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We present completelyab initio nonperturbative calculations of the integral and single differential cross
sections for double photoionization of H2 for photon energies from 53.9 to 75.7 eV. The method of exterior
complex scaling, implemented with B-splines, is used to solve the Schrödinger equation for a correlated
continuum wave function corresponding to a single photon having been absorbed by a correlated initial state.
The results are in good agreement with experimental integral cross sections.
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Double photoionization of an atom or molecule is a phe-
nomenon directly associated with electron correlation. The
dipole operator corresponding to the absorption of a single
photon cannot excite more than one electron if the dynamics
and description of the target are restricted to the independent
particle model. For atomic double photoionization, it has
been demonstrated that accurate, correlated initial and final
states are required for the quantitative description of the
cross sections, and particularly for the description of the an-
gular dependence of the ejected electrons[1–5]. Thus, de-
tailed experimental measurements of the cross sections for
atomic double photoionization are a powerful probe of elec-
tron correlation and provide a challenge toab initio theory.

In the case of a molecular target, the challenge is greater
and potentially more interesting. Even in the simple case of
the H2 molecule, double photoionization experiments can re-
veal the effects of electron correlation associated with a
chemical bond. Also, because the process is rapid on the time
scale of nuclear motion, except for energies very near thresh-
old, these cross sections can show the effects of the correla-
tion between two outgoing electrons in the nonspherical field
of the molecular ion.

This study reports a completelyab initio treatment of the
double photoionization of H2 with fully correlated initial and
final states. Previous treatments have generally made use of a
correlated initial state in combination with a final state that is
simply an uncorrelated product of Coulomb wave functions
or treated only in the united-atom limit[6,7]. In contrast, we
treat both initial and final states on an equal footing and take
a completely nonperturbative approach.

The key difficulty in such a calculation is the imposition
of the correct outgoing scattering boundary conditions on the
final state, because it corresponds to a nonspherical version
of the notoriously difficult Coulomb three-body breakup
problem. We surmount that difficulty here by the application
of exterior complex scaling(ECS) of the electronic coordi-
nates, a method which has been shown to provide a complete
theory of the two-electron Coulomb breakup problem and to

“reduce it to computation” as discussed in a recent review[8]
and many references therein.

Measurements of the total cross section for double photo-
ionization of H2 were made in 1987 by Dujardinet al. [9],
who noted that the threshold energy for this process is well
below the vertical energy at the equilibrium bond distance.
Kossmanet al. [10] later made measurements with an im-
proved uncertainty(32%), revising the earlier values of the
total cross section generally downward, and noting that the
angular distributions they observed suggested the importance
of high asymptotic orbital angular momenta in the final state.

Recent coincidence measurements[11] of the angular dis-
tributions of outgoing electronsand nuclei have effectively
measured the double photoionization process for molecules
oriented relative to the direction of polarization. These stud-
ies, using the Cold Target Recoil Ion Momentum Spectros-
copy, (COLTRIMS) method, demonstrated that the most de-
tailed cross sections measurable can reveal angular
dependences that are sensitive to molecular orientation. Fur-
ther experiments[7] also show a marked dependence of the
angular distribution of electron ejection with internuclear
distance, suggesting a sensitivity to changes in electron cor-
relation and dynamics with varying bond distance.

In this study, we focus on the integral and single differ-
ential cross sections(SDCS) and present the initial results of
the exterior complex scaling treatment of double photoion-
ization of a molecule. These calculations represent an impor-
tant step forward for nonperturbative methods into the realm
of multiple ionization of molecular targets, and most signifi-
cantly demonstrate that the ECS method can overcome the
difficult problem of how to implement the correct scattering
boundary conditions for a molecular system.

