
Four-boson system with short-range interactions

L. Platter*
Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany

and Helmholtz-Institut für Strahlen-und Kernphysik (Theorie), Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany

H.-W. Hammer†

Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

Ulf-G. Meißner‡

Helmholtz-Institut für Strahlen-und Kernphysik (Theorie), Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany
and Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany

(Received 15 April 2004; revised manuscript received 2 July 2004; published 5 November 2004)

We consider the nonrelativistic four-boson system with short-range forces and large scattering length in an
effective quantum mechanics approach. We construct the effective interaction potential at leading order in the
large scattering length and compute the four-body binding energies using the Yakubovsky equations. Cutoff
independence of the four-body binding energies does not require the introduction of a four-body force. This
suggests that two- and three-body interactions are sufficient to renormalize the four-body system. We apply the
equations to4He atoms and calculate the binding energy of the4He tetramer. We observe a correlation between
the trimer and tetramer binding energies similar to the Tjon line in nuclear physics. Over the range of binding
energies relevant to4He atoms, the correlation is approximately linear.
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I. INTRODUCTION

Effective theories are ideally suited to describe the low-
energy properties of physical systems in a model-
independent way. They can be applied to any system that has
a separation of scales, which can be a fundamental property
of the underlying theory or simply a kinematical suppression.
The long-distance degrees of freedom must be included dy-
namically in the effective theory, while short-distance phys-
ics enters only through the values of a few coupling con-
stants, often called low-energy constants. Effective theories
are widely used in many areas of physics. Recently, a con-
siderable effort was devoted to applying effective field theo-
ries in nuclear and atomic physics. For overviews of these
programs, see, e.g., Refs.[1–4]. If there is no exchange of
massless particles, any interaction will appear short ranged at
sufficiently low energy. One can then use a very general
effective theory with short-range interactions only to de-
scribe the universal low-energy properties of the system.
Such a theory can be applied to a wide range of systems from
nuclear and particle physics to atomic and molecular physics.

Most previous work in this area was done using a nonrel-
ativistic effective-field theory(EFT) with contact interac-
tions. Particularly interesting are few-boson systems with
large scattering length. They are characterized by an unnatu-
rally large two-body scattering lengtha which is much larger
than the typical low-energy length scalel given by the range
of the interaction. Such systems display a number of inter-

esting effects and universal properties that are independent of
the details of the interaction at short distances of orderl: If
a.0, e.g., there is a shallow two-body bound state with
binding energyB2="2/ sMa2d+Osl /ad, whereM is the mass
of the particles. Low-energy observables can generally be
described in a controlled expansion inl / uau. In the two-boson
system, the effective theory reproduces the effective range
expansion(cf. Refs. [5,6]) but the structure of the three-
boson system with large scattering length is richer. In Refs.
[7,8], it was found that both two- and three-body contact
interactions are required at leading order for the consistent
renormalization of the three-body system. Interestingly, the
renormalization-group behavior of the three-body interaction
is governed by an ultraviolet limit cycle. This implies that at
leading order inl / uau, the properties of the three-boson sys-
tem with large scattering length are not determined by two-
body data alone and one piece of three-body information
(such as a three-body binding energy) is required as well. In
the EFT, this information can conveniently be parametrized
by the three-body parameterL* introduced in Refs.[7,8].
These general findings confirm and extend previous work by
Efimov who derived many general features of the three-body
problem with large scattering length[9,10].

While the EFT formulation has been very successful, it is
not the only possible formulation of an effective theory for
this problem. Lepage has advocated the framework of non-
relativistic quantum mechanics with an effective interaction
potential [11]. The contact operators in the field theory are
the replaced by an “effective potential” built from smeared
out d-function potentials and derivatives thereof. In the case
a.0, this approach has been applied to the three-boson sys-
tem by Wilson[12] and Mohr[13]. They confirmed the re-
sults of Refs.[7,8] and were able to calculate the binding
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energies for the three-boson system to extremely high accu-
racy.

In this paper, we consider the four-body system with
short-range interactions. The four-body problem has previ-
ously been studied in a variety of approaches. Early studies
include the Yakubovsky equations for local potentials using
the Hilbert-Schmidt expansion[14], the Schrödinger equa-
tion with separable two-body potentials[15], and field-
theoretical models with separable expansions of the three-
body T matrix [16]. The four-body problem of4He atoms
was investigated by Nakaichi-Maeda and Lim using the
Yakubovsky equations with a unitary pole approximation for
the S-wave s2d+s2d and s3d+s1d subamplitudes[17]. For a
review of these and other early studies see, e.g., Refs.
[18,19]. For an overview of recent calculations for the four-
body system of4He atoms, see Refs.[21,22]. A general re-
view of theoretical studies of small4He clusters can be found
in Ref. [23]. In Ref. [24], a benchmark calculation compar-
ing various modern calculational approaches to the nuclear
four-body problem was carried out.

The purpose of this paper is to study the four-boson sys-
tem with short-range interactions and large scattering length
in an effective theory. We will work at leading order inl / uau
and use the framework of nonrelativistic quantum mechanics
to construct an effective interaction potential. This approach
has the advantage that one can immediately start from the
well-known Yakubovsky equations for the four-body system
[25]. The four-boson binding energies are obtained by solv-
ing the Yakubovsky equations for the effective interaction
potential. The solution of the four-boson problem in effective
theory is important in several respects:

First, it can immediately be applied to the atomic problem
of 4He atoms and is a first step towards the four-body prob-
lem in nuclear physics which is complicated by spin and
isospin. The scattering length of4He atomsa<100 Å is
much larger than its effective rangere<7 Å which can be
taken as an estimate of the natural low-energy length scalel.
4He atoms are therefore an ideal application for our theory.
The three-body system of4He atoms has been investigated in
Refs.[8,26,27] using effective-field theory. While the univer-
sal properties of the three-body system of4He atoms were
discussed in Ref.[26], this has not been done for the four-
body system.

Second, the renormalization of the four-body system in an
effective theory is an open question. It is clear that low-
energy four-body observables must depend on a two-body
parameter and a three-body parameter. However, it is not
known whether a four-body parameter is also required to
calculate low-energy four-body observables up to corrections
suppressed byl / uau.

