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A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical
Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic
potential can have a scale invariance in its extended phase space(phase space plus time). Consequently,
infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of
a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence
of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above
sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their
own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among
themselves to produce a quantized spectrum.
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I. INTRODUCTION

Semiclassical quantization of Coulombic three-body
problems, such as the He atomsp+e−e−d, is an extremely
interesting and difficult problem. We have been studying the
all-particle dynamics of H2

+ sp+p+e−d and its muon substitu-
tion of electronssp+p+m−d in terms of a semiclassical theory
to examine the validity of the Born-Oppenheimer approxi-
mation, a deeper understanding of chemical bonding, and so
on. The primary target there is simultaneous quantization of
vibronic states. In this problem, two very difficult and inter-
esting problems of classical-quantum correspondence appear
explicitly. One is the problem of the energy quantization of
chaos, since(not only) the Coulombic three-body system
(but also the three-body problem of the gravity field) be-
comes strongly chaotic very easily. The associated phase
space is mostly filled with chaotic zones. The quantization of
the energy spectrum for a classically chaotic system has long
been one of the central subjects in quantum mechanics and
chaos theory, and we still do not have a “perfect” semiclas-
sical methodology that can be applied to many-body sys-
tems. The other one is less mathematical but more puzzling.
Even if we had a perfect semiclassical method based on clas-
sical trajectories, one faces a difficulty that most classical
trajectories sampled in the range of to-be-quantized energy
are not bounded within the molecular site. Very many trajec-
tories lead to a dissociation of the hydrogen atomsp+e−d and
p+. This behavior is more or less characteristic of the Cou-
lomb problem, since a swing-by motion due to a close en-
counter between the electron and one of the protons can repel
the other proton to the asymptotic region. Beside, many qua-
siseparatrices that distinguish bounded and dissociation mo-
tions are densely packed in the narrow zone of the close
encounter, and therefore this phenomenon is coupled with
chaos. This is not a pathological phenomenon. On the con-
trary, it has been known for a long time that the escaping of

an electron is observed quite frequently in the classical He
system.(Even for the three-body gravity problem a similar
ejection of a constituent body results quite frequently.) So
one is puzzled: How can H2

+ be quantized to have such a
strong chemical bonding with such small number of bounded
classical trajectories?

An easy-going answer is to ascribe the quantization to
unknown “tunneling trajectories.” We do not disagree that
nonclassical path could contribute more or less. However, no
such huge tunneling effect has been actually quantified be-
fore, and no systematic study of which kind of tunneling
paths are involved is available in the literature. Moreover,
our preliminary study of semiclassical quantization using our
semiclassical theory(see below) has successfully produced
the ground-state vibronic level without the use of a tunneling
path. But at the same time, our spectrum suffers from ghost
(spurious) peaks presumably because only a small number of
bounded trajectories are available to realize a good interfer-
ence among quantum phases on the trajectories. For a semi-
classical theory to be able to give a correct spectrum, both
constructive and destructive quantum interferences are re-
quired. In this sense, modern theories of semiclassical quan-
tization such as the Gutzwiller trace formula[1,2] are far
more difficult to apply than the old quantization conditions
like Bohr’s and the EBK conditions[3]. The role of destruc-
tive interference has been studied in detail by Inoue-
Ushiyama and Takatsuka[4]. It is well known that very
many trajectories are necessary to materialize a proper de-
structive interference in numerical calculations.

This paper is an outcome of the above study of quantiza-
tion of H2

+ sp+p+e−d. While troubled with the aforemen-
tioned puzzle, we noticed that the Coulombic potential was
scalable in the sense that it is a homogeneous function of the
coordinates

UsarW1,…,arWNd = a−1UsrW1,…,rWNd, s1d

whererWi are the relevant coordinates anda is a scaling pa-
rameter. For these systems, any single path on this potential
has its infinitely many copies in the extended phase space,

*Electronic address: takahasi@mns2.c.u-tokyo.ac.jp
†Electronic address: kaztak@mns2.c.u-tokyo.ac.jp

PHYSICAL REVIEW A 70, 052103(2004)

1050-2947/2004/70(5)/052103(10)/$22.50 ©2004 The American Physical Society70 052103-1



which are readily reproduced by scaling time, coordinates,
momenta, action integrals, and so on. They are essentially
indistinguishable from one another in classical mechanics,
since they exactly coincide with each other by simply chang-
ing the scales. On the other hand, quantum mechanics does
not allow such a rescaling, since the Planck constant intro-
duces an absolute measure in phase space. These mutually
equivalent trajectories are thereby no longer equivalent in
quantum mechanics and make different contributions to
quantum interference. What is nice technically is that once a
bounded trajectory is found numerically(with the Monte
Carlo sampling method, for instance), its infinite copies are
generated instantly with use of rescaling.

