics doatong with
not allow such a rescaling, since the Planck constant intro-
duces an absolute measure in phase space. These mutually t— ot (6)
equivalent trajectories are thereby no longer equivalent in
guantum mechanics and make different contributions tovith a givena, makes a copy of the original trajectory with
guantum interference. What is nice technically is that once a perfectly similar shape in the extended phase s(aget)
bounded trajectory is found numericallyvith the Monte  with accordingly transformed momentum, total energy, and
Carlo sampling method, for instancéts infinite copies are the action integral as follows:
generated instantly with use of rescaling.

The present paper is concerned with the methodological p— o’p, E— oE, S— a**™%s, (7)
aspect of taking an explicit account of the scaling property in
semiclassical theories. We show a couple of selected e continuous change of the scaling parameter generates in-
amples of the application, including a system under a onefinitely many copies of the “original,” which form a one-
dimensional Coulomb interaction and of two-dimensionalparameter family. This is because the extended phase space
strong chaos. An extensive application tg"Hip*p*e”) along  does not have a characteristic size as in fractal geometry.
with the physical analyses will be reported elsewhere. Hence, any size of the geometry can be equally acceptable as

This paper is organized as follows. In Sec. I, we give aa physical quantity. A very useful fact for our later purposes
simple account of the scale invariance of the classical equas that once one of these trajectories is numerically obtained,
tions of motion. The invariance is actually installed in semi-all the other family members are generated automatically us-
classical wave functions arfduasjcorrelation functions. We ing a simple set of arithmetic operations.
apply this method, called the renormalized semiclassical Incidentally, for a magV,, satisfying
quantization, to selected examples to show how it works in
Sec. IlI. Section IV concludes this paper with some remarks. M, :{q,p.t,E,S} — {aq,a"?p, a2, o E, o' ™25}, (8)

it is obvious that a set dfl={M_,} makes an Abelian group

M such that(i) M Mg=MsM,=Mze M, (i) M (MzM,)

=(MMpgM,, (i) 1=M; (the identity element and (iv)
First, we briefly review a scale invariance associated withV-'=M ,-1.

classical trajectories that arise from a rescalable Hamiltonian

[5]. We then incorporate this scaling procedure to a semiclas-

sical wave function and an associatéguasjcorrelation

Il. CLASSICAL SCALING INCORPORATED
INTO SEMICLASSICAL THEORIES

B. Scaling property incorporated into semiclassical theory

function. 1. Introduction of the scale invariance
to the semiclassical kernel
A. Scaling property of the classical equations of motion We now introduce the above scale invariance of classical

Let us consider a potential function that iskéh-order ~mechanics into the semiclassical kernel and the relevant cor-
homogeneous polynomial in the coordinates satisfying delation function. First let us consider the semiclassical Feyn-
scaling property such that man kernel in the initial value representati@+8] (see Refs.
[9-12 for the relevant progre$s

U(axXy, aXp, ..., a%p) = aXU(Xg, Xg, ..., %), 2)
wherea is a constant. The canonical Hamiltonian Ked@,Gort) = (27-rih)‘N/2f Sq-q) Iq |
S 3 [} (9 p
2 0
Pi
H(G,p) = 2 o=+ U(Xy, X, 0, %) &) i N
Com RN X exp(%S(qt,qo,t) - iw5t>dpo, 9)

is considered throughout this paper. A simple scaling trans-

formation ing andt in such a way thatj— aq,t— gt scales  whereSis the classical action function ang is the Maslov

all the momenta by a facta/ 8 and the associated kinetic index in this representation. The semiclassical wave function
energy is also changed by a factei/ 82. Since the potential at a desired time is obtained with the kernel

energy is multiplied by*, the following relation betweern

and g,
, Vg, = J d6gKsd 0,90, ) ¥ (qo, 0), (10

L =dk or B=at e, (4)

P
B and the associated semiclassical correlation function is writ-
leaves the Hamiltonian unchanged except for a faetd3?>.  ten as
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12 as long as the time leng#{t, «) to produce the copied tra-
jectory