The theoretical situation concerning this question appears
confusing. On the one hand, there is a renormalization argu-
ment ford-function pair potentials that indicates that a new
four-body parameter is required to calculate four-body bind-
ing energies[28]. On the other hand, Amado and Greenwood
have evaluated the trace of the four-body kernel and con-
cluded that the Efimov effect is absent in the four-body sys-
tem [29]. This result suggests that a four-body parameter
should not be necessary at leading order inl / uau. There is
some circumstantial evidence in favor of the latter possibility

from the four-body problem in nuclear physics. There is a
correlation called the “Tjon line” between the binding energy
Bt of the triton and the binding energyBa of the a particle
[14]. Calculations of these binding energies using modern
phenomenological nucleon-nucleon interaction potentials
give results that underestimate both binding energies but
cluster along a line in theBt-Ba plane. By adding a three-
body potential whose strength is adjusted to get the correct
value forBt, one also gets an accurate result forBa (cf. Ref.
[30]). This conclusion also holds for chiral nuclear potentials
derived from an effective-field theory with explicit pions
[31]. The aim of the present work is to study the question
about the requirement of the four-body interaction by an ex-
plicit calculation in the controlled environment of an effec-
tive theory.

The paper is organized as follows. In Sec. II, we will
review the description of the two- and three-body bound
state problem in effective theory and extend this framework
to the four-body bound state problem. In Sec. III, we will
discuss the renormalization and present numerical results for
the case of4He atoms. Finally, we close with a summary and
outlook in Sec. IV.

II. FEW-BODY BOUND STATE EQUATIONS
IN EFFECTIVE THEORY

The effective low-energy interaction potential generated
by a nonrelativistic EFT with short-range interactions can be
written down in a momentum expansion. In the two-body
S-wave sector, it takes the general form

kk8uVukl = l2 + l2,2sk2 + k82d/2 + . . . , s1d

wherek andk8 are the relative three-momenta of the incom-
ing and outgoing particles, respectively. Because of Galilean
invariance, the interaction can only depend on the relative
momenta. Similar expressions can be derived for three- and
higher-body interactions. The exact form of the potential de-
pends on the specific regularization scheme used. The low-
energy observables, however, are independent of the regular-
ization scheme(up to higher-order corrections) and one can
choose a convenient scheme for practical calculations.1

In a momentum cutoff scheme, the potential in Eq.(1) can
be regularized by multiplying with a Gaussian regulator
function, expf−sk2+k82d /L2g, with the cutoff parameterL.
This factor strongly suppresses high-momentum modes in
the regionk,k8*L where the effective potential is not valid.
The cutoff dependence of the coefficientsl2sLd ,l2,2sLd , . . .
is determined by the requirement that low-energy observ-
ables are independent ofL. Of course, the expansion in Eq.
(1) is only useful in conjunction with a power counting
scheme that determines the relative importance of the vari-
ous terms at low energy. In the case of large scattering length
a, the leading order is given by thel2 term which must be
iterated to all orders, while the other terms give rise to

1For a comparison of different regularization schemes in the
nuclear two-body problem and chiral perturbation theory, see Refs.
[32,33], respectively.
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higher-order corrections that can be included perturbatively
[5,6]. In this paper, we will work to leading order in the large
scattering lengtha and include only thel2 term.

In the three-body system, a momentum-independent
three-body interaction terml3 must be included together
with l2 already at leading order[7,8]. Without this three-
body interaction low-energy observables show a strong cut-
off dependence and the system cannot be renormalized. Ef-
fective range effects and other higher-order corrections can
be included as well[34–36].

The power counting for the four-body system has not
been formulated yet. In order to see whether the minimal set
of interactionsl2 and l3 is sufficient, we will calculate the
bound states in the four-body system and study their cutoff
dependence. We will use a momentum cutoff regularization
scheme as described above. A strong cutoff dependence of
the binding energies would indicate that a four-body interac-
tion term is required. If the four-body binding energies are
stable under variations of the cutoff, this would suggest that
the four-body interaction is a subleading effect.

In order to set up our conventions and formalism, we will
first review the bound state equations for the two- and three-
body system and then set up the four-body equations.

A. The two-body sector

We write the leading order two-body effective potential in
momentum space as

kpuVuql = kpugll2kguql, s2d

wherel2 denotes the two-body coupling constant andqspd
are the relative three-momenta in the incoming(outgoing)
channel. The regulator functions

kpugl ; gspd = exps− p2/L2d s3d

suppress the contribution from high momentum states. In the
few-body literature, they are often called “form factors.”

Our normalization for plane-wave and spherical-wave
states is

kpup8l = ds3dsp − p8d,

kplmup8l8m8l =
dsp − p8d

pp8
dll8dmm8, s4d

and theS-wave projection of the plane wave state with mo-
mentump is

kp 0 0up8l ; kpup8l =
1

s4pd1/2

dsp − p8d
pp8

. s5d

For convenience, we will work in units where the massM of
the bosons and Planck’s constant" are set to unity:M ="
=1.

The interaction (2) is separable and the Lippmann-
Schwinger equation for the two-body problem can be solved
analytically. The two-bodyt matrix can be written as[37]

tsEd = ugltsEdkgu, s6d

whereE denotes the total energy. The two-body propagator
tsEd is then given by

tsEd = F 1

l2
− 4pE

0

`

dqq2 gsqd2

E − q2G−1

. s7d

A two-body bound-state appears as a simple pole in the
two-body propagatort at energyE=−B2. Thus the two-body
coupling constantl2sB2,Ld can be fixed from the two-body
binding energyB2, which is directly related to the scattering
length bya=1/ÎB2 at leading order inl / uau. The integrals
appearing in the propagator can be expressed through the
complementary error function

erfcsxd = 1 −
2

Îp
E

0

x

e−t2dt, s8d

and forE,0, we obtain for the inverse propagator:

tsEd−1 = 2p2FÎB2expS2B2

L2 DerfcSÎ2B2

L
D

− Î− E expS− 2E

L2 DerfcSÎ− 2E

L
DG . s9d

A similar expression for the propagator can be obtained for
positive energies by adding a small imaginary part toE, but
will not be required for our purposes.

B. The three-body sector

The low-energy properties of the three-body system for a
given effective potential can be obtained by solving the Fad-
deev equations[38]. Faddeev’s idea was to decompose the
full three-body wave functionC into so-called “Faddeev
components” in order to avoid the problem of disconnected
contributions in the three-body scattering problem. For the
three-body problem with two- and three-body interactions,
the full wave function can be decomposed into four compo-
nents[39]: one for each two-body subcluster and one for the
three-body cluster.2 For identical bosons, the three-body
wave function is fully symmetric under exchange of particles
and the Faddeev equations simplify considerably. In this
case, one only needs to solve equations involving one of the
two-body Faddeev components and the three-body compo-
nent. The two remaining two-body components can be ob-
tained by permutations of particles. For more details on the
Faddeev equations, we refer the reader to the literature
[40,37].