The present paper is concerned with the methodological
aspect of taking an explicit account of the scaling property in
semiclassical theories. We show a couple of selected ex-
amples of the application, including a system under a one-
dimensional Coulomb interaction and of two-dimensional
strong chaos. An extensive application to H2

+ sp+p+e−d along
with the physical analyses will be reported elsewhere.

This paper is organized as follows. In Sec. II, we give a
simple account of the scale invariance of the classical equa-
tions of motion. The invariance is actually installed in semi-
classical wave functions and(quasi)correlation functions. We
apply this method, called the renormalized semiclassical
quantization, to selected examples to show how it works in
Sec. III. Section IV concludes this paper with some remarks.

II. CLASSICAL SCALING INCORPORATED
INTO SEMICLASSICAL THEORIES

First, we briefly review a scale invariance associated with
classical trajectories that arise from a rescalable Hamiltonian
[5]. We then incorporate this scaling procedure to a semiclas-
sical wave function and an associated(quasi)correlation
function.

A. Scaling property of the classical equations of motion

Let us consider a potential function that is akth-order
homogeneous polynomial in the coordinates satisfying a
scaling property such that

Usax1,ax2,…,axnd = akUsx1,x2,…,xnd, s2d

wherea is a constant. The canonical Hamiltonian

Hsq,pd = o
i

pi
2

2mi
+ Usx1,x2,…,xnd s3d

is considered throughout this paper. A simple scaling trans-
formation inq andt in such a way thatq→aq,t→bt scales
all the momenta by a factora /b and the associated kinetic
energy is also changed by a factora2/b2. Since the potential
energy is multiplied byak, the following relation betweena
andb,

a2

b2 = ak or b = a1−k/2, s4d

leaves the Hamiltonian unchanged except for a factora2/b2.

Thus, a simultaneous scaling

sx1,x2,…,xnd → sax1,ax2,…,axnd s5d

along with

t → a1−k/2t, s6d

with a givena, makes a copy of the original trajectory with
a perfectly similar shape in the extended phase spacesq,p,td
with accordingly transformed momentum, total energy, and
the action integral as follows:

pi → ak/2pi, E → akE, S→ a1+k/2S. s7d

A continuous change of the scaling parameter generates in-
finitely many copies of the “original,” which form a one-
parameter family. This is because the extended phase space
does not have a characteristic size as in fractal geometry.
Hence, any size of the geometry can be equally acceptable as
a physical quantity. A very useful fact for our later purposes
is that once one of these trajectories is numerically obtained,
all the other family members are generated automatically us-
ing a simple set of arithmetic operations.

Incidentally, for a mapMa satisfying

Ma:hq,p,t,E,Sj → haq,ak/2p,a1−k/2t,akE,a1+k/2Sj, s8d

it is obvious that a set ofM =hMaj makes an Abelian group
M such that(i) MaMb=MbMa=MabPM, (ii ) MasMbMgd
=sMaMbdMg, (iii ) I =M1 (the identity element), and (iv)
Ma

−1=Ma−1.

B. Scaling property incorporated into semiclassical theory

1. Introduction of the scale invariance
to the semiclassical kernel

We now introduce the above scale invariance of classical
mechanics into the semiclassical kernel and the relevant cor-
relation function. First let us consider the semiclassical Feyn-
man kernel in the initial value representation[6–8] (see Refs.
[9–12] for the relevant progress)

Kscsq,q0,td = s2pi"d−N/2E dsq − qtdU ] qt

] p0
U1/2

3 expS i

"
Ssqt,q0,td − ip

lt

2
Ddp0, s9d

whereS is the classical action function andlt is the Maslov
index in this representation. The semiclassical wave function
at a desired time is obtained with the kernel

Cscsq,td =E dq0Kscsq,q0,tdCsq0,0d, s10d

and the associated semiclassical correlation function is writ-
ten as
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kCs0duCstdl = s2pi"d−N/2E C*sqtdCsq0dU ] qt

] p0
U1/2

3 expS i

"
Ssqt,q0,td − ip

lt

2
Ddq0dp0. s11d

The Fourier transform of it gives an energy spectrum asso-
ciated with this wave function—that is,

PsEd =E dtkCs0duCstdlexpF i

"
EtG . s12d

Let us consider a rescalable system with a potential func-
tion of the degree of homogeneityk. The similarity transfor-
mation of a geometry in the extended phase space is induced
as in Eqs.(5), (6), and (7). If trajectories in the kernel, Eq.
(9), are transformed as above, the kernel is accordingly trans-
formed to

