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We present a theory for the estimation of a classical magnetic field by an atomic sample with a Gaussian
distribution of collective spin components. By incorporating the magnetic field and the probing laser field as
quantum variables with Gaussian distributions on equal footing with the atoms, we obtain a very versatile
description which is readily adapted to include probing with squeezed light, dissipation, and loss and additional
measurement capabilities on the atomic system.
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I. INTRODUCTION

External classical perturbations of a quantum system
cause changes in the state of the system, and a measurement
of a suitable observable provides an estimate of the strength
of the perturbation. Atoms are excellent probes for the esti-
mation of, e.g., classical electric and magnetic fields as well
as for rotations and accelerations of inertial frames. The for-
mal description of such ultrasensitive measurements is quite
complicated and has only been formulated recently. The
main difficulty arises from the fact that the quantum state of
the atoms is changed due to both the interaction with the
classical perturbation and the measurement process itself
which yields a time series of stochastic outcomes. Quantum
trajectory theory[1] makes it possible to simulate this sto-
chastic process, and descriptions are available which com-
bine the quantum dynamics and the parameter estimation
conditioned on the detection record[2,3]. Recently, the clas-
sical theory of Kalman filters was combined with the quan-
tum trajectory theory[4,5], and under the assumption that the
quantum state of the atomic system could be treated as a
Gaussian state of oscillatorlike degrees of freedom and the
initial uncertainty about an applied magnetic field could also
be described by a Gaussian distribution function, analytical
expressions for the precision of the estimate of the field were
derived. The analysis showed that the probing of the atomic
system squeezes the atomic observable and results in a mea-
surement uncertainty that decreases with timet and atomic
numberNat as 1/sNatt

3/2d and not as 1/ÎNatt, as one might
have expected from standard counting statistics arguments.

Here, we present an alternative quantum theory for the
estimation of aB field by an atomic probe. The idea is to
treat both the laser field used to probe the atoms, the atoms
themselves, and the classicalB field as one large quantum
system. Quantum mechanical state reduction associated with
measurements then provides directly an estimate for the ex-
pectation value and uncertainty for the quantity of interest.
Our theory arrives easily at final estimation results, and it
readily generalizes to include decay and losses.

As detailed further below, we consider a collection of at-
oms with a spin-1/2 ground state, polarized along thex axis.

TheB field is assumed to point along they axis, and it hence
causes a Larmor rotation of atomic spins towards thez axis.
A linearly polarized optical probe is transmitted through the
gas. The linear probe is decomposed into two circular com-
ponents, and different couplings to an excited state introduce
a phase difference of the two field components and cause a
Faraday rotation of the polarization proportional to the popu-
lation difference between the atomicmz ground states. It is
the recording of this rotation that enables us to determine the
B field.

We will assume that a Gaussian state, fully characterized
by expectation values and covariances, describes the laser
field, the atoms, and theB field, and we will assume that the
Gaussian character of the state is preserved during the evo-
lution due to the interactions and measurements involved.
We benefit from the considerable attention given to the trans-
formation of Gaussian states under interactions and measure-
ments because this class of states permits a detailed charac-
terization of entanglement issues(see, e.g., Refs.[6–9] and
references therein).

The paper is organized as follows. In Sec. II, we introduce
in detail the physical system and its description in terms of
effective position and momentum variables. In Sec. III, we
introduce a joint Gaussian covariance matrix for the quantum
system of atoms and photonsand for the unknown classical
magnetic field, and we obtain a closed-form expression for
its dynamics. In Sec. IV, we consider the continuous limit of
the update formulas and we derive and solve the correspond-
ing nonlinear matrix Ricatti equation for the system. In Sec.
V, we include effects of atomic decay. In Sec. VI, we address
the improvements by use of squeezed light and direct atomic
detection. In Sec. VII, we discuss how the inclusion of the
classicalB field as a quantum observable provides a unified
treatment of classical parameter estimation and quantum
measurement theories.