9%
J

(W(O)|W(t) = (2min) ™V f P’ (a) ¥ (qo)

“ exp(%smt,qo,t) _ iw%)dqodpo. 1D (a,p,s(t, ) — (ag,a2p,1). (17)

Under this understanding, we simply writé ¥?s(t, «) ast
The Fourier transform of it gives an energy spectrum assomn what follows such that
ciated with this wave function—that is,

i Kedag, aqg,t) = (Zﬂiﬁ)_lef 8aq - aqy) _I(aG)_ "
P(E) = f dt(‘I’(O)I\I’(t»eXp{%Et] : (12) se T o V15 (@)
i A
Let us consider a rescalable system with a potential func- X exp(l—S(aqt,aqo,t) - iqr—t)d(ak’zpo).
tion of the degree of homogeneiky The similarity transfor- h 2
mation of a geometry in the extended phase space is induced (18

as in Egs.(5), (6), and(7). If trajectories in the kernel, Eq.

(9), are transformed as above, the kernel is accordingly transs-Cale invariant, the phase teifthe exponential functionis

It is obvious that even if the classical quantities are all

formed to not, since the Planck constant is not rescaled. Therefore the
. kernel itself is not scale invariant. Let us rewrite the kernel in
Ksd @q, ago, a'™?t) = (2mif) N2 J dlaq = aq,i-wz) Eq. (18) symbolically as
J (i) | M K&La,00.t) = Ksd @, agp,t), (19
9 (a?py)

which is a kernel representing the scaleUsing this kernel

i we define the following wave packet st 1)
X eX%I%S(aqal—klzt,aqo,al_klzt) ¢ P S CRY

Yedg,t) = f d(a0o)Ks{0,Go,t) W (ad)p, 0), (20)

N l-wi2

—im

)d(aklzpo)- (13)

which also represent a wave packet at the scalev.ofo

Here in this expression, an exact copy of a reference trajeg;iiq 5 wave packet that is scale invariant one may integrate

tory in the extended phase space is made use of—that is, W (q,t) over the scaling parameter to pick the entire in-

(@,p,b) — (ag,a¥?p, at™2t). (14) fﬁrmation from all the(mathematically possible scales such
that
Any copied trajectory has an exact one-to-one correspon-
dence with the original one. However, in order to evaluate * *
the correlation function as in E¢l2), the time should not be Dsda,t) = f da¥s(a,t) :f daJ d(ado)Ks{(d,do, )
scaled asy' 2t but is to be kept td. Define a times(t, @) so 0 0
as to satisfy XV (agp,0). (21

o 2s(t,a) =t. (15  Itis easy to show that this new wave function is also scale

. . . invariant up to a constant, since
The reference trajectory is required to run as long(asy) P

to generate a scaled path of the time length. dthe kernel 1
we need in place of Eq13) is now D (yg,t) = —f
YJo

e}

1
d(ya)Wic(a,t) = :y@sc(q,t)- (22)

Ked aq, e, t) = (2mif) V2 f g — a1-+w2g o) A time correlation function of a wave packgtg(q,t) at

the scale ofa is

d (aqal‘klzs(t,a)) L2

9 (a?py)

(YO W) (23

i 1o _If the co_mplete set of classical trajectories could be sampled
X ex %S(aqal'klzs(t,a)!aq@a s(t,a)) in practice, the resultant spectrum should not depend on the
scaling parameter. However, the reality is far from this ideal
o NalW2g(t ) W2 situation. On the contrary, it is quite often not easy to pick
—lm 2 d(apo)- (16) good trajectories as we stated in the Introduction. Thus, mak-
ing use of a set of reference trajectories, one can extend the
We intentionally leave the suffie’™¥?s(t, @) instead oft to  range of sampling space by scanning the scaling parameter
remind the reader that the reference trajectory should be rusuch that
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fw 2. Introduction of the scale invariance to the action

da{W(0)|Pe(t)). (249 decomposed function
0
We begin with the following action decomposed function