Kscsaq,aq0,a
1−k/2td = s2pi"d−N/2E dsaq − aqa1−k/2td

3U ] saqa1−k/2td

] sak/2p0d
U1/2

3 expS i

"
Ssaqa1−k/2t,aq0,a

1−k/2td

− ip
la1−k/2t

2
Ddsak/2p0d. s13d

Here in this expression, an exact copy of a reference trajec-
tory in the extended phase space is made use of—that is,

sq,p,td → saq,ak/2p,a1−k/2td. s14d

Any copied trajectory has an exact one-to-one correspon-
dence with the original one. However, in order to evaluate
the correlation function as in Eq.(12), the time should not be
scaled asa1−k/2t but is to be kept tot. Define a timesst ,ad so
as to satisfy

a1−k/2sst,ad = t. s15d

The reference trajectory is required to run as long assst ,ad
to generate a scaled path of the time length oft. The kernel
we need in place of Eq.(13) is now

Kscsaq,aq0,td = s2pi"d−N/2E dsaq − aqa1−k/2sst,add

3U ] saqa1−k/2sst,add

] sak/2p0d
U1/2

3 expS i

"
S„aqa1−k/2sst,ad,aq0,a

1−k/2sst,ad…

− ip
la1−k/2sst,ad

2
Ddsak/2p0d. s16d

We intentionally leave the suffixa1−k/2sst ,ad instead oft to
remind the reader that the reference trajectory should be run

as long as the time lengthsst ,ad to produce the copied tra-
jectory

„q,p,sst,ad… → saq,ak/2p,td. s17d

Under this understanding, we simply writea1−k/2sst ,ad as t
in what follows such that

Kscsaq,aq0,td = s2pi"d−N/2E dsaq − aqtdU ] saqtd
] sak/2p0d

U1/2

3 expS i

"
Ssaqt,aq0,td − ip

lt

2
Ddsak/2p0d.

s18d

It is obvious that even if the classical quantities are all
scale invariant, the phase term(the exponential function) is
not, since the Planck constant is not rescaled. Therefore the
kernel itself is not scale invariant. Let us rewrite the kernel in
Eq. (18) symbolically as

Ksc
a sq,q0,td = Kscsaq,aq0,td, s19d

which is a kernel representing the scalea. Using this kernel
we define the following wave packet stateCsc

a sq,td:

Csc
a sq,td =E dsaq0dKsc

a sq,q0,tdCsaq0,0d, s20d

which also represent a wave packet at the scale ofa. To
build a wave packet that is scale invariant one may integrate
Csc

a sq,td over the scaling parametera to pick the entire in-
formation from all the(mathematically) possible scales such
that

Fscsq,td ; E
0

`

daCsc
a sq,td =E

0

`

daE dsaq0dKsc
a sq,q0,td

3Csaq0,0d. s21d

It is easy to show that this new wave function is also scale
invariant up to a constant, since

Fscsgq,td =
1

g
E

0

`

dsgadCsc
gasq,td =

1

g
Fscsq,td. s22d

A time correlation function of a wave packetCsc
a sq,td at

the scale ofa is

kCsc
a s0duCsc

a stdl. s23d

If the complete set of classical trajectories could be sampled
in practice, the resultant spectrum should not depend on the
scaling parameter. However, the reality is far from this ideal
situation. On the contrary, it is quite often not easy to pick
good trajectories as we stated in the Introduction. Thus, mak-
ing use of a set of reference trajectories, one can extend the
range of sampling space by scanning the scaling parameter
such that
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E
0

`

dakCsc
a s0duCsc

a stdl. s24d

This is a semiclassical correlation function to be Fourier
transformed. The merit of this procedure is obvious: The
effect of infinitely many associated classical paths can be
readily taken into account once a classical trajectory is found
numerically. The more difficult is a classical dynamics under
study, the more significant becomes this theoretical advan-
tage.

In practice, however, one cannot carry out the integral
over the scaling parametera in the range off0,`g. Rather it
is a usual practice to make a wave packet within a finite
rangefa1,a2g such that

Fsc
fa1,a2gsq,td =E

a1

a2

daCsc
a sq,td. s25d

By choosing an appropriate rangefa1,a2g, one can produce
a wave packet in a corresponding range of the classical en-
ergy to make an efficient calculation of the eigenvalues of
interest. Similarly the correlation function is also taken in a
finite range:

