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Weakly entangled states are dense and robust
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Motivated by the mathematical definition of entanglement we undertake a rigorous analysis of the separa-
bility and nondistillability properties in the neighborhood of those three-qubit mixed states which are entangled
and completely biseparable. Our results are not only restricted to this class of quantum states, since they rest
upon very general properties of mixed states and unextendible product bases for any possible number of
parties. Robustness against noise of the relevant properties of these states implies the significance of their
possible experimental realization, therefore being of physical—and not exclusively mathematical—interest.
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Quantum mechanics has focused much of the attention ofleakly entangled that their quantum correlations are not
the physics community during the last century, both for itsknown to be of any practical use for quantum information
extraordinary predictive power and its apparent paradoxes. thsks. This situation leads us to think that, perhaps, our defi-
has been a turning point in our conception of the fundamenpjtion of entanglement is excessively mathematical, and that

tal laws of nature, and it still leads today to important dis-5 nore physical definition of what a quantum-correlated state
cussion about its foundations. A major step forward was re-,

- . s, might be of interest. The importance of this problem
alizing that the laws of quantum mechanics can be 0fhin es on whether it is actually possible to realize bound
practical use. Exploiting quantum correlations—or 9 yp

entanglemert[1,2] as a fundamental resour¢such as en- entangled states, WhiCh posses this “useless” character, in the
ergy) has been proven to be an outstanding success witkPoratory. For this to be achievable we must demand as a
applications such as quantum teleportation, quantum crypglecessary condition that the action of small and unavoidable
tography, or quantum computatidB]. Characterization of decoherence effects leave the essential properties of the
entanglement is therefore one of the most relevant problemguantum state unchanged. If, for instance aapriori inter-
in quantum information science. esting property were only to hold for pure states, it would
It was initially Werner[4] who introduced the current actually not be of physical interest, as pure states are a math-
mathematical definition of a “mixed entangled state”: aematical idealization of physically realizable states. But this
mixed statep of n parties is entangled if and only if it cannot experimental condition must be considered for mixed states
be decomposed gs==[_;pip’ ® - -+ ® p",{pi}\_, being a cer- in general.
tain probability distribution. According to this definition, any  In this paper we prove that mixed quantum states that are
guantum state that is not entangled can always be createdentangled and are biseparable with respect to any set of bi-
by means of local operations on each separate party togethpartitions of the system form a set of nonzero measure in
with classical communication between th¢bh©CC). A dif- Hilbert space. In particular this implies that those three-qubit
ferent (but relatedl concept, thedistillability of quantum density matrices that are bound entangled and completely
states, was introduced by Bennettal. [5]: given M copies  biseparabld10,11 have real physical significance. Our re-
of a bipartite quantum stai@ we say that it is distillable if sults have been obtained by comparing the properties of the
and only if we can obtailN copies of a maximally entangled neighborhood in Hilbert space around these states with those
pure state of the two parties by means of LOQGKE gener- of the original state. Motivated by this class of three-qubit
alization to then-partite case is straightforward, by separat-states we also undertake a more general analysis of the dis-
ing the n parties into two different sets and applying againtillability properties of the neighborhood of those bound en-
the same definition This naturally led to the concept of tangled states associated with an unextendible product basis.
distillable entanglementf statep, which corresponds to the Our study begins by considering the following theorem.
ratio N/M in the limit of infinite number of copies. Theorem 1. rgubit density matricep which are sepa-
The existence of entangled quantum states that are nomable with respect to some particular bipartition of the system
distillable, the so-calledound entangledstates, was soon form a set of nonzero measure in Hilbert spéités a dense
proved by Horodecket al. [6]. The discovered states had sej).
positive partial transpositiofPPT) with respect to one of the Proof. We consider a density matrix of n qubits, which
two subsystems considered for the distillation protocol. Deis separable with respect to some particular bipartition. Let
spite that recent results have found particular practical applies introduce independent perturbations in the parameter
cations for some of these staf@s-9], it still seems that most space ofn-qubit density matrices in such a way that the
of them (e.g., those mixed states of three qubits which, deperturbed operator is still separable with respect to that bi-
spite being entangled, are separable with respect to all theartition. For this purpose, we consider the following set of
possible bipartitions of the systefl0,11]) are actually so 2"X 2" independent and completely separable projectors:
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EGrreerdn) = v ordnXiteeerdnh 12=10,1,01, 5} these states are robust. In particular, this result holds for
1) those states of three qubits studied 18], and specifically to