We follow Glöckle and Meier[39] and decompose the full
three-body wave function as

C = s1 + Pdc + c3, where P = P13P23 + P12P23

s10d

is a permutation operator that generates the two not explicitly
included Faddeev components fromc. The operatorPij sim-
ply permutes particlesi and j . The Faddeev equations forc
andc3 in operator form are then

c = G0 t P c + G0 t c3,

2Note, however, that other decompositions involving only three
Faddeev components are possible as well.
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c3 = G0 t3s1 + Pdc, s11d

whereG0 denotes the free three-particle propagator.t is the
two-body t matrix for the two-body subsystem described by
the componentc. t3 is the three-bodyt matrix defined by the
solution of the three-body Lippmann-Schwinger equation
with the leading order three-body effective interaction

V3 = ujll3kju, s12d

only. SinceV3 is separable, we can solve fort3 exactly and
obtain

t3sEd = ujlt3sEdkju, where t3sEd = F 1

l3
− kjuG0ujlG−1

.

s13d

The three-body regulator functionujl will be specified later.
Note that t3 is only a technical construct that is generally
cutoff dependent and not observable. The physical three-
body t matrix always includes both two- and three-body
forces. Since we are interested only in the binding energies
and not in the wave functions, we can eliminate the compo-
nentc3 and obtain

c = G0tPc + G0tG0t3s1 + Pdc. s14d

The componentc3 can easily be recovered by using the sec-
ond line of Eq.(11).

We now derive an explicit representation of Eq.(14) in
momentum space. We will illustrate this procedure by show-
ing some details for the first term on the right-hand side of
Eq. (14). The extension to include the second term contain-
ing three-body interaction is straightforward and we will
only quote the final result. Furthermore, in order to under-
stand the renormalization of the three-body problem it is
instructive to consider the case without a three-body force
first. The natural Jacobi momenta are given by

u1 =
1

2
sk1 − k2d, u2 =

2

3
Fk3 −

1

2
sk1 + k2dG . s15d

Here and in the following sections, we will only takeS
waves into account. Hence we can project all operators ac-
cordingly and define theS-wave projection operator

E du1u1
2du2u2

2uu1u2lku1u2u ; E Duu2uu1u2lku1u2u. s16d

Using the definitionku1u2ucl;csu1,u2d, we can write the
Faddeev equation in momentum space as

csu1,u2d = ku1u2uG0tPucl

= 4pG0su1,u2dgsu1d E Du8u82E Du9u92gsu18d

3tSE −
3

4
u28

2Ddsu2 − u28d
u28

2 ku18u28uPuu19u29lku19u29ucl,

s17d

where the factor of 4p arises from our normalization of the
S-wave projected two-bodyt matrix. The free propagator for

three particles in their center of mass is given by

G0su1,u2d = fE − Eking−1 = FE − u1
2 −

3

4
u2

2G−1

, s18d

whereEkin denotes the kinetic energy. Furthermore, it should
be noted that the two-body propagatort in Eq. (17) is evalu-
ated at the energy in the corresponding two-body subsystem:
E− 3

4u28
2. The permutation operatorP can be written as

ku1u2uPuu18u28l =E
−1

1

dx
d„u1 − psu2,u28d…d„u18 − psu28,u2d…

psu2,u28d
2psu28,u2d2 ,

s19d

psu2,u28d =Î1

4
u2

2 + u28
2 + u2u28x. s20d

Using this representation ofP, we can write the integral
equation as

csu1,u2d = 4p G0su1,u2dgsu1dtSE −
3

4
u2

2D
3E

0

`

du28u28
2E

−1

1

dx g„psu2,u28d…

3c„p„u28,u2d,u28…. s21d

This is an homogeneous integral equation in two variables. It
can be further simplified by defining a new functionFsu2d of
only one variable via

csu1,u2d = G0su1,u2dgsu1dtSE −
3

4
u2

2DFsu2d, s22d

leading to the integral equation

FIG. 1. The shallowest three-body binding energies indicated by
the solid, dashed, and dash-dotted lines as a function of the momen-
tum cutoff L. The vertical dashed line indicates the cutoff range in
which the three-body system has exactly two bound states. The
horizontal solid line shows the energy at which the shallowest
three-body state is fixed.
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Fsu2d = 4pE
0

`

du28u28
2E

−1

1

dxg„psu2,u28d…

3G0„psu28,u2d,u28…g„psu28,u2d…tSE −
3

4
u28

2DFsu28d.

s23d

The three-body binding energies are given by those values
of E for which Eq.(24) has a nontrivial solution. By express-
ing the two-body coupling constantl2 in terms of the bind-
ing energy of the shallow two-body bound state in Eq.(9),
we have already renormalized the two-body problem.

The three-body system is stabilized against the Thomas
collapse by the presence of the momentum cutoffL. No
three-body force is required for this purpose. After the cutoff
is introduced, there are no bound states with binding energies

B3*L2.3 However, the three-body binding energies depend
strongly on the value of the cutoffL. This is illustrated in
Fig. 1 where the shallowest three-body binding energies are
indicated by the solid, dashed, and dash-dotted lines. The
three-body system has exactly two bound states in the cutoff
range indicated by the two vertical dashed lines.

We now include the second term on the right-hand side of
Eq. (14) which contains the three-body force. The derivation
of an explicit representation in momentum space proceeds as
for the first term. The full equation including both terms then
reads

Fsu2d = 4pE
0

`

du28u28
2E

−1

1

dxg„psu2,u28d…G0„psu28,u2d,u28…g„psu28,u2d…tSE −
3

4
u28

2DFsu28d

+ s4pd3E
0

`

du18u18
2gsu18dG0su18,u2dt3sEdjsu18,u2dFE

0

`

du19u19
2E

0

`

du29u29
2jsu19,u29dgsu19dG0su19,u29dtSE −

3

4
u29

2DFsu29d

+E
0

`

du29u29
2E

0

`

du2-u2-
2E

−1

1

dxj„psu29,u2-d,u29…g„psu2-,u29d…G0„psu2-,u29d,u2-…tSE −
3

4
u2-

2DFsu2-dG , s24d

wherejsu1,u2d;ku1u2ujl is defined as

jsu1,u2d = exp1−

u1
2 +

3

4
u2

2

L2 2 . s25d

Note that the term in the exponent is the kinetic energy of the
three-body system. Thus it is exactly the kinetic energy flow-
ing through the three-body interaction which is limited by
the cutoff parameterL. This choice of the cutoff function
satisfies Bose symmetry explicitly. The factors of 4p and
s4pd3 arise from our normalization of theS-wave projection
of t and t3.

