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We consider the nonrelativistic four-boson system with short-range forces and large scattering length in an
effective quantum mechanics approach. We construct the effective interaction potential at leading order in the
large scattering length and compute the four-body binding energies using the Yakubovsky equations. Cutoff
independence of the four-body binding energies does not require the introduction of a four-body force. This
suggests that two- and three-body interactions are sufficient to renormalize the four-body system. We apply the
equations tdHe atoms and calculate the binding energy of4He tetramer. We observe a correlation between
the trimer and tetramer binding energies similar to the Tjon line in nuclear physics. Over the range of binding
energies relevant téHe atoms, the correlation is approximately linear.
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I. INTRODUCTION esting effects and universal properties that are independent of
) ) ] ) . the details of the interaction at short distances of otdér
Effective theories are ideally suited to describe the low-5~ e.g., there is a shallow two-body bound state with
energy properties of physical systems in a mOde"binding energyB,=%2/(Ma2)+O(l/a), whereM is the mass

independent way. They can be applied to any system that ha he particles. Low-energy observables can generally be

a separation of scales, which can be a fundamental property,qcriped in a controlled expansionlitia. In the two-boson
of the underlying theory or simply a kinematical suppression

i : system, the effective theory reproduces the effective range
The long-distance degrees of freedom must be included dyéxpansion(cf. Refs. [5,6]) but the structure of the three-

namically in the effective theory, while short-distance phys-j,qqn system with large scattering length is richer. In Refs.
ics enters only through the values of a few cogpllng CoNn<7 g it was found that both two- and three-body contact
stants, often called low-energy constants. Effective theoriegqactions are required at leading order for the consistent

are widely used in many areas of physics. Recently, @ Colygnormalization of the three-body system. Interestingly, the

siderable effort was devoted to applying effective field theoepormalization-group behavior of the three-body interaction

ries in nuclear and atomic physics. For overviews of theseq 5qyemed by an ultraviolet limit cycle. This implies that at
programs, see, e.g., Refd—4]. If there is no exchange of |eaqing order in/|al, the properties of the three-boson sys-
mas_s_less particles, any interaction will appear short ranged &, with large scattering length are not determined by two-
sufficiently low energy. One can then use a very generay,qy qata alone and one piece of three-body information
effgctlve theory with short-range interactions only to de'(such as a three-body binding enerdy required as well. In
scribe the universal low-energy properties of the systemy,e £ this information can conveniently be parametrized
Such a theory can be applied to a wide range of systems frofgy, e three-body parametet. introduced in Refs[7,8].
nuclear and particle physics to atomic and molecular physiCSgpege general findings confirm and extend previous work by

_Most previous work in this area was done using a nonrelgin g, \who derived many general features of the three-body
ativistic effective-field theory(EFT) with contact interac- problem with large scattering lengf8,10!.

tions. Particularly interesting are few-boson systems with  \yhile the EFT formulation has been very successful, it is
large scattering length. They are characterized by an unnatiys; the only possible formulation of an effective theory for
rally large two-body scattering lengéhwhich is much larger  yhis nroblem. Lepage has advocated the framework of non-
than the typical low-energy length scalgiven by the range o |44ivistic quantum mechanics with an effective interaction
of the interaction. Such systems display a number of intery,ientiai[11]. The contact operators in the field theory are
the replaced by an “effective potential” built from smeared
out s-function potentials and derivatives thereof. In the case

*Electronic address: |.platter@fz-juelich.de a>0, this approach has been applied to the three-boson sys-
"Electronic address: hammer@phys.washington.edu tem by Wilson[12] and Mohr[13]. They confirmed the re-
*Electronic address: meissner@itkp.uni-bonn.de sults of Refs.[7,8] and were able to calculate the binding

1050-2947/2004/18)/05210113)/$22.50 70052101-1 ©2004 The American Physical Society



PLATTER, HAMMER, AND MEIRNER PHYSICAL REVIEW A70, 052101(2004

energies for the three-boson system to extremely high accdrom the four-body problem in nuclear physics. There is a
racy. correlation called the “Tjon line” between the binding energy
In this paper, we consider the four-body system withB, of the triton and the binding enerdg, of the a particle
short-range interactions. The four-body problem has previf14]. Calculations of these binding energies using modern
ously been studied in a variety of approaches. Early studieshenomenological nucleon-nucleon interaction potentials
include the Yakubovsky equations for local potentials usinggive results that underestimate both binding energies but
the Hilbert-Schmidt expansiofil4], the Schrodinger equa- cjyster along a line in th®-B, plane. By adding a three-
tion with separable two-body potentiald5], and field- 1,54y notential whose strength is adjusted to get the correct
theoretical models with separable expansions of the threg;y e forB,, one also gets an accurate result Byr(cf. Ref.

body T matt.rixt[lg].bThﬁ flg“.r'ﬁpsﬂy p(;oblen(wj OE.He atpmsth [30]). This conclusion also holds for chiral nuclear potentials
was Investigated by Nakaich-Maeda and Lim using tN€yq e from an effective-field theory with explicit pions

,:Laekg_t\)leg\?g;ib('g;'%msd\zvét)rl?131ngﬁ:;ﬁg:ﬁﬁ%%?%'_msgrog for[31]. The aim Qf the present work is to_ study ;he guestion
review of these and other early studies see, e.g. Ref&po.m the requwgment of the four-bod_y interaction by an ex-
[18.19. For an overview of recent calculations fE)r the,four- pllClt calculation in the controlled environment of an effec-
body system ofHe atoms, see Ref§21,22. A general re- tive theory. _ . .

view of theoretical studies of smdlHe clusters can be found The paper 1S (_)rganlzed as follows. In Sec. II, we wil
in Ref. [23]. In Ref. [24], a benchmark calculation compar- review the description of the two- and three-body bound

ing various modern calculational approaches to the nucleat@t® problem in effective theory and extend this framework
four-body problem was carried out. to the four-body bound state problem. In Sec. Ill, we will

tem with short-range interactions and large scattering lengtthe case ofHe atoms. Finally, we close with a summary and
in an effective theory. We will work at leading orderlifa] ~ outlook in Sec. IV.

