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It is well known that optical nonlinearities are extremely weak at the quantum, or single-photon, level. This
has been one of the major difficulties for optical implementations of universal, scalable quantum computation.
Knill, Laflamme, and Milburn[Nature(London) 409, 46 (2001)] showed, among other things, that one could
perform the elusive two-qubit logic gates with only linear-optical elements if one also uses extra single photons
and measurement. In this work, we apply linear-optics techniques to produce effects in few-photon beams that
are more familiar to strong-field nonlinear optics. Specifically, we show that these methods are sufficient to
change the spatial(or temporal) properties of a light beam with strong dependence on its constituent number
of photons; such phenomena cannot occur via linear optics alone.
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Photons interact with each other notoriously weakly. This
fact has been one of the main stumbling blocks for optical
implementations of two-qubit, entanglement-changing, quan-
tum logic gates requisite for quantum information process-
ing. Atoms can mediate effective interactions between pho-
tons through nonlinear optical effects, although these too are
extremely weak at the quantum level. Proposals and methods
for attacking this problem were based on enhancing these
existing, but weak, optical nonlinearities via cavity QED[1],
quantum interference[2], photon-exchange interactions[3],
and electromagnetically induced transparency[4]. More re-
cently, Knill, Laflamme, and Milburn(KLM ) shocked the
quantum optics community when they showed that two-qubit
quantum logic operations could be produced using onlylin-
ear optical elements supplemented with extra single photons
and by conditioning the evolution on specific measurement
outcomes[5]. Since then, much more work has been done to
simplify, understand, and realize these effects[6–8]. In ad-
dition, linear optics techniques have been applied to such
problems as producing “high-noon” states[9], performing
QND measurements[10], and making “quantum filter” de-
vices [11]. But the kinds of effects and applications thus far
rely on only the nonlinear amplitude or phase evolution lin-
ear optics methods can induce. Traditional strong-field non-
linear optics has demonstrated that striking nonlinear effects
can also appear in the spatial or temporal properties of opti-
cal beams; well-known examples include self-focusing, or
temporal and spatial soliton formation. For most applications
in quantum optics, it is desirable to work within a single-
mode picture since interference is maximized and decoher-
ence is minimized. However, as we will show in this work,
spatial nonlinear optical effects can be probabilistically gen-
erated through linear optics and projective measurement us-
ing imperfectly overlappingoptical modes.(The effects
worked out explicitly here in the spatial domain have direct
temporal analoges due to similar dependence on space and
time in the field operators and quantum states.) The first
signature of these spatial nonlinearities is that photon-
number states can conditionally evolve to pure states with
the same number of photons, but very different beam inten-
sity profiles.

Consider the situation shown in Fig. 1. A Gaussian beam

containingn-independent(uncorrelated) photons in mode 1
is incident on a beam splitter with reflection amplituder. We
will refer to these photons as simply “beam” photons. A
single, “ancilla,” photon is incident on the same beam splitter
from the other side in modeA. Mode B passes through a
spatial mode filter that separates light into spatial modeF

and the set of all modes orthogonal toF (simply labeledF̄).
Both of these new beams terminate at ideal single-photon
counting detectors. We consider the properties of the new
state in mode 2 in those cases in whichexactlyone photon is

detected in modeF and no photons are detected inF̄.
The initial state of the beam ancilla,uCnl, is the tensor

product of then-photon state in mode 1 and the single pho-
ton in modeA,

uCnl =
1

În!
E ¯E dk1dk2 . . .dknf1sk1d

3f1sk2d . . . f1sknda1
†sk1da1

†sk2d . . .a1
†sknd

3E dkAfAskAdaA
†skAdu0l, s1d

FIG. 1. Method for producing spatial nonlinear optical effects at
the few-photon level via linear optics and projective measurement.
An N-photon state and a one-photon state are incident on a beam
splitter of reflectivityR. These incident modes do not, in general,
have the same beam shapes. A spatial filter is used to separate
output modeB photons into a single spatial modeF and all other

spatial modes that are orthogonal toF, labeled F̄. The state of
interest in mode 2 is produced conditional on having exactly one

photon in modeF and no photons inF̄.
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wheref1skd describes the mode function for each beam pho-
ton, fAskd describes the normalized mode function for the
ancilla photon, anda1sAd