The value of the three-body force is determined by the
renormalization condition that the shallowest bound state en-
ergy is fixed as the cutoff is varied. This value is denoted by
the horizontal solid line in Fig. 1. Depending on the value of
the cutoff, the three-body force then must provide additional
attraction or repulsion in order to keep the shallowest bound-
state energy fixed as the cutoff is varied. Thus one three-
body datum(in our case the shallowest bound state energy)
is required as input while all other low-energy three-body
observables can be predicted. Once the shallowest bound
state is fixed, the binding energies of the deeper bound states
will also be cutoff independent. When the cutoff is increased
and a new bound state appears at threshold, the three-body

force must turn from strongly repulsive to strongly attractive
to satisfy the renormalization condition for the shallowest
bound state. The additional state is then added as a deep state
rather than at threshold. Low-energy three-body observables
are not affected by the additional deep bound states. As a
consequence, the cutoff can be made arbitrarily large in the
three-body system.

The renormalization procedure determines three-body
coupling constantl3sB3,Ld uniquely. It was used in Refs.
[7,8] to renormalize the three-body equation derived from
nonrelativistic effective-field theory with an auxiliary field
for the interacting two-particle state. See Ref.[28] for an
earlier discussion of this renormalization method. While the
part of Eq.(24) resulting from two-body interactions only is
very similar to the corresponding part of the field-theoretical
equation, the part containing the three-body force(in form of
t3) is more complicated. The simplicity of the field-
theoretical equation is due the specific form of the three-
body interaction using an auxiliary field in Refs.[7,8].4

We now explicitly verify the renormalization of the three-
body system as described above. By varying the cutoff pa-
rameterL and tuning the three-body couplingl3 such that

3This momentum cutoffL can also be thought of as introducing a
finite ranger ,1/L for the pair potential in position space. The
Thomas collapse is then stopped when the bound state size is of the
same order as the range of the potential.

4One would expect that using auxiliary fields would also simplify
the four-body equations. However, it is not obvious how to treat the
s2d+s2d clusters in the intermediate state without introducing un-
controlled approximations.
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the shallowest three-body binding energy stays constant, we
can determine the renormalization-group evolution ofl3 nu-
merically. For the dimensionless coupling constantl3L4, we
confirm the results of Refs.[7,8,12,13]: L4l3sLd shows a
limit cycle behavior and is single valued.5 This limit cycle is
shown in Fig. 2. For large values of the cutoffL, the dimen-
sionless three-body coupling constantL4l3 flows towards an
ultraviolet limit cycle. ForL→`, it has the limiting behav-
ior

l3sLd =
c

L4

sinfs0 lnsL/L3d − arctans1/s0dg
sinfs0 lnsL/L3d + arctans1/s0dg

, s26d

where s0<1.006 24 is a transcendental number that deter-
mines the period of the limit cycle. If the cutoffL is multi-
plied by a factor expsnp /s0d<s22.7dn with n an integer, the
three-body couplingl3 is unchanged.L3 is a three-body pa-
rameter generated by dimensional transmutation. One can
either specify the dimensionless coupling constantL4l3sLd
and the cutoffL or the dimensionful three-body parameter
L3. The constantc is universal and independent ofL3 within
our numerical accuracy. We have determinedc numerically
by fitting L4l3sLd for different three-body parametersL3 to
Eq. (26) and found

c = 0.074 ± 0.003, s27d

where the error has been estimated from the observed varia-
tion in the fit results forc. The three-body parameterL3 can
be determined by fixing a three-body binding energyB3. Of
course, one could also use a three-body binding energy di-
rectly to characterize the value of the three-body couplingl3
at a given cutoff. However, it is advantageous to useL3 be-
cause Eq.(26) takes a particularly simple form in terms
of L3.

One might expect that the smooth Gaussian regulator
function we use would lead to better behaved numerical so-
lutions of the three-body equations than the sharp cutoff used
for the field-theoretical equation in Refs.[7,8]. However, it
turns out that the convergence of the three-body coupling to
the ultraviolet limit cycle is significantly slower than in the

effective-field theory formulation. This is due to the more
complicated structure of the part of Eq.(24) containing the
three-body force. For very large loop momenta, the three-
body part of Eq.(24) simplifies considerably and has a simi-
lar form as in the EFT formulation. In this limit, it is possible
to derive the general form of Eq.(26).

In general, we recover the results for the three-body bind-
ing energies from Refs.[7,8,12,13]. However, we note that
somewhat higher cutoffs are required to reach convergent
results for the deeper three-body bound states. The numerical
effort for the solution of the three-body equations becomes
larger as the value of the three-body couplingl3 is increased.
This is also related to the relatively complicated structure of
the part of Eq.(24) containing the three-body force.

C. The four-body sector

We now turn to the four-body sector. The four-body bind-
ing energies are given by the nontrivial solutions of the
Yakubovsky equations[25] which are based on a generaliza-
tion of the decomposition into Faddeev components for the
three-body system. The full four-body wave functionC is
first decomposed into Faddeev components, followed by a
second decomposition into so-called “Yakubovsky compo-
nents.” In the case of identical bosons, one ends up with two
Yakubovsky componentscA and cB. We start from the
Yakubovsky equations including a general three-body force
in the form written down by Glöckle and Kamada[41]. The
full four-body bound-state wave function is decomposed into
the Yakubovsky componentscA andcB via

C = f1 + s1 + PdP34gs1 + PdcA + s1 + Pds1 + P̃dcB,

s28d

where Pij exchanges particlesi and j , P is defined in Eq.

(10), and P̃ is given by

P̃ = P13P24. s29d

The equations for the two wave function components read

cA = G0t12Pfs1 + P34dcA + cBg +
1

3
s1 + G0t12dG0V3C,

cB = G0t12P̃fs1 + P34dcA + cBg, s30d

wheret12 denotes the two-bodyt matrix for particles 1 and 2
andV3 is the three-body force defined in Eq.(12). Note that
the three-body force couples to the full four-body wave func-
tion C. The factor of one-third in front of the three-body
force term arises because we insert the full three-body inter-
action forV3. This is possible since we consider three-body
contact interactions which are symmetric under the exchange
of any pair of particles.

In order to describe the four-body system at rest, three
Jacobi momenta are required. The structure of the four-body
equations is more complex than that of the three-body equa-
tions because boths3d+s1d and s2d+s2d fragmentations can

5Note thatl3 is defined with the opposite sign of the three-body
coupling constantH in the field theory formulation[7,8].

FIG. 2. The three-body coupling constantl3 as a function of the
cutoff parameterL. The solid blue line shows a fit of Eq.(26) with
c=0.076 andL3=23.3ÎB2 to the points forLù245ÎB2.