and use the framework of nonrelativistic quantum mechanics

to construct an effective interaction potential. This approach

has the advantage that one can immediately start from the Il. FEW-BODY BOUND STATE EQUATIONS

well-known Yakubovsky equations for the four-body system IN EFFECTIVE THEORY

[25]. The four-boson binding energies are obtained by solv-  The effective low-energy interaction potential generated

ing the Yakubovsky equations for the effective interactionpy a nonrelativistic EFT with short-range interactions can be
potential. The solution of the four-boson problem in effectiveyyritten down in a momentum expansion. In the two-body

theory is important in several respects: Swave sector, it takes the general form
First, it can immediately be applied to the atomic problem s
of “He atoms and is a first step towards the four-body prob- (K'[VIK) =g+ Np fKE+K )2+ . (1)

lem in nuclear physics which is complicated by spin andWherek andk’

. . ) . are the relative three-momenta of the incom-
isospin. The scattering length dHe atomsa=~100 A is

) . - . ing and outgoing particles, respectively. Because of Galilean
much larger than its effective rangg=7 A which can be invariance, the interaction can only depend on the relative

taken as an estimate of the natural low-energy length scale momenta. Similar expressions can be derived for three- and

“He atoms are therefor(z an ideal appl|cat|on_ for our thec?ryhigher-body interactions. The exact form of the potential de-
The three-body system He atoms has been !nvestlga'Fed in pends on the specific regularization scheme used. The low-
Refs.[8,26,_2] using effective-field theory.4Wh|Ie the univer- energy observables, however, are independent of the regular-
S‘?I properties of the thr_ee-body system’ble atoms were ization schemeup to higher-order correctionsnd one can
discussed in Ref[26], this has not been done for the four- choose a convenient scheme for practical calculatibns.

body system. In a momentum cutoff scheme, the potential in Bg.can

Sepond, the re_normalization of the four-'body system in ahe regularized by multiplying with a Gaussian regulator
effective theory is an open question. It is clear that low’function exp—(K2+Kk'2)/A2], with the cutoff parameten.

energy four-body observables must depend on a t\NO'bOd¥his factor strongly suppresses high-momentum modes in

parameter and a three-body parameter. However, it is n%e regionk,k’ = A where the effective potential is not valid.

known whether a four-body parameter is also required tol'he cutoff dependence of the coefficientgA), Ay o(A) ...

calculate low-energy four-body observables up to correctlonzlss determined by the requirement that low-energy observ-
suppressed b/ |al.

. N . . . ables are independent a&f Of course, the expansion in Eq.
The theoretical situation concerning this question appears;, - : . . . .
) is only useful in conjunction with a power counting

confusing. On the one hand, there is a renormalization argu- X L .
. . : S scheme that determines the relative importance of the vari-
ment for -function pair potentials that indicates that a new .
. . .~ ous terms at low energy. In the case of large scattering length
four-body parameter is required to calculate four-body bind- . 9 i
) . a, the leading order is given by the, term which must be
ing energieg28]. On the other hand, Amado and Greenwood. . . !
iterated to all orders, while the other terms give rise to
have evaluated the trace of the four-body kernel and con-
cluded that the Efimov effect is absent in the four-body sys-
tem [29]. This result suggests that a four-body parameter 'For a comparison of different regularization schemes in the
should not be necessary at leading ordet/ja|. There is  nuclear two-body problem and chiral perturbation theory, see Refs.
some circumstantial evidence in favor of the latter possibility[32,33, respectively.
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higher-order corrections that can be included perturbatively 1 * g(? |
[5,6]. In this paper, we will work to leading order in the large nE) = . 47Tf dqqzﬁ : (7)
scattering lengtla and include only the\, term. 2 0 q

In the three-body system, a momentum-independent A two-body bound-state appears as a simple pole in the
three-body interaction termz; must be included together two-body propagator at energyE=-B,. Thus the two-body
with X, already at leading ordef7,8]. Without this three-  coupling constank,(B,,A) can be fixed from the two-body

body interaction low-energy observables show a strong cutyinding energyB,, which is directly related to the scattering

off dependence and the system cannot be renormalized. Elféngth byazllv"B_z at leading order irl/|al. The integrals

fective range effects and other higher-order corrections Canpearing in the propagator can be expressed through the

be included as well34-3§. .
The power counting for the four-body system has notcomplementary error function

been formulated yet. In order to see whether the minimal set 2 (* 2
of interactions\, and 3 is sufficient, we will calculate the erfo(x) =1 “ 7). e dt, (8)

bound states in the four-body system and study their cutoff
dependence. We will use a momentum cutoff regularizatiotand forE<0, we obtain for the inverse propagator:
scheme as described above. A strong cutoff dependence of —
the binding energies would indicate that a four-body interac- 1 = 2B, V2B,
tion term is required. If the four-body binding energies are e = Zﬂz{\Bzexp(F>erfc( A )
stable under variations of the cutoff, this would suggest that —
the four-body interaction is a subleading effect. = exp<_—2E> ( N ZE)} )
In order to set up our conventions and formalism, we will 2 A '

first review the bound state equations for the two- and threeA imil ion for th ‘ be obtained f
body system and then set up the four-body equations. simriiar expression for the propagator can be obtained for
positive energies by adding a small imaginary parEtdut

A. The two-body sector will not be required for our purposes.

We write the leading order two-body effective potential in B. The three-body sector

momentum space as
P The low-energy properties of the three-body system for a

(pIVIa) = (plo)ra(gla), (2)  given effective potential can be obtained by solving the Fad-

deev equation$38]. Faddeev’s idea was to decompose the
full three-body wave function? into so-called “Faddeev

components” in order to avoid the problem of disconnected

contributions in the three-body scattering problem. For the

(p|g) = g(p) = exp(— pZA?) (3)  three-body problem with two- and three-body interactions,

o ) the full wave function can be decomposed into four compo-

suppress the contribution from high momentum states. In thﬁents[39]: one for each two-body subcluster and one for the

where\, denotes the two-body coupling constant aj(@)
are the relative three-momenta in the incomiigitgoing
channel. The regulator functions

few-body literature, they are often called “form factors.”  three-hody cluster? For identical bosons, the three-body
Our normalization for plane-wave and spherical-wave,yaye function is fully symmetric under exchange of particles
states Is and the Faddeev equations simplify considerably. In this
(plp’) = 6(3)(p -p), case, one only needs to solve equations involving one of the

two-body Faddeev components and the three-body compo-
sp-p’) nent. The two remaining two-body components can be ob-
(pImp’l’'m’') = ——— 8 Snny » (4) tained by permutations of particles. For more details on the
pp Faddeev equations, we refer the reader to the literature
and theS-wave projection of the plane wave state with mo- [40.,37.
mentump is We follow Glockle and Meief39] and decompose the full
three-body wave function as
1 dp-p)