E
a1

a2

dakCsc
a s0duCsc

a stdl. s26d

Formally the above procedure is good enough for practi-
cal applications as far as the introduction of the scaling in-
variance is concerned. However, we do not actually resort to
the standard semiclassical Feynman kernel in the following
part of this paper, since quite often it fails to give a good
resolution of spectrum in the domain of classical chaos. The
reason for this difficulty is now well known that the ampli-
tude factoru]qt /]p0u1/2 appearing in Eq.(11) becomes expo-
nentially large as time proceeds in a form

u] qt/] p0u1/2 , expSK

2
tD , s27d

whereK is the so-called local Liapunov entropy[13]. A Fou-
rier transform of the concomitant exponential increase of the
correlation function results in a very bad resolution of a spec-
trum due to the Lorentzian widths depending on the magni-
tude ofK. Recently a class of semiclassical quasicorrelation
functions has been proposed for the energy quantization of
chaos, with which the exponentially diverging amplitude fac-
tor is not associated[14,15]. It is confirmed that this quasi-
correlation function, called the amplitude-free quasicorrela-
tion function type II(AFC-II) [15,24], is extremely powerful
in the practical quantization of chaotic systems. It can be
readily applied to multidimensional systems having a generic
potential of more than two dimensions. In what follows
therefore, we use the AFC-II to examine the validity and
effects of the scale invariance.

2. Introduction of the scale invariance to the action
decomposed function

We begin with the following action decomposed function
(ADF) specified by the initial momentump0 of classical tra-
jectories[17]:

Cp0
sq,td =E dq0d„q − qtsq0,p0d…Fsq0,0dU ] qt

] q0
U1/2

3 expF i

"
S2sqt,p0,td −

ipM

2
G , s28d

where the derivative]qt /]q0 is taken under the fixed initial
momentump0, S2 is the classical action function that satisfies
the Hamilton-Jacobi equation as theF2 type generating func-
tion of Goldstein[16], and M is the Maslov index in this
representation which counts the number of zeros of the Jaco-
bian determinant]qt /]q0 up to the degeneracy. The way of
constructing ADF and its general properties, merits, limita-
tion, and so on should be referred to Refs.[4,17].

If paths constituting the ADF are rescaled by a parameter
a and other variables are changed as in Eqs.(6) and(7), the
accordingly transformed ADF is written as

Cp0

a sq,td = Cak/2p0
„aq,a1−k/2sst,ad…

=E dsaq0dd„aq − qa1−k/2sst,adsaq0,a
k/2p0d…

3Fsaq0,0dU ] saqa1−k/2sst,add

] saq0d
U1/2

3 expF i

"
S2„aqa1−k/2sst,ad,a

k/2p0,a
1−k/2sst,ad…

−
ipMsaq0,aqa1−k/2sst,add

2
G

=E dsaq0dd„aq − qtsaq0,a
k/2p0d…

3Fsaq0,0dU ] saqtd
] saq0d

U1/2

3 expF i

"
S2saqt,a

k/2p0,td −
ipMsaq0,aqtd

2
G .

s29d

We integrate this semiclassical wave function over the scal-
ing parametera:

Fp0
sq,td ; E daCp0

a sq,td. s30d

Again this wave function is scale invariant, since it is a
simple “sum” over the entire range of the scaling parameter.
We call it the renormalized ADF.

The scale-invariant amplitude-free quasicorrelation func-
tion based on theCp0

a sq,td is
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Cp0
s− t,td =E dakCp0

a s− tduCp0

a stdl

=E daE E dq01dq02dsaq−t − aqtdF*saq01,0d

3Fsaq02,0dU ] q−t

] q01
U1/2*U ] qt

] q02
U1/2

3expF−
i

"
S2saq−t,a

k/2p0,− td

+
ipMsaq01,aq−td

2
GexpF i

"
S2saqt,a

k/2p0,td

−
ipMsaq02,aqtd

2
G , s31d

in which the interference at all possible scales is taken into
account.(Note that the correlation is taken betweent and −t,
but not 0 andt.)

To improve this quasicorrelation, we further proposed an-
other amplitude-free quasicorrelation function II as[15]

CIIstd =E dq0uFsqt,0dFsq0,0du

3expF i

"
S1sqt,q0,td − i

p

2
Msq0,qtdG . s32d

The momentump0 at t=0 should be selected to be zero,
which picks only the so-called turn-back orbits as sampling
paths [15]. The functional form of a wave packet to be
propagated is usually chosen as a Gaussian function

Flsq,0d = expf− lsq − qcd2g. s33d

This rather sharp Gaussian function imposes the condition of
weak periodicity on the turn-back orbits[15]. Our desired
correlation function that takes account of the scaling prop-
erty is

Crestd =E daE dsaq0duFl/a2saqt,0dFl/a2saq0,0du

3expF i

"
S1saqt,aq0,td − i

p

2
Msaq0,aqtdG ,

s34d

which we call the renormalized AFC in the following. Notice
that we scale the exponent of the initial Gaussian such that

Fl/a2saq0,0d = expF−
l

a2saq0 − aqcd2G = expf− lsq0 − qcd2g .