Formal equations. We begin by noting that the formal
definitions of the amplitudes and cross sections are essen-
tially the same as those for the case of atomic double photo-
ionization. However, in the molecular case there arefour
vectors that characterize the triple differential cross section
(TDCS) at a given photon energy: the polarization vectore,
the momenta of the exiting electronsk1, k2, and the molecu-

lar axis,Â. The TDCS for an atom or molecule to absorb one
photon, of frequencyv and for two electrons, one having
energyE1, to emerge into solid anglesdV1 anddV2 is
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ds

dE1dV1dV2
=

4p2

vc
k1k2ufsk1,k2du2. s1d

The amplitude,fsk1,k2d, is associated with the purely out-
going wave functionCsc

+ that is the solution of the driven
Schrödinger equation for the “first order wave function,”
which we can write in the velocity form as,

sE0 + v − HduCsc
+ l = e · s=1 + =2duC0l, s2d

where e is the polarization unit vector,=1 and =2 are the
gradient operators for the electronic coordinates, andC0 is
the initial bound state of the system. The amplitude for
double ionization corresponding toCsc

+ can be evaluated,
aside from an irrelevant overall phase discussed elsewhere
[1,8], from the integral expression,

fsk1,k2d = kFs−dsk1,r 1dFs−dsk2,r 2dufE − T − vsr1d − vsr2dg

3uCsc
+ sr 1,r 2dl, s3d

where E is the excess energy above the double ionization
threshold(51.3 eV vertical electronic energy at the equilib-
rium internuclear distance), T is the two-electron kinetic en-
ergy operator, andvsrd is the nuclear attraction potential seen
by one electron in the field of the bare nuclei.

For the molecular case, even the one-electron testing
functions in Eq.(3) pose a challenge. For an atom, the func-
tionsFs−dsk ,r d would be the standard atomic Coulomb wave
functions, but in the case of H2, in the Born-Oppenheimer
approximation where the two electrons leave behind two
bare protons, positioned at ±A, they are the continuum states
of the H2

+ ion. Thus the one-electron testing functionsFs−d

are solutions of

Fk2

2
+

¹2

2
+

1

ur − A u
+

1

ur + A uGFs−dsk,r d = 0, s4d

and satisfy the usual relation,Fs−dsk ,r d=fFs+ds−k ,r dg*. We
will later convert Eq.(4) into a driven equation for the scat-
tered wave part ofFs+d.

The problem of molecular double photoionization is
stated in Eqs.(1)–(4). We must solve Eq.(2) with pure out-
going boundary conditions and Eq.(4) with proper molecular
scattering boundary conditions.

A central result of this study is the demonstration that
these problems, in the molecular context, can be solved with
exterior complex scaling of the radial coordinates of the elec-
trons. To the radial coordinate of each electron we apply the
ECS transformation,r →R0+sr −R0deig, beyond some point
R0 using a nonzero scaling angle,g. After this transforma-
tion, we apply the boundary condition that the solution van-
ishes asr →` for any electron along the exterior scaling
contour. This condition is formally equivalent to outgoing
scattering boundary conditions(for producing the solution
for r ,R0), even in the presence of long-range potentials, as
has been discussed at length elsewhere[8]. In an exact or
converged calculation the solutions of the Schrödinger equa-
tion for r ,R0 do not depend ong.

One-electron test functions. The incoming wave part of
the solution of Eq.(4) is determined by the long-range be-
havior of the potential and thus is the same as that of the

atomic Coulomb problem withZ=2. So we can write
Fs+dsk ,r d=xsk ,r d+cc

s+dsk ,r d with the “unperturbed” portion
being the standardsZ=2d Coulomb function, cc

s+dsk ,r d,
whose incoming momentum specifies the direction ofk. The
scattered wave portion,xsk ,r d, of the exact H2

+ continuum
function then satisfies the driven Schrödinger equation

Sk2

2
− hDxsk,r d = S2

r
−

1

ur − A u
−

1

ur + A uDcc
s+dsk,r d, s5d

with h being the one-electron Hamiltonian in Eq.(4). Sincex
is an outgoing wave, the correct boundary conditions can be
imposed using the ECS transformation as described above.

To solve Eq.(5) we make use of a single center expansion
about the middle of the molecule,r =0, and express it in the
body-fixed frame in which incoming Coulomb waves,
fl,k

c srd, are associated with a single partial wave at a time, but
outgoing waves,Rl8

lm, appear in all symmetry allowed partial
waves. In terms of these quantities, we can then construct the
solution of Eq.(4) in the form

Fs+dsk,r d = S 2

p
D1/2

o
l,m

ileihlskdYlm
* sk̂do

l8

Dl,l8Sfl,k
scdsrd
kr

dl,l8

+
Rl8

lmsrd

r
DYl8msr̂ d. s6d

In Eq. (6), fl,k
scdsrd is the standard radial Coulomb function

which goes asymptotically as sinfkr+sZ/kdln 2kr−pl /2
+hlskdg with the Coulomb phase shifthlskd. The factorDl,l8
equals 1 ifl + l8 is even and zero otherwise. Finally, we ex-
pand the radial solutions,Rl8

lmsrd, in B-splines and substitute
them back in Eq.(5) to obtain linear equations for their co-
efficients, using the standard methods and technology de-
scribed previously[12,13], and modified appropriately to
make use of the B-spline implementation of ECS in previous
applications[1,14].

