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Estimation of a classical parameter with Gaussian probes:
Magnetometry with collective atomic spins
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We present a theory for the estimation of a classical magnetic field by an atomic sample with a Gaussian
distribution of collective spin components. By incorporating the magnetic field and the probing laser field as
quantum variables with Gaussian distributions on equal footing with the atoms, we obtain a very versatile
description which is readily adapted to include probing with squeezed light, dissipation, and loss and additional
measurement capabilities on the atomic system.

DOI: 10.1103/PhysRevA.70.052102 PACS nuniber03.65.Ta, 03.67.Mn, 07.55.Ge

I. INTRODUCTION The B field is assumed to point along tlyeaxis, and it hence
causes a Larmor rotation of atomic spins towardszthsis.
External classical perturbations of a quantum systemn |inearly polarized optical probe is transmitted through the
cause changes in the state of the system, and a measuremggg. The linear probe is decomposed into two circular com-
of a suitable observable provides an estimate of the strengffonents, and different couplings to an excited state introduce
of the perturbation. Atoms are excellent probes for the estin phase difference of the two field components and cause a
mation Of, e.g., ClaSSical eleCtI’iC and magnetiC fleldS as Wel#araday rotation of the po'arization proportiona' to the popu_
as for rotations and accelerations of inertial frames. The fortation difference between the atomic, ground states. It is

mal description of such ultrasensitive measurements is quitghe recording of this rotation that enables us to determine the
complicated and has only been formulated recently. Theg fie|d.
main difficulty arises from the fact that the quantum state of \ve will assume that a Gaussian state, fully characterized
the atoms is changed due to both the interaction with thgyy expectation values and covariances, describes the laser
classical perturbation and the measurement process itsglk|d, the atoms, and th field, and we will assume that the
which yields a time series of stochastic outcomes. Quantungaussian character of the state is preserved during the evo-
trajectory theory[1] makes it possible to simulate this sto- |ytion due to the interactions and measurements involved.
chastic process, and descriptions are available which compe penefit from the considerable attention given to the trans-
bine the quantum dynamics and the parameter estimatiogyrmation of Gaussian states under interactions and measure-
conditioned on the detection recoi2l3]. Recently, the clas- ments because this class of states permits a detailed charac-
sical theory of Kalman filters was combined with the quan-terization of entanglement issuesee, e.g., Refd6-9) and
tum trajectory theory4,5], and under the assumption that the eferences therejn
quantum state of the atomic system could be treated as a The paper is organized as follows. In Sec. II, we introduce
Gaussian state of oscillatorlike degrees of freedom and thg detail the physical system and its description in terms of
initial uncertainty about an applied magnetic field could alsoeffective position and momentum variables. In Sec. Ill, we
be described by a Gaussian distribution function, analyticajntroduce a joint Gaussian covariance matrix for the quantum
expressions for the precision of the estimate of the field wergystem of atoms and photoasd for the unknown classical
derived. The analysis showed that the probing of the atomignagnetic field, and we obtain a closed-form expression for
system squeezes the atomic observable and results in a mg@&-dynamics. In Sec. IV, we consider the continuous limit of
surement uncertainty that decreases with tinzad atomic  the update formulas and we derive and solve the correspond-
numberN, as 1AN,t*?) and not as 1¥N,t, as one might ing nonlinear matrix Ricatti equation for the system. In Sec.
have expected from standard counting statistics argumentsy, we include effects of atomic decay. In Sec. VI, we address
Here, we present an alternative quantum theory for theéhe improvements by use of squeezed light and direct atomic
estimation of aB field by an atomic probe. The idea is to detection. In Sec. VII, we discuss how the inclusion of the
treat both the laser field used to probe the atoms, the atomgassicalB field as a quantum observable provides a unified

themselves, and the classidalfield as one large quantum treatment of classical parameter estimation and quantum
system. Quantum mechanical state reduction associated witheasurement theories.

measurements then provides directly an estimate for the ex-
pectation value and uncertainty for the quantity of interest.
Our theory arrives easily at final estimation results, and it
readily generalizes to include decay and losses.

