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A modified time-dependent perturbation theory for single-photon emission is proposed, which yields the
exact photon energy for a relativistically recoiling atom. The relevant unperturbed “Hamiltonian” has station-
ary eigenvaluesE2. Its form is generalized here to hydrogenic atoms of arbitrary nuclear spins.
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When an atom of massM emits or absorbs a single pho-
ton of momentum"k, it suffers a recoil, which is used for
example in laser cooling. In emission from an atom at rest,
the nonrelativistic recoil energy isP2/2M. From momentum
conservationP+"k=0 and withk=v /c, the corresponding
photon energy"v is DE−sDEd2/2Mc2, whereDE=E−E8 is
the difference of the initial and final atomic energy levels.
More precisely,E8 is the total energy of the final atomic state
in its own rest frame, which for the ground state is justMc2

(c2 times the sum of the masses of its constituents, minus the
total binding energy). Another nonrelativistic expression for
"v is thus DE−sDEd2/2E8. However, relativistic energy
conservation requiresE="v+sE82+"2v2d1/2, which leads to

"v = sE2 − E82d/2E = DE − sDEd2/2E. s1d

This formula is well known in the kinematics of radiative
decays of elementary particles. It is missed by the standard
time-dependent perturbation theory based oni"]tc=Hc [1],
even if H reproduces the stationary eigenvaluesE andE8.

In this report, a modified time-dependent equation is pro-
posed in the variablet /E, which provides relativistic energy
conservation in atomic transitions and thus reproduces(1).
To remove the awkward dimension of] /]st /Ed, we multiply
it by the product of the electron and nuclear masses,me and
mN, and add a factorc2,

t = mt, m = memNc2/E, i"]tc = hc. s2d

The “little Hamiltonian” h is dimensionless. In order to ar-
rive at (1), its stationary parth0 must have eigenvaluesE2

instead ofE. The dimensionless form ofE2 is E/mc2. Again,
for notational convenience, a factor of 1/2 is included and a
constant is subtracted,

h0cs0d = se/mdcs0d, e/m = 1
2sE2/c4 − mN

2 − neme
2d/memN,

s3d

wherene is the number of electrons. In the relativistic theory
of hydrogenic atoms(including positronium), e is a reduced
energy andm is a reduced mass(see below).

The remaining steps oft-dependent perturbation theory
are analogous to those of time-dependent perturbation theory.
For a given modev of the electromagnetic field,h is split
into h0 and a time-dependent perturbation as follows:

h = h0 + hpere
ivt, vt = vt/m s4d

(for photon absorption,eivt is replaced bye−ivt). The wave
function cstd is expanded in a complete set of unperturbed
statescn

s0d,

c = o
n

cnstdcn
s0de−itse/mdn. s5d

The desired coefficientcf of the final state is isolated from
the sum by means of the orthogonality relations. ForNth
order perturbation theory, one expandscn=oNcn

sNd, cn
s0d

=dniQst−t0d. Setting"=c=1 in the following, the first order
gives

cfstds1d = − iEt

dt8kf uhperuileit8fv/mi−se/mdi+se/mdfg, s6d

with Ei =E, Ef =E8 in the notation of(1). The constant part of
e /m disappears in(6). The differential decay rate follows as

dsEiGi fd = s2pd−3d3kukk,l, f umemNhperuilu2dsEiv − Ei
2/2

+ Ef
2/2d, s7d

wherel denotes the photon helicity. Thed function produces
the desired relation(1). When the exponents in(5) are
shifted from the imaginary axis by amountsEnGnt /2, the
line shape is a Lorentzian,

dWif /dv = s2pd−1Ei
2Gi ffsEiv − Ei

2/2 + Ef
2/2d2 + sEiGid2/4g−1.

s8d

The general formalism ends here.h0 is presently known
for leptonium(positronium and muonium), for hydrogen(in-
cluding recoil corrections of the anomalous magnetic mo-
ment), and less precisely for hydrogenic atoms with a spin-
less nucleus[2]. The relativistic center-of-mass system
(c.m.s.) two-body kinematics of two free particles of arbi-
trary spins leads to the equation

se2 − m2 − p2dc = 0, p = p1 = − p2 = − i = . s9d

Relativistic kinematics has been developed over the past cen-
tury, which may excuse quoting a textbook[3]. From the
nonrelativistic eigenvalue,
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E < m12 − Z2a2mnr/2n2, m12 = m1 + m2 = me + mN,

s10d

one sees thatm in (2) is in fact close to the nonrelativistic
reduced massmnr.