II. CANONICAL VARIABLE REPRESENTATION
OF THE PHYSICAL SYSTEM

The atoms are effectively described by a collective spin
operatorJ=s" /2dois

sid, and the polarization components of
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the field are described by a Stokes vectorS. With the initially
spin-polarized sample and the incident field in a linearly po-
larized state, we may treatJx and Sx as classical variables
related to the number of atoms,Nat, and photons,Nph via
kJxl="Nat/2 andkSxl="Nph/2. In the following we assume
that Nat andNph are both much larger than unity. When the
field is not too close to resonance, we may eliminate the
excited states, and the effective Hamiltonian of the atom-
light interaction can be written asH~2sg2/"DdJzSz, with D
the detuning from resonance. The coupling strength between
a single atom and the radiation field(quantized within a seg-
ment of lengthL=ct and areaA) is g=sÎ"v /Acte0dd/"
with d the atomic dipole moment and"v the photon energy.
It is convenient to introduce effective dimensionless position
and momentum operators for the nonclassical components of
the spin and Stokes vector,xat=Jy/Î"kJxl, pat=Jz/Î"kJxl,
xph=Sy/Î"kSxl, and pph=Sz/Î"kSxl with commutators
fxi ,xjg=fpi ,pjg=0, fxi ,pjg= idi j . The perfectly polarized
atomic state and the laser field polarized along thex direction
correspond to the ground state—i.e., a Gaussian minimum
uncertainty state of the harmonic oscillator associated with
these variable.

The atom-light interaction and the optical detection oc-
curs continuously in time. We first represent this continuous
interaction by a discretization of time in small intervalst. In
such an interval, the atoms interact with theNph=2kSxl /"

=Ft photons in an optical beam segment of durationt, with
F the photon flux. The continuous measurement of the field
is correspondingly broken down into individual measure-
ments on each segment. The continuous limit is achieved
when t→0 and Nph in each segment gets correspondingly
small. In the limit of smallt, the dynamics is equivalent to
the application of a coarse-grained Hamiltonian given by
Ht="ktpatpph with dimensionless

kt =
2g2

D
ÎkJxl

"

kSxl
"

t =
2g2

D
ÎkJxl

"

1

2
Ft3/2.

The free-space coupling constant of light and atoms is small,
and the coarse-grained description will be perfectly valid for
field segments withNph much larger than unity. Due to thet
dependence ofg, kt is proportional toÎt. When we incor-
porate theB-field coupling to the atoms,bBJy/", with b the
atomic magnetic moment, the total effective Hamiltonian is
given by

Ht = "sktpatpph + mtBxatd, s1d

with mt=1/"bsÎkJxl /"dt.

III. UPDATE FORMULAS IN THE GAUSSIAN
APPROXIMATION

We treat the classicalB-field variable on equal footing
with the quantum variables. The Heisenberg equations of
motion for the column vector of the five variables,y
=sB,xat,pat,xph,pphdT, yield yst+td=St ystd with the trans-
formation matrix

St =1
1 0 0 0 0

0 1 0 0 kt

− mt 0 1 0 0

0 0 kt 1 0

0 0 0 0 1
2 . s2d

The covariance matrix, defined as in Refs.[7,8], gi j
=2Reksyi −kyildsyj −kyjldl then transforms as

gst + td = StgstdSt
T, s3d

due to the atom-light and the atom-field interaction. In the
Gaussian approximation, the system is fully characterized by
the vector of expectation valueskyl and the covariance ma-
trix g. We probe the system by measuring the Faraday rota-
tion of the probe field— i.e., by measuring the field observ-
able xph. Since the photon field is an integral part of the
quantum system, this measurement will change the state of
the whole system and, in particular, the covariance matrix of
the residual system of atoms andB field. We denote the
covariance matrix by

g = SAg Cg

Cg
T Bg

D , s4d

where the 333 submatrixAg is the covariance matrix for the
variablesy1=sB,xat,patdT, Bg is the 232 covariance matrix
for y2=sxph,pphdT, andCg is the 332 correlation matrix for
y1 and y2

