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Quantum Zeno effect by indirect measurement: The effect of the detector
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We study the quantum Zeno effect in the case of indirect measurement, where the detector does not interact
directly with the unstable system. Expanding on the model of Koshino and Shiffs. Rev. Lett.92,
030401(2004] we consider a realistic Hamiltonian for the detector with a finite bandwidth. We also take
explicitly into account the position, the dimensions, and the uncertainty in the measurement of the detector.
Our results show that the quantum Zeno effect is not expected to occur, except for the unphysical case where
the detector and the unstable system overlap.
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I. INTRODUCTION H=Ho+Hy+ Ho, (1)

In a recent papefl], Koshino and ShimizyKS) consid-
ered the quantum Zeno effe@@ZE) [2-5] for an exactly
exponentially decaying system. They concluded that the pos- Ho=QleXe, (2
sibility for observing the QZE exists even in this case, where
the initial deviation from exponential behavior, thought to be
of vital importance for the QZE, is absent.
As an example, they considered a two-level ai@hA ) Hl:f dk[(&e)alb, +H.c) + kbiby], &)
decaying to its ground state by emitting a photon counted by
a detector. Through a continuous indirect measurement of the
emitted photon, they obtained the QZE even in the extreme
case where the “jump time” is zero, which led them to the —
conclusion that the QZE would be easier than expected so far H, =J f dkdaw[ (v kalckw +H.c)+ wclwckm], (4)
to occur.
Since this contrasts with conventional wisdom, we under-

took a careful reexamination of the problem. We find that itwhereHo is the part representing the free evolution of the

is essential to reformulate the Hamiltonian so as to accoung o H, the atom-photon interaction and the free evolution
for the influence of the finite extent of the detector, including o the photon, withb, the annihilation operator for the pho-
its distance from the TLA. Our calculations, based on a diStoy of k wave vector. The combined systehdy+7H, is

cretization technique and the numerical solution of the re‘coupled to amacroscopigdetector, a part of which is mod-

sulting system of differential equations, show that the QZEggq by, which represents quantum mechanically the mea-

does not occur, except for the unphysical situation, inherergurmg procedure, i.e., the detection of the emitted phaion.
in the model of Ref[1], in which the TLA and the detector —
and V7, are the atom-photon and the photon-detector cou-

overlap; i.e., the detector contains the TLA. plings, respectively. All photon modes are coupled with the
Il. HAMILTONIAN CONSTRUCTION continuum of the bosonic elementary excitations in the de-

) , tector, with annihilation operator,,,. The usual commuta-
The system we consider follows as close as possible thg, relations for theb. ¢ operators hold.

lines of Ref.[1] (the same system and formalism has been \ye yish to elaborate on two issues on this form of the
employed by KS earlier in Ref6]). The unstable system, & pamijtonian. First, int,, the detection process is accom-
two-level atom(TLA) with |g) the groundande) the excited  jjisheq by transferring a quantum of a photon mode to the
state, is initially in|e) and decays to its ground state by yetector modes through the terijc,,,) which conserves.

tem;ttldng ad%:mt?nb The (Ergnted photon is Sg?ﬁe‘?r“&‘gy derhis means that there is no uncertainty in the detection pro-
ected and In€ "Observer: becomes aware ot the €CDtess ofk which is a rather unphysical feature. Consider a

Ri‘ tOt"él t(?]uan'ltun: system \t/_ve fg:olgsmer mtdL]idt?]S’ be3|de§ tI”HQetector capable of detectiigractically) all photons. In the
and the electromagnetic ield, a part of the measuring. e hat the electromagnetic field decays inside the detector
apparatus, which is .trea_ted quantum mechanically. ase ¥ (see Fig. }, the momentum of the detected photon is
The system Hamiltoniat%i=c=1) in the form employed determined withiny (from the uncertainty relationaxAk

by KS is ~1). Thus there is an inherent uncertainty on the outcome of
the measurement, a photon wkhvave number can be de-
tected ak’ inside the bandwidth. We take this into account
*Email address: makris@physics.uoc.gr by introducingC(k,k’) in H, which becomes
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<T> In the following numerical analyses, we assume a Gaussian
n n attenuation inside the detector, which leads in a Gaussian
Detester TLA C(k,k")=C(k=K").