† are the raising operators for mode
1sAd. Both mode functions are chosen such that
edkf* skdfskd=1, which ensures the state is properly normal-
ized. In this theoretical treatment, we consider the case
where all photons are monochromatic but spatially localized.
Under these conditions, the nonlinear effects can only be
spatial; temporal nonlinear effects require that the beam and
ancilla photons have different temporal modes. The beam-
splitter reflection and transmission amplitudes,r and t, are
constant, real(the phases will be included in the mode trans-
formation), and the beam splitter is losslesssr2+ t2=1d. We
write the action of the beam splitter in terms of the field
operators asa1

†→ taB
† +ra2

†, aA
† → raB

† − ta2
†, wherea2sBd

† are the
raising operators for mode 2sBd. The beam splitter trans-
forms the state according to

uCnl → 1
În!

E ¯E dk1 . . .dknf1sk1d . . . f1skndfraB
†sk1d

+ ta2
†sk1dg . . . fraB

†sknd + ta2
†skndg E dkAfAskAdfraB

†skAd

− ta2
†skAdgu0l. s2d

The spatial mode filter separates only the spatial modeF
defined by the mode functionfFskd. (For temporal nonlinear
effects, postselection of a single temporal mode is required).
By postselecting only those cases where exactly one photon

was detected in modeF and no photons were detected inF̄,
we describe a projective measurement onto the state
edkfFskda†skdu0l. Only two amplitudes contribute to the
post-selected final state—alln+1 photons are reflected or
two photons are transmitted andn−1 photons are reflected.
The conditional evolution of then beam photons is

unl1 → 1
În!

E dk1E dk2 . . .E dknf1sk1df1sk2d . . . f1skn−1drn−1

3Fr2f1sknd E dkAfF
* skAdfAskAd − nt2fAsknd

3E dkAfF
* skAdf1skAdGa2

†sk1da2
†sk2d . . .a2

†skndu0l, s3d

where we have not renormalized. Note that this final state
still containsn photons. Many of the interesting nonlinear
optical properties of the final state come from its dependence
on the photon number,n. Physically, thisn arises from then
ways in which one of the beam photons was detected. On the
other hand, there was only a single path where alln+1 pho-
tons were reflected from the beam splitter and the ancilla
photon was detected—thus this term is not multiplied byn.
The ratio of these two interfering amplitudes changes as one
changes the beam photon number making beam characteris-
tics photon-number dependent. If we consider the single-
mode case, i.e.,f1skd= fFskd= fAskd, then Eq.(3) reduces to
unl1→ÎRn−1fR−ns1−Rdgunl2, in which we have substituted
the reflection probability for the reflection amplitude,R=r2.

This expression has been used to describe the evolution of
the nonlinear sign-shift operation[8,12].

To show some explicit features of nonlinear state evolu-
tion, we calculate the rms width of the resultant beam inten-
sity distribution created in mode 2 at the beam splitter as a
function of the incident number of photons in mode 1. For
the purposes of this calculation, the light propagates along
thez direction. We assume that the light is spatially localized
in thex direction, but infinite in extent in they direction; this
creates an effective two-dimensional beam since they evo-
lution will contribute only a global phase. We model the
incident photon and ancilla photon mode functions as Gaus-
sians with waists at the beam splitter; these functions can be
written asfskx,sd=fs2/pds2g1/4exps−kx

2s2d, wherekx are the
transverse wave vectors ands is the rms width of the inten-
sity distribution along thex direction(in general,s is differ-
ent for the incident, ancilla, and filter modes). We treat the
monochromatic case so that the magnitude of the total wave

vector uKW u=Îkx
2+ky

2+kz
2 is constant. The normalization con-

stant here is important for calculating the overlap of the
mode functions. In these calculations, we choose the filter
mode to be identical to the ancilla mode, i.e.,
edkAfF

* skAdfAskAd=1. These mode overlap integrals control
the weighting of the two amplitudes in the final state, but
even with this constraint, any weighting of the amplitudes
can be achieved using the beam-splitter reflectivity.

