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Motivated by the mathematical definition of entanglement we undertake a rigorous analysis of the separa-
bility and nondistillability properties in the neighborhood of those three-qubit mixed states which are entangled
and completely biseparable. Our results are not only restricted to this class of quantum states, since they rest
upon very general properties of mixed states and unextendible product bases for any possible number of
parties. Robustness against noise of the relevant properties of these states implies the significance of their
possible experimental realization, therefore being of physical—and not exclusively mathematical—interest.
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Quantum mechanics has focused much of the attention of
the physics community during the last century, both for its
extraordinary predictive power and its apparent paradoxes. It
has been a turning point in our conception of the fundamen-
tal laws of nature, and it still leads today to important dis-
cussion about its foundations. A major step forward was re-
alizing that the laws of quantum mechanics can be of
practical use. Exploiting quantum correlations—or
entanglement—[1,2] as a fundamental resource(such as en-
ergy) has been proven to be an outstanding success with
applications such as quantum teleportation, quantum cryp-
tography, or quantum computation[3]. Characterization of
entanglement is therefore one of the most relevant problems
in quantum information science.

It was initially Werner [4] who introduced the current
mathematical definition of a “mixed entangled state”: a
mixed stater of n parties is entangled if and only if it cannot
be decomposed asr=oi=1

r piri
1

^ ¯ ^ ri
n,hpiji=1

r being a cer-
tain probability distribution. According to this definition, any
quantum stater that is not entangled can always be created
by means of local operations on each separate party together
with classical communication between them(LOCC). A dif-
ferent (but related) concept, thedistillability of quantum
states, was introduced by Bennettet al. [5]: given M copies
of a bipartite quantum stater, we say that it is distillable if
and only if we can obtainN copies of a maximally entangled
pure state of the two parties by means of LOCC(the gener-
alization to then-partite case is straightforward, by separat-
ing the n parties into two different sets and applying again
the same definition). This naturally led to the concept of
distillable entanglementof stater, which corresponds to the
ratio N/M in the limit of infinite number of copies.

The existence of entangled quantum states that are non-
distillable, the so-calledbound entangledstates, was soon
proved by Horodeckiet al. [6]. The discovered states had
positive partial transposition(PPT) with respect to one of the
two subsystems considered for the distillation protocol. De-
spite that recent results have found particular practical appli-
cations for some of these states[7–9], it still seems that most
of them (e.g., those mixed states of three qubits which, de-
spite being entangled, are separable with respect to all the
possible bipartitions of the system[10,11]) are actually so

weakly entangled that their quantum correlations are not
known to be of any practical use for quantum information
tasks. This situation leads us to think that, perhaps, our defi-
nition of entanglement is excessively mathematical, and that
a more physical definition of what a quantum-correlated state
is, might be of interest. The importance of this problem
hinges on whether it is actually possible to realize bound
entangled states, which posses this “useless” character, in the
laboratory. For this to be achievable we must demand as a
necessary condition that the action of small and unavoidable
decoherence effects leave the essential properties of the
quantum state unchanged. If, for instance, ana priori inter-
esting property were only to hold for pure states, it would
actually not be of physical interest, as pure states are a math-
ematical idealization of physically realizable states. But this
experimental condition must be considered for mixed states
in general.

In this paper we prove that mixed quantum states that are
entangled and are biseparable with respect to any set of bi-
partitions of the system form a set of nonzero measure in
Hilbert space. In particular this implies that those three-qubit
density matrices that are bound entangled and completely
biseparable[10,11] have real physical significance. Our re-
sults have been obtained by comparing the properties of the
neighborhood in Hilbert space around these states with those
of the original state. Motivated by this class of three-qubit
states we also undertake a more general analysis of the dis-
tillability properties of the neighborhood of those bound en-
tangled states associated with an unextendible product basis.

Our study begins by considering the following theorem.
Theorem 1. n-qubit density matricesr which are sepa-

rable with respect to some particular bipartition of the system
form a set of nonzero measure in Hilbert space(it is a dense
set).

Proof. We consider a density matrixr of n qubits, which
is separable with respect to some particular bipartition. Let
us introduce independent perturbations in the parameter
space ofn-qubit density matrices in such a way that the
perturbed operator is still separable with respect to that bi-
partition. For this purpose, we consider the following set of
2n32n independent and completely separable projectors:

PHYSICAL REVIEW A 70, 050101(R) (2004)

RAPID COMMUNICATIONS

1050-2947/2004/70(5)/050101(4)/$22.50 ©2004 The American Physical Society70 050101-1