As detailed further below, we consider a collection of at- The atoms are effectively described by a collective spin
oms with a spin-1/2 ground state, polarized alongxlais.  operatord=(%/2)=;¢"", and the polarization components of

IIl. CANONICAL VARIABLE REPRESENTATION
OF THE PHYSICAL SYSTEM
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the field are described by a Stokes ve@owith the initially 1 0 0 0O O
spin-polarized sample and the incident field in a linearly po- 0 1.0 0«
larized state, we may tredt and S, as classical variables ’
related to the number of atombl,, and photonsN,, via S;=l —#, 01 00 2
(I =N/ 2 and(S)=7%Ng,/2. In the following we assume 0 0« 10
that N, and Ny, are both much larger than unity. When the 0 00 0 1

field is not too close to resonance, we may eliminate the
excited states, and the effective Hamiltonian of the atomThe covariance matrix, defined as in Refi,8], v;
light interaction can be written ad o 2(g%/#A)J,S, with A =2R&(y;=(y»)(y;=(y;»)) then transforms as
the detuning from resonance. The coupling strength between - T
a single atom and the radiation fidlguantized within a seg- N+ =SS, ®
ment of lengthL=cr and areaA) is g=(\Aw/Acrey)d/# due to the atom-light and the atom-field interaction. In the
with d the atomic dipole moment arftw the photon energy. Gaussian approximation, the system is fully characterized by
It is convenient to introduce effective dimensionless positiorthe vector of expectation valugg) and the covariance ma-
and momentum operators for the nonclassical co /Jments tfix y. We probe the system by measuring the Faraday rota-
the spin and Stokes vectaxy=J,/\#(3y), Pa=J;/ \ii(Jdy,  tion of the probe field— i.e., by measuring the field observ-
Xph:sy/\/@, and pyr=S,/\A(S) with commutators able x,. Since the photon field is an'lntegral part of the
[%,%1=[pi,p;]=0, [x.,p;]=i5;. The perfectly polarized guantum system, this measurement will change the state of
atomic state and the laser field polarized alongdbection ~ the whole system and, in particular, the covariance matrix of
correspond to the ground state—i.e., a Gaussian minimurfil® residual system of atoms aiifield. We denote the
uncertainty state of the harmonic oscillator associated wit/fovariance matrix by
these variable. (Ay Cy)
The atom-light interaction and the optical detection oc- V= cT B/
curs continuously in time. We first represent this continuous Y
interaction by a discretization of time in small intervaldn  where the 3< 3 submatrixA , is the covariance matrix for the
such an interval, the atoms interact with tNg,=2(S)/%  variablesy,=(B, Xy, Pa)'. B, is the 2< 2 covariance matrix
=®d7 photons in an optical beam segment of duratiowith  for y,=(X,n,Ppn) ', @ndC,, is the 3x 2 correlation matrix for
® the photon flux. The continuous measurement of the field/, andy). An instantaneous measurementxgf then trans-
is correspondingly broken down into individual measure-forms A, as[6-8]
ments on each segment. The continuous limit is achieved , AT
when 7—0 andN,, in each segment gets correspondingly Ay Ay=A,=CymB,m)~C,, )
small. In the limit of smallr, the dynamics is equivalent to where w=diag1,0) and where the inverse denotes the
the application of a coarse-grained Hamiltonian given bymoore-Penrose pseudoinverse, (a$.7) is not invertible.

(4)

Y

y

H7=fix;paiPpn With dimensionless Equation(5) is equivalent to the result for classical Gussian
random variables derived, e.g., in Rgt0]. After the mea-
B =2_92 /@@7:2_92 @}(DTQ,,Z surement, the field part has disappeared, and a new beam
A hoh A h 2 ' segment is incident on the atoms. This part of the beam is not