T. An instantaneous measurement ofxph then trans-
forms Ag as [6–8]

Ag ° Ag8 = Ag − CgspBgpd−1Cg
T, s5d

where p=diags1,0d and where the inverse denotes the
Moore-Penrose pseudoinverse, asspBgpd is not invertible.
Equation(5) is equivalent to the result for classical Gussian
random variables derived, e.g., in Ref.[10]. After the mea-
surement, the field part has disappeared, and a new beam
segment is incident on the atoms. This part of the beam is not
yet correlated with the atoms, and it is in the oscillator
ground state; hence, the covariance matrixg is updated with
Ag8, Cg8 a 332 matrix of zeros, andBg8=diags1,1d.

Unlike the covariance matrix update, which is indepen-
dent of the value actually measured in the optical detection,
the vectorkyl of expectation values will change in a stochas-
tic manner depending on the outcome of these measure-
ments. The outcome of the measurement onxph after the
interaction with the atoms is random, and the actual mea-
surement changes the expectation value of all other observ-
ables due to the correlations represented by the covariance
matrix. Letx denote the difference between the measurement
outcome and the expectation value ofxph—i.e., a Gaussian
random variable with mean value zero and variance 1/2. The
change ofky1l due to the measurement is now given by

ky1l ° ky18l = ky1l + CgspBpd−1sx,0dT, s6d

where we make use of the fact that the measurement onxph
only leads to the particularly simple formspBpd−1

=diag(Bs1,1d−1,0), and hence the actual value of the second
entrance in the vectorsx ,0d is unimportant.
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The Gaussian state of the system is propagated in time by
repeated use of Eq.(3) and the measurement update formulas
(5) and (6). This evolution is readily implemented numeri-
cally, and the expectation value and our uncertainty about the
value of theB field are given by the first entrance in the
vector of expectation valuesky1l=kBl and thes1,1d entrance
in the covariance matrixAgs1,1d=2sDBd2.

IV. MATRIX RICATTI EQUATION AND ANALYTICAL
RESULTS

The above discussion specifies how the parameter estima-
tion can be performed. In the problem at hand, the variable
xat does not couple toB andpat, and we are left with a closed
232 system for the reduced covariance matrix ofB andpat:
V =f2sDBd2,2sDBpatd2;2sDpatBd2,2sDpatd2g. In the limit of
infinitesimally small steps the update formulas(3)–(5) trans-
late into a differential equation on the matrix Ricatti form

V̇std = − DVstd − VstdDT − VstdEVstd, s7d

with D=f0,0;m ,0g, E=diags0,k2d, k=kt /Ît, andm=mt /t.
We solve Eq.(7) by expressing it in terms of two coupled

linear matrix equations Ẇ =−DW, U̇=EW +DTU, V
=WU−1 [4] and find the analytical solution for the variance
of the magnetic field:

DBstd2 =
s1 + k2tdDB0

2

1 + k2t +
2

3
k2m2sDB0d2t3 +

1

6
k4m2sDB0d2t4

, s8d

with DB0
2 the initial variance. In the limit ofk2t@1, we have

DBstd2.6/sk2m2t3d, explicitly giving the 1/Nat
2 and 1/t3

scaling also found in Ref.[5].
The lower solid curve in Fig. 1 shows the uncertainty of

theB field as a function of time. It is worth pointing out that
compared with the treatment in Ref.[5], not only the spirit in
which we deal withB as a quantum variable but also the
formal derivation is different. In Ref.[5], the Kalman filter
equation deals with the covariance matrix for the joint esti-
mator of the classicalB field and themean valueof the
atomic spin component along thez axis. The latter variance
is initially zero, because we assume that the mean value is
initially known to be zero. Our covariance matrix deals with
two quantum observables, and neither have a vanishing vari-
ance in the initial state.

