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We consider the entanglement of spins for two electrons contributing to the acoustoelectric current driven by
a surface acoustic wave(SAW) in two adjacent narrow channels by calculating their exchange energysJd. The
channels belong to an acoustic nanocircuit which comprises a network of quasi-one-dimensional pinched-off
channels serving as wires along which SAW quantum dots transport electrons. This is motivated by possible
practical applications involving quantum information processing and quantum computers. We calculateJ as a
function of time as the electrons travel side-by-side in the adjacent channels and as a function of the distance
between the centers of the channels. The leakage from the state in which the system is prepared, is calculated.
The oscillations in the leakage indicate the probability for the electron system to make transitions between the
ground and excited states, or for an electron to hop back and forth between channels.
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Recently, there has been a considerable amount of interest
in the interaction of a surface acoustic wave(SAW) with a
two-dimensional electron gas(2DEG) in a GaAs/AlGaAS
heterostructure. A SAW propagating in this piezoelectric ma-
terial interacts with the 2DEG through the electric field ac-
companying the elastic waves[1–4]. A consequence of the
interaction between the SAW and 2DEG is an acoustoelectric
current in the 2DEG due to the drag of the 2D electrons by
the SAW[5–10]. Recent measurements of the SAW-induced
acoustoelectric current were carried out in a narrow channel
formed in GaAs/AlGaAs heterostructures with the use of
split gates[11–14].

Measurements done at high SAW power and with gate
voltages beyond pinch off revealed a remarkable feature of
the acoustoelectric effect in quasi-one-dimensional(quasi-
1D) ballistic channels, i.e., the quantization of the acousto-
electric current in the channel at SAW wavelengths compa-
rable with the channel lengths,1 md. The current-gate
voltage curves have steps with the current plateaus equal to
I =nef, where e is the electron charge,f is the SAW fre-
quency, andn is an integer[13,14]. These values ofI corre-
spond to the transfer ofn electrons through the channel per
SAW cycle and can be explained as the result of the trapping
of electrons in the moving SAW-induced quantum potential
wells and the transfer of electrons, residing in these wells,
through the channel[13–17].

A natural extension of the use of the SAW single electron
pump is an acoustic nanocircuit which comprises a network
of the quasi-1D undoped channels serving as wires along
which the SAW quantum dots transport electrons. In this
paper, we will consider the entanglement of spins for two
electrons contributing to the acoustoelectric current in two
adjacent narrow channels by calculating their exchange en-
ergy. This is motivated by possible practical applications in-
volving quantum information processing and quantum com-
puters[18]. If one could control the spin degree of freedom
of the electrons in the SAW quantum dots, then this would
allow one to use SAW circuits for quantum computation.
This was described in the work of Barnes, Shilton, and Rob-

inson[18]. Our paper is motivated by Ref.[18] and our aim
is to support their suggestion by doing numerical calcula-
tions of the entanglement and leakage. Both these quantities
contribute to the accuracy of the two-bit gate and together
they show that the scheme described in Ref.[18] is feasible.

We now consider when the SAW beam transports elec-
trons along two adjacent channels, shown schematically in
Fig. 1. When the channels are close to each other, two adja-
cent SAW dots in different channels form a pair of coupled
quantum dots. If the electron spin state in one channel is the
same or opposite as the spin in the other channel, then two
electrons in coupled SAW quantum dots will form either
triplet or singlet states. We shall estimate the exchange en-
ergy J by calculating the difference in the energies of the
singlet and triplet states. For this, we must first determine the
two lowest energy states for a single electron. The coupled
dots are modeled by the HamiltonianH=oi=1,2H0sid+H12

where H0sid=s1/2m* dpi
2+Vsr id and H12=e2/«sr12 with

H0sid the Hamiltonian for noninteracting electrons having
coordinatesr i =sxi ,yid si =1,2d and separationr12 in the