yet correlated with the atoms, and it is in the oscillator
The free-space coupling constant of light and atoms is smalground state; hence, the covariance majris updated with
and the coarse-grained description will be perfectly valid forA], C/ a 3X 2 matrix of zeros, an®’ =diag1,1).
field segments wittN,, much larger than unity. Due to the Unlike the covariance matrix update, which is indepen-
dependence o], «, is proportional toyr. When we incor- dent of the value actually measured in the optical detection,
porate theB-field coupling to the atomg3BJ, /%, with B the  the vectory) of expectation values will change in a stochas-
atomic magnetic moment, the total effective Hamiltonian istic manner depending on the outcome of these measure-

given by ments. The outcome of the measurementxgn after the
interaction with the atoms is random, and the actual mea-
H7= (K PaPpn+ 1BXa) s (1)  surement changes the expectation value of all other observ-
ables due to the correlations represented by the covariance
with u,=1/hB(\(I)/h)T. matrix. Lety denote the difference between the measurement

outcome and the expectation valuexgf—i.e., a Gaussian
random variable with mean value zero and variance 1/2. The
change ofy;) due to the measurement is now given by

r\ — -1 T
We treat the classicaB-field variable on equal footing = ) =y + Cy(mBm) (. 07, ©®
with the quantum variables. The Heisenberg equations ofvhere we make use of the fact that the measurement,pn
motion for the column vector of the five variabley, only leads to the particularly simple form(#Bm)™
= (B, Xat, Pat: Xph: Ppr) T, Yield y(t+7)=S_y(t) with the trans- =diagB(1,1)™,0), and hence the actual value of the second
formation matrix entrance in the vectdry, 0) is unimportant.

IIl. UPDATE FORMULAS IN THE GAUSSIAN
APPROXIMATION
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The Gaussian state of the system is propagated in time by 10
repeated use of E@3) and the measurement update formulas
(5) and (6). This evolution is readily implemented numeri-
cally, and the expectation value and our uncertainty about the
value of theB field are given by the first entrance in the
vector of expectation valugy;)=(B) and the(1, 1) entrance
in the covariance matrid,(1,1)=2(AB)?.

IV. MATRIX RICATTI EQUATION AND ANALYTICAL
RESULTS

The above discussion specifies how the parameter estima- 0 1 2t[ms]3 4 5
tion can be performed. In the problem at hand, the variable
X5t does not couple t8 andp,, and we are left with a closed FIG. 1. Uncertainty of theB field in pT (1 pT=10"2T) as a
2X 2 system for the reduced covariance matrixBoind p,;. function of time. We use a 2 mhinteraction area, X 10'2 atoms,
V=[2(AB)?,2(ABp,y?; 2(ApaB)?, 2(Ap,)?]. In the limit of 5% 10 photons 5!, ABy=1 pT, 10 GHz detuning, and 852 nm
infinitesimally small steps the update formul@—~(5) trans-  light, appropriate for thé*3C6S;,,(F=4)-6P;,,(F=5)) transition
late into a differential equation on the matrix Ricatti form  with decay rate 3.x 10’ s™* and corresponding atomic dipole mo-
. ment d=2.61x 102 Cm. The effective couplings ar&®=1.83
V(t)=-DV(t) - V() D"=-V(H)EV(t), (7) X 10 standu=8.79x 10* (s pT)~L. Factors of order unity related
. . - to the coupling matrix elements among different states of the actual
with D=[0,0;x,0], E:d'ago,"cz)j ',(:KT/\W’ andu=p,/7. Zoeman sﬂbsgt’ructure are omitted. Thg lower curves are without in-
We solve Eq.(7) by expressing it in terms of two coupled ¢|,sjon of atomic decay, and the upper curves include atomic spon-
linear matrix equationsW=-DW, U=EW+D'U, V taneous emission with a ratg=1.7577 s. The solid (dasheyl
=WU™ [4] and find the analytical solution for the variance curves are for cohererisqueezedy =3) optical probe fieldgsee
of the magnetic field: text).