In the case where one wishes to take into acount all the
details of the detector in a more fundamental level the
Hamiltonian of the detector and the resulting eigenmodes
U have to be specified. Then the coupling with themodes is

(| D|Py,) Whered,,, are the eigenmodes of the detector
1y andD the coupling operator of the detector with the electro-
- ) - magnetic field. We have to bear in mind that the eigenmodes
) of the detector are spatially localized, i.e., inside the detector.
FIG. 1. A schematic plot of the TLA and the detectshaded 5o, since we wish to represent a detector and not a mirror
region as we consider it. The electromcjgnetlc field emitted by thethe eigenmodes have to attenuate smoothly at the surface of
TLA enters the detector with a penetration depth of.IThe atom o qatector. Clearly the exact calculation has to proceed by
Is displaced by and the detector spans from 0Xg an explicit formulation of the detector Hamiltonian and de-

termination of its eigenmodes. We do not intend to proceed

_ , ot in this direction since our scope in this paper is to demon-
Ho= f f f dk’dkdw(C(k K)bycer, + H.C) strate the qualitative effects of the detector width and posi-
tion of the obervation of QZE. The basic result of such an
T analysis can be deduced by considering a simple form for the
" f f dkdwaCy,Cras ® ®,,, in conformation with the two restrictions we mentioned:

space localization smooth variations, for example, a plane

and C depends on the details of the electromagnetic fieldv@ve With a Gaussian envelope. In this simple case it is
attenuation inside the detector. evident that theZ(k,k’) could practically be thought of as a
The derivation o2 can be accomplished via two different Gaussian. . _ _ _
pathways. In the first, we consider the macroscopic charac- The M in [1] is a subclass of this generalized version
teristics of the decay of the electromagnetic field inside theVith C(k,k’) being a delta function. In retrospect, this means
detector and obtai@ phenomenologically. In the second, we thaty— 0, which implies that the physical dimensions of the
need to Specify the details of the detector and we can derivéetector tend to |nf|n|ty The latter IS a direct artificial |nﬂU-
C through this more rigorous approach. Both ways lead to th&nce on the dynamics of the decaying two-level atom, since
same result foC (physically, i.e., a smooth function with it implies that the(infinite) detector and the TLA overlap. We
finite width, which is actually the only important factor in 'eturn to this issue latter on. . _
our model. We briefly describe both. The second issue we wish to take into account is the rela-
In the phenomenological approach we can assume that tfive position of the detector and the TLA. This is straightfor-
electromagnetic field attenuation inside the detector depend¥ard and is accomplished by including the correct displace-
on two factors, the coupling streng(h“ﬁ) and the density ment phase factgr in the _Ham|lton|an. This phase has the
p(x) of the bosonic excitations of the detector. The latter isSIMPIe formé, =€°® (see Fig. 1, as employed, for example,
introduced to account for a smooth transition at the surfacd? [71 for the somewhat similar case of a TLA coupled
to the bulk density and/or for other space dependent particd'rough the electromagnetic field with another TLA. The
lars of the detector. The local attenuation rate of the mode of/@y the Hamiltonian is written so far, the TLA and the de-
the electromagnetic field is proportional {W and the tector overlap and we have to displace one of them. It is

P . : ; more convenient to displace the atom, since it involves in-
electromagnetic field mod@n one dimensiopnbecomes ) . ’
g ok n clusion of the phase factor in fewer terms, so the téfof

) the Hamiltonian becomes
Ne ', X > X

Pi(x) = Ne ke [0 meax < x|

Hy= f dk[(&€&%0le)(g|by + H.c) + kbl b,]. (6)

where N is the normalization factor for the photon eigen-
mode, and, is the point where the detector begiisee Fig.
1

In general the displacement is determined by the problem
at hand, but in all cases it should be such that the atom does

: . e . not overlap with the detector. In the present form of the
The coupling of the electromagnetic field modgswith Hamiltonian the detector is a&=0.

the detector modes has to be such that their decay inside the
detector is of the form oP,. A similar approach is followed

in Ref. [8] in the context of absorbing boundaries in spectral
methods, where it is shown that the coupliritfk,k’), there

the coefficients of the absorbing boundary linear transform, e model the electromagnetic field and the modes of the

are the projection coefficients d?, on ¢,, where 7~3k:7?k detector with a set of discrete modes. The wave function of
- ¢y 1.e., the part of thé®, mode transferred to the detector. the system can be written as