(p0OOp")y=(plp’)= @m? pp (5 W =(1+P)g+ i, where P =P;3Pys+ PoPos

For convenience, we will work in units where the maéof (10
the bosons and Planck’s constdntare set to unityM=7% is a permutation operator that generates the two not explicitly
=1. included Faddeev components fromThe operatoP;; sim-

The interaction (2) is separable and the Lippmann- ply permutes particlesandj. The Faddeev equations fagr
Schwinger equation for the two-body problem can be solved@nd i in operator form are then
analytically. The two-body matrix can be written ag37] y=Got P+ Gyt g,

t(E) = |g)n(E)Xgl, (6)
whereE denotes the total energy. The two-body propagator ?Note, however, that other decompositions involving only three
7(E) is then given by Faddeev components are possible as well.
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3= Gp ta(1+P) s, (12) 10° g

where G, denotes the free three-particle propagatas. the
two-bodyt matrix for the two-body subsystem described by 102
the component. t; is the three-body matrix defined by the

solution of the three-body Lippmann-Schwinger equation
with the leading order three-body effective interaction 10

B,[B,]

7
2

V3= [ONs(d], (12

vl o170 vl 1ty aeritul 1
. . 1

only. SinceVs is separable, we can solve fyexactly and 10 1012 10°

obtain AB,

1l

1 FIG. 1. The shallowest three-body binding energies indicated by

1
ta(B) =[O 75(E)(d], where  75(E) = {)\_3 ~ (&G §>} the solid, dashed, and dash-dotted lines as a function of the momen-
tum cutoff A. The vertical dashed line indicates the cutoff range in

(13 which the three-body system has exactly two bound states. The
The three-body regulator funcndﬁ) will be specified later. horizontal solid line shows the energy at which the shallowest
Note thatts is only a technical construct that is generally three-body state is fixed.
cutoff dependent and not observable. The physical three-
body t matrix always includes both two- and three-body three particles in their center of mass is given by
forces. Since we are interested only in the binding energies

and not in the wave functions, we can eliminate the compo- 3 |1
nent s, and obtain Go(Uy,Up) = [E - Eygn] ' = | E-UF — Zuz , (18
l,b: Gotplﬂ+ Goteotg(l + P) lﬂ (14)

; : ‘whereE,;, denotes the kinetic energy. Furthermore, it should
The component); can easily be recovered by using the sec be noted that the two-body propagatdn Eq. (17) is evalu-

ond line of Eq.(11). : ) .
We now derive an explicit representation of Ed4) in ategl a}tzthe energy in the corresponding two-body subsystem:
E- The permutation operatd® can be written as

momentum space. We will illustrate this procedure by show
ing some details for the first term on the right-hand side of

Eq. (14). The extension to include the second term contain- o

ing three-body interaction is straightforward and we will <ulu2|P|u1u2):J
only quote the final result. Furthermore, in order to under- -
stand the renormalization of the three-body problem it is (19
instructive to consider the case without a three-body force

first. The natural Jacobi momenta are given by 1
1 o[ 1 Uz, Up) = | U5 + Uy + Uglx. (20)
Ulzi(kl‘kz), U, = k3_§(kl+k2) . (19

8(uy — (U, Uy)) 8(ug — Uy, Up))
a(Uy, ué)zw(ué,uz)z

3

Here and in the following sections, we will only take Using this representation d?, we can write the integral
waves into account. Hence we can project all operators acguation as
cordingly and define th&wave projection operator

3
Up) = 47 Go(uy, E——2>
fduluidU2U§|U1U2><U1U2| EfDUU2|UlU2><Uluz|- (16) Wiy ) = 4 Gollly UZ)g(U1)T< 4U2

o 1
Using the definition(u,u,| ) = ¢(u,,u,), we can write the Xf duéuézj dx g(m(uy,uy))

Faddeev equation in momentum space as 0 -1

U3, p) = (U GotPl ) Xl ). ). ey
= 47Gy(u;, puu? | Duuacu! This is an homogeneous integral equation in two variables. It
mColth uz)g(ul)f Hu f uug(u) can be further simplified by defining a new functibfu,) of
only one variable via
3 ’ 5(“ _u) " // I/ //
><T<E‘ Zuzz) 252 (upug| Pluug)(ufus| vy,
3

(17 i(uy, Up) = Go(Uy, Up)g(Uy) T<E - ZUE)F(Uz), (22

where the factor of 4 arises from our normalization of the
Swave projected two-bodiymatrix. The free propagator for leading to the integral equation
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* 1 B32A2.3 However, the three-body binding energies depend
F(uyp) :47Tf dUéuézj dxg(7(up, Up)) strongly on the value of the cutoff. This is illustrated in
0 1 Fig. 1 where the shallowest three-body binding energies are
, , , 3, , indicated by the solid, dashed, and dash-dotted lines. The
X Go( (U, Up), up) gl (Uz, Up)) 7| B = Z 5" F(Up). three-body system has exactly two bound states in the cutoff
range indicated by the two vertical dashed lines.
(23 We now include the second term on the right-hand side of
The three-body binding energies are given by those valuegd- (14) which contains the three-body force. The derivation
of E for which Eq.(24) has a nontrivial solution. By express- Of an explicit representation in momentum space proceeds as
ing the two-body coupling constant, in terms of the bind- for the first term. The full equation including both terms then
ing energy of the shallow two-body bound state in ), reads
we have already renormalized the two-body problem.
The three-body system is stabilized against the Thomasmomentum cutoff\ can also be thought of as introducing a
collapse by the presence of the momentum cufbiffNo finite ranger ~1/A for the pair potential in position space. The
three-body force is required for this purpose. After the cutoff y

S - o . Thomas collapse is then stopped when the bound state size is of the
is introduced, there are no bound states with binding energies, .o order as the range of the potential

o 1 3
F(uz):477f duéuézf dxg(w(uz,ué))Go(Tr(ué,uz),ué)g(rr(ué,uz))r<E—Zuf)F(ué)
1

0 —_

o0 o0 o0 3
+ (477)3f dujui?g(u)) Go(u;, Up) 75(E) &(U], Uy) {f ddl’uff dupuly2E(uy, up) g(uy) Go(uy, uj) T(E - Zuf) F(uj
0 0 0

o0 o 1
() "M " " " " " n " " 3 ", "
+ f dulzuzzf dulz U2 Zf ng(']T(uZ,uZ),UZ)g(']T(UZ !UZ))GO(W(UZ ,UZ),Uz T(E— Zuz 2) F(u2 ] y (24)
0 1