We may now go back to Eq.(6) and derive the stochastic
differential equation

dkBstdl = Î2ksDBpatd2dWstd s9d

for the expectation value of theB field. HeredWstd=xÎ2dt is
a Wiener increment with Gaussian white-noise statistics
kdWstdl=0, kdWstd2l=dt. sDBpatd2.3/sk2mt2d in the long-
time limit as determined by the Ricatti equation(7), and it
follows that the locking of the value ofkBl, conditioned on
the measurements, takes place predominantly in the early
stages of the detection process. This is in agreement, of
course, with the rapid reduction of the uncertainty as a func-
tion of time.

V. INCLUSION OF ATOMIC DECAY

Together with the phase shift, there is a small probability
that the atoms decay by spontaneous emission from the up-
per probe level to one of the twomz ground states. This
occurs with a rate

h = F
s

A
S G2/4

G2/4 + D2D ,

where G is the atomic decay width ands=l2/ s2pd is the
resonant photon absorption cross section. The consequence
of the decay is a loss of spin polarization. If every atom has
a probabilityht=ht to decay in timet with equal probabil-
ity into the two ground states, the collective mean spin vector
is reduced by the corresponding factorkJl→ kJls1−htd.
When the classicalx component is reduced this leads to a
reduction with time of the coupling strengthskt°kt

Î1−ht

andmt°mt
Î1−ht, which was also discussed in Refs.[5,9],

and the vector of expectation values evolves askyst+tdl
=L tStkystdl with L t=diags1,Î1−ht ,Î1−ht ,1 ,1d.

The fractionht of atoms that have decayed represents a
loss of collective squeezing because its correlation with the
other atoms is lost, whereas it still provides a contribution
"2/4 per atom to the collective spin variance. The mean
value ofJz

2 can be expressed in terms of the mean values of
theNatsNat−1d atomic correlationssz

i sz
j , and counting terms;

we find that kJz
2l→ s1−htd2kJz

2l+s"2Nat/4df1−s1−htd2g.

FIG. 1. Uncertainty of theB field in pT s1 pT=10−12 Td as a
function of time. We use a 2 mm2 interaction area, 231012 atoms,
531014 photons s−1, DB0=1 pT, 10 GHz detuning, and 852 nm
light, appropriate for the133Cs(6S1/2sF=4d−6P1/2sF=5d) transition
with decay rate 3.13107 s−1 and corresponding atomic dipole mo-
ment d=2.61310−29 Cm. The effective couplings arek2=1.83
3106 s−1 andm=8.793104 ss pTd−1. Factors of order unity related
to the coupling matrix elements among different states of the actual
Zeeman substructure are omitted. The lower curves are without in-
clusion of atomic decay, and the upper curves include atomic spon-
taneous emission with a rateh=1.7577 s−1. The solid (dashed)
curves are for coherent(squeezed,r =3) optical probe fields(see
text).
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Translating this and similar expressions forJy
2 andJxJy into

the appropriate formulas for the effective position and mo-
mentum observables, Eq.(3) generalizes to

gst + td = L tStgstdSt
TL t +

"Nat

kJxstdl
M t, s10d

for ht!1 with M t=diags0,ht ,ht ,0 ,0d. The prefactor
"Nat/ kJxstdl initially attains the value 2 and increases by the
factor s1−htd−1 in each time stept. The effects of measure-
ments on the covariance matrix and the expectation value
vector are obtained as in the case without noise, and forht

=0 we regain the noiseless case.
The upper solid curve in Fig. 1 shows the results of the

measurement when noise is taken into account. The covari-
ance matrix makes the atomic probe broader, and simulta-
neously, the effective coupling of the atoms to the light field
and to theB field is reduced, so that the knowledge acquired
in the initial detection stages is preserved but the uncertainty
DB does not decrease indefinitely.