L . . . . . (ADF ifi the initial moment f classical tra-
This is a semiclassical correlation function to be Founer-(ector)iesspﬁ%.ed by the al momentuip, of classical tra

transformed. The merit of this procedure is obvious: TheI
effect of infinitely many associated classical paths can be
readily taken into account once a classical trajectory is found Vo (ab) :f dgo8(q - (o, Po)) F (o, 0)
numerically. The more difficult is a classical dynamics under

1/2

a
aq

study, the more significant becomes this theoretical advan- i i M
tage. X exp — S0, Po,t) = —— |, (28)
. . f 2
In practice, however, one cannot carry out the integral

over the scaling parametenn the range of0, ], thher 't. .. where the derivativelg,/ dq, is taken under the fixed initial
is a usual practice to make a wave packet within a f'r"temomenturrpo, S, is the classical action function that satisfies
rangel ay, ap] such that the Hamilton-Jacobi equation as tRgtype generating func-
tion of Goldstein[16], and M is the Maslov index in this
ap.a0] a N representation which counts the number of zeros of the Jaco-
D “2(q,t) :f daWe(a,t). (25 pian determinantig,/dq, up to the degeneracy. The way of
“ constructing ADF and its general properties, merits, limita-
tion, and so on should be referred to Rg#17).
By choosing an appropriate ranfe;, a,], one can produce If paths constituting the ADF are rescaled by a parameter
a wave packet in a corresponding range of the classical enx and other variables are changed as in E§gsand(7), the
ergy to make an efficient calculation of the eigenvalues ofaccordingly transformed ADF is written as
interest. Similarly the correlation function is also taken in a

finite range: W (0,t) = Wz, (ag, @' s(t, )
@ = | d(adg) (g — Gtz ) ado, @/*po))
f da(WE(0) WE(D). (26) f e
" _ _ 9 (aGuizgy,m) | V2
Formally the above procedure is good enough for practi- XF(aqo,0) TQ)
cal applications as far as the introduction of the scaling in- 0
variance is concerned. However, we do not actually resort to i W 1K
the standard semiclassical Feynman kernel in the following X ex gsz(aqal‘k’zs(t,a)v“ Po, = *s(t, )
part of this paper, since quite often it fails to give a good _
resolution of spectrum in the domain of classical chaos. The imM (aQo, ada1-k2g(t o))
reason for this difficulty is now well known that the ampli- - 2
tude factor|dq,/ dpo|*'? appearing in Eq(11) becomes expo-
nentially large as time proceeds in a form zf d(agy) 8(aq - gy g, @2py))
K 9 (aqy |1
aqdd 1’2~exp<—t), 27 XF(ag,0)| ——=
|90/ ol 5 (27) (ato,0)| - (a0
i imM(aqg, aqy)

whereK is the so-called local Liapunov entropiy3]. A Fou- X exp{%sz(aqt, a?po,t) - 5 |
rier transform of the concomitant exponential increase of the
correlation function results in a very bad resolution of a spec- (29)

trum due to the Lorentzian widths depending on the magni- . . . .

tude ofK. Recently a class of semiclassical quasicorrelationVe integrate this semiclassical wave function over the scal-
functions has been proposed for the energy quantization df9 parameterx:

chaos, with which the exponentially diverging amplitude fac-

tor is not associatefll4,15. It is confirmed that this quasi- _ a

correlation function, called the amplitude-free quasicorrela- Pp(A) = J daquo(q’t)' (30)

tion function type II(AFC-Il) [15,24, is extremely powerful

in the practical quantization of chaotic systems. It can beAgain this wave function is scale invariant, since it is a

readily applied to multidimensional systems having a generisimple “sum” over the entire range of the scaling parameter.
potential of more than two dimensions. In what follows We call it the renormalized ADF.