s35d

This is a requirement that the Gaussian function should have
the same size in the space of the reference trajectories, if the
scaled trajectorieshaqj are scaled back to the original space
asha−1aqj. In the quasicorrelation function, Eq.(34), we can
thus impose a coherent quantum interference between the
phases arising from infinitely many copied trajectories. As in
the original AFC-II, the quasicorrelation function of Eq.(34)

is not associated with the amplitude factor in contrast to the
kernel that hasu]qt /]p0u1/2 in Eq. (11), which grows expo-
nentially as time proceeds and thereby hampering the reso-
lution of the spectrum. Therefore it is possible to applyCrestd
not only to regular systems but to highly chaotic ones. Com-
parison between the AFC’s and the kernel-based correlation
function has been made in a detail in[15]. Now, we are ready
to apply the renormalized AFC to one- and two-dimensional
rescalable systems and show how effectively it works. Al-
though, at a first glance, the integration over thea coordinate
in Eq. (34) is redundant, this is not the case. We will explain
this aspect below in a detail with the help of numerical re-
sults.

III. PRACTICAL APPLICATION TO RESCALABLE
HAMILTONIANS

This section is devoted to applications of the renormalized
AFC to a couple of selected systems whose Hamiltonians are
scalable. In all cases we set the mass of particles to unity
without loss of generality. In both one- and two-dimensional
cases, we choseFsq,0d to be the Gaussian wave packet de-
scribed above. We performed the practical calculations of the
energy spectra with the following procedure:(i) Calculate
one reference trajectory(one set of trajectories) starting from
a certain initial condition(s) and store the time evolution data
of the coordinate, the action integral, and the Maslov index.
(ii ) Generate copies of the reference trajectory by the scaling
procedure described above.(iii ) Compute the renormalized
AFC with Eq. (34) in terms of these copies along with the
reference one and evaluate its associated spectrum by Fourier
transformation over the time. The above procedure is essen-
tially the same as preparing a number of initial wave packet
having geometrically the same shape in the configuration
space at a time. In this way, it is possible to calculate the
semiclassical wave packets in a variety of sizes. To keep the
renormalized ADF[Eq. (30)] exactly scale invariant, the in-
tegration over the scaling parametera has to be taken theo-
retically from 0 to +̀ . However, since it is impossible to
carry out the integral ofa in the range off0,`g in numerical
calculations, we approximate it in terms of a quadrature over
a limited range ofa (see below). As shown below, the choice
of the range of the scaling parameter is practically important
to take a good account of quantum interference among self-
similar trajectories.

In the calculation of the time evolution of classical trajec-
tories and the stability matrix, we used the locally analytic
integrator[18], which is accurate and fast to solve the ordi-
nary differential equations.

A. x4-type potential

First we consider the following Hamiltonian with a quar-
tic potential:

H =
1

2
p2 +

1

4
x4. s36d

This simple system is scalable and yet anharmonic, which is
nice to begin with. If the coordinate and time are transformed
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as x→ax and t→a−1t, the equation of motion is left un-
changed and the Hamiltonian is transformed as

H8 =
1

2
S dsaxd

dsa−1td
D2

+
1

4
saxd4 = a4F1

2
Sdx

dt
D2

+
1

4
x4G = a4H.

s37d

The momentum, the energy, and the action integral are trans-
formed asp→a2p,E→a4E, andS→a3S. Here we set the
Planck constant"=0.1. The renormalized AFC has been cal-
culated using only one reference(yet arbitrary) classical tra-
jectory whose initial condition issx0,p0d=s1.0,0d and E
=0.25. We set the scaling parametera to be in a range[1.0,
3.0], which is divided into 2000 tiny subintervals to sample
the scaled 2000 paths and to carry out the quadrature overa.
The energy range of those scaled trajectories is fromE
=0.25 toE=20.25.

In Fig. 1 we show the thus obtained semiclassical power
spectrum(red one) along with the full quantum spectrum
based on a wave packet propagation(green dotted lines).
Table I lists the estimated eigenvalues with the present
method for selected states along with those given by the
quantum wave packet method and the EBK condition. Since
the renormalized AFC and quantum wave packet propagation
make use of the fast Fourier transform(FFT), the energy
resolution is limited to 0.000 48 in our choice of time length.

(More accurate values beyond this limit can be obtained in
terms of a simple method[19], which actually has been used
in this table.) Although the resultant accuracy depends on the
number of sampling points in a given parameter space
fa1,a2g, the agreement observed in Fig. 1 is almost perfect
in this resolution. Since the present method does not run
many trajectories, the associated calculations are by far
easier and less time consuming. Note that we can obtain in
principle all the energy levels from only one classical trajec-
tory by extending the range ofa.

B. One-dimensional Coulomb potential

Next we consider a “one-dimensional hydrogen atom.” It
consists of an electron moving in the one-dimensional Cou-
lomb potential −e2/ uxu, wheree is the electric charge anduxu
is the distance from the proton. The quantum energy levels of
the one-dimensional hydrogen atom have been calculated
analytically by Loudon [20]. It is shown that the one-
dimensional and three-dimensional hydrogen atoms have
common energy levels, which are

En = −
mee

2

2"

1

n2 , s38d

whereme denotes the mass of the electron(we do not use the
reduced mass for a comparison below) and n is a positive
integer.