Es j1,…, jnd ; u j1,…, jnlk j1,…, jnu, ja = h0,1,f1,f2j
s1d

for a=1,… ,n, uf1l=s1/Î2du0+1l, anduf2l=s1/Î2du0+i1l.
We can now write any perturbation by using this set of pro-
jectors asrsemd=s1/Cdfr+omemEsmdg ,em being a set of real
parameters,m;s j1,… , jnd andC the normalization constant.
For the perturbed density matrix to be physical the set of
parametersem must be such that the condition of positive
semidefiniteness holds for the perturbed operator. Because
the projectorsEsmd, which form a basis of the 2n32n density
matrices, correspond to separable pure states, if we restrict
ourselves to the regionemù0 ∀m (which physically corre-
sponds to a local noise), these states share at least the same
separability properties as those of the unperturbed stater. It
is then proven that these states form a set of nonzero measure
in Hilbert space, since the number of independent perturba-
tion parameters is maximal, and the separability property is
robust against local noise. j

Our next claim is that given an entangled stater, its en-
tanglement is preserved in an infinitesimal neighborhood.
This is proven in our second theorem.

Theorem 2.If the n-qubit stater is entangled and the real
parametersem are infinitesimal, then the statersemd=s1/Cd
3fr+omemEsmdg is entangled(in particular, entanglement is
a robustproperty).

Proof. The proof is based on witness operators. Let us
briefly recall their definition: given two convex subsetsS1
andS2 such thatS1 is included inS2, a Hermitian operatorW
is a witness operator if and only if(i) ∀sPS1, trsWsdù0,
(ii ) there is at least onerPS2 such that trsWrd,0, and(iii )
trsWd=1. In the quantum case,S1 is the set of separable
states,S2 is the set of all quantum states, andW is an observ-
able that has an expectation value greater than or equal to 0
for all the separable states and less than 0 for some entangled
state. It is a well-known fact[12–14] that a quantum stater
is entangled if and only if there exists a witness operatorW
that “detects”r, i.e., trsWrd,0 and trsWsdù0 ∀s sepa-
rable (this is a consequence of the Hahn-Banach’s theorem
for convex sets). Given the perturbed statersemd, it will be
entangled if and only if there exists a witness operatorW
such that trfWrsemdg,0. Assuming thatr is entangled, we
choose to work with the particular witness operatorWr that
“detects” it[i.e., trsWrrd,0]. Forrsemd to be detected byWr

we impose that

trfWrrsemdg =
1

CStrsWrrd + o
m

emtrfWrEsmdgD , 0. s2d

Because trsWrrd,0 and trfWrEsmdgù0 [sinceEsmd are pro-
jectors corresponding to completely separable pure states],
the above condition readsomemtrfWrEsmdg, utrsWrrdu,
which can always be achieved for values of the parameters
em close enough to zero. The perturbed state is then detected
by some witness operator, therefore it is entangled. j

From the preceding two theorems we infer that there ex-
ists a partial neighborhood of nonzero measure of thosen
qubit states that are entangled but separable with respect to
some bipartition that shares also the same properties, so that

these states are robust. In particular, this result holds for
those states of three qubits studied in[15], and specifically to
the (bound) entangled three-qubit states that are entangled
yet completely biseparable, which were presented in[10]
and further generalized in[16]. Let us recall at this point
their definition in terms of an unextendible product basis:
an unextendible product basis(UPB) [10,11] for a
multipartite quantum system is an incomplete orthogonal
product basis whose complementary subspace contains no
product state. It has the remarkable property that ifhucilji=1

m

are the(product) vectors of the UPB, then the maximally
mixed state in the subspace orthogonal to the UPB,r
=f1/sD−mdgsI −oi=1

m ucilkciud sD being the dimensionality of
the Hilbert space), is bound entangled(UPB states). For
three-qubit systems, it was proven in[16] that the most gen-
eral UPB is given by the set of vectors

uc1l = u0lu0lu0l,

uc2l = u1luBluCl,

s3d
uc3l = uAlu1luC̄l,

uc4l = uĀluB̄lu1l,

with kAu Āl=0 (similar for uBl and uCl), anduAl , uBl, anduCl
depending on only one real parameter each one(which can
always be achieved by a local change of basis). In [16] it was
also noted that any UPB state of three qubits is bound en-
tangled yet completely biseparable. Our theorems imply that,
apart from these UPB states, there are also mixed density
matrices of this kind which cannot be associated with any
UPB of three qubits, since the statesrsemd obtained by per-
turbing one of the UPB states are not in general related to
any UPB. Neither can these states always be written as a
convex combination of states associated to some UPB, since
a convex combination of two different UPB states for three
qubits can easily be seen to have at least rank 6, while it is
possible to achieve states of rank 5 simply by mixing a UPB
state with one of the pure product states of the corresponding
UPB.

We now wish to analyze the distillability properties of the
neighborhood of this kind of three-qubit UPB states in a
more detailed way. Theorem 1 already implies a certain kind
of (obvious) robustness for the nondistillability of these
states, restricted to theemù0 region∀m. We shall see that,
indeed, this robustness is stronger due to some peculiarities
of UPB states, as it can also be extended to some cases with
small negative values of the parametersem. Our analysis fo-
cuses only on general properties of UPBs, no matter what the
particular system is, therefore its range of application is not
restricted only to the three-qubit case. First we present a
previous lemma which we will use to prove our third theo-
rem.