PLATTER, HAMMER, AND MEIßNER PHYSICAL REVIEW A70, 052101(2004)

052101-6



occur. As a consequence, two different sets of Jacobi mo-
menta are required. Thes3d+s1d fragmentation is described
by the vector

u3 =
3

4
Sk4 −

1

3
sk1 + k2 + k3dD , s31d

along with the Jacobi momenta for the three-body system
given in Eq.(15). Thes2d+s2d fragmentation is described by
the set

v1 =
1

2
sk1 − k2d, v2 =

1

2
sk1 + k2d −

1

2
sk3 + k4d,

and v3 =
1

2
sk3 − k4d. s32d

Depending on which Yakubovsky component and operator in
Eq. (30) is concerned, one of the two sets of coordinates will
be more convenient than the other.

As in the previous subsection, we will only display the
derivation of the analytic expression for the Yakubovsky
equations without the three-body force. It is natural to evalu-
ate the Yakubovsky componentcA as a function ofu1,u2,
andu3:

ku1u2u3ucAl = 4pG0su1,u2,u3dgsu1dtSE −
3

4
u2

2 −
2

3
u3

2DFE du28u28
2E

−1

1

dxg„psu2,u28d…kpsu28,u2du28u3ucAl

+
1

2
E du28u28

2E
−1

1

dxE
−1

1

dx8g„psu2,u28d…kpsu28,u2dũ2su28,u3dũ3su28,u3ducAl

+
1

2
E du28u28

2E
−1

1

dxE
−1

1

dx8gspsu2,u28dd 3 kpsu28,u2dṽ2su28,u3dṽ3su28,u3ducBlg, s33d

where the two-body propagatortsE− 3
4u2

2− 2
3u3

2d is again
evaluated at the energy of the corresponding two-body sub-
system.G0su1,u2,u3d is the free four-particle propagator in
the center-of-mass system of the four particles andpsu2,u28d
is defined in Eq.(20). The second Yakubovsky component
cB is computed as a function of the momentav1,v2, andv3:

kv1v2v3ucBl = 4pG0sv1,v2,v3dgsv1dtSE −
1

2
v2

2 − v3
3D

3FE dv38v38
2gsv38dkv3v2v38ucBl

+E dv38v38
2E

−1

1

dxgsv38dkv3ū2sv2,v38dū3sv2,v38d

3ucAlg. s34d

In Eqs.(33) and (34), we have used the abbreviations

ũ2su2,u3d =Î1

9
u2

2 +
64

81
u3

2 +
16

27
u2u3x8,

ũ3su2,u3d =Îu2
2 +

1

9
u3

2 −
2

3
u2u3x8,

ṽ2su2,u3d =Îu2
2 +

4

9
u3

2 +
4

3
u2u3x8,

ṽ3su2,u3d =Î1

4
u2

2 +
4

9
u3

2 −
2

3
u2u3x8,

ū2sv2,v3d =Î4

9
v2

2 +
4

9
v3

2 −
8

9
v2v3x8,

ū3sv2,v3d =Î1

4
v2

2 + v3
2 + v2v3x8. s35d

Similar to the three-body case, Eqs.(33) and (34) can be
simplified from two coupled integral equations in three vari-
ables to two coupled integral equations in two variables. Per-
forming the substitutions

ku1u2u3ucAl = gsu1dG0su1,u2,u3dFAsu2,u3d,

kv1v2v3ucBl = gsv1dG0sv1,v2,v3dFBsv2,v3d, s36d

we obtain the integral equations forFAsu2,u3d and
FBsv2,v3d:
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FAsu2,u3d = 4ptSE −
3

4
u2

2 −
2

3
u3

2DFE du28u28
2E

−1

1

dxg„psu2,u28d…g„psu28,u2d…

3G0„psu28,u2d,u28,u3…FAsu28,u3d +
1

2
E du28u28

2E
−1

1

dxE
−1

1

dx8g„psu2,u28d…g„psu28,u2d…

3 G0„psu28,u2d,ũ2su28,u3d,ũ3su28,u3d…FA„ũ2su28,u3d,ũ3su28,u3d…

+
1

2
E du28u28

2E
−1

1

dxE
−1

1

dx8g„psu2,u28d…g„psu28,u2d…

3G0„psu28,u2d,ṽ2su28,u3d,ṽ3su28,u3d…FB„ṽ2su28,u3d,ṽ3su28,u3d…G , s37d

FBsv2,v3d = 4ptSE −
1

2
v2

2 − v3
2DFE dv38v38

2gsv38dgsv3dG0sv3,v2,v38dFBsv2,v38d

+E dv38v38
2E

−1

1

dxgsv38dgsv3dG0„v3,ū2sv2,v38d,ū3sv2,v38d…

3FA„ū2sv2,v38d,ū3sv2,v38d…G . s38d

The inclusion of the three-body force term is straightforward
but lengthy and the corresponding expressions are given in
the Appendix.

In order to obtain the four-body binding energies, we have
to solve the Yakubovsky equations with the three-body force
term. The binding energies can be found by discretizing the
above equations and calculating the eigenvalues of the re-
sulting matrix. They are given by the energies at which any
eigenvalue of the matrix is equal to 1. The wave function is
then given by the corresponding eigenvector.

The renormalization analysis of the four-body system is
complicated by the cutoff dependence of the number of
bound states in the three-body subsystems. The further the
cutoff L is increased, the more three-body bound states ap-
pear. While the spurious deep three-body states have no in-
fluence on low-energy three-body observables, they create an
instability in the four-body system which can collapse into a
deep three-body bound state plus another particle. This limits
cutoff variations to an intervalL0,L,22.7L0 for someL0,
in which the number of three-body bound states remains con-
stant. Since the cutoff can still be varied by more than a
factor of 10, we are nevertheless able to study the renormal-
ization properties and obtain converged numerical results.
Alternatively, one could explicitly subtract out the spurious
bound states from the three-bodyt matrix. We will come
back to this question in the next section.

III. RENORMALIZATION AND NUMERICAL RESULTS

In this section, we will discuss the renormalization of the
four-boson system and present some numerical results for the
four-body system of4He atoms. For convenience, we will set

Boltzmann’s constant to unity:k=1. Since the scattering
length of4He atoms is much larger than their effective range,
they are an ideal application for our theory and a leading-
order calculation should be accurate to about 10%(since
l /a.10%).