FIG. 1. Schematic plot of the SAW beam transporting electrons
along a pair of channels. Two adjacent SAW dots in different chan-
nels form a pair of coupled quantum dots. The vertical lines in the
figure represent maxima of the SAW potential which carries elec-
trons (depicted as full circles) along the channels. The split gates
defining the channels are denoted byG1, G2, andG3.
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quantum well; we denote their interaction byH12. Also, «s
=4pe0«b, where «b is the background dielectric constant.
The confining potentialVsr id is separable in thex and y
directions, and we denote each term byVi si =1,2d. The cou-
pling of the dots in they direction includes tunneling. To
simulate this bound-state tunneling, we choose the following
1D quartic potential with degenerate minima, i.e.,

V2syd =
1

8a2m* V2sy2 − a2d2, s1d

in terms of an oscillator frequencyV and separation distance
2a between the centers of the dots. Here, bothV anda are
assumed to be independent of thex coordinate. However, if
we allow the barrier height between the channels to vary as
the quantum dots travel along the channels, then we could
control the exchange of electrons between channels over the
SAW period. Each dot is moving side-by-side in thex direc-
tion within the channel in a potential that arises from the gate
voltage with a negative bias and the SAW potential, which
we model by

V1sx,td =
V0

cosh2sx/,d
+ VS cosskx− vtd, s2d

where v and k are the SAW frequency and wave number,
respectively, andVS is the SAW amplitude. The height of the
electrostatic potential barrier in the channel is denoted by
V0="2/ s2m* l0

2d, wherel0 is a parameter and 2, is the effec-
tive length of the channel. When the split-gate voltage is
sufficiently negative, the channel between the gates is
pinched off and the conductance in the channel is zero, indi-
cating that there is a potential barrier in the channel between
the source and drain[11]. This potential barrier is repre-
sented by the first term in Eq.(2). The model Hamiltonian
does not contain any spin-dependent term and is therefore
diagonal in the spin variables of both electrons.

We have obtained the exchange interaction in thes-wave
Heitler-London approach[19] by using symmetric and anti-
symmetric combinations of single-dot ground-state orbital
wave functions in the two adjacent channels. This method
gives contributions from the direct and exchange terms with

Jstd =
2S+−

2

1 − S+−
4 Hkw+sr 1,tdw−sr 2,tdu

3F e2

esr12
+ DV+ + DV−Guw+sr +,tdw−sr 2,tdl

−
1

S+−
2 kw+sr 1,tdw−sr 2,tduF e2

esr12
+ DV+ + DV−G

3uw+sr 2,tdw−sr 1,tdlJ , s3d

where w±sr ,td=fsx,tdc±syd are single-dot wave functions
within the channels centered aty= ±a; fsx,td is the lowest
eigensolution ofh0=px

2/2m* + V1, and c±syd=csy7ad are
the single-particle harmonic-oscillator orbitals shifted to

s0, ±ad with csyd=e−y2/2l0
2
/p1/4l0

1/2 and l0=Î" /m* V. Our
assumption that the electrons are in the ground statefsx,td is

valid when the acoustoelectric current is on(or below) the
first plateau. Also, the overlapS+−=e−`

` dy c+sydc−syd
=e−a2/l0

2
and DV±=V2syd−m* V2sy7ad2/2. Evaluation of

the matrix elements ofDV± in our model yields

kw+sr 1,tdw−sr 2,tduDV±uw+sr 1,tdw−sr 2,tdl

= s3/32dsl0
4/a2dm* V2,

kw+sr 1,tdw−sr 2,tduDV±uw+sr 2,tdw−sr 1,tdl

= 3/32a2fsl0
2 + 2a2dsl0

2 − 2a2d − 4l0
2a2gm* V2S+−

2 ,

which are independent of time. However, the matrix ele-
ments of the Coulomb energy are time dependent and must
be evaluated numerically.