_ the (bound entangled three-qubit states that are entangled
for a=1,...,n, |¢1>:(1/\s’§)|0+1>, and|¢,)=(1/12)|0+i1).  yet completely biseparable, which were presented 1ol
We can now write any perturbation by using this set of pro-and further generalized ifil6]. Let us recall at this point
jectors as(e,)=(1/C)[p+Z ,6,E(n)], €, being a set of real their definition in terms of an unextendible product basis:
parametersu=(jq,...,j,) andC the normalization constant. an unextendible product basisUPB) [10,11] for a
For the perturbed density matrix to be physical the set ofnultipartite quantum system is an incomplete orthogonal
parameterse, must be such that the condition of positive Product basis whose complementary subspace contains no
semidefiniteness holds for the perturbed operator. Becaugoduct state. It has the remarkable property thaly}Z,
the projector€E(u), which form a basis of the"X 2" density ~ are the(producy vectors of the UPB, then the maximally
matrices, correspond to separable pure states, if we restriftixed state in the subspace orthogonal to the UPBB,
ourselves to the regios, =0 O u (which physically corre-  =[1/(D-m)](1 ==Zy|¢)(4|) (D being the dimensionality of
sponds to a local noisethese states share at least the saméhe Hilbert spacg is bound entangleqUPB states For
separability properties as those of the unperturbed ptate  three-qubit systems, it was proven|[it6] that the most gen-
is then proven that these states form a set of nonzero measwgeal UPB is given by the set of vectors
in Hilbert space, since the number of independent perturba-

tion parameters is maximal, and the separability property is [¥1) =10)/0)|0),
robust against local noise. |
Our next claim is that given an entangled statets en- l42) = |1)[B)[C),
tanglement is preserved in an infinitesimal neighborhood. 3
This is proven in our second theorem. ) = |A)|1)[C),

Theorem 2If the n-qubit statep is entangled and the real
parameters, are infinitesimal, then the stajee,)=(1/C) -
X[p+=,€,E(w)] is entangledin particular, entanglement is ) = |A)[B)[1),
a robustproperty. ) — .

Proof. The proof is based on witness operators. Let usVith (A|A)=0 (similar for |B) and|C)), and|A),|B), and|C)
briefly recall their definition: given two convex subs@s depending on only one real parameter each @viEch can
andS, such thatS; is included inS,, a Hermitian operatow always be achieved by a local change of basis[16] it was
is a witness operator if and only if) Do € S, tr(Wo) =0, also noted that any UPB state of three qubits is bound en-
(i) there is at least ong e S, such that Wp) <0, and(iii) tangled yet completely biseparable. Our theorems imply that,
tr(W)=1. In the quantum caséS, is the set of separable apart from these UPB states, there are also mixed density
statessz. is the set of all quantum states, antis an observ- matrices of this kind which cannot be associated with any

able that has an expectation value greater than or equal toL(SPB of three qubits, since the staie&,) obtained by per-

for all the separable states and less than O for some entangIBHb'ng one of the UPB states are not in general (elated to
state. It is a well-known fadl2—14 that a quantum state &Y UPB. Neither can these states always be written as a
is entangled if and only if there exists a witness opersttor CONVEX combination of states associated to some UPB, since

that “detects”p, i.e., t{Wp)<0 and ttWe)=0 Do sepa- & CONVex comb_ination of two different UPB states for_thr_eg

nqublts can easily be seen to have at least rank 6, while it is
possible to achieve states of rank 5 simply by mixing a UPB
state with one of the pure product states of the corresponding
UPB.

We now wish to analyze the distillability properties of the
neighborhood of this kind of three-qubit UPB states in a
more detailed way. Theorem 1 already implies a certain kind
of (obvioug robustness for the nondistillability of these

1 states, restricted to the,=0 regionl],,. We shall see that,
tr{Wp(e,)]= E(tr(pr) +2 %tr[WpE(:“)]) <0. (2 indeed, this robustness is stronger due to some peculiarities
” of UPB states, as it can also be extended to some cases with
Because (\W,p) <0 and tf\W,E(1)]=0 [sinceE(u) are pro-  small negative values of the parametejs Our analysis fo-
jectors corresponding to completely separable pure jtatescuses only on general properties of UPBs, no matter what the
the above condition readsS, e, tfW,E(u)]<|tr(W,p)[,  particular system is, therefore its range of application is not
which can always be achieved for values of the parametergstricted only to the three-qubit case. First we present a
€, close enough to zero. The perturbed state is then detectgdievious lemma which we will use to prove our third theo-
by some witness operator, therefore it is entangled. Wl rem.

