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Relativistic recoil in radiative atomic transitions
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A modified time-dependent perturbation theory for single-photon emission is proposed, which yields the
exact photon energy for a relativistically recoiling atom. The relevant unperturbed “Hamiltonian” has station-
ary eigenvalue€?. Its form is generalized here to hydrogenic atoms of arbitrary nuclear spins.

DOI: 10.1103/PhysRevA.70.044701 PACS nuniber32.80.Cy, 11.30.Cp, 32.70.Jz, 32.10.Fn

When an atom of mads! emits or absorbs a single pho- h=h%+ hpeﬁiwt, wt=wtu (4)
ton of momentunik, it suffers a recoil, which is used for
example in laser cooling. In emission from an atom at rest(for photon absorptiong'! is replaced bye™“!). The wave
the nonrelativistic recoil energy B2/2M. From momentum  function (7) is expanded in a complete set of unperturbed
conservationP+#k=0 and withk=w/c, the corresponding statesw(o),
photon energyiw is AE-(AE)?/2Mc?, whereAE=E-E’ is "
the difference of the initial and final atomic energy levels. b=, Cn(T)ll/E]O)e_iT(E/M)n. (5)
More preciselyE’ is the total energy of the final atomic state n
in its own rest frame, which for the ground state is jivat?
(c? times the sum of the masses of its constituents, minus th€he desired coefficient; of the final state is isolated from
total binding energy Another nonrelativistic expression for the sum by means of the orthogonality relations. Rbin

ho is thus AE-(AE)?/2E'. However, relativistic energy order perturbation theory, one expandﬁzENc;N), Cgo)

conservation requireB=fiw+(E'2+%20?)Y2 which leads to = §,0(r— 7). Settingfi=c=1 in the following, the first order
gives
fiw = (E? - E'?)/2E = AE - (AE)?%/2E. (1)
This formula is well known in the kinematics of radiative Cf(T)(l):_if d7'(flhyefiye L/, (6)

decays of elementary particles. It is missed by the standard
time-dependent perturbation theory based/fofy=Hy [1],  \ith E;=E, E;=E’ in the notation of1). The constant part of

even ifH reproduces the stationary eigenvaliieandE'. e/ u disappears iri6). The differential decay rate follows as
In this report, a modified time-dependent equation is pro-

posed in the variabl&/ E, which provides relativistic energy d(ET.) = (20 383Kk flmamh S 2 S(E: w — E2/2
conservation in atomic transitions and thus reprodudgs (Elw) = (2m) A FlmemioeD) "o ~ &

To remove the awkward dimension @fd(t/E), we multiply +E?/2), (7)
it by the product of the electron and nuclear massgsand
my, and add a factoe?, where\ denotes the photon helicity. ThR&function produces
the desired relationl). When the exponents iig5) are
r=ut, w=mgmc¥E, ifd.p=hy. (2)  shifted from the imaginary axis by amounil'y7/2, the

line shape is a Lorentzian,

The “little Hamiltonian” h is dimensionless. In order to ar- 2 , 2o S
rive at (1), its stationary part® must have eigenvalugg?  dWi/do = (27) " ETi| (Eiw - E72 + Ef/2)°+ (E 1) 74] .

instead ofE. The dimensionless form @? is E/ uc®. Again, (8)
for notational convenience, a factor of 1/2 is included and a ) .
constant is subtracted, The general formalism ends hef®. is presently known

for leptonium(positronium and muoniumfor hydrogen(in-
cluding recoil corrections of the anomalous magnetic mo-
meny, and less precisely for hydrogenic atoms with a spin-

©) less nucleus[2]. The relativistic center-of-mass system
(c.m.s) two-body kinematics of two free particles of arbi-

wheren, is the number of electrons. In the relativistic theory trary spins leads to the equation

of hydrogenic atomsincluding positroniuny, € is a reduced

energy andu is a reduced massee below. (E€-u?-p)y=0, p=p,=-p,=-iV. (9

The remaining steps of-dependent perturbation theory

are analogous to those of time-dependent perturbation theorRelativistic kinematics has been developed over the past cen-

For a given modaw of the electromagnetic field) is split  tury, which may excuse quoting a textboB. From the

into h® and a time-dependent perturbation as follows: nonrelativistic eigenvalue,

hOy® = (el ) ¥, e u=3(E%c* - md - ngmd)/mgmy,
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E=~mp-Z2aPpun/2m?,  mpp=my+mp=mg+my,

(10
one sees that in (2) is in fact close to the nonrelativistic
reduced masg,,.