Lemma.If r is a UPB state inHa ^ Hb, then the kernel
(null eigenspace) of rTa is spanned by product vectors.

Proof.Let huailubilji=1
m be a UPB withm product vectors in

a Hilbert spaceHa ^ Hb of dimensionD. The UPB state is
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r=f1/sD−mdgsI −oi=1
m uailkaiu ^ ubilkbiud; its kernel is spanned

by the set of vectors of the UPB. Taking the partial transpo-
sition with respect to partya we get rTa=f1/sD−mdgfI
−oi=1

m suailkaiudTa ^ ubilkbiug. Since uailkaiu is a Hermitian op-
erator, it holds thatsuailkaiudTa=suailkaiud* = uai8lkai8u, being
uai8l=suaild* the complex-conjugated vector ofuail. The ker-
nel of rTa is therefore spanned by the product vectors
huai8lubilji=1

m . j

At this point we are in conditions of presenting our third
theorem.

Theorem 3.Any UPB stater perturbed by a small enough
amount of noiser1, such thatr1

Ta.0 in the kernel ofrTa,
remains nondistillable(nondistillability is a conditionallyro-
bustproperty).

Before we prove Theorem 3, let us recall that any physical
noise can always be represented in terms of a mixture(with
positive weights) in the space of density matrices, that is, as
a probabilistic combination of the original(unperturbed)
mixed state and a noise-induced density matrix.

Proof. The proof is based on degenerate perturbation
theory. Let us consider a UPBhuailubilji=1

m in Ha ^ Hb and
call r the corresponding UPB state. We wish to note here that
any UPB can always be written in this way, by joining the
different parties into two different setsa andb. Consider also
r1 as any other possible quantum state in the same Hilbert
space. We write a small perturbation ofr with r1 as rsed
=f1/s1+edgsr+er1d ,e.0 being an infinitesimal noise pa-
rameter. Taking the partial transposition with respect to one
of the parties we obtainrsedTa=f1/s1+edgsrTa+er1

Tad. The
null eigenvectors ofr can be chosen to be the states of the
UPB huailubilji=1

m , while the states from the
sD−md-dimensional subspace orthogonal to this set have ei-
genvalue 1/sD−md. According to the previous lemma, the
kernel of rTa is then spanned by the set of vectors
huai8lubilji=1

m , while the vectors from its orthogonal subspace
have eigenvalue 1/sD−md. Using degenerate perturbation
theory, fore small enough the lowest eigenvalues ofrsedTa

are given byelr +Ose2d ,hlrjr=1
m being the eigenvalues of the

m3m matrix A defined byAij ;kai8ukbiur1
Taubjluaj8l. If lr ,0

for somer, this leads to a negative eigenvalue in the spec-
trum of rsedTa, therefore turningrsed into an NPT state. The
case in whichlr =0 for somer needs a second-order analysis

in perturbation theory, which easily leads to negative eigen-
values in the spectrum ofrsedTa as well, and therefore to
similar conclusions. Consequently, in order for the perturbed
operator to remain PPT, we must demand the condition
A.0, which means thatr1

Ta.0 in the kernel ofrTa. h
Note that, in terms of the projectorsEsmd from Theorem

1, anyr1 can always be decomposed asr1=SmcmEsmd, being
cm certain real parameters. Definingem;ecm, we observe
that the hypothesis of Theorem 3 does not restrictem to be
non-negative. It is also worth pointing out the case in which
the UPB is composed of real vectors only. In this situation,
the kernel of the partially transposed UPB staterTa coincides
with the space spanned by the vectors of the UPB, and there-
fore the condition imposed on the noise in Theorem 3 gets
simplified. This simplification applies to a very large variety
of UPBs, such as all the three-qubit and many two-qutrit
examples[10,11,16].

When particularizing to the three-qubit case, and bringing
together the results from the previous three theorems, we
conclude that mixed three-qubit states that are entangled yet
completely biseparable are robust against local noise and be-
yond, in the sense that their entanglement, their complete
biseparability, and their nondistillability are not modified by
small local effects and some nonlocal noisy effects. Relevant
properties of these states are then of physical significance,
and not just a matter of mathematical interest. We wish to
note the dependence of these states on the existence of UPBs
for three qubits, which are associated with Hilbert spaces of
dimension 4 with no product vectors in them, and we won-
der, as a possible generalization of this concept, whether
there exist subspaces of dimension 5 of three-qubit Hilbert
spaces such that there are less than five independent product
vectors in them(we have not succeeded in finding them). In
such a case, the properties of these subspaces would prob-
ably be of interest, as are the properties of UPBs, in order to
bring further insight and knowledge about entanglement and
distillability properties for three-partite systems.
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