0 —_

where £&(uy,U,) =(u U,|§) is defined as force must turn from strongly repulsive to strongly attractive
to satisfy the renormalization condition for the shallowest
bound state. The additional state is then added as a deep state

Uz + Zug rather than at threshold. Low-energy three-body observables
&(ug,up) = ex 5 (25)  are not affected by the additional deep bound states. As a
A consequence, the cutoff can be made arbitrarily large in the

. ) o three-body system.
Note that the term in the exponent is the kinetic energy of the The renormalization procedure determines three_body

three—body system. Thus itis exactly the kinetic energy ﬂOW-Coup"ng constank3(83,A) unique|y_ It was used in Refs.
ing through the three-body interaction which is limited by [7 8] to renormalize the three-body equation derived from
the cutoff parameteA. This choice of the cutoff function nonrelativistic effective-field theory with an auxiliary field
satisfies Bose symmetry explicitly. The factors of 4nd  for the interacting two-particle state. See REZ8] for an
(4)® arise from our normalization of th&wave projection  earlier discussion of this renormalization method. While the
of t andt,. part of Eq.(24) resulting from two-body interactions only is
The value of the three-body force is determined by thevery similar to the corresponding part of the field-theoretical
renormalization condition that the shallowest bound state ergéquation, the part containing the three-body faineform of
ergy is fixed as the cutoff is varied. This value is denoted byrs) is more complicated. The simplicity of the field-
the horizontal solid line in Fig. 1. Depending on the value oftheoretical equation is due the specific form of the three-
the cutoff, the three-body force then must provide additionabody interaction using an auxiliary field in Re{g.,8].
attraction or repulsion in order to keep the shallowest bound- We now explicitly verify the renormalization of the three-
state energy fixed as the cutoff is varied. Thus one threebody system as described above. By varying the cutoff pa-
body datum(in our case the shallowest bound state engrgyrameterA and tuning the three-body coupling such that
is required as input while all other low-energy three-body
observables can be predicted. Once the shallowest boundone would expect that using auxiliary fields would also simplify
state is fixed, the binding energies of the deeper bound stat@se four-body equations. However, it is not obvious how to treat the
will also be cutoff independent. When the cutoff is increased?2)+(2) clusters in the intermediate state without introducing un-
and a new bound state appears at threshold, the three-bodyntrolled approximations.
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effective-field theory formulation. This is due to the more
complicated structure of the part of E@4) containing the
three-body force. For very large loop momenta, the three-
body part of Eq(24) simplifies considerably and has a simi-
lar form as in the EFT formulation. In this limit, it is possible
to derive the general form of Eg26).
In general, we recover the results for the three-body bind-
ing energies from Refd.7,8,12,13. However, we note that
E2] T | TR BT Y| . .
= P = somewhat higher cutoffs are required to reach convergent
112 results for the deeper three-body bound states. The numerical
effort for the solution of the three-body equations becomes
larger as the value of the three-body coupliigs increased.
This is also related to the relatively complicated structure of

A
o
AR LAY RN RARRS

FIG. 2. The three-body coupling constantas a function of the
cutoff parameter\. The solid blue line shows a fit of E26) with

¢=0.076 and_s=23.3(B, to the paints forA = 245/B,. the part of Eq(24) containing the three-body force.
the shallowest three-body binding energy stays constant, we C. The four-body sector
can determine the renormalization-group evolutionhu- We now turn to the four-body sector. The four-body bind-

merically. For the dimensionless coupling constest?, we  ing energies are given by the nontrivial solutions of the
confirm the results of Refd7,8,12,13. A*\3(A) shows a  yakubovsky equationf25] which are based on a generaliza-
limit cycle behavior and is single valuédrhis limit cycle is  tion of the decomposition into Faddeev components for the
shown in Fig. 2. For large values of the cutdff the dimen-  three-body system. The full four-body wave functighis
sionless three-body coupling constaft; flows towards an  first decomposed into Faddeev components, followed by a
gltraviolet limit cycle. ForA —, it has the limiting behav-  second decomposition into so-called “Yakubovsky compo-
lor nents.” In the case of identical bosons, one ends up with two
. Yakubovsky componentsy, and . We start from the
isﬂso In(A/Lg) — arctarﬁllso)]’ (26)  Yakubovsky equations including a general three-body force
A?sinsy IN(A/L) + arctari1/sy)] in the form written down by Glockle and Kamagil]. The
full four-body bound-state wave function is decomposed into
the Yakubovsky componenig, and i via

A3(A) =

where 5= 1.006 24 is a transcendental number that deter
mines the period of the limit cycle. If the cutof is multi-
plied by a factor exm/sp) = (22.7" with n an integer, the ~
three-body coupling; is unchangedL is a three-body pa- W =[1+(1+P)P3](1+P)hn+ (1 +P)(1+P)yg,
rameter generated by dimensional transmutation. One can (28)
either specify the dimensionless coupling constafis(A)

and the cutoffA or the dimensionful three-body parameter where P;; exchanges particlesand j, P is defined in Eg.
Ls. The constant is universal and independent bf within  (10), andP is given by

our numerical accuracy. We have determireedumerically

by fitting A*\5(A) for different three-body parametets to P=PsP, (29)
Eq. (26) and found

The equations for the two wave function components read
c=0.074+0.003, (27

where the error has been estimated from the observed varia- ,, = Gyt;,P[(1 + Psg) ¢yp + ¢ig] + }(1 +Goty)GoVa,
tion in the fit results forc. The three-body parameteg can 3

be determined by fixing a three-body binding eneRzy Of

course, one could also use a three-body binding energy di- ~

rectly to characterize the value of the three-body coupling = Got1oPL(1 + P3g)ha + ], (30)
at a given cutoff. However, it is advantageous to Lgéde-
cause EQ.26) takes a particularly simple form in terms

of L.
. . the three-body force couples to the full four-body wave func-
funcc)tri]gn Tvlgr:s:)\(sg&t d t|221t d ttfz) ebzaoroégh(;sgjsrﬁ?néﬁgg:astgtﬁon . The factor of one-third in front of the three-body
force term arises because we insert the full three-body inter-

lutions of the three-body equations than the sharp cutoff use Ction for Vs, This is possible since we consider three-body

for the field-theoretical equation in Refs.,g|. However, it contact interactions which are symmetric under the exchange
turns out that the convergence of the three-body coupling Qs any pair of particles

the ultraviolet limit cycle is significantly slower than in the In order to describe the four-body system at rest, three
Jacobi momenta are required. The structure of the four-body

°Note thathz is defined with the opposite sign of the three-body equations is more complex than that of the three-body equa-
coupling constanH in the field theory formulatiori7,8]. tions because bot(8)+(1) and(2)+(2) fragmentations can

wheret;, denotes the two-bodymatrix for particles 1 and 2
andV; is the three-body force defined in Ed.2). Note that
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occur. As a consequence, two different sets of Jacobi mo- 1 1 1
menta are required. Th@)+(1) fragmentation is described V1= E(kl —ka), Vvp= E(kl +ky) = E(kS +Ky),
by the vector

1
and vg= E(kg -ky). (32

B 1 Depending on which Yakubovsky component and operator in
Us=7 Kq— §(k1 +katkg) |, (31) Eg.(30) is concerned, one of the two sets of coordinates will
be more convenient than the other.