therefore, we use the AFC-II to examine the validity and The scale-invariant amplitude-free quasicorrelation func-
effects of the scale invariance. tion based on thei’go(q,t) is
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is not associated with the amplitude factor in contrast to the
Cpo(—t,t)=f da(Wp (= 0[Wp (1) kernel that hagdg,/dpy| 2 in Eq. (11), which grows expo-
nentially as time proceeds and thereby hampering the reso-
. lution of the spectrum. Therefore it is possible to appjyt)

:f daf J d0o1dGood @G- ~ aG)F (aoy, 0) not only to regular systems but to highly chaotic ones. Com-
parison between the AFC’s and the kernel-based correlation
function has been made in a detail &b]. Now, we are ready
to apply the renormalized AFC to one- and two-dimensional
i rescalable systems and show how effectively it works. Al-
xexp| — —Sy(aq-y, @?pg, — t) though, at a first glance, the integration over éheoordinate

h in Eq. (34) is redundant, this is not the case. We will explain
this aspect below in a detail with the help of numerical re-

i
]exp[ %%(aqt, a?py,t) sults.

1/2* 1/2

d0-¢
d Qo1

90
d o2

XF(ago, 0)

, 1mM(adoy, ag-)

2
_ i7M(adg ag) (31) ll. PRACTICAL APPLICATION TO RESCALABLE
2 ' HAMILTONIANS

in which the interference at all possible scales is taken into This section is devoted to applications of the renormalized
account(Note that the correlation is taken betweesnd -t,  AFC to a couple of selected systems whose Hamiltonians are

but not 0 and.) scalable. In all cases we set the mass of particles to unity
To improve this quasicorrelation, we further proposed anwithout loss of generality. In both one- and two-dimensional
other amplitude-free quasicorrelation function I1[4§] cases, we chosE(qg,0) to be the Gaussian wave packet de-
scribed above. We performed the practical calculations of the
C, () =fd%|F(Qt,0)F(QO'0)| energy spectra with the following procedur@) Calculate
one reference trajectofpne set of trajectorigstarting from

i T a certain initial conditio(s) and store the time evolution data
xexp —Si(G, o) —i-M(do,@) |- (320 of the coordinate, the action integral, and the Maslov index.
h 2 . : . i
(i) Generate copies of the reference trajectory by the scaling
The momentump, at t=0 should be selected to be zero, procedure described abowgii) Compute the renormalized
which picks only the so-called turn-back orbits as samplingAFC with Eq. (34) in terms of these copies along with the
paths [15]. The functional form of a wave packet to be reference one and evaluate its associated spectrum by Fourier

propagated is usually chosen as a Gaussian function transformation over the time. The above procedure is essen-
_ : 2 tially the same as preparing a number of initial wave packet
FA(0,0) = exd = Mg -0, (33) having geometrically the same shape in the configuration

This rather sharp Gaussian function imposes the condition gfpace at a time. In this way, it is possible to calculate the
weak periodicity on the turn-back orbifd5]. Our desired semiclassical wave packets in a variety of sizes. To keep the
correlation function that takes account of the scaling prop+enormalized ADHEG(. (30)] exactly scale invariant, the in-

erty is tegration over the scaling parametehas to be taken theo-
retically from O to +o. However, since it is impossible to
Crelt) =J daf d(at)|Fy.2(aty, O F,,.2( o, 0)| carry out the integral of in the range of0,%] in numerical
calculations, we approximate it in terms of a quadrature over

i - a limited range ot (see below. As shown below, the choice
xexp{—sl(aqt,aqo,t) - i—M(aq, aqt)] of the range of the scaling parameter is practically important
h 2 to take a good account of quantum interference among self-
(34)  similar trajectories.