The quantitative experimental information on low-energy
4He atoms, however, is rather limited. Using diffraction of a
molecular beam of small4He clusters from a transmission
grating, the bond length of the4He dimer has been measured
to be krl=s52±4dÅ [42]. This value is an order magnitude
larger than their effective rangere<7 Å, which can be taken
as an estimate of the natural low-energy length scalel. The
scattering lengtha=s104−18

+8 dÅ and the dimer binding energy
B2=s1.1−0.2

+0.3d mK were derived from the measured bond
length using the zero range approximation[42]. The 4He
trimer, tetramer, and several larger4He clusters have been
observed[43,44], but no quantitative experimental informa-
tion about their binding energies is available to date.

However, there is a large number of theoretical calcula-
tions using realistic4He potentials for the trimers4He3d.
These calculations typically predict a trimer ground state
with an energy of about 120 mK and one excited state with a
binding energy of about 2 mK[45–48]. The ground and ex-
cited states of the tetramers4He4d and larger clusters have
been calculated by Blume and Greene(BG) [21]. They have
used the LM2M2 potential[49] and a combination of Monte
Carlo methods and the adiabatic hyperspherical approxima-
tion. Their results for the trimer energies agree with the exact
three-body calculations of Refs.[45–48].

In the absence of quantitative experimental information
on the three-body clusters, we take the binding energy of the
4He trimer excited state from theoretical calculations using
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the LM2M2 potential as input to fixL3. We use the value of
Blume and Greene:B3

s1d /B2=1.767 for this purpose[20,21].
We can then calculate the trimer ground state and the tet-
ramer binding energies for the LM2M2 potential based on
low-energy universality. Before we present our numerical re-
sults for the4He4 system, we discuss the renormalization of
the four-body problem.

In Fig. 3, we have plotted the three-body ground state
energyB3

s0d and the four-body energies as a function of the
cutoff L. As in the case of the trimer, the4He tetramer has a
ground stateB4

s0d and one excited stateB4
s1d. The cutoff

dependence ofB3
s0d must flatten out and reach a plateau asL

is increased since the three-body system was renormalized
by fixing the trimer excited-state binding energyB3

s1d (cf.
Sec. II B). However, Fig. 3 shows that the four-body binding
energiesB4

s0d andB4
s1d also reach a plateau asL is increased.

The excited-state energyB4
s1d has a negligible cutoff depen-

dence already at fairly small cutoffs. For the ground state
B4

s0d, the situation is somewhat more complicated and the
cutoff dependence ofB4

s0d reaches a plateau only at the larg-
est cutoff values calculated. The residual cutoff dependence
is about 2% for the excited state and 5% for the ground state.
A slower convergence for the ground state is expected since
the value forB4

s0d is a factor four larger than for the excited
state and finite cutoff effects of the orderÎuEu /L are more
important. The residual cutoff dependence for both states is
at least a factor 2 smaller than the corrections from higher
orders in the expansion inl /a which are expected to be of
the order l /a,10%. We speculate that higher precision
could be achieved by increasing the cutoff further. As already
noted earlier, this would create unphysical three-body bound
states which create an instability in the four-body system.
These states would have to be subtracted explicitly. While
such a subtraction is possible, this is beyond the scope of our
paper and we will not attempt such a subtraction here.

Taken together, the above observations provide strong nu-
merical evidence that the four-body binding energies are cut-
off independent up to higher-order corrections inl /a. In par-
ticular, a four-body force with limit cycle behavior would
lead to a much stronger cutoff dependence of the binding

energies(cf. Fig. 1) and can be excluded. The occurrence of
the plateaus forB4

s0d andB4
s1d in Fig. 3 suggests that a four-

body force is not required for renormalization of the four-
body system at leading order inl /a. Renormalization of the
three-body system automatically generates cutoff-
independent results for the four-body binding energies. As a
consequence, the four-body binding energies can be pre-
dicted from two- and three-body input alone.

We now turn to our numerical results for the four-body
system of4He atoms. From the plateaus in Fig. 3, we can
read off the values of the binding energies. A comparison of
our results with the values obtained by BG[21] is shown in
Table I. The results of their calculation for the trimer and
tetramer are given in the two right columns of Table I, while
our results are given in the two left columns. In general, our
results are in good agreement with the values of BG. For the
trimer ground-state and the tetramer excited-state energies,
we obtain the valuesB3

s0d=127 mK andB4
s1d=128 mK, re-

spectively. For the tetramer ground state, we obtainB4
s0d

=492 mK. While the value ofB4
s0d is already relatively large,

it is still a factor 3 smaller than the natural four-body energy
scale,1.5 K where the effective theory description is ex-
pected to break down.

The natural energy scales can be estimated as follows: For
two particles, it is directly determined by the natural length
scale l and the massM of the particles:e2,"2/ sMl2d
<250 mK. For three and four particles, this estimate should
be scaled according to the number of pairs available,6 lead-
ing to the valuese3,750 mK ande4,1.5 K. This estimate
can be made for cutoff values at which the three-body force
vanishes. Since all observables are independent of the cutoff,
however, it is valid for arbitrary cutoffs. Our short-range ef-
fective theory can describen-body bound states with binding
energiesBn!en. For deeper bound states closer to the natu-
ral energy scale the errors are expected to increase.

The values in Table I have been computed at a cutoff of
L=235ÎB2 which is close to the largest possible value with
only two three-body bound states. Our values forB4

s0d and
B4

s1d agree with the BG values to within 12% and 3%, respec-
tively. The dominant correction to our results is due to effec-
tive range effects which are not included in our leading-order
calculation. These deviations are within the expected accu-
racy of the effective theory. We expect the effective range
corrections to the leading-order result to be of the order
re/a,10%. From the residual cutoff dependence, we esti-

6We are grateful to Eric Braaten for suggesting to us this scaling
of the natural energy scale according to the number of pairs.

FIG. 3. Binding energies of the three- and four-body system as
a function of the cutoffL. Bn

s0d andBn
s1d denote the ground and first

excited state of then-body system.

TABLE I. Binding energies of the4He trimer and tetramer in
mK. The two right columns show the results by Blume and Greene
[21] (denoted by the index BG) while the two left columns show
our results. The number in brackets was used as input to fixL3.

System Bs0d smKd Bs1d smKd BBG
s0d smKd BBG

s1d smKd

4He3 127 [2.186] 125.5 2.186
4He4 492 128 559.7 132.7
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mate the numerical error of our calculation to be of the order
of 2% for the excited state and 5% for the ground state. For
fixed value of the cutoffL, our calculations are numerically
accurate to three significant digits.