As in the previous subsection, we will only display the
derivation of the analytic expression for the Yakubovsky
along with the Jacobi momenta for the three-body systemgquations without the three-body force. It is natural to evalu-
given in Eq.(15). The(2) +(2) fragmentation is described by ate the Yakubovsky componegi, as a function ofu;,u,
the set andus:

3, 2 1
(UyUpl|ifp) = 4wGo(u1,u2,u3)g(u1)r<E - ZU% - 5U§> { f dujus?® J dxg( (U, up) ) m(Ub, Un) Uhls] ta)
-1
1 1 1
+§ f duéué2 f de dx’ g(7r(Uy, Uj) ){ m(Uj, Up)TUn(Us, Us)Ts(U, Us) | hn)
-1 -1

1 1 1
+ 5 f duéuézf dxf dx' g( (U, uy)) X (ar(us, Up)D (U, Us)Uz(Usg, Us) | )], (33
-1 Ja

where the two-body propagatolE-3u3-2u3) is again B , 4, 2
evaluated at the energy of the corresponding two-body sub- U3(Up, Ug) = \/“1Uz+ §U3‘ §U2U3X',
system.Ggy(uy,U,,Us) is the free four-particle propagator in
the center-of-mass system of the four particles afb, u,)

is defined in Eq(20). The second Yakubovsky component

g is computed as a function of the momentgv,, andvs: _ 4,
Up(vp,03) = 502*'

8
2 ’

—~U53~ “UU3X’,

9% g %3

1
(v1v3| ) = 4TGo(v1,v2,03)9(v1) T(E - Evg - U%)

X |:f dvévézg(vé)<v3020é|l/f5> U3(02!U3) = 1\ [ %vg =+ vg + U2U3X, . (35)

1
+[aoss? | xgopoatatoa 0200
-1 Similar to the three-body case, Eq83) and (34) can be
X[ ] (34  simplified from two coupled integral equations in three vari-
ables to two coupled integral equations in two variables. Per-

In Egs.(33) and(34), we have used the abbreviations forming the substitutions

~ 1, 64, 16
Uy(Up, Ug) = \/§U§ + aug * 5UaUeX (UgUaUg| ha) = 9(U1) Go(Uy, Up, Ug) F (U, Ug),
1 2
Ts(uy,Ug) = \/ug + §u§ - §UZU3X, , (V1203 Ye) = 9(01) Go(v1,02,05)Fg(vava),  (36)
2 2 we obtain the integral equations foFu(u,,u;) and
V(U Ug) = \/ug + §u§ + §u2u3x’ , Fg(vs,03):
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3, 2 !
— _Y2_£.2 ro 12 ’ ’
Fa(us,ug) =477 E 4u2 3u3 f duju; f dxg(7m(uy, Us))g( (U3, Uy))
-1

1 1 1

XGO(W(UQ,Uz),Ué,Us)FA(Ué,Us)"'5fduéuézf dXJ dx’ g(7(up, Up))g(7r(us, up))
-1 -1

X Go(7m(Us, Up), Tn(Us, Ug), Ts(Uy, Ug)) F A(Tix(Us, Ug), Tis(Us, Us))

*3 f dujus? f dx f dX’ G(r(Uz, U3) g (7r(U, )
-1 -1

X Go(7r(U3, Up), U5(U3, Ug),3(Us, U) ) Fg(v2(Us, Us) , D3(Us, Ug))} , (37)

1
Fg(vpva) = 47TT<E - Evg - U%) lf dUéUézg(Ué)g(Ug)Go(U3,Uz,Ué)FB(Uz,Ué)
l — J—
+ f dvjs? f dxg(v3)9(v3) Go(vz, Up(v2,v3),Uz(v2,03))
-1

X FA(Uz(vzivé),Us(vz,vé))] : (38)

The inclusion of the three-body force term is straightforwardBoltzmann’s constant to unityk=1. Since the scattering
but lengthy and the corresponding expressions are given itength of*He atoms is much larger than their effective range,
the Appendix. they are an ideal application for our theory and a leading-
In order to obtain the four-body binding energies, we haveorder calculation should be accurate to about 1Gdace
to solve the Yakubovsky equations with the three-body forcd/a=10%).
term. The binding energies can be found by discretizing the The quantitative experimental information on low-energy
above equations and calculating the eigenvalues of the reHe atoms, however, is rather limited. Using diffraction of a
sulting matrix. They are given by the energies at which an)mok_ecular beam of smaflHe cIusths from a transmission
eigenvalue of the matrix is equal to 1. The wave function is9rating, the bond length of Fﬁb"e dimer has been measured
then given by the corresponding eigenvector. to be(r)=(52+4)A [42]. This value is an order magnitude
The renormalization analysis of the four-body system isarger than their effective rangg~7 A, which can be taken
complicated by the cutoff dependence of the number ofS an estimate of the natural low-energy length stalde
bound states in the three-body subsystems. The further trfattering lengtta=(104'%)A and the dimer binding energy
cutoff A is increased, the more three-body bound states agB.=(1.1039) mK were derived from the measured bond
pear. While the spurious deep three-body states have no ifength using the zero range approximatip42]. The *He
fluence on low-energy three-body observables, they create drimer, tetramer, and several largée clusters have been
instability in the four-body system which can collapse into aobserved 43,44, but no quantitative experimental informa-
deep three-body bound state plus another particle. This limition about their binding energies is available to date.
cutoff variations to an intervaly< A <22.7A, for someA,, However, there is a large number of theoretical calcula-
in which the number of three-body bound states remains cortions using realistic'He potentials for the trimel(“H%).
stant. Since the cutoff can still be varied by more than arhese calculations typically predict a trimer ground state
factor of 10, we are nevertheless able to study the renormalwvith an energy of about 120 mK and one excited state with a
ization properties and obtain converged numerical resultshinding energy of about 2 mig45—-48. The ground and ex-
Alternatively, one could explicitly subtract out the spuriouscited states of the tetramé‘f'He4) and larger clusters have
bound states from the three-bodlymatrix. We will come  been calculated by Blume and GredB&s) [21]. They have