In the calculation of the time evolution of classical trajec-
{ories and the stability matrix, we used the locally analytic
Integrator[18], which is accurate and fast to solve the ordi-
nary differential equations.

which we call the renormalized AFC in the following. Notice
that we scale the exponent of the initial Gaussian such tha

A
Fya2(ado,0) = eXp[— ~(aty- aqc)z} = ex - Mdo— 90?].
(35 A. x*type potential

This is a requirement that the Gaussian function should have First we F:OHSIdeI’ the following Hamiltonian with a quar-
the same size in the space of the reference trajectories, if s potential:

scaled trajectoriebaq} are scaled back to the original space 1,1

as{aaq}. In the quasicorrelation function, E(g4), we can H=op"+ ZX4' (36)

thus impose a coherent quantum interference between the

phases arising from infinitely many copied trajectories. As inThis simple system is scalable and yet anharmonic, which is
the original AFC-Il, the quasicorrelation function of E§4)  nice to begin with. If the coordinate and time are transformed
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N e
M. | 1T
| 2M‘”thlsiiMLHHljll S

E FIG. 2. (Color onling A classical trajectory in phase space for

the potential —1|/&. The energy i€£=-0.1. The appearance of in-

FIG. 1. (Color onling (Green and dotted lingEnergy levels finity at x=0 makes a characterisitic geometry of the paths.

obtained with the wave packet dynamics for the potent&i.

(Red Energy levels obtained with the renormalized AFC, which is (More accurate values beyond this limit can be obtained in
based on only one reference classical trajectory of the initial conditerms of a simple methofd 9], which actually has been used
tion (X, Po)=(1.0,0. in this table) Although the resultant accuracy depends on the
number of sampling points in a given parameter space
[aq,a5], the agreement observed in Fig. 1 is almost perfect
in this resolution. Since the present method does not run
many trajectories, the associated calculations are by far
easier and less time consuming. Note that we can obtain in
principle all the energy levels from only one classical trajec-
tory by extending the range af.

as x— ax andt— o™, the equation of motion is left un-
changed and the Hamiltonian is transformed as

oL den (L 4[}(d_x>2 1 ]_ 4
H ‘2<d(a-1t)> +glent=at Sl ]+ ¢ =atH.

(37)

The momentum, the energy, and the action integral are trans-
formed asp— o?p,E— «°E, and S— o°S. Here we set the
Planck constant=0.1. The renormalized AFC has been cal-
culated using only one referen¢get arbitrary classical tra-
jectory whose initial condition is(x,,po)=(1.0,0 and E  lomb potential €*/|x|, wheree is the electric charge arls|
=0.25. We set the scaling parameteto be in a rangg1.0, is the distance from the proton. The quantum energy levels of
3.0], which is divided into 2000 tiny subintervals to sample the one-dimensional hydrogen atom have been calculated
the scaled 2000 paths and to carry out the quadraturecaver analytically by Loudon[20]. It is shown that the one-
The energy range of those scaled trajectories is flém dimensional and three-dimensional hydrogen atoms have
=0.25 toE=20.25. common energy levels, which are
In Fig. 1 we show the thus obtained semiclassical power me? 1
spectrum(red ong along with the full quantum spectrum En=-———=,
based on a wave packet propagatigmeen dotted lines 2k n

Table | lists the estimated eigenvalues with the presenjnherem, denotes the mass of the electi@re do not use the
quantum wave packet method and the EBK condition. Sincgyteger.

the renormalized AFC and quantum wave packet propagation \we considered the one-dimensional Coulomb system
make use of the fast Fourier transforiFT), the energy

resolution is limited to 0.000 48 in our choice of time length. Y= 1, 1
2 K

B. One-dimensional Coulomb potential

Next we consider a “one-dimensional hydrogen atom.” It
consists of an electron moving in the one-dimensional Cou-

(38)

(39

TABLE |. Eigenvalues of the one-dimensional quartic potential

4/ Here we use atomic unité =m,=e=1). In the quantum me-

chanical treatment, Loudon set a small cutoff and rounded

a

off the Coulomb potential to remove the singularity at the

n Quantum wave pacl&t EBK Renormalized AFE& .. . . ) .
origin [20]. In our semiclassical treatment, this problem is

10 0.9257 0.9254 0.9254 treated in the following picture. The electron with unit mass

20 2.2584 2.2582 2.2581 comes periodically close to the infinitely massive proton due

30 3.8357 3.8355 3.8356 to the Coulomb attraction. When the electron reaches the

40 5 5981 5 5980 55979 origin with an .inf.initelly _Iarge momen.tun(th.e. electron

50 25131 2 5130 75129 reaches the origin in a finite tinean elastic collision occurs

*The quantum number.