The dimensionless forms of the bound-state equations for
two fermions and for a single electron are nearly identical,

h0=pB+ap,+V(p)+hy, p=ur, p,=plu. (11

The hyperfine operatdmn,; is different, however. Writing

=y°0,, it is to the order(Za)* and to all ordersn./my for
leptonium,

hne =19°(a1 X $)V(p)p,memy/md,, (12)

where s, is the nuclear-spin operatateptonium hass,
=0,/2). The replacement of Iy by mN/mf2 in the static
Dirac equation is due to Breftat the order(Za)®, my3 is
replaced byE™? [4,5], which requires new orthogonality re-
lations in the variableg=Er [2]). The standard hyperfine
operator contains only the Hermitian paxt,V]/2 of VV;
the anti-Hermitian parf{V,V}/2 contributes to hyperfine

mixing (in the 16-component formalism, the mixing arises

from the retardation part of the Breit opergtok “hyperfine
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X S=—[51,51%]=[5S;,515,]. The eigenvalues of s, for S
=s,+1/2 ares, and -5, 1, respectively. The explicit matrix
elements ofo; X s, are thus

(s'"\mdioy X s Smg = (S = S)(s, + 1/2(S', mg o4 |S M),
(14)

for arbitrary magnetic quantum numbeng, ms. They vanish
for S'=S, as required for a matrix that is both real and anti-
Hermitian.

The vector potential(r) appears irh,, in the combina-
tions q;A(p;)/ w, with p;=pur;. For binary atoms, the transi-
tion to the relative and c.m.s. coordinategndR, brings a
factor&®*P)R for (f|h,e(i), which results in the already men-
tioned momentum conservation. In general,

<f|hper“> =1II; f dspiXIhper‘ﬂi- (15
For electric-dipole radiation, one may replacehin, by p,
+egipuA(p=0), whereeg,=€[1+(Z-1)m/M] is the effec-
tive dipole charge, as in the nonrelativistic two-body
Schrédinger equation.

To conclude, it has been shown that the eigenvatief
the new equation for “binary” atoms reproduces exact energy

Hermiticity” may be defined in which also the Hermitian conservation in radiative transitions. The argument of dhe

adjoint of (11) appearshiy=ey. It is based on the scalar
product

f d®pxi v = . (13

but is needed only for nonperturbative hyperfine interactions

(In the 16-component formalisng; and y are eigenstates of

the total chiralityy35, with eigenvalues +1 and -1, respec-

tively. This operator commutes with the parity matrik
=3,/3,.) To demonstrate thdt,; does not maké&? complex,
it is sufficient to show that12) is real: The Dirac spinoy is

decomposed into large componenj@,:g(r))([g"f and small

oneSz//fzif(r)XF’gf, with 1=1+1 andS=total spin. In this ba-

sis, Y’ o,p=—iy°c,V is not only Hermitian, but also real, as

the matrix elements ofy> and o,V are all real. From the
commutator algebras obr;=2s, and s,, one verifiesis;

function in (7) will slightly change that part of the Lamb
shift which is connected to photon emission by a dispersion
relation. This remains to be calculated.

For n-particle-bound state@1=n.+1 in atomg, one has
always assumed that the noninteracting part of the Hamil-
tonian is the sum of single-particle Hamiltoniamﬁ’,:EH?,
becauseH®y=Ey remains valid in the asymptotic region of
vanishing interactions. Now, instead, one must addritme
—1)/2 Hamiltoniansh;; for pairs of noninteracting particles,
each in its own c.m.s., with eigenvalu&ﬁ—nf—nﬁ. In
terms of the free-particle four-momenkd and ki, Ej=(k;
+kj)2. Surprisingly, this seemingly odd procedure does lead
to an eigenvalueE? apart from a constant, because Bt

=(3ik)?=3ij(k+k)?==n?. The constant is that aB).
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