back to this question in the next section. used the LM2M2 potentidd9] and a combination of Monte
Carlo methods and the adiabatic hyperspherical approxima-
IIl. RENORMALIZATION AND NUMERICAL RESULTS tion. Their results for the trimer energies agree with the exact

three-body calculations of Refgd5-48.
In this section, we will discuss the renormalization of the In the absence of quantitative experimental information
four-boson system and present some numerical results for then the three-body clusters, we take the binding energy of the
four-body system ofHe atoms. For convenience, we will set “He trimer excited state from theoretical calculations using
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800 T T TABLE . Binding energies of théHe trimer and tetramer in
Eoe ] mK. The two right columns show the results by Blume and Greene
= soe E [21] (denoted by the index B@while the two left columns show
o 400:_ . . 3 our results. The number in brackets was used as input tosfix
- R o ] © @ ©) @
3000, i ,5|0, i ,160, i .1I50. i ,260, i i ,250 System BY (mK) B (mK) BBG (mK) BBG (mK)
F S A AR R AL AR “He, 127 [2.186 125.5 2.186
_ @b -~ 8] E *He, 492 128 559.7 132.7
o [ L . 8 ;
@ qo0f “E--e- -
C ] energieqcf. Fig. 1) and can be excluded. The occurrence of

soo'- B TR T -2'50 the plateaus foBE‘O) and Bgl) in Fig. 3 suggests that a four-
B, body force is not required for renormalization of the four-
body system at leading order Iha. Renormalization of the
FIG. 3. Bining energeg of e free- and fourbody system ad BRI BV E - the four-bocy binding energies, AS a
2;;?55'0511?:2? tﬁ:ﬁf&fgyﬁgf” denote the ground and first consequence, the four-body binding energies can be pre-
dicted from two- and three-body input alone.
the LM2M2 potential as input to fik;. We use the value of We now turn to our numerical results for the four-body
Blume and GreeneB(gl)/Bzzl.767 for this purposg20,2Y].  system of*He atoms. From the plateaus in Fig. 3, we can
We can then calculate the trimer ground state and the tetead off the values of the binding energies. A comparison of
ramer binding energies for the LM2M2 potential based onour results with the values obtained by Bgl] is shown in
low-energy universality. Before we present our numerical reTable 1. The results of their calculation for the trimer and
sults for the*He, system, we discuss the renormalization of tetramer are given in the two right columns of Table I, while
the four-body problem. our results are given in the two left columns. In general, our
In Fig. 3, we have plotted the three-body ground statgesults are in good agreement with the values of BG. For the
energyB(ao) and the four-body energies as a function of thetrimer ground-state and the tetramer excited-state energies,
cutoff A. As in the case of the trimer, tHele tetramer has a we obtain the value8 =127 mK andB}’=128 mK, re-

ground stateBio) and one excited statBEll). The cutoff  spectively. For the tetramer ground state, we ostj,W

dependence @g’) must flatten out and reach a plateautas =492 mK. While the value OBLO) is already relatively large,
is increased since the three-body system was renormalizétiis still a factor 3 smaller than the natural four-body energy
by fixing the trimer excited-state binding ener@,gl) (cf.  scale~1.5 K where the effective theory description is ex-

Sec. Il B.. However, Fig. 3 shows that the four-body binding Pected to break down.
energiesBElo) and Bgl) also reach a plateau @sis increased. The natural energy scales can be estimated as follows: For

The excited-state energsél) has a negligible cutoff depen- two particles, it is directly determined by the natural length

H A _F2 2
dence already at fairly small cutoffs. For the ground statsc@le ! and the massM of the particles:e,~%%/(MI)
=250 mK. For three and four particles, this estimate should

(0) . . . .
B,”, the situation is somewhat more complicated and th% . X .
4 1
0 e scaled according to the number of pairs avallngd-
cutoff dependence cBg) reaches a plateau only at the larg- ing to the valuesa3~g750 mK ande4~1.g K_This estimate

est cutoff values calculated. The residual cutoff dependencé‘

is about 2% for the excited state and 5% for the ground statga" be made for cutoff values at which the three-body force

A slower convergence for the ground state is expected sinc\éan'SheS' Since all observables are independent of the cutoff,

the value forBﬁlo) is a factor four larger than for the excited owever, it is valid for arbitrary cutoffs. Our short-range ef-

state and finite cutoff effects of the ordeE/A are more fective theory can describebody bound states with binding

: X energiesB,,<e,. For deeper bound states closer to the natu-
important. The residual cutoff dependence for both states [ egergyn s<c§1nle the errgrs are expected to increase

at least a factor 2 smaller than the corrections from higher The values in Table | have been computed at a cutoff of

orders in the expansion ifa which are expected to be of A=235/B, which is close to the largest possible value with

the orderl/a~10%. We speculate that higher precision
could be achieved by increasing the cutoff further. As alread ?J)y two thr.ee-body bound stateg. Qur values m?) and
agree with the BG values to within 12% and 3%, respec-

noted earlier, this would create unphysical three-body bound4

states which create an instability in the four-body system.“vely' The dominant correction to our results is due to effec-

These states would have to be subtracted explicitly. WhildV€ range effects which are not included in our leading-order
such a subtraction is possible, this is beyond the scope of of2lculation. These deviations are within the expected accu-
paper and we will not attempt such a subtraction here. racy of_ the effective thgory. We expect the effective range
Taken together, the above observations provide strong ni'rections to the leading-order result to be of the order
merical evidence that the four-body binding energies are cutie/ @~ 10%. From the residual cutoff dependence, we esti-
off independent up to higher-order correctiond fia. In par-
ticular, a four-body force with limit cycle behavior would ®we are grateful to Eric Braaten for suggesting to us this scaling
lead to a much stronger cutoff dependence of the bindingf the natural energy scale according to the number of pairs.
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mate the numerical error of our calculation to be of the order SRR EREEEIEREIEEE

of 2% for the excited state and 5% for the ground state. For 130p B
fixed value of the cutoff\, our calculations are numerically ~= 110k ]
accurate to three significant digits. a X b
The large scattering length dHe atoms also leads to ) 90f 3
universal properties in the four-body problem. A typical ex- r -
ample is the existence of correlations between different ob- o o]
servables. These correlations become manifest in universal 1.5 1.6 1.7 1.8 1.9
scaling functions relating dimensionless combinations of ob- Bg) [B,]
servables. Various scaling functions for the three-body sys- N R EE A By R s nay
tem of *He atoms were studied in Re{26,50,51. Here, we 1301 ]
consider the four-body binding energies as a function of the C 7
three-body binding energies. In phenomenological calcula- E""OZ ]
tions of the four-nucleon system, an approximately linear & 9ok E
correlation between the three- and four-nucleon binding en- C 3
ergies for various nucleon-nucleon potentials is observed: the 70k ]
Tjon line [14]. This correlation is approximately linear for 60 BT T RN TT . ]
the relevant range of binding energig0]. Since the*He B(3°) [B,]

trimer and tetramer have both a ground state and an excited
state, there are four “Tjon lines” in this case.