PResolution limit for the energy in this FFT is 0.00048.

there and the electron goes back along the path on which it
has come. An example of a classical trajectory in phase space
is drawn in Fig. 2. Quantizing the area of a phase space
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not close to a quantum eigenvaly®Ve intentionally chose
this condition to illustrate the intrinsic difficultyHowever, a
more serious defect of this result is that one of the peaks has
a large tail in the positive-energy region, where no bound
state can be made. This is a ghost component due to an
insufficient destructive interference among the trajectories
: [4]. As we have already stressed above, both constructive
! and destructive interferences have to be well realized in
! semiclassical calculations. To delete this peak, however, a
! tremendous number of trajectories should be necessary.
|

|

|

I

(2)

S(E)

A

(b)

S(E)

We next show the power spectra, Figgb)3and 3c),
which have been obtained in terms of the renormalized AFC
e of Eq. (34). In doing so, we first generated a single reference

ro trajectory that has an initial conditidixy, pg) =(10.0,0. For
(c) ! the spectrum of Fig.@®), we set the integration range efas

[aq,a,]=[0.1,0.5, which is divided into 4000 pieces to gen-
erate the copies of the reference path. In this way, 4000 tra-
L jectories have been produced operationally in the physical
ranges from x,=1.0 to %X,=5.0 and from E=-1.0 to
20 -15 -1.0 05 00 05 10 15 20 E=-0.2. The exact quantum mechanics gives two eigenval-
E ues atE=-0.5 andE=-0.125 as indicated with th@reen
dotted lines in Fig. 3.

FIG. 3. (Color onling (a) Energy spectra for the potential x|/ As observed very clearly in Fig.(8), the spectrum has
obtained in terms of the normal AFC{IEq. (32)] with 5000 trajec-  peen drastically improved with this simple method. In par-
tories. Panelgb) and(c) show the spectra due to the renormalized ticular, the peak aE=-0.5 has been completely reproduced.
AFC [Eq. (34)] (red liney, which are calculated with a single ref- A|so, the computational time has been dramatically reduced,
erence trajectory and its copies. Fdw the range of the scaling ajthough this single dimensional case is obviously not a good
parameter is from 0.1 to 0.5 and the number of copies is 4000system to demonstrate computational efficiency. Neverthe-
while for (c) the range is from 0.01 to 0.81 and 8000 copies haveless, this spectrum is still contaminated by a small spurious
been used. The time length for the FFT is 262.144 for all thesq)eak’ which suggests again that the Coulombic system is
cases. The resultant energies given in paoghkre —0.498(exact really tough against semiclassical quantization.
value is -0.509 for n=1 and -0.125exact value is -0.125for For a more efficient inclusion of the destructive interfer-
n=2. The green and dotted lines are the analytical solutions ognce, we have widened the integration range of the scaling
guantum mechanical energy for the one-dimensional hydmge@arametera to [ay,a,]=[0.01,0.8]1 and divided into 8000
atom. pieces, which corresponds to the physical interval fogm

=0.1(E=-10.0 to x,=8.1(E=-0.12. As is seen in the
region surrounded by the axis and the trajectory by means panel(c), the resultant spectrum is far better and almost per-
of the EBK quantization condition, we confirmed the validity fect.