Following quantum optics theory[13], we write
the expectation value of the intensity as

kIsr ,tdl2=kcu2Ê−sr ,tdÊ+sr ,tducl2, where Ê+sr ,td
=1/Î2pedk edv expsik ·r − ivtdâsk ,vd and Ê−sr ,td
=1/Î2pedk edv exps−ik ·r + ivtdâ†sk ,vd, where r is the
position, k is the wave vector,v is the frequency, and we
have dropped the polarization. These operators can be con-
siderably simplified for the calculations of interest here using
the constraints we have imposed. Since our incident wave
packets are monochromatic and plane waves in they direc-
tion, the frequency component andky component of the op-
erators contribute a meaningless, overall phase. For now,
we consider only the intensity atz=0 (at the beam
splitter), which removes the kz dependence, and

Ê+sxd=1/Î2pedkx expsikxxdâskxd and Ê−sxd
=1/Î2pedkx exps−ikxxdâ†skxd.

Figures 2(a) and 2(b) show the results of a specific set of
normalized intensity calculations for one-(solid line), two-
(long-dashed line), three- (short-dashed line), and four-
photon(dotted line) states. These intensities were calculated
for an incident beam rms width of 100mm and a smaller, but
comparable, ancilla width of 75mm. Figure 2(a) illustrates
the behavior in the perturbative limit where the beam-splitter
reflectivity is high,R=83%. In this limit, the amplitude for
all n+1 photons to have been reflected is dominant but the
interfering term is non-negligible and grows in significance
with the photon numbern. The widths of the intensity distri-
butions can easily be seen to increase with increasing initial
(and therefore final) photon number; the rms widths are, for
increasing photon number, 107, 109, 113, and 124mm. The
operation creates a photon-number-dependent beam expan-
sion. In Fig. 2(b), the beam-splitter reflectivity has been de-
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creased toR=76%. In this case, the intensity profiles depend
very strongly on the photon number, but the simple pertur-
bative trend is no longer present. One can also see that this
method can lead to significant beam profile distortion. This is
especially apparent near maximum destructive interference
as is the case, under these conditions, for the three-photon
state.

In Fig. 3, we summarize the widths of the postselected
output states as a function of the beam-splitter reflectivity for
cases where the input state has a fixed width of 100mm and
the ancilla photon has rms width(a) 20, (b) 75, (c) 125, and
(d) 500 mm. In the limit asR=1, all of the beams have a
width of 100mm (and, in fact, all beam shapes are identical).
In this limit, the beam splitter is a perfect mirror which re-
flects all input photons to the output and the ancilla to the
spatial filter and detector. In the opposite limit, asR→0,
there is strong dependence of the width on the photon num-
ber. In this limit, the dominant contribution to the final state
comes from the amplitude for two photons to be transmitted
and n−1 photons to be reflected. The number dependence
originates from an averaging of the mode sizes of the beam
and ancilla photons. In this limit for the one-photon state, the
outgoing photonis the ancilla and therefore its width is equal
to the ancilla width. As the photon number is increased, the
outgoing intensity width trends towards that of the beam
(i.e., 100mm).

In Figs. 3(b) and 3(c), the ancilla photon width is chosen
to be slightly smaller and slightly larger, respectively, than
the beam photons. In these figures, as is typical when the
beam and ancilla mode sizes are similar, rapid variations
occur in the beam width, from much broader than the initial
beam to narrower, for certain reflectivities that increase with
increasing photon number. These width “resonances” occur
near the maximum destructive interference between the two
interfering processes. Since the modes do not match per-
fectly, good destructive interference can be either set up in
the center of the beam, in which case the resultant beam is
broadened, or in the tails of the beam, in which case it is
narrowed. Although it is not shown explicitly, the resonances
become narrower as the beam and ancilla modes become
more similar. The resonances forn-photon states occur at
approximatelyR=n/ sn+1d, which, in the case of perfect
mode matching, corresponds to the condition for maximum
destructive interference in a generalized Hong-Ou-Mandel-
style interferometer[8,14]. Note also that the maxima and
minima of the resonances decrease with increasing photon

FIG. 2. Two specific examples of conditional beam intensities
for one-, two-, three-, and four-photon states at the beam-splitter
output. Normalized intensity predictions as a function of position
are shown and were produced using the correlation function method
described in the text. An inputN-photon state with intensity rms
width 100mm and an ancilla photon with rms intensity width
75 mm were mixed at a beam splitter with reflection probability(a)
R=83% and(b) R=76%. In(a), the rms width of the outgoing beam
increases with increasing photon number—higher photon-number
states expand more than lower. In(b) we move beyond this pertur-
bative limit and the widths obey no such simple trend. Beam dis-
tortion is very apparent for the three-photon state due to strong
destructive interference.