In Fig. 4, we show the correlations between the ground-
and excited-state energies of titée trimer and tetramer. The
first and third figure from the top show the energies of the
tetramer excited staﬂagl) and ground statBElo) as a function
of trimer excited-state energB(;), respectively, while the
second and fourth figure from the top show the same quan-
tities as a function of the trimer ground-state eneBéq}. The
solid line is the leading-order result of our effective theory

calculation and the cross denotes the result of the calculation 600 e
by Blume and Greene for the LM2M2 potent[2l1]. For the L ]
ground states of the trimer and tetramer, calculations with 5001
other®He potentials are available as well. As an example, we o [
show the results for the TTY, HFD-B, and HFDHE2 poten- € 400

tials taken from Refs[17,20. L

Similar to the nuclear sector, we find an approximately 300-
linear correlation over the range of binding energies relevant I T N R
to “He atoms. The calculations for the realigtite potentials 7 % g© [g?
fall close to the universal scaling curves from our effective 8 e
theory. For the correlation between the ground-state energies, g, 4. The correlations between the ground- and excited-state
the Tjon line is directly evident in the potential model calcu- energies of théHe trimer and tetramer. First and third figure from
lations shown in Fig. 4. If calculations with other potentials ye top: the four-body excited-state eneff’ and ground-state
were performed for the excited-state energies, they woul@nergszm as a function of the three-body excited-state en@gy
also fall on a line parallel to the universal scaling curve fromThe second and fourth figure from the top: the same quantities as a
effective theory. The deviation of calculations using realistiCfynction of three-body ground-state ene@g”. The solid line
potentials from the universal line is mainly governed by ef-shows the leading-order effective theory result and the cross de-
fective range corrections which are expected to be of th@otes the calculation for the LM2M2 potential by Blume and
order 10% for*He atoms. For the tetramer ground state, thisGreene[21]. The triangles show the results for the TTY, HFD-B,
deviation is about a factor 4 larger than for the excited stateand HFDHE2 potential§l7,20.

While the correlations in Fig. 4 are approximately linear
over the range of binding energies calculated, we expect
them to become nonlinear for a sufficiently large range of
binding energies. Similar nonlinearities were observed fo°f the three- and four-body systems has been observed. We
correlations between three-body observables in R8{&6. e>_<p(_act this correla‘uon_tq hold for aSw.ave states that are
Our results suggest that the Tjon lines are universal propeithin the range of validity of an effective theory with con-
ties of few-body systems with short-range interactions andact interactions. It would be interesting to see whether such
large scattering length. They do not depend on the details & correlation also holds for the excitdli=0" state of thex
the short-distance physics which are very different in atomicparticle above the@+°H threshold.
and nuclear systems. It is interesting to note that in nuclear We have fitted the scaling functions shown in Fig. 4 with
physics only a correlation between the ground-state energidsmear expressions and obtained

iiliia
130

052101-10



FOUR-BOSON SYSTEM WITH SHORT-RANGE INTERACTIONS PHYSICAL REVIEW 20, 052101(2004

BE{’) B<30> Bgo) calculation by Blume and Greene to within 12% and 3%,
B :_24'752+4'075I3_’ 69=< B = 142, (39)  respectively. These deviations are consistent with the ex-
2 2 2 pected accuracy at leading order in the large scattering length

(0) BW 5 of aboutl/|a| ~ 10%.

24— _7420+645.13-, 1.54< —- <200, (40) The Iargg scattering Ien_gth 6He atoms Ieadfs to univer-
B, 2 B, sal properties such as universal scaling functions. We have
calculated the universal scaling functions relating the tet-
BY BY BY ramer energies to the trimer energies. The correlations are
B, =-0.662+ 1-0345, 65=< B, <125, (41)  approximately linear in the region of binding energies rel-

evant for*He atoms. As expected from low-energy univer-
sality, the results of various calculations using realiékie

(1) (1) (1) . . .
B __ 178.0 + 159_533_ 1.52< Bs <1.92. (42) potentials fall close to the universal scaling curves. Correc-
B, B, ' 2 tions to the scaling curves are mainly governed by effective

These relations can be used to predict the tetramer grouné‘?nge effects. We have fitted the calculated scaling functions

) . . . ith linear expressiong39)—(42) that can be used to obtain
and excited-state energies for any potential for which one oﬁl]e tetramer binding energies at leading orde ja| for any
the trimer energies and the dimer binding energy are known,

The expression§3942) are of the same accuracy as our potential if one of the trimer binding energies is known.

EXp : . . y There are a number of directions that should be pursued in
explicit calculationgsee the discussion ?b‘?"ghey are €X" future work. While we have demonstrated that a four-body
pected to be most accurate for the excited states. )