1+ k%)AB2
AB(t)2= (1 +«VABy

» (8) V. INCLUSION OF ATOMIC DECAY

1+t + %Kz,u,z(A Bo)2t® + éK‘l,u,z(A Bo)’t*
. ) o ) o, Together with the phase shift, there is a small probability
with ABp the initial variance. In the limit ok*t>1, we have  nat the atoms decay by spontaneous emission from the up-
AB(1)?=6/(x*u’?), explicitly giving the 1N and 14° per probe level to one of the twm, ground states. This
scaling also found in Ref5]. occurs with a rate
The lower solid curve in Fig. 1 shows the uncertainty of
the B field as a function of time. It is worth pointing out that

compared with the treatment in R€5], not only the spirit in 24
which we deal withB as a quantum variable but also the 7= E( . 2)'
formal derivation is different. In Ref/5], the Kalman filter A\T4 +A

equation deals with the covariance matrix for the joint esti-

mator of the classicaB field and themean valueof the

atomic spin component along tlzeaxis. The latter variance whereT is the atomic decay width and=\?/(27) is the

is initially zero, because we assume that the mean value igsonant photon absorption cross section. The consequence
initially known to be zero. Our covariance matrix deals with of the decay is a loss of spin polarization. If every atom has
two quantum observables, and neither have a vanishing vari probability .= 77 to decay in timer with equal probabil-

ance in the initial state. . ity into the two ground states, the collective mean spin vector
. We may now go back to Eq6) and derive the stochastic is reduced by the corresponding factal) — (J)(1-7,).
differential equation When the classicak component is reduced this leads to a

_ 5 2 reduction with time of the coupling strengtiks— «,\V1—-7,
d(B(1)) = V2xk(ABpay) “dW1) _(9) and u,— u.\1-7,., which was also discussed in Ref5,9],

for the expectation value of tgfield. HeredW(t)= y\2dtis ~ and the vector of expectation values evolves(@s+7))

a Wiener increment with Gaussian white-noise statisticsL .S (y(t)) with L ,=diag1,V1-7,,v1-7,,1,1).

(dW1))=0, (dW(t)?)=dt. (ABp,)?=3/(x*ut?) in the long- The fraction#, of atoms that have decayed represents a
time limit as determined by the Ricatti equatiér), and it  loss of collective squeezing because its correlation with the
follows that the locking of the value dB), conditioned on other atoms is lost, whereas it still provides a contribution
the measurements, takes place predominantly in the earfi?/4 per atom to the collective spin variance. The mean
stages of the detection process. This is in agreement, ofalue ofJ can be expressed in terms of the mean values of
course, with the rapid reduction of the uncertainty as a functhe No(N,—1) atomic correlationgr,o’, and counting terms;
tion of time. we find that (32— (1-2,)%32)+(h?Ny/4)[1-(1-7,)?].
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Translating this and similar expressions ﬂﬁrand J,Jy into ) (ABg)?
the appropriate formulas for the effective position and mo- ABgg(t)* = 2 - (1)
mentum observables, E(B) generalizes to 1+ 2u?(ABg)%t2 + 5K2M2(A80)2t3
AN This variance is smaller thagm\B(t)]? from Eq. (8), and in
= T, Nat
AL+ 7) =L SHOSL+ (3(t) M-, (100 the long-time limit the variance is reduced by a factor of 4.

for n,<1 with M_=diag0,%,,7,,0,0. The prefactor
N4/ (J,(1)) initially attains the value 2 and increases by the

factor (1-7,)"t in each time step. The effects of measure- In summary, we have described a theory for the estima-
ments on the covariance matrix and the expectation valugon of a classicaB field by an atomic ensemble with a
vector are obtained as in the case without noise, andyfor Gaussian distribution of collective spin components. Our
=0 we regain the noiseless case. theory makes use of results obtained in the study of the clas-
The upper solid curve in Fig. 1 shows the results of thesification and characterization of entanglement in
measurement when noise is taken into account. The covareontinuous-variable systemi8]. In general, the Gaussian an-
ance matrix makes the atomic probe broader, and simultasatz holds for Hamiltonians which are at most second-order
neously, the effective coupling of the atoms to the light fieldpolynomials in the canonical variables, and the Gaussian
and to theB field is reduced, so that the knowledge acquiredcharacter of a system is maintained under physical opera-
in the initial detection stages is preserved but the uncertainttions which are implemented using linear optical elements
AB does not decrease indefinitely. and homodyne measuremefi§. It is clearly convenient to
have a unified formalism that deals with the probing field,
the atomic probe, and the unknovihfield and which by-
passes the need for separate probabilistic arguments to yield
the final estimator. The treatment of the unknoB/field as a
quantum variable is not incompatible with our assumption
the optical field, and it is natural to enquire whether the uséhat_ itis a clas_s|cal parame_ter. We may imagine a canonically
conjugate variable td® having an uncertainty much larger