VI. IMPROVEMENTS BY USE OF SQUEEZED LIGHT
AND DIRECT ATOMIC DETECTION

The value ofB is estimated by the polarization rotation of
the optical field, and it is natural to enquire whether the use
of polarization squeezed light with a smaller variance ofxph
may be utilized to improve the estimate. To analyze this pro-
posal, we go back to our update formulas and represent each
new segment of the incident field with Gaussian variances
Bg8=diags1/r ,rd and leave all other operations unchanged.
The result is a reduction of the variance of our estimate,
shown as the dashed curves in Fig. 1. The upper dashed
curve is for the case when noise is included. The Ricatti
equation can be solved in the noiseless case, and the only
change of the result in Eq.(8) is that all occurrences ofk2 are
replaced byrk2. In the long-time limit, the estimate is im-
proved by the factor 1/r. Since the optical field is not
squeezed if the time segmentst are shorter than the squeez-
ing bandwidthV, we rely on a separation of time scales
V−1!t!m−1,k−2 for the above update formulas to be valid
and for the Ricatti equation to provide a precise analytical
solution. For the parameters used in Fig. 1, the squeezing
bandwidth should be larger than 10 MHz. Effects of finite
squeezing bandwith will be analyzed elsewhere.

We can improve our estimate by noting that the covari-
ance matrix describes correlations between the atomic ob-
servables and theB field, and the uncertainty in the measure-
ment is linked with the uncertainty of the atomic observable
xat. After the optical probing it is in principle possible to
perform a destructive(Stern-Gerlach) measurement of this
atomic variable. This can of course only be done once. The
formal treatment of measurements in Eq.(5) also applies
when the atomic component is being measured, and we can
readily determine the new variance on theB-field estimate.
From the Ricatti equations we know the covariance matrix
Ag analytically, and assuming an atomic measurement at
time t, we obtain

DBSGstd2 =
sDB0d2

1 + 2m2sDB0d2t2 +
2

3
k2m2sDB0d2t3

. s11d

This variance is smaller thanfDBstdg2 from Eq. (8), and in
the long-time limit the variance is reduced by a factor of 4.

VII. DISCUSSION

In summary, we have described a theory for the estima-
tion of a classicalB field by an atomic ensemble with a
Gaussian distribution of collective spin components. Our
theory makes use of results obtained in the study of the clas-
sification and characterization of entanglement in
continuous-variable systems[8]. In general, the Gaussian an-
satz holds for Hamiltonians which are at most second-order
polynomials in the canonical variables, and the Gaussian
character of a system is maintained under physical opera-
tions which are implemented using linear optical elements
and homodyne measurements[7]. It is clearly convenient to
have a unified formalism that deals with the probing field,
the atomic probe, and the unknownB field and which by-
passes the need for separate probabilistic arguments to yield
the final estimator. The treatment of the unknownB field as a
quantum variable is not incompatible with our assumption
that it is a classical parameter. We may imagine a canonically
conjugate variable toB having an uncertainty much larger
than required by Heisenberg’s uncertainty relation and/or ad-
ditional physical systems, entangled with theB variable, in
which cases theB distribution is indeed incoherent and “clas-
sical.” Also, one may argue that all classical variables are
actually quantum mechanical variables for which a classical
description suffices, and hence our theory provides the cor-
rect estimator: quantum mechanics dictates that the quantum
state provide all available knowledge about a system, and
any estimator providing a tighter bound hence represents ad-
ditional knowledge equivalent to a hidden variable, and this
is excluded by quantum theory. It is of course crucial that our
measurement scheme corresponds to a quantum nondemoli-
tion (QND) measurement; i.e., we assume that there is not a
free evolution of theB field induced by its conjugate variable
which may thus remain unspecified. It is also this QND prop-
erty of the measurement scheme that implies the monotonic
reduction ofDB which is consistent with the classical param-
eter estimation(we cannot unlearn what we have already
learned aboutB), unlike, e.g., the uncertainty of the atomic
xat variable which must increase whenDpat is reduced and
when the atoms undergo spontaneous decay.

We expect extensions of the present theory to be
applicable to the description of a variety of experiments
aiming at ultrahigh precision, including, e.g., atomic clocks,
studies of parity violation, and the detection of gravitational
waves.
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