force is not necessary to renormalize the four-body system to
leading order, the general power counting for four-body
IV. SUMMARY AND OUTLOOK forces is st_iII not understood. At which order does the leading
four-body interaction enter? In the three-body system, e.g.,
In this paper, we have studied the four-body system withthe first-order correction is due to the two-body effective
short-range interactions and large scattering length. We havenge. If a similar situation holds in the four-body system, it
concentrated on the bound-state problem of four bosonwould be possible to predict low-energy four-body observ-
starting from the Yakubovsky equatiof5]. We have con- ables up to corrections of ordér/a)? from two- and three-
structed an effective interaction potential including both abody information alone.
two- and three-body contact interaction. This is the minimal The extension of the effective theory to calculate four-
set of contact interactions required for renormalization of thepody scattering observables would be very valuable. The
three-body problenj7,8]. The two parameters of the effec- knowledge of the dimer-dimer scattering length, for ex-
tive potential were determined from matching to the bindingample, is important for experiments with ultracold atoms.
energy of the dimer and the excited state of the trimer. Weror the simpler problem of fermions with two spin states
have then solved the four-body bound-state problem undeivhere the three-body parameteydoes not contribue the
the assumption that no four-body interaction is required fordimer-dimer scattering length was recently calculdgt&®].
renormalization at leading order. We found that after renor- Whether this effective theory can be applied to the nuclear
malizing the two- and three-body subsystems, the four-bodyour-body system like the pionful theorf81] is an open
binding energies were automatically independent of the ulquestion. While it is straightforward to generalize the effec-
traviolet cutoff. This result suggests that the four-body inter-ive theory to include spin and isospin, it is not clear whether
action is not of leading order and the low-energy four-bodyan effective theory without explicit pions will be adequate
observables are determined by properties of the two- angbr the « particle ground state with a binding energy of about
three-body systems up to corrections suppressed!/ |ay. 28 MeV. This question deserves further study. The effective
Although we have considered only the four-boson boundheory might also help to shed some light on the renewed
state problem with large scattering length explicitly, we ex-speculations about the existence of a shallow tetraneutron
pect this result to hold for all low-energy four-body observ- bound statg53].
ables.
We have applied this effective theory to the four-body
system ofHe atoms and calculated the ground- and excited-
state energies of th#He tetramer. In the absence of experi-  \We thank E. Braaten, W. Glockle, U. van Kolck, and A.
mental information on théHe trimer, we have taken the Nogga for valuable discussions and E. Braaten and A. Nogga
excited-state energy of tiele trimer as calculated by Blume for comments on the manuscript. This research was sup-
and Greene for the LM2M2 potentig21] as input to deter- ported in part by DOE Grant No. DE-FG02-00ER41132.
mine the three-body parametes. For the binding energies
of the trimer ground state and the tetramer ground and ex-
cited states, we find the value8)=127 mK, B
=128 mK, ancBEIO):492 mK, respectively. The latter energy
is still about a factor 3 smaller than the natural four-body In this appendix, we derive the analytic expressions for
energy scale~1.5 K where the effective theory is expected the three-body force term in the Yakubovsky equati(3®)
to break down. Our values f@{ andB{" agree with the ~in momentum space. The three-body force term
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1
§<U1U2U3|(1 +Got12) GoV4| ¥) (A1)

couples to the full four-body wave functioh [cf. Eq.(28) ],
which is related to the Yakuvosky componemiisand iz via

W= (1+P3g+ PPgy+ P+ P3P+ PP3yP) i

+(1L+P+P+PP)ys. (A2)

In order to simplify Eq(Al), we consider a term with an
arbitrary permutation operatof acting on,. Inserting the
Swave projection operator, E¢16) , we can write

1 A
3{Uatlats| (1 + Gota) GoVaX] ) = = (4)°Gof Uy, U, Us)

x{ f duju; 2dupus®Du’u"2E(ug, Up) £(U), Ub)
X {ugUaU| X|uf U ugupus| a)

+4ar j duju}2duur2dupul>Duu?g(uy)

3 2 1A
X T<E - ZUg - 5“%) 9(u)Go(Ug, U, Ug) £(uy, Up) (U7, Uj

Mg e

XUUus XUy ug ug XUt Uy ug [ )], (A3)

where the factors of # and (4m)? arise from theS-wave
projection of the two-body-matrix and three-body potential,
respectively. This expression can be rewritten as

1
§<U1U2U3| (1 +Got12)GoVaX| )
A3 2
= 5(477) Go(uy, Uy, Ug)

X [§(u1,uz) + 47rg(u1)f<E - glﬁ - §U§>I(U21U3)]

X f dujudusu,Duru"E(u], ub) (U usus| X ujuus
XU UUS )

A3, o

=3 (47)°Go(ug, Uy, Ug)| &(uy,Up) + 4ag(uy)

XT(E- 35 §u§>1(u2,u3)]K§<A)(Ua), (A4)

4

where we have defined the quantities

I(ul,uz):JduiuizGo(ui,uz,ug)g(ui)g(ui,uz), (A5)

and
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K™ (ug) = f duju; 2dusub?Duu"E(u;, us) (U usus| X|uj usus

X{UpUZUg| ) (AB)

An analogous expressiddf) can be derived for permutation
operators which act on the second Yakubovsky component
B.
We proceed by giving the analytical expressions for the
K;A) and Kg(B) which appear in the computation of the three-
body force term. There are six combinations of permutation
operators acting o,;

= | duuiPaguu s, (472
(A) — 1 P20 12 o
1
<[ xtum sl AT
-1

1 1 1
K(Ff*,%M:EfduéuéZdugung deldX'f('JT(Ué,UIZ,),Ué)
_1 —_

X (7r(U, Up)Tn(Ug, Us)Ug(Us, Ug) [1n), (A7c)
1
Kp'= f dujuyduiug? J XE((U3, U5),Up)
-1
X (Ui, Ug) UUg| ) (A7d)
1 1
K(F,’;LP:E f dupu,?dujus? f 1dx
1
X J dx’ &(m(ly(uz, us), ), Up)
-1
X (7r(U3,Un(Uy, Uz) )Usliz(Us, Ug) [ha),  (ATE)

1 1 1 1
Kip,p= > f duéuézdLngzf 1dxf 1dx’f ld)(’
X E(m(ug, Ug), Up)(Uy[ 7(U3, Up), Tp(Ug, Ug) ]
X Qg (U, u5), Tp(Uy, Ug) TUsg(Ug, Us) [ 4ha),  (ATF)

and four combinations of operators acting @t

1 l
<@'= [ o | acauw)
-1

XU1D (U3, Up)U3(Us, Ug) | 1), (A8a)

1 1 1
Ke'=2 f dupuy’duu® f dxf dx’ &(m(up,U5), Up)
-1 -1

X (U, Up)U5(Ug, Ua)T(U3, Us) ). (A8b)
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®
Ks

1 1
Zfduiuizduéuézf dx’ &(uj,uj)
-1

X (U3(Us, Ug)U (U, Ug) U | ), (A8c)

(B)

Kep

5 j duéuézdu’z’ugzj dxf dx’ &(mr(us, Uy), ub)
-1 -1

X (U3(Ug, U3)U(U, Us) (U, Up) [ ), (A8d)
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where(;(u;,U,) and(,(uq,u,) are defined as

9 3
—us+ Zuluzx”,

. 1
Uy (ug,up) = \/Zui + 16

N 1
Op(Ug, Up) = /U3 + Zu% — Uy X",

(A9)
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