We considered the one-dimensional Coulomb system

H =
1

2
p2 −

1

uxu
. s39d

Here we use atomic unitss"=me=e=1d. In the quantum me-
chanical treatment, Loudon set a small cutoff and rounded
off the Coulomb potential to remove the singularity at the
origin [20]. In our semiclassical treatment, this problem is
treated in the following picture. The electron with unit mass
comes periodically close to the infinitely massive proton due
to the Coulomb attraction. When the electron reaches the
origin with an infinitely large momentum(the electron
reaches the origin in a finite time), an elastic collision occurs
there and the electron goes back along the path on which it
has come. An example of a classical trajectory in phase space
is drawn in Fig. 2. Quantizing the area of a phase space

FIG. 1. (Color online) (Green and dotted lines) Energy levels
obtained with the wave packet dynamics for the potentialx4/4.
(Red) Energy levels obtained with the renormalized AFC, which is
based on only one reference classical trajectory of the initial condi-
tion sx0,p0d=s1.0,0d.

TABLE I. Eigenvalues of the one-dimensional quartic potential
x4/4.

na Quantum wave packetb EBK Renormalized AFCb

10 0.9257 0.9254 0.9254

20 2.2584 2.2582 2.2581

30 3.8357 3.8355 3.8356

40 5.5981 5.5980 5.5979

50 7.5131 7.5130 7.5129

aThe quantum number.
bResolution limit for the energy in this FFT is 0.00048.

FIG. 2. (Color online) A classical trajectory in phase space for
the potential −1/uxu. The energy isE=−0.1. The appearance of in-
finity at x=0 makes a characterisitic geometry of the paths.
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region surrounded by thep axis and the trajectory by means
of the EBK quantization condition, we confirmed the validity
of the semiclassical quantization.

If the coordinate and time are transformed asx→ax and
t→a3/2t, the Hamiltonian becomes

H8 =
1

2
S dsaxd

dsa3/2td
D2

−
1

uaxu
= a−1F1

2
Sdx

dt
D2

−
1

uxuG = a−1H

s40d

and other mechanical quantities are transformed asp
→a−1/2p, E→a−1E, andS→a1/2S. In Fig. 3 we show three
energy spectra obtained with the normal AFC-II, Eq.(32),
panel(a), and the renormalized AFC, Eq.(34), panels(b) and
(c). To carry out the calculation of the normal AFC-II, Fig.
3(a), we choseFlsq0,0d as a Gaussian as described above
with minimum uncertainty—i.e.,l=1/s2"d—the center of
which was placed atqc=4.0 (the corresponding classical en-
ergy withp0=0 isEcl=−0.25). The number of the trajectories
actually run is 5000. As is seen, the resultant spectrum is not
good. The Coulomb system is thus difficult even in a one-
dimensional system. One major reason for this bad result is
that the position of the initial wave packetsqc=4.0d was
actually not good, since this classical energyEcl=−0.25 is

not close to a quantum eigenvalue.(We intentionally chose
this condition to illustrate the intrinsic difficulty.) However, a
more serious defect of this result is that one of the peaks has
a large tail in the positive-energy region, where no bound
state can be made. This is a ghost component due to an
insufficient destructive interference among the trajectories
[4]. As we have already stressed above, both constructive
and destructive interferences have to be well realized in
semiclassical calculations. To delete this peak, however, a
tremendous number of trajectories should be necessary.

We next show the power spectra, Figs. 3(b) and 3(c),
which have been obtained in terms of the renormalized AFC
of Eq. (34). In doing so, we first generated a single reference
trajectory that has an initial conditionsx0,p0d=s10.0,0d. For
the spectrum of Fig. 3(b), we set the integration range ofa as
fa1,a2g=f0.1,0.5g, which is divided into 4000 pieces to gen-
erate the copies of the reference path. In this way, 4000 tra-
jectories have been produced operationally in the physical
ranges from x0=1.0 to x0=5.0 and from E=−1.0 to
E=−0.2. The exact quantum mechanics gives two eigenval-
ues atE=−0.5 andE=−0.125 as indicated with the(green)
dotted lines in Fig. 3.

As observed very clearly in Fig. 3(b), the spectrum has
been drastically improved with this simple method. In par-
ticular, the peak atE=−0.5 has been completely reproduced.
Also, the computational time has been dramatically reduced,
although this single dimensional case is obviously not a good
system to demonstrate computational efficiency. Neverthe-
less, this spectrum is still contaminated by a small spurious
peak, which suggests again that the Coulombic system is
really tough against semiclassical quantization.