of polarization squeezed light with a smaller variancepf . X ; ; .
may be utilized to improve the estimate. To analyze this pro-than required by Heisenberg's uncertainty relation and/or ad-

posal, we go back to our update formulas and represent ea&f%%aé;’;f'tﬁz j‘é ?:ﬁ)t];or??st?gg;% Y;’}'égﬁ?éi?gﬁ?;égs_
new segment of the incident field with Gaussian varianced’

. . ical.” Al ne m r h Il classical variabl r

B/ =diag1/r,r) and leave all other operations unchanged.S ca SO, On€ may argue t at_a classical va ables are

4 . . . X actually quantum mechanical variables for which a classical
The result is a reduction of the variance of our estimate

o description suffices, and hence our theory provides the cor-
shown'as the dashed curves n F|.g. .1' The upper df”ISher%ect estimator: quantum mechanics dictates that the quantum
curve is for the case when noise is included. The Ricatt

. . . tate provide all available knowledge about a system, and
equation can be solved in the noiseless case, and the on . s .
. . y estimator providing a tighter bound hence represents ad-
change of the result in E¢8) is that all occurrences of are L : : . :
- ; o . L ditional knowledge equivalent to a hidden variable, and this
replaced byr«“. In the long-time limit, the estimate is im- . . :
roved by the factor T/ Since the optical field is not 'S excluded by quantum theory. It is of course crucial that our
g ueezedyif the time se hentare shortgr than the squeez measurement scheme corresponds to a quantum nondemoli-
sq : 9 : 1€ sq tion (QND) measurement; i.e., we assume that there is not a
ing bandwidth(), we rely on a separation of time scales

Q1< r< uL, k2 for the above update formulas to be valid free evolution of theB field induced by its conjugate variable

and for the Ricatti equation to provide a precise analyticalWhICh may thus remain unspecified. It is also this QND prop-

solution. For the parameters used in Fig. 1, the squeezingty of the measurement scheme that implies the monotonic
bandwidth should be larger than 10 MHz. Effects of finite duction ofAB which is consistent with the classical param-

squeezing bandwith will be analyzed elsewhere. eter estimation(we cannot unlearn what we have already

) . . . learned abouB), unlike, e.g., the uncertainty of the atomic
We can improve our estimate by noting that the covari- . : . .
. - X . Xy variable which must increase wheétp,, is reduced and

ance matrix describes correlations between the atomic ob-h h

servables and thB field, and the uncertainty in the measure- " the atoms under_go spontaneous decay.

ment is linked with the'uncertaint of the atomic observable We expect extensions of the present theory to be
) certainty o . applicable to the description of a variety of experiments

Xo After the optical probing it is in principle possible to

perform a destructivgStern-Gerlach measurement of this aiming at ultra}hlgh precision, including, e.g., atomic CIQCKS'
. . . studies of parity violation, and the detection of gravitational

atomic variable. This can of course only be done once. Thé

. : waves.

formal treatment of measurements in E§) also applies

when the atomic component is being measured, and we can

readily determine the new variance on tBdield estimate.

From the Ricatti equations we know the covariance matrix

A, analytically, and assuming an atomic measurement at L.B.M. is supported by the Danish Natural Science Re-

time t, we obtain search Counci{Grant No. 21-03-0163

VIl. DISCUSSION

VI. IMPROVEMENTS BY USE OF SQUEEZED LIGHT
AND DIRECT ATOMIC DETECTION

The value ofB is estimated by the polarization rotation of
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