S(E)

of the semiclassical quantization. The above comparative study shows that the integration
If the coordinate and time are transformedxas ax and  overa in C(t), Eq.(34), is not redundant with respect to the
t— 32, the Hamiltonian becomes integration ingg but it has an effect to improve the quality of
the correlation function itself: By integration overin Eq.
, 1( d(ax) )2 1 . 1<dx>2 1 ., (34), the central position of the Gaussiap, of Eq. (33), is
2\ d(a?2) lax] o\ gt X also varied. For a fixed AFC-II, the trajectories are sampled

so that they actually mimic the Gaussian function
(400 exd-\(g-q.)?]. Therefore, a bad choice @f, leads to an

inefficient sampling of trajectories and damages the resultant
and other mechanical quantities are transformed pas spectrum. On the other hand, by taking account of the scal-
—aYp, E—a'E, andS— o*?S In Fig. 3 we show three ing explicitly, the sampled trajectorigactually produced by
energy spectra obtained with the normal AFC-Il, E82),  the copying proceduein the scaled scheme, which also
panel(a), and the renormalized AFC, E®4), panelgb) and  shifts the position of the initial Gaussian function as in the
(c). To carry out the calculation of the normal AFC-II, Fig. wavelet transformation, can cover the wider space and ma-
3(a), we choseF,(qgy,0) as a Gaussian as described aboveterialize the better constructive and destructive interferences.
with minimum uncertainty—i.e.\=1/(24)—the center of
which was placed af.=4.0 (the corresponding classical en- ° _ o
ergy withp,=0 is Ey=-0.25. The number of the trajectories For a two-dimensional case, we study the Hamiltonian
actually run is 5000. As is seen, the resultant spectrum is not 1, 1, 1 B, B
good. The Coulomb system is thus difficult even in a one- H= SPct oPy* 5x2y2+ ZX4+ Zy“, (41)
dimensional system. One major reason for this bad result is
that the position of the initial wave packéy.=4.0) was  with 8=0.01. This system is known to be strongly chaotic
actually not good, since this classical eneigy=-0.25 is  and has been studied by many authors. Eckhardt, Hose, and

C. x%?-type potential (quartic potential)
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Pollak examined quantum energies and time-dependent wawystem, a single wave packet dynamics does not reproduce
functions[21]. They made semiclassical estimates of the enthe entire spectral lines in a given energy range. We therefore
ergies of certain states based on an adiabatic separation healculated the correlation functions with use of several wave
tween the motions along the least unstable periodic orbitpackets and obtained their spectral series. The green curves
and those perpendicular to them. Kay applied the semiclasn Fig. 4 are superposition of theggowel) spectra. Besides,
sical initial-value representation of a wave function in termsthe height of the semiclassical spectral lines should not be
of the Herman-Kluk propagatd®?2]. In his procedure, cha- compared with the quantum values anyway, since the AFC
otic trajectories whose accuracy is deteriorated in the semhas already lost information relevant to the absolute value of
classical calculation were removed. Campolieti and Brumethe correlation functior{14,15. An inspection shows that
showed that the energy spectrum of this quartic oscillator caalthough some of the semiclassical energies are in good
be calculated by the method of stationary-phase Monte Carlagreement with the quantum values, the overall agreement is
(SPMQ integration [23]. These semiclassical calculations rather poor. In particular, the high-energy components are
basically showed good agreement with the quantum valuesctually bad. This is not surprising in view of such a small
but a large number of trajectories are required to reduce theumber of trajectories used.
noise. For instance, these authf{i22,23 reported that about Here we make use of the scaling property and the renor-
~5X 10° trajectories were used in their calculations. malized AFC of Eq.(34). For each of 500 trajectories gen-
The primary aim of the present paper is to show how theerated above, we have made 10 000 copies so that the energy
renormalized AFC, Eq(34), works for this rescalable sys- of the center of the wave packél,) ranges fromE=0.3 to
tem, and therefore no comparison with the above semiclass=1.3. Thus 5 000 000 paths in total have been taken into
sical methods are to be made. The scaling property of theccount without much additional labor. As confirmed in the
system is as follows. If the coordinate and the time are transpanel(b), the semiclassical spectruitie red curvghas been
formed asx— ax andt— at, the Hamiltonian becomes dramatically improved. It is remarkable that the high-energy
components show such a better performance without practi-