The dimensionless forms of the bound-state equations for
two fermions and for a single electron are nearly identical,

h0 = b + apr + Vsrd + hhf, r = mr, pr = p/m. s11d

The hyperfine operatorhhf is different, however. Writinga
=g5s1, it is to the ordersZad4 and to all ordersme/mN for
leptonium,

hhf = ig5ss1 3 s2dVsrdprmcmN/m12
2 , s12d

where s2 is the nuclear-spin operator(leptonium hass2
=s2/2). The replacement of 1/mN by mN/m12

2 in the static
Dirac equation is due to Breit(at the ordersZad6, m12

−2 is
replaced byE−2 [4,5], which requires new orthogonality re-
lations in the variablerE=Er [2]). The standard hyperfine
operator contains only the Hermitian partfV,=g /2 of V=;
the anti-Hermitian parthV,=j /2 contributes to hyperfine
mixing (in the 16-component formalism, the mixing arises
from the retardation part of the Breit operator). A “hyperfine
Hermiticity” may be defined in which also the Hermitian
adjoint of (11) appears,h†x=ex. It is based on the scalar
product

E d3rx f
†ci = di f , s13d

but is needed only for nonperturbative hyperfine interactions.
(In the 16-component formalism,c andx are eigenstates of
the total chiralityg1

5g2
5, with eigenvalues +1 and −1, respec-

tively. This operator commutes with the parity matrixb
=b1b2.) To demonstrate thathhf does not makeE2 complex,
it is sufficient to show that(12) is real: The Dirac spinorc is
decomposed into large components,cg=gsrdxl,S

f,mf and small

onesc f = i f srdx
l̃,S8

f,mf, with l̃ = l ±1 andS=total spin. In this ba-

sis,g5s1p=−ig5s1= is not only Hermitian, but also real, as
the matrix elements ofig5 and s1= are all real. From the
commutator algebras ofs1=2s1 and s2, one verifies is1

3s2=−fs1,s1s2g=fs2,s1s2g. The eigenvalues of 2s1s2 for S
=s2±1/2 ares2 and −s2−1, respectively. The explicit matrix
elements ofis13s2 are thus

ks8,mS8uis1 3 s2uS,mSl = sS8 − Sdss2 + 1/2dkS8,mS8us1uS,mSl,

s14d

for arbitrary magnetic quantum numbersmS, mS8. They vanish
for S8=S, as required for a matrix that is both real and anti-
Hermitian.

The vector potentialAsrd appears inhper in the combina-
tions qiAsrid /m, with ri =mr i. For binary atoms, the transi-
tion to the relative and c.m.s. coordinates,r andR, brings a
factoreisk+Pd·R for kf uhperuil, which results in the already men-
tioned momentum conservation. In general,

kf uhperuil = Pi E d3rix f
†hperci . s15d

For electric-dipole radiation, one may replace inhpr by pr

+edipmAsr=0d, whereedip=ef1+sZ−1dm1/Mg is the effec-
tive dipole charge, as in the nonrelativistic two-body
Schrödinger equation.

To conclude, it has been shown that the eigenvalueE2 of
the new equation for “binary” atoms reproduces exact energy
conservation in radiative transitions. The argument of thed
function in (7) will slightly change that part of the Lamb
shift which is connected to photon emission by a dispersion
relation. This remains to be calculated.

For n-particle-bound states(n=ne+1 in atoms), one has
always assumed that the noninteracting part of the Hamil-
tonian is the sum of single-particle Hamiltonians,H0=SHi

0,
becauseH0c=Ec remains valid in the asymptotic region of
vanishing interactions. Now, instead, one must add thensn
−1d /2 Hamiltonianshij for pairs of noninteracting particles,
each in its own c.m.s., with eigenvaluesEij

2 −mi
2−mj

2. In
terms of the free-particle four-momentaki

m and kj
m, Eij

2 =ski

+kjd2. Surprisingly, this seemingly odd procedure does lead
to an eigenvalueE2 apart from a constant, because ofE2

=sSikid2=Si, jski +kjd2−Smi
2. The constant is that of(3).
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