In Fig. 2, we present results for the exchange energy as a
function of time for a fixed separationa between the centers
of the channels. We chose"V=3.0 meV,m* =0.067me, ap-
propriate for a GaAs/AlGaAs heterostructure, whereme is
the free-electron mass anda/l0=0.7. Also, we used,
=1500 Å, l0=100 Å, and the parameterb=0.5; this dimen-
sionless parameter is defined as the ratio of the SAW poten-
tial amplitude to the height of the electrostatic potential bar-
rier in the channel and its value corresponds to an
acoustoelectric current on the first plateau. Also, the SAW
velocity v<3.03103 m/s and k<2p310−3 nm. We ob-
serve that the exchange energy obtained by taking the differ-
enceEt−Es between the triplet and singlet states which are
determined by solving the interacting Schrödinger equation
numerically is larger than the result calculated in the Heitler-
London model. However, both results exhibit similar behav-
ior such as positive exchange energyJ.0 (antiferromag-
netism) as well as time-reversal symmetry. Figure 2 shows
that the variation ofJ is a few percent over the period of a
SAW cycle. We found that this remains true over a wide
range of values for the parametersa, l0, ,, and b. As the
electrons are transmitted through the channels, it is required
that, for two-qubit operation, the transformation associated
with the exchange interaction is unitary. As a matter of fact,

FIG. 2. The exchange interaction energyJ as a function of time
for b=0.5 and separationa=0.7l0 between a pair of narrow chan-
nels.J is larger when we take the difference between the energies
for the singlet and triplet states, obtained by finding the eigenvalues
of the Slater determinant numerically(solid line) compared to the
Heitler-London approximation for separated harmonic wells
(dashed line). The parameters used in the calculation are given in
the text.
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the exchange Hamiltonian behaves likeJstdŜi ·Ŝj, which is
Hermitian for realJ and gives rise to a unitary transforma-
tion. The fact that the variation ofJ is small illustrates the
practical nature of the gate operation with a SAW.

In Fig. 3, we plot the exchange energy as a function of the
separation between channels for a fixed time. We see that
J.0 at all separations due to antiferromagnetic spin-spin
coupling. There is an exponential decay of the exchange en-
ergy as the separation between the channels increases, due to
the factorS+−

2 that represents the overlap of the wave func-
tions in they direction. The numerical plot also decays to
zero as the separation increases. Furthermore, asb is in-
creased from zero,J increases monotonically through a SAW
cycle. In the simplest Heitler-London method, these results
show how the exchange energy behaves in the adiabatic ap-
proximation as a function of the parameters used in the
model. The exchange energy has been evaluated in extended
basis such as the Hund-Mulliken approximation, using as
basis four two-particle wave functions constructed from the
single-electron wave functionsw±sr ,td within the channels
centered aty= ±a [19,20]. The results obtained for a Hamil-
tonian with these four basis functions only differ by a few
percent from the results in Figs. 2 and 3 for the parameters
chosen[19].

We now discuss imperfections arising during the transport
of the pair of electrons through the channels. We calculate
the entanglement because it plays a key role in quantum
information processing(QIP) and quantum computing(QC),
and the preservation of entanglement is a necessary condi-
tion for the implementation of QIP and QC. The confining
potential of the two-electron system changes over time due
to the presence of the SAW in thex direction and the
pinched-off potential arising from the split-gate potential.
The electrons may not remain in the lowest spin singlet en-
tangled state but may undergo spontaneous transitions to ex-
cited states, or an electron may tunnel back and forth be-
tween channels. The resulting gate error can be calculated by
making use of the solutions of the time-dependent
Schrödinger equation for the two-particle system. As a mat-
ter of fact, we have

]castd
]t

= o
bÞa

cbstd
Eastd − EbstdKuaU ]Hstd

]t
UubstdL

3es−i/"det0
t dtsEbstd−Eastdd +KuastdU ]uastd

]t
uL . s4d

wheret0 is an initial time,uastd are instantaneous eigenstates
of the time-dependent HamiltonianHstd with eigenvalue
Eastd, i.e., Hstduastd=Eastduastd, and castd are the coeffi-
cients in the expansion of the wave functionCstd in the
eigenstatesuastd, i.e.,Cstd=oacastduastd. If we note that the
Berry phasegastd is given by[21]

dgastd
dt

= iKuastdU ]uastd
]t

uL , s5d

then it follows that the coefficientscastd are naturally deter-
mined by a geometric phase factor expfigastdg. However,
since the Hamiltonian depends on a single time parameter,
the contribution from the geometric phase over the period of
the time-dependent Hamiltonian is zero[21]. Consequently,
the leakage from the dots, i.e., 1−ucm=0u2, wherem=0 de-
notes the state in which the system is prepared att= t0, will
be obtained by solving Eq.(4) without the geometric phase
factor.