For a more efficient inclusion of the destructive interfer-
ence, we have widened the integration range of the scaling
parametera to fa1,a2g=f0.01,0.81g and divided into 8000
pieces, which corresponds to the physical interval fromx0
=0.1 sE=−10.0d to x0=8.1 sE=−0.12d. As is seen in the
panel(c), the resultant spectrum is far better and almost per-
fect.

The above comparative study shows that the integration
overa in Crestd, Eq.(34), is not redundant with respect to the
integration inq0 but it has an effect to improve the quality of
the correlation function itself: By integration overa in Eq.
(34), the central position of the Gaussian,qc of Eq. (33), is
also varied. For a fixed AFC-II, the trajectories are sampled
so that they actually mimic the Gaussian function
expf−lsq−qcd2g. Therefore, a bad choice ofqc leads to an
inefficient sampling of trajectories and damages the resultant
spectrum. On the other hand, by taking account of the scal-
ing explicitly, the sampled trajectories(actually produced by
the copying procedure) in the scaled scheme, which also
shifts the position of the initial Gaussian function as in the
wavelet transformation, can cover the wider space and ma-
terialize the better constructive and destructive interferences.

C. x2y2-type potential (quartic potential)

For a two-dimensional case, we study the Hamiltonian

H =
1

2
px

2 +
1

2
py

2 +
1

2
x2y2 +

b

4
x4 +

b

4
y4, s41d

with b=0.01. This system is known to be strongly chaotic
and has been studied by many authors. Eckhardt, Hose, and

FIG. 3. (Color online) (a) Energy spectra for the potential −1/uxu
obtained in terms of the normal AFC-II[Eq. (32)] with 5000 trajec-
tories. Panels(b) and (c) show the spectra due to the renormalized
AFC [Eq. (34)] (red lines), which are calculated with a single ref-
erence trajectory and its copies. For(b) the range of the scaling
parameter is from 0.1 to 0.5 and the number of copies is 4000,
while for (c) the range is from 0.01 to 0.81 and 8000 copies have
been used. The time length for the FFT is 262.144 for all these
cases. The resultant energies given in panel(c) are −0.498(exact
value is −0.500) for n=1 and −0.125(exact value is −0.125) for
n=2. The green and dotted lines are the analytical solutions of
quantum mechanical energy for the one-dimensional hydrogen
atom.
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Pollak examined quantum energies and time-dependent wave
functions[21]. They made semiclassical estimates of the en-
ergies of certain states based on an adiabatic separation be-
tween the motions along the least unstable periodic orbits
and those perpendicular to them. Kay applied the semiclas-
sical initial-value representation of a wave function in terms
of the Herman-Kluk propagator[22]. In his procedure, cha-
otic trajectories whose accuracy is deteriorated in the semi-
classical calculation were removed. Campolieti and Brumer
showed that the energy spectrum of this quartic oscillator can
be calculated by the method of stationary-phase Monte Carlo
(SPMC) integration [23]. These semiclassical calculations
basically showed good agreement with the quantum values,
but a large number of trajectories are required to reduce the
noise. For instance, these authors[22,23] reported that about
,53105 trajectories were used in their calculations.

The primary aim of the present paper is to show how the
renormalized AFC, Eq.(34), works for this rescalable sys-
tem, and therefore no comparison with the above semiclas-
sical methods are to be made. The scaling property of the
system is as follows. If the coordinate and the time are trans-
formed asx→ax and t→a−1t, the Hamiltonian becomes

H8 =
1

2
S dsaxd

dsa−1td
D2

+
1

2
S dsayd

dsa−1td
D2

+
1

2
saxd2sayd2 +

b

4
saxd4

+
b

4
saxd4

= a4F1

2
Sdx

dt
D2

+
1

2
Sdy

dt
D2

+
1

2
x2y2 +

b

4
x4 +

b

4
y4G

= a4H s42d

and other mechanical quantities are transformed asp
→a2p, E→a4E, andS→a3S. Here we set the Planck con-
stant "=0.1. In the calculation of the Maslov index along
classical trajectories, the propagation of the stability matrix
suffers from serious numerical instability due to the strong
chaos. We therefore used the geometrical evaluation method
of the Maslov index, which was devised by the present au-
thors[24]. This method has been shown to be very practical
even for multidimensional and/or chaotic systems. We com-
pare the semiclassical spectrum with that obtained by means
of the quantum wave packet dynamics to show that(i) one
does not have to increase the number of classical trajectories
to remove the noise in the spectrum, and(ii ) using Eq.(34),
energy levels covering a broader range are obtained with a
single set of trajectories.