From the preceding two theorems we infer that there ex- Lemma.lf p is a UPB state ir{,® Hy, then the kernel
ists a partial neighborhood of nonzero measure of those (null eigenspaceof p'= is spanned by product vectors.
qubit states that are entangled but separable with respect to Proof. Let {|a))[b;)}iZ; be a UPB withm product vectors in
some bipartition that shares also the same properties, so thatHilbert space, ® H,, of dimensionD. The UPB state is

rable (this is a consequence of the Hahn-Banach’s theore
for convex setg Given the perturbed stajge,,), it will be
entangled if and only if there exists a withess operaor
such that §Wp(e,)]<0. Assuming thap is entangled, we
choose to work with the particular witness operatdy that
“detects” it[i.e., t{W,p) <O0]. Forp(e,) to be detected bW,
we impose that
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p=[1/(D-m)](1-={,|a;}{(a;| ® |b;)(bi|); its kernel is spanned in perturbation theory, which easily leads to negative eigen-
by the set of vectors of the UPB. Taking the partial transpovalues in the spectrum gi(e)'= as well, and therefore to
sition with respect to partya we get p'a=[1/(D-m)][l similar conclusions. Consequently, in order for the perturbed
-3 (Ja)a]) 2@ |b)(by|]. Sincela)(a| is a Hermitian op- operator to remain PPT, we must demand the condition
erator, it holds that(|a)(a|)™=(|a)a;])" =|a/)a/|, being A>0, which means that;2>0 in the kernel ofpTa. O
la/)=(|a;))" the complex-conjugated vector {&). The ker- Note that, in terms of the projectoBu) from Theorem

nel of p' is therefore spanned by the product vectorsl: @nYp1can always be decomposedmas.,c,E(u), being
{|ai,>|bi>}'m1 m c, certain real parameters. Deflnlrgzecﬂ, we observe
i=1*

that the hypothesis of Theorem 3 does not reskijcto be
non-negative. It is also worth pointing out the case in which
p the UPB is composed of real vectors only. In this situation,
the kernel of the partially transposed UPB statecoincides
with the space spanned by the vectors of the UPB, and there-
fore the condition imposed on the noise in Theorem 3 gets

bustproperty. implified. This simplification applies to a very large variety

Before we prove Theorem 3, let us recall that any physicaf)f UPBs, such as all the three-qubit and many two-qutrit
noise can always be represented in terms of a mixtuwith exampleé[lo 11,16

positive weightgin the space of density matrices, that is, 8 \yhen particularizing to the three-qubit case, and bringing
a probabilistic combination of the originaunperturbeyl  {qgether the results from the previous three theorems, we
mixed state and a noise-induced density matrix. ~ conclude that mixed three-qubit states that are entangled yet
Proof. The proof is based on degenerate perturbatiorsompletely biseparable are robust against local noise and be-
theory. Let us consider a UP§ay)[b)}Z; in Ha®Hp and  yond, in the sense that their entanglement, their complete
call p the corresponding UPB state. We wish to note here thapiseparability, and their nondistillability are not modified by
any UPB can always be written in this way, by joining the small local effects and some nonlocal noisy effects. Relevant
different parties into two different setsandb. Consider also  properties of these states are then of physical significance,
p1 as any other possible quantum state in the same Hilbedind not just a matter of mathematical interest. We wish to
space. We write a small perturbation pfwith p; asp(e)  note the dependence of these states on the existence of UPBs
=[1/(1+e)](p+ep1),e>0 being an infinitesimal noise pa- for three qubits, which are associated with Hilbert spaces of
rameter. Taking the partial transposition with respect to one@imension 4 with no product vectors in them, and we won-
of the parties we obtaim(e)Ta=[1/(1+¢)](p"a+epj2). The der, as a possible generalization of this concept, whether
null eigenvectors op can be chosen to be the states of thethere exist subspaces of dimension 5 of three-qubit Hilbert
UPB {|a)|b)}Z;, while the states from the spaces such that there are less than five independent product
(D-m)-dimensional subspace orthogonal to this set have eivectors in themwe have not succeeded in finding therm
genvalue 1¢(D-m). According to the previous lemma, the Such a case, the properties of these subspaces would prob-
kernel of p'a is then spanned by the set of vectors ab_ly be of interest, as are the properties of UPBs, in order to
{la))lb)}m,, while the vectors from its orthogonal subspaceb_””,g furt_her |nS|gh_t and knowledge_about entanglement and
have eigenvalue 1D-m). Using degenerate perturbation distillability properties for three-partite systems.

theory, for e small enough the lowest eigenvaluespgt) " We are grateful for discussions with A. Acin, P. Hyllus, J.

are given bye\,+O(e?),{\}L; being the eigenvalues of the | Latorre, M. Lewenstein, and A. Sanpera. We also particu-
mx m matrix A defined byA; =(a/|(bi|pjalbj)la)). If \; <O larly thank J. I. Cirac for pointing out an error in a previous

for somer, this leads to a negative eigenvalue in the specversion of Theorem 3. We acknowledge financial support
trum of p(e) s, therefore turning(e) into an NPT state. The from projects MCYT FPA2001-3598, GC2001SGR-00065,
case in which\,=0 for somer needs a second-order analysis and IST-1999-11053.

At this point we are in conditions of presenting our third
theorem.

Theorem 3Any UPB statep perturbed by a small enoug
amount of noisep;, such thatha>O in the kernel ofp's,
remains nondistillablénondistillability is a conditionallyro-
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