In order for us to solve Eq.(4), we must first obtain the
eigenstates for the interacting pair of electrons. Let
H0sidFisr id=EiFisr id for each electron moving in the channel
independent of the presence of the other. Here, we have
Fasr id=fxisxdfyjsyd, wherefxisxd andfyisyd are the eigen-
functions for electron motion in thex and y directions, re-
spectively. From these, we can form a spin triplet(Slater
determinant) state Fi j

sAdsr 1,r 2; td and a spin singlet state
Fi j

sSdsr 1,r 2; td. We expand the eigenstatesuastd in terms of the
two-particle states in the formuastd=oi,jaijFi j

smdsr 1,r 2; td,
wherem=S,A for symmetric or antisymmetric states. It is a
simple matter to show that the coefficientsaij , as well as the
energy eigenvaluesEa, are determined from the set of equa-
tions

FIG. 4. The leakage 1−uc0stdu2 as a function of time. Here,
a/lo=0.7,b=0.5. The oscillations in the leakage are due to the
phase factors for the levels involved in our calculations. The inset
shows the position of the electron in the potential of Eq.(2) at t
=T/4 andt=3T/4.

FIG. 3. The exchange interaction att=0 as a function of the
separation between a pair of parallel channels. The solid line is the
difference in energies between the singlet and triplet states obtained
by numerically solving the Schrödinger equation for a pair of inter-
acting electrons. The dashed line is the result in the Heitler-London
model. The parameters used in the calculation are given in the text.
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sEl + Emdalm + o
i, j

kFlm
smduH12uFi j

smdlaij = Eaalm, s6d

which require numerical evaluation of the Coulomb matrix
elements. The single-particle states we used are
fx1sxdfy1syd, fx2sxdfy1syd, fx1sxdfy2syd, and fx2sxdfy2syd
involving the two lowest eigenstates in thex and y direc-
tions. With uastd expressed as a linear combination of
Fi j

smdsr 1,r 2; td, we solved the set of equations(4) numerically
for the time-dependent Hamiltonian and then determine the
leakage, which we plot in Fig. 4. The oscillations in the
leakage are an interesting feature of our calculations involv-
ing the pair of channels. To better understand our results, we
calculated the leakage for a single electron launched by a
SAW in one of the channels but with the electron allowed to
go back and forth between a pair of adjacent channels. The
electron was assumed to be initially in its ground state. The
calculated leakage is several orders of magnitude larger than
in Fig. 4 and oscillates with time, indicating that it is more
likely for the electron to go back and forth between energy
levels. Furthermore, when we considered two independent
electrons, i.e., we neglected the Coulomb interaction but ap-
propriately antisymmetrize the wave functions, we found
that the leakage oscillates with time but its magnitude is
about the same as Fig. 4. This means that the Pauli principle
dominates for the parameters chosen in our calculations. The

oscillations are due to the energy transfer in the phase factors
integrated over time, as given in Eq.(4). These oscillations
contribute to the accuracy and the design of the two-bit gate
and play as important a role asJ to gate errors.

In summary, motivated by the suggestion in Ref.[18], we
used a simple model to calculate the entanglement of spins
transported by a SAW. Our approaches demonstrate that the
qualitative nature of our results is not affected by the ap-
proximations. This indicates that the entanglement remains
stable. Also, an advantage of the SAW technique is that the
number of identical computations that could be performed
per second is equal to the SAW frequency, which is in the
GHz range. This should facilitate implementation of the
readout. The SAW quantum computer has the advantage that
information is distributed quickly along the nanocircuit when
decoherence times are short. Some of the effects on the SAW
decoherence times also arise from interactions of the qubit
with other electrons in the 2DEG, as well as with impurities
and phonons. The model we have presented only considers
two contributions to the gate error which dominate at low
temperature and in sufficiently pure samples.