Two-electron scattered wave. With the one-electron con-
tinuum states of H2

+ in hand, we turn to the calculation of the
two-electron continuum function,Csc

+ , in Eq. (2). We can
write that wave function, for a fixed value of the projection,
M, of the electronic angular momentum along the molecular
axis and for singlet spin coupling, as a sum of products of
two-dimensional radial wave functions and spherical har-
monics

Csc
+sMd = o

j1m1,j2m2

Sc j1m1,j2m2

dir sr1,r2d

r1r2
Yj1m1

sr̂ 1dYj2m2
sr̂ 2d

+
c j1m1,j2m2

exch sr1,r2d

r1r2
Yj2m2

sr̂ 1dYj1m1
sr̂ 2dD . s7d

For double photoionization of the1Sg
+ ground state of H2, the

stateCsc
+ can have only1Su

+ sM =0d or 1Pu sM = ±1d sym-
metry. The radial functions, c j1m1,j2m2

dir sr1,r2d and
c j1m1,j2m2

exch sr1,r2d, are then expanded in products of B-splines
so that the Hamiltonian matrix elements corresponding to the
left-hand side of Eq.(2) are the same as those in a “complete
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configuration interaction” calculation in that basis[15]. To
solve Eq.(2) with the proper outgoing scattering boundary
conditions, we again use the ECS version of the B-spline
basis. The calculations reported here made use of 60 eighth-
order B-splines in each angular momentum, 50 on the inter-
val r =s0,45da0 and the remaining 10 on the interval
s45,70da0. Exterior complex scaling beginning atr =40a0

with a scaling angle ofg=30° was used throughout. We
included molecular symmetriessg, su, pg, pu anddg in Csc

+ ,
restricted to contributions with values ofj ø3. ForPu sym-
metry with M =1, for example, there are then eight “double
continua” labeled byj1, m1, j2, m2 with a total of 28 800
configurations.

What remains to implement Eq.(2) as a set of linear
equations is a correlated initial state,C0. That state was con-
structed in the present calculations using B-splines in the
standard fashion[15]. In a calculation including 524 configu-
rations with angular momentum components up tol =5 we
obtained a ground state energy of −1.166 379 hartrees to be
compared with the accurate value of Koloset al. [16] of
−1.171 304 hartrees for the equilibrium bond distance of
1.4a0.

Calculating the amplitudes. To construct the amplitudes
for double photoionization corresponding to a continuum
with a particular value ofM, we substituteCsc

s+d, andF+sk ,r d
for the values ofk1 andk2 in question, into Eq.(3) for the
ionization amplitude. The amplitude is an integral over an-
gular and radial coordinates on a finite volume bounded by
R0 in both coordinates. Performing the angular integrations
over r̂ i yields to a sum overl1, l2, j1, m1, j2, and m2 of
two-dimensional radial integrals where the components
c j1m1,j2m2

dir/exch of Eq. (7) are integrated with corresponding radial
components of the H2

+ continuum functions of Eq.(6). Each
term is associated with a product of spherical harmonics

Yl1m1
sk̂1dYl2m2

sk̂2d in the angles of the outgoing momenta.
Those direct and exchange amplitudes have a form ex-

actly analogous to the corresponding amplitudes in an ECS
calculation of atomic double photoionization[1]. They can
be expressed as surface integrals on a surface of radiusr0 in
hyperspherical coordinates using Green’s theorem. Like Eqs.
(30)–(33) of Ref. [1] they have the form of matrix elements

of the radial flux operator,s ]
←

/]rddsr−r0d−dsr−r0ds ]
→

/]rd
[expressed in hyperspherical coordinates wherer=sr1

2

+r2
2d1/2] between the radial components of the one-electron

testing functions and the two-electron radial functions.
To express the TDCS and SDCS compactly we must col-