The large scattering length of4He atoms also leads to
universal properties in the four-body problem. A typical ex-
ample is the existence of correlations between different ob-
servables. These correlations become manifest in universal
scaling functions relating dimensionless combinations of ob-
servables. Various scaling functions for the three-body sys-
tem of 4He atoms were studied in Refs.[26,50,51]. Here, we
consider the four-body binding energies as a function of the
three-body binding energies. In phenomenological calcula-
tions of the four-nucleon system, an approximately linear
correlation between the three- and four-nucleon binding en-
ergies for various nucleon-nucleon potentials is observed: the
Tjon line [14]. This correlation is approximately linear for
the relevant range of binding energies[30]. Since the4He
trimer and tetramer have both a ground state and an excited
state, there are four “Tjon lines” in this case.

In Fig. 4, we show the correlations between the ground-
and excited-state energies of the4He trimer and tetramer. The
first and third figure from the top show the energies of the
tetramer excited stateB4

s1d and ground stateB4
s0d as a function

of trimer excited-state energyB3
s1d, respectively, while the

second and fourth figure from the top show the same quan-
tities as a function of the trimer ground-state energyB3

s0d. The
solid line is the leading-order result of our effective theory
calculation and the cross denotes the result of the calculation
by Blume and Greene for the LM2M2 potential[21]. For the
ground states of the trimer and tetramer, calculations with
other4He potentials are available as well. As an example, we
show the results for the TTY, HFD-B, and HFDHE2 poten-
tials taken from Refs.[17,20].

Similar to the nuclear sector, we find an approximately
linear correlation over the range of binding energies relevant
to 4He atoms. The calculations for the realistic4He potentials
fall close to the universal scaling curves from our effective
theory. For the correlation between the ground-state energies,
the Tjon line is directly evident in the potential model calcu-
lations shown in Fig. 4. If calculations with other potentials
were performed for the excited-state energies, they would
also fall on a line parallel to the universal scaling curve from
effective theory. The deviation of calculations using realistic
potentials from the universal line is mainly governed by ef-
fective range corrections which are expected to be of the
order 10% for4He atoms. For the tetramer ground state, this
deviation is about a factor 4 larger than for the excited state.

While the correlations in Fig. 4 are approximately linear
over the range of binding energies calculated, we expect
them to become nonlinear for a sufficiently large range of
binding energies. Similar nonlinearities were observed for
correlations between three-body observables in Refs.[8,26].
Our results suggest that the Tjon lines are universal proper-
ties of few-body systems with short-range interactions and
large scattering length. They do not depend on the details of
the short-distance physics which are very different in atomic
and nuclear systems. It is interesting to note that in nuclear
physics only a correlation between the ground-state energies

of the three- and four-body systems has been observed. We
expect this correlation to hold for allS-wave states that are
within the range of validity of an effective theory with con-
tact interactions. It would be interesting to see whether such
a correlation also holds for the excitedJP=0+ state of thea
particle above thep+3H threshold.

We have fitted the scaling functions shown in Fig. 4 with
linear expressions and obtained

FIG. 4. The correlations between the ground- and excited-state
energies of the4He trimer and tetramer. First and third figure from
the top: the four-body excited-state energyB4

s1d and ground-state
energyB4

s0d as a function of the three-body excited-state energyB3
s1d.

The second and fourth figure from the top: the same quantities as a
function of three-body ground-state energyB3

s0d. The solid line
shows the leading-order effective theory result and the cross de-
notes the calculation for the LM2M2 potential by Blume and
Greene[21]. The triangles show the results for the TTY, HFD-B,
and HFDHE2 potentials[17,20].
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B4
s0d

B2
= − 24.752 + 4.075

B3
s0d

B2
, 69ø

B3
s0d

B2
ø 142, s39d

B4
s0d

B2
= − 742.0 + 645.1

B3
s1d

B2
, 1.54ø

B3
s1d

B2
ø 2.00, s40d

B4
s1d

B2
= − 0.662 + 1.034

B3
s0d

B2
, 65ø

B3
s0d

B2
ø 125, s41d

B4
s1d

B2
= − 178.0 + 159.4

B3
s1d

B2
, 1.52ø

B3
s1d

B2
ø 1.92. s42d

These relations can be used to predict the tetramer ground-
and excited-state energies for any potential for which one of
the trimer energies and the dimer binding energy are known.
The expressions(39)–(42) are of the same accuracy as our
explicit calculations(see the discussion above). They are ex-
pected to be most accurate for the excited states.

IV. SUMMARY AND OUTLOOK

In this paper, we have studied the four-body system with
short-range interactions and large scattering length. We have
concentrated on the bound-state problem of four bosons
starting from the Yakubovsky equations[25]. We have con-
structed an effective interaction potential including both a
two- and three-body contact interaction. This is the minimal
set of contact interactions required for renormalization of the
three-body problem[7,8]. The two parameters of the effec-
tive potential were determined from matching to the binding
energy of the dimer and the excited state of the trimer. We
have then solved the four-body bound-state problem under
the assumption that no four-body interaction is required for
renormalization at leading order. We found that after renor-
malizing the two- and three-body subsystems, the four-body
binding energies were automatically independent of the ul-
traviolet cutoff. This result suggests that the four-body inter-
action is not of leading order and the low-energy four-body
observables are determined by properties of the two- and
three-body systems up to corrections suppressed byl / uau.
Although we have considered only the four-boson bound
state problem with large scattering length explicitly, we ex-
pect this result to hold for all low-energy four-body observ-
ables.

We have applied this effective theory to the four-body
system of4He atoms and calculated the ground- and excited-
state energies of the4He tetramer. In the absence of experi-
mental information on the4He trimer, we have taken the
excited-state energy of the4He trimer as calculated by Blume
and Greene for the LM2M2 potential[21] as input to deter-
mine the three-body parameterL3. For the binding energies
of the trimer ground state and the tetramer ground and ex-
cited states, we find the valuesB3

s0d=127 mK, B4
s1d

=128 mK, andB4
s0d=492 mK, respectively. The latter energy

is still about a factor 3 smaller than the natural four-body
energy scale,1.5 K where the effective theory is expected
to break down. Our values forB4

s0d and B4
s1d agree with the

calculation by Blume and Greene to within 12% and 3%,
respectively. These deviations are consistent with the ex-
pected accuracy at leading order in the large scattering length
of aboutl / uau,10%.

The large scattering length of4He atoms leads to univer-
sal properties such as universal scaling functions. We have
calculated the universal scaling functions relating the tet-
ramer energies to the trimer energies. The correlations are
approximately linear in the region of binding energies rel-
evant for4He atoms. As expected from low-energy univer-
sality, the results of various calculations using realistic4He
potentials fall close to the universal scaling curves. Correc-
tions to the scaling curves are mainly governed by effective
range effects. We have fitted the calculated scaling functions
with linear expressions(39)–(42) that can be used to obtain
the tetramer binding energies at leading order inl / uau for any
potential if one of the trimer binding energies is known.