We acknowledge partial support from the National Sci-
ence Foundation under Grants No. DMR-0303574 and
CREST 0206162, PSC-CUNY Grant No. 65485-00-34, as
well as Grant No. 4137308-04 from the NIH.

[1] A. R. Hutson and D. L. White, J. Appl. Phys.33, 40 (1962).
[2] P. Bierbaum, Appl. Phys. Lett.21, 595 (1972).
[3] A. Wixforth, J. P. Kotthaus, and G. Weimann, Phys. Rev. Lett.

56, 2104(1986).
[4] A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G.

Weimann, and W. Schlapp, Phys. Rev. B40, 7874(1989).
[5] A. Esslinger, A. Wixforth, R. W. Winkler, J. P. Kotthaus, H.

Nickel, W. Schlapp, and R. Losch, Solid State Commun.84,
939 (1992).

[6] A. Esslinger, R. W. Winkler, C. Rocke, A. Wixforth, J. P.
Kotthaus, H. Nickel, W. Schlapp, and R. Losch, Surf. Sci.305,
83 (1994).

[7] J. M. Shilton, D. R. Mace, V. I. Talyanskii, M. Pepper, M. Y.
Simmons, A. C. Churchill, and D. A. Ritchie, Phys. Rev. B51,
14770(1995).

[8] J. M. Shilton, D. R. Mace, V. I. Talyanskii, M. Y. Simmons, M.
Pepper, A. C. Churchill, and D. A. Ritchie, J. Phys.: Condens.
Matter 7, 7675(1995).

[9] A. L. Efros and Yu. M. Galperin, Phys. Rev. Lett.64, 1959
(1990).

[10] V. I. Fal’ko, S. V. Meshkov, and S. V. Iordanskii, Phys. Rev. B
47, 9910(1993).

[11] J. M. Shilton, V. I. Talyanskii, M. Pepper, D. A. Ritchie, J. E.
F. Frost, C. J. B. Ford, C. G. Smith, and G. A. C. Jones, J.

Phys.: Condens. Matter8, L531 (1996).
[12] C. L. Foden, V. I. Talyanskii, G. J. Milburn, M. L. Leadbeater,

and M. Pepper, Phys. Rev. A62, 011803(R) (2000).
[13] H. Totland and Y. M. Galperin, Phys. Rev. B54, 8814(1996).
[14] V. I. Talyanskii, J. M. Shilton, M. Pepper, C. G. Smith, C. J. B.

Ford, E. H. Linfield, D. A. Ritchie, and G. A. C. Jones, Phys.
Rev. B 56, 15180(1997).

[15] G. R. Aizin, G. Gumbs, and M. Pepper, Phys. Rev. B58,
10589 (1998); G. Gumbs, G. R. Aizin, and M. Pepper,ibid.
60, R13954(1999).

[16] V. I. Talyanskii, J. M. Shilton, J. Cunningham, M. Pepper, C. J.
B. Ford, C. G. Smith, E. H. Linfield, D. A. Ritchie, and G. A.
C. Jones, Physica B249, 140 (1998).

[17] N. A. Zimbovskaya and G. Gumbs, J. Phys.: Condens. Matter
13, L409 (2001).

[18] C. H. W. Barnes, J. M. Shilton, and A. M. Robinson, Phys.
Rev. B 62, 8410 (2000); C. H. W. Barnes, Philos. Trans. R.
Soc. London, Ser. A361, 1487(2003).

[19] G. Burkard, D. Loss, and D. P. DiVincenzo Phys. Rev. B59,
2070 (1999).

[20] D. C. Mattis, inThe Theory of Magnetism, Springer Series in
Solid State Sciences Vol. 1,(Springer, New York, 1982), Sec.
4.5.

[21] M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 (1984).

G. GUMBS AND Y. ABRANYOS PHYSICAL REVIEW A70, 050302(R) (2004)

RAPID COMMUNICATIONS

050302-4