The Gaussian function of Eq.(33) to carry out our semi-
classical calculations is centered atsx0,y0d=s2.939,0.272d
sE=0.505d, and l=1/s2"d. We first perform the normal
AFC-II calculations without use of the scaling property. Here
500 classical trajectories are generated in terms of the impor-
tance sampling to mimic this Gaussian function. The initial
momentum of all these trajectories is set to zero,p0=0. The
resultant spectrum is shown in Fig. 4(a) (red curve) along
with the spectrum based on the full quantum wave packet
dynamics(green and dotted curve). Since there are different
dynamical origins that give birth to the spectral lines in this

system, a single wave packet dynamics does not reproduce
the entire spectral lines in a given energy range. We therefore
calculated the correlation functions with use of several wave
packets and obtained their spectral series. The green curves
in Fig. 4 are superposition of these(power) spectra. Besides,
the height of the semiclassical spectral lines should not be
compared with the quantum values anyway, since the AFC
has already lost information relevant to the absolute value of
the correlation function[14,15]. An inspection shows that
although some of the semiclassical energies are in good
agreement with the quantum values, the overall agreement is
rather poor. In particular, the high-energy components are
actually bad. This is not surprising in view of such a small
number of trajectories used.

Here we make use of the scaling property and the renor-
malized AFC of Eq.(34). For each of 500 trajectories gen-
erated above, we have made 10 000 copies so that the energy
of the center of the wave packetsqcd ranges fromE=0.3 to
E=1.3. Thus 5 000 000 paths in total have been taken into
account without much additional labor. As confirmed in the
panel(b), the semiclassical spectrum(the red curve) has been
dramatically improved. It is remarkable that the high-energy
components show such a better performance without practi-
cally generating the actual classical trajectories. The accu-
racy of the spectrum should depend on the quality and topol-
ogy of the initially sampled reference trajectories and the
range of the scaling parametera to be taken. Also the AFC-II
we have used in this paper has a range of validity as a semi-
classical theory. However, the validity and advantage of ap-
plication of the scaling property in any semiclassical theory
should be distinguished from these specific practices.

IV. CONCLUSION

In this paper, we have investigated the semiclassical en-
ergy spectra for systems having classical scale invariance.
We have shown a practical procedure to introduce the scale
invariance into the semiclassical wave function and the(qua-
si)correlation function. Through this procedure the effect of
quantum interference among the rescaled copies of a single
trajectory is naturally taken into account. Consequently, only
a small set of reference trajectories actually can bring about a
huge (theoretically infinite) number of quantum interfer-
ences. The numerical examples have demonstrated these
facts and suggest how to use the scaling procedure in prac-
tice. We have studied only the energy quantization in this
paper. However, a similar idea can be readily adopted for
more general semiclassical purposes such as the calculations
of wave functions.

Although the present paper is somewhat involved in a
technical aspect of semiclassical theory, neither the accuracy
nor sampling technique in Monte Carlo integrations has been
our main concern. Rather, our interest in the scale-invariant
semiclassical theory originated from the study of the(highly
chaotic) classical motion in Coulomb three-body systems
such as H2

+ sp+p+e−d. Not only are these systems strongly
chaotic but also it is generally difficult to find a sufficient
number of classical trajectories that are bound to represent
the molecule state. It is virtually impossible for an actual
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random sampling technique to pick trajectories from the one-
parameter families of such bound trajectories, since the mea-
sure of these families is generally very small in phase space.
Under such a situation, it is extremely difficult to realize
sufficient constructive and destructive interferences to quan-
tize the vibronic energy levels. It was a great mystery for us
why quantum mechanics can describe the bound state of H2

+

easily under such a very poor classical and quantum corre-
spondence.[The situation becomes more and more tough for
electron substituted systemssp+p+m−d and sp+p+p−d.] The
use of the scale invariance may give an answer to this fun-

damental question. We will report the results of the semiclas-
sical quantization ofsp+p+e−d in terms of the renormalized
AFC elsewhere[25].

ACKNOWLEDGMENTS

The authors thank K. Hotta for valuable discussions. This
work has been supported in part by the Grant-in-Aid for
Basic Science(A) and the 21st Century COE Program for
Frontiers in Fundamental Chemistry from the Ministry of
Education, Culture, Sports, Science and Technology of
Japan.

FIG. 4. (Color) (a) Energy spectrum obtained with the normal AFC-II[Eq. (32)] (red and solid line) for the potentialx2y2/2
+0.0025sx4+y4d. Here 500 classical trajectories are picked with an importance sampling technique to mimic the function of Eq.(33) [the
energy of the center is 0.505 andl=1/s2"d]. (b) Energy spectrum obtained with the renormalized AFC[Eq. (34)] (red and solid line). The
same 500 classical trajectories as above along with their rescaled copies have been used in the energy range fromE=0.3 to 1.3(see text).
The green and dotted curves represent quantum spectra(see the text).
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