There are a number of directions that should be pursued in
future work. While we have demonstrated that a four-body
force is not necessary to renormalize the four-body system to
leading order, the general power counting for four-body
forces is still not understood. At which order does the leading
four-body interaction enter? In the three-body system, e.g.,
the first-order correction is due to the two-body effective
range. If a similar situation holds in the four-body system, it
would be possible to predict low-energy four-body observ-
ables up to corrections of ordersl /ad2 from two- and three-
body information alone.

The extension of the effective theory to calculate four-
body scattering observables would be very valuable. The
knowledge of the dimer-dimer scattering length, for ex-
ample, is important for experiments with ultracold atoms.
For the simpler problem of fermions with two spin states
(where the three-body parameterL3 does not contribute), the
dimer-dimer scattering length was recently calculated[52].

Whether this effective theory can be applied to the nuclear
four-body system like the pionful theory[31] is an open
question. While it is straightforward to generalize the effec-
tive theory to include spin and isospin, it is not clear whether
an effective theory without explicit pions will be adequate
for thea particle ground state with a binding energy of about
28 MeV. This question deserves further study. The effective
theory might also help to shed some light on the renewed
speculations about the existence of a shallow tetraneutron
bound state[53].
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APPENDIX: YAKUBOVSKY EQUATIONS
WITH THREE-BODY FORCE

In this appendix, we derive the analytic expressions for
the three-body force term in the Yakubovsky equations(30)
in momentum space. The three-body force term
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1

3
ku1u2u3us1 + G0t12dG0V3uCl sA1d

couples to the full four-body wave functionC [cf. Eq.(28) ],
which is related to the Yakuvosky componentscA andcB via

C = s1 + P34 + PP34 + P + P34P + PP34PdcA

+ s1 + P + P̃ + PP̃dcB. sA2d

In order to simplify Eq.(A1), we consider a term with an
arbitrary permutation operatorX acting oncA. Inserting the
S-wave projection operator, Eq.(16) , we can write

1

3
ku1u2u3us1 + G0t12dG0V3XucAl =

l3

3
s4pd2G0su1,u2,u3d

3FE du18u18
2du28u28

2Du9u92jsu1,u2djsu18,u28d

3 ku18u28u3uXuu19u29u39lku19u29u39ucAl

+ 4pE du18u18
2du19u19

2du29u29
2Du-u-2gsu1d

3tSE −
3

4
u2

2 −
2

3
u3

2Dgsu18dG0su18,u2,u3djsu18,u2djsu19,u29d

3ku19u29u3uXuu1-u2-u3-lku1-u2-u3-ucAlg, sA3d

where the factors of 4p and s4pd2 arise from theS-wave
projection of the two-bodyt-matrix and three-body potential,
respectively. This expression can be rewritten as

1

3
ku1u2u3us1 + G0t12dG0V3XucAl

=
l3

3
s4pd2G0su1,u2,u3d

3Fjsu1,u2d + 4pgsu1dtSE −
3

4
u2

2 −
2

3
u3

2DIsu2,u3dG
3E du18u18

2du28u28
2Du9u92jsu18,u28dku18u28u3uXuu19u29u39l

3ku19u29u39ucAl

=
l3

3
s4pd2G0su1,u2,u3dFjsu1,u2d + 4pgsu1d

3tSE −
3

4
u2

2 −
2

3
u3

2DIsu2,u3dGKX
sAdsu3d, sA4d

where we have defined the quantities

Isu1,u2d =E du18u18
2G0su18,u2,u3dgsu18djsu18,u2d, sA5d

and

KX
sAdsu3d =E du18u18

2du28u28
2Du9u92jsu18,u28dku18u28u3uXuu19u29u39l

3ku19u29u39ucAl. sA6d

An analogous expressionKX
sBd can be derived for permutation

operators which act on the second Yakubovsky component
cB.

We proceed by giving the analytical expressions for the
KX

sAd andKX
sBd which appear in the computation of the three-

body force term. There are six combinations of permutation
operators acting oncA:

K1
sAd =E du18u18

2du28u28
2jsu18,u28dku18u28u3ucAl, sA7ad

KP34

sAd =
1

2
E du18u18

2du28u28
2jsu18,u28d

3E
−1

1

dx8ku18ũ2su28,u3dũ3su28,u3ducAl sA7bd

KPP34

sAd =
1

2
E du28u28

2du29u29
2E

−1

1

dxE
−1

1

dx8jspsu28,u29d,u28d

3kpsu29,u28dũ2su29,u3dũ3su29,u3ducAl, sA7cd

KP
sAd =E du28u28

2du29u29
2E

−1

1

dxj„psu28,u29d,u28…

3kpsu29,u28du29u3ucAl, sA7dd

KP34P
sAd =

1

2
E du28u28

2du29u29
2E

−1

1

dx

3E
−1

1

dx8jsp„ũ2su28,u3d,u29…,u28d

3kp„u29,ũ2su28,u3d…u29ũ3su28,u3ducAl, sA7ed

KPP34P
sAd =

1

2
E du28u28

2du29u29
2E

−1

1

dxE
−1

1

dx8E
−1

1

dx9

3j„psu28,u29d,u28…kû1fpsu29,u28d,ũ2su29,u3dg

3û2fpsu29,u28d,ũ2su29,u3dgũ3su29,u3ducAl, sA7fd

and four combinations of operators acting oncB:

K1
sBd =

1

2
E du18u18

2du28u28
2E

−1

1

dx8jsu18,u28d

3ku18ṽ2su28,u2dṽ3su28,u3ducBl, sA8ad

KP
sBd =

1

2
E du28u28

2du29u29
2E

−1

1

dxE
−1

1

dx8j„psu28,u29d,u28…

3kpsu29,u28dṽ2su29,u3dṽ3su29,u3ducBl, sA8bd
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K
P̃

sBd
=

1

2
E du18u18

2du28u28
2E

−1

1

dx8jsu18,u28d

3kṽ3su28,u3dṽ2su28,u3du18ucBl, sA8cd

K
PP̃

sBd
=

1

2
E du28u28

2du29u29
2E

−1

1

dxE
−1

1

dx8j„psu28,u29d,u28…

3kṽ3su29,u3dṽ2su29,u3dpsu29,u28ducBl, sA8dd

whereû1su1,u2d and û2su1,u2d are defined as

û1su1,u2d =Î1

4
u1

2 +
9

16
u2

3 +
3

4
u1u2x9,

û2su1,u2d =Îu1
2 +

1

4
u2

2 − u1u2x9. sA9d
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