lect the terms in the amplitude that multiply particular prod-

ucts ofYl1m1
sk̂1dYl2m2

sk̂2d. Doing so, and then integrating the
TDCS overdV1dV2 gives a result for the SDCS in terms of
reduced amplitudes,F, that closely resembles the atomic
case[1]

dssMd

dE1
=

4p2

vc
k1k2S 2

p
D2

o
l1.l2,m1,m2

fuFl1,l2,m1,m2

dirsMd sk1,k2du2

+ uFl1,l2,m1,m2

exchsMd sk1,k2du2g. s8d

For polarized incident radiation and randomly oriented
molecules the physical SDCS has contributions from all
threeM values, and we can write it in the form

ds

dE1
=

1

3
SdssSd

dE1
+ 2

dssPd

dE1
D . s9d

The integral cross section is the integral of this SDCS from 0
to E, the energy of the photon above the double photoioniza-
tion threshold.

Comparison of results with experiment. Figure 1 shows
the SDCS from calculations in the velocity form for photon
energies from 53.90 to 75.66 eV. The same characteristic
variation in the shape of the SDCS with increasing photon
energy is seen here as in the atomic case, namely that the
cross section shows an increasing tendency for one electron
to exit with more energy than the other. The corresponding
integral cross sections are shown in Fig. 2. We see that the
total cross sections have the same shape as those of Koss-
mann et al. [10], but they show a very different threshold
than the Dujardinet al. [9] measurements, because the inte-
gral cross sections we present are all calculated at the equi-

FIG. 1. Calculated SDCS for photon energies 53.90–75.66 eV
in steps of 0.1 hartree(top to bottom).

FIG. 2. Integral cross section. Solid curve: velocity form.
Dashed: length form. Dotted:1Su

+ contribution to velocity form.
Dot-dashed:1Pu contribution to velocity form. Gray lines, theory of
Ref. [6], length form(lower) times 1/2 and velocity form(upper).
Experiments: squares, Dujardinet al. of 1987 [9] and diamonds,
Kossmannet al. of 1989 [10].
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librium bond distance of 1.4a0. Vibrational motion between
the classical turning points in the initial state changes the
value of the threshold by more than ±3 eV, because of the
variation of the repulsive Coulomb potential in the final state
corresponding to different releases of energy into nuclear
motion. Also shown in Fig. 2 are the 1986 Coulomb-Born
calculations of Le Rouzo[6] using atomic final states, which
have a large discrepancy between length and velocity forms
and agree poorly with experiment. Later such calculations
[6], including zero point nuclear motion, showed marginally
better agreement.

Figure 2 compares length and velocity forms of the cal-
culated integral cross section, which should be identical in a
completely converged calculation, as they were in ECS cal-
culations on double photoionization of helium[1,2]. The re-
maining discrepancy here is likely due to an insufficient
number of angular momentum values in the final state,Csc

+ ,
which we treat with fewer partial waves than the initial state.
We note that although the velocity form generally converges
faster in single photoionization calculations on atoms and
molecules, no such trend has yet been established for double
photoionization. Including higher angular momenta in a mo-
lecular calculation increases the size of the calculation faster
than in an atomic calculation. The lower symmetry generates
a larger number of distinct “double continua” for each pair of
j1, j2 values since allm1, m2 adding up toM label distinct
double continua. The present calculations are therefore suf-
ficiently well converged to provide useful SDCS and integral

cross sections, but not to accurately represent the TDCS
which generally requires the small contributions of higher
angular momenta(l =4 and 5 in the corresponding atomic
case of He).

Figure 2 also shows a dramatic difference between double
photoionization and either single photoionization of H2 or
double photoionization of He. The1Pu contribution domi-
nates by about a factor of 10 over that of the1Su

+ symmetry.
Recent COLTRIMS experiments[7,11] noted the dominance
of the Pu contribution and therefore of polarization perpen-
dicular to the molecular axis. These measurements also sug-
gest that a quantitative description of the complicated TDCS
for particular orientations and internuclear distances will re-
quire significantly higher angular momenta.

The calculations presented here are an important step to-
wards understanding how molecular double photoionization
can probe electron correlation, and how it changes with in-
ternuclear distance. It will require accurate theoretical treat-
ments to fully interpret such experiments, particularly in
more complicated systems.
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