= }( d(Oﬁ) >2+ }( d(a_)i) >2+}(ax)2(ay)2+é(ax)4 cally generating the actual classical trajectories. The accu-
2\ d(a™) 2\ d(a™) 2 4 racy of the spectrum should depend on the quality and topol-
ogy of the initially sampled reference trajectories and the
+ E( ax)® range of the scaling parameteto be taken. Also the AFC-II
4 we have used in this paper has a range of validity as a semi-
1/dx\2 1(dy\? 1 B B classical theory. However, the validity and advantage of ap-
= 4{-(—) + —(—) 22+ Sxt + —yﬂ plication of the scaling property in any semiclassical theory
2\ dt 2\ dt 4 4 should be distinguished from these specific practices.
= a*H (42

. . IV. CONCLUSION
and other mechanical quantities are transformed pas

— a?p, E— o®E, andS— &®S. Here we set the Planck con-  In this paper, we have investigated the semiclassical en-
stant2=0.1. In the calculation of the Maslov index along ergy spectra for systems having classical scale invariance.
classical trajectories, the propagation of the stability matriX\e have shown a practical procedure to introduce the scale
suffers from serious numerical instability due to the stronginvariance into the semiclassical wave function and(the-
chaos. We therefore used the geometrical evaluation methag)correlation function. Through this procedure the effect of
of the Maslov index, which was devised by the present auguantum interference among the rescaled copies of a single
thors[24]. This method has been shown to be very practicatrajectory is naturally taken into account. Consequently, only
even for multidimensional and/or chaotic systems. We coma small set of reference trajectories actually can bring about a
pare the semiclassical spectrum with that obtained by mearsuge (theoretically infinit¢ number of quantum interfer-

of the quantum wave packet dynamics to show flabne  ences. The numerical examples have demonstrated these
does not have to increase the number of classical trajectoridacts and suggest how to use the scaling procedure in prac-
to remove the noise in the spectrum, &iglusing Eq.(34),  tice. We have studied only the energy quantization in this
energy levels covering a broader range are obtained with paper. However, a similar idea can be readily adopted for

single set of trajectories. more general semiclassical purposes such as the calculations
The Gaussian function of E¢33) to carry out our semi- of wave functions.
classical calculations is centered @t),yy)=(2.939,0.272 Although the present paper is somewhat involved in a

(E=0.509, and A=1/(2h). We first perform the normal technical aspect of semiclassical theory, neither the accuracy
AFC-II calculations without use of the scaling property. Herenor sampling technique in Monte Carlo integrations has been
500 classical trajectories are generated in terms of the impopeur main concern. Rather, our interest in the scale-invariant
tance sampling to mimic this Gaussian function. The initialsemiclassical theory originated from the study of thighly
momentum of all these trajectories is set to zgy0. The  chaotig classical motion in Coulomb three-body systems
resultant spectrum is shown in Fig(a# (red curvg along such as H' (p*p*e’). Not only are these systems strongly
with the spectrum based on the full quantum wave packethaotic but also it is generally difficult to find a sufficient
dynamics(green and dotted curyeSince there are different number of classical trajectories that are bound to represent
dynamical origins that give birth to the spectral lines in thisthe molecule state. It is virtually impossible for an actual
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FIG. 4. (Color (a) Energy spectrum obtained with the normal AFCFHq. (32)] (red and solid ling for the potentialx?y?/2
+0.0025x*+y*). Here 500 classical trajectories are picked with an importance sampling technique to mimic the functior3s) Eihe
energy of the center is 0.505 and:1/(2%)]. (b) Energy spectrum obtained with the renormalized AEQ. (34)] (red and solid ling The
same 500 classical trajectories as above along with their rescaled copies have been used in the energy rarge3roni.3(see text
The green and dotted curves represent quantum sp@eteathe tejt

random sampling technique to pick trajectories from the onedamental question. We will report the results of the semiclas-
parameter families of such bound trajectories, since the meaical quantization ofp"p*e”) in terms of the renormalized
sure of these families is generally very small in phase spac@FC elsewherg25].

Under such a situation, it is extremely difficult to realize

sufficient constructive and destructive interferences to quan- ACKNOWLEDGMENTS
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