FIG. 3. Intensity width vs beam-splitter re-
flection probability. For incident one-, two-,
three-, and four-photon states with initial rms
widths of 100mm, the rms width of the outgoing
conditional intensity is shown as a function of the
beam-splitter reflectivity for ancilla widths(a) 20,
(b) 75, (c) 125, and(d) 500 mm. The behavior in
the limits asR=1 andR→0, the high reflectivity
perturbative behavior, and the rapid, photon-
number-dependent changes in the width are dis-
cussed in the text. The most important feature,
however, is that the conditional intensity profiles
are very different for different photon-number
states. Such number-dependent beam profiles
cannot occur with linear optics alone.
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number. In Eq.(3), very roughly speaking, there aren−1
beam photons in the output state and thenth photon that is in
a superposition. Thus, similar to the behavior in the limit as
R→0, the strong broadening or narrowing of thenth photon
is washed out by the unaffectedn−1 other photons.

In Fig. 2(a), where the ancilla mode had a width of 75mm
[same as in Fig. 3(b)], we pointed out that in the high reflec-
tivity limit, the beam width became broader with increasing
photon number. In the same limit, in Fig. 3(c), where the
ancilla mode is slightly larger than the beam mode, the beam
is compressed more with increasing photon number. These
trends also hold for the highR limit for Figs. 3(a) and 3(d),
although they are not visible on the displayed scale. With a
narrower ancilla mode, there is more destructive interference
in the center of the beam tending to make the beam broader;
for a broader ancilla mode, there is more destructive inter-
ference in the tails of the beam tending to make the beam
narrower. In addition, the smaller amplitude(i.e., thet2rn−1

amplitude) is enhanced by a factor of the photon numbern
making the expansion or compression more pronounced for
higher photon number states.

These measurement-based nonlinearities are necessarily
probabilistic since one considers only those cases where a
specific outcome is observed—in this case, detection of one

photon in modeF and none inF̄. In the examples discussed
here, the probability for the desired detection depends
strongly on the parameters under consideration. Most signifi-
cantly, the desired outcome probability is highly suppressed
near the width resonances due to strong destructive interfer-
ence. However, since the modes are not perfectly overlap-
ping, this interference is never perfect and any point on the
curve can occur with some probability. Conversely, in the
high reflectivity limit, the probability of obtaining the desired
measurement outcome can be very high and still show sig-
nificant broadening or compression. Experimentally, it is be-
yond current technology to reliably measure one and only
one photon in a given spatial mode once realistic loss and

detection efficiencies are considered. That being said, the
effects described in this work for one and two photons
should be observable with current parametric down-
conversion sources and multiphoton coincidence postselec-
tion. Such techniques have already proven sufficient for
demonstrating two-qubit quantum logic and two-photon non-
linearities in lossy single-mode linear optics experiments
with real single-photon counting detectors[7,8].

Nonlinear optical interactions mediated by higher-order
atomic susceptibilities are extremely weak at the quantum
level. KLM showed how the act of measurement, which is
routine in the laboratory, and the use of single-photon
sources could create effective interactions between photon
pairs useful for two-qubit quantum gates. We have shown
that these techniques have promise outside the realm of
quantum information processing. Photon-number-dependent
spatial or temporal properties can be created in a light beam
via these same techniques when one uses beam and ancilla
photons in different spatial or temporal modes. There is a
large range of possible applications for such a general ap-
proach, including the generation of photon-photon bound
states[15] and nonlinear beam propagation and focusing. It
is often the case that new physics lie at the borders of exist-
ing research fields. By using cutting-edge methods for quan-
tum computation and more traditional approach quantum co-
herence and interference, many classic nonlinear optical
effects, normally constrained to the high-field domain, may
be extendible to the few-photon level.
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