Ill. DISCRETIZATION
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0.0
|¢/(t)> = a|e1010> + 2 bk|gl 1k10> + 2 Ck,m|g!o! 1k,u)>! (7)
k ko -0.2
where the states involved are product states and, for instance, x 04
|9, 1, 0)=|9)|1,)|0) where|1,) means one photon emitted in =
the kth mode and0) is the zero-quanta state of the detector. & -06
Thus the initial state vector of the system|és0,0 and —08
the amplitudes obey the Schrédinger equation:
-Lof U=
ia=Qa+ 2 &g, ®) 00 02 04 06 08 10
k Time (y t)
ibk: by + §ke'ikXDa+ 2 \%C(k, k,)ck',w! (9) FIG. 2. The decay rate of the TLA excited state population,

coupled to the detector, over the free decay rate, following the KS

Ko approach. Parameters are&/y=100 andzn/y=1, 10 for thesolid
and dashed curve, respectively. Together we show, for the sake of
iCx o= ka,w"'E \%C(k,k')bkr, (10 comparison, the decay rate in the absence of the detédtar
k' dashed curve Since we take into account only a finite bandwidth,

the decay rate is 0 atE0. Discretisation range: 0 to(B with 100
odes for the electromagnetic field and ()< 100(w) modes for
the detector in the same range.

wherek is the index of the discrete modes used to model th
electromagnetic field an#l, y the indexes for the discrete
modes for thek and o of the detector quanta. In the case

wherek appears by itself, it simply is the value kfof the _ _ . .
have to limit to outgoing waves, thus restrictikgo positive

mode.
Consider for the moment the limit of our Hamiltonian that Values.

corresponds to the Hamiltonian employed [d], i.e,
C(k,k’):_ékvk, andXxp=0. Then the differential equations for V. RESULTS
the amplitudes would be
. First, we establish a direct correspondence with the results
ia=Qa+ > &by, (1) obtained in Ref[1]. We setxy=0, C(k,k') =&, the atom-
k photon coupling independent &f and assume that the cou-
pling between the photon and the detector is

ibk = wkbk + fka + 2 \"%(Ck,wl (12) 7]/277
o =, 14
_ 1+ [(k=- Q)AT (14
iCk oy = ®C,, + \ 7Dy (13

with A a measure of the photon energy range for which the
In this set of equations,,, is coupled only tanemode of  detector is sensitive anta parameter defining the sharpness
the electromagnetic field, which means that the detector inof the detector responge=6). In Fig. 2 we show our results
teracts immediately with the emitted photon, without allow-which match those obtained in Rdil] analytically, except
ing any time delay associated with the distance it has tdor a factor of 10 in the value ofy, which we attribute to a
travel from the TLA to the detector. On the contrary, in Eg. possible misprint in the caption of their figure; especially
(10) the detector modes interact withsaperpositionwvhich ~ since we are unable to reproduce their graph by employing
allows for spatial localization of the interaction, accountingtheir formula. The initial fast drop ofthe decay rate is due to
thus correctly for the time delay and the detector position. the finite range of frequencies we consider in the discretiza-
We proceed with a numerical solution for the system oftion, the width of this region is of the order of A{}, where
differential equations. The discretization schef@gl(] is as  AQ is the bandwidth of the discretization. After this transient
simple as possible. We choose a rangekfand w which we  region, the riseof the decay rate to its asymptotic value is
span with equidistant modes. The results are considered coresolved in accordance with Fig. 3 of R¢L].
verged if unaltered upon increasing both the range and the We proceed by considering a detector with finite width,
density of discrete modes. Of course the choice of discretithe same in all other aspects with the detector in Rf.In
zation range is not arbitrary but based on the particulars oFig. 3 we show the decay rate of the population of [ie
the problem. In this case, we take around the transition state over the free decay rate, as a functiort @i cases
frequency of the TLA and the same far. Due to the finite  where the TLA overlaps the detector and where it is spatially
interval of |k| space that we take into account, the “jump separated. When they overlap, it is evident that the decay
time” is not infinitesimal, although it can be made as small agprocess is decelerated, with the decay rate similar to the one
computationally feasible. In any case, a nonzershould obtained in Ref[1] [~0.40 vs~0.35, casga)]. Once the
make QZE easier to observe. TLA starts to get separated from the detector its decay rate
The situation we have considered is equivalent to the TLAapproaches fast the free decay rptases(c) and(d)]. The
placed at the center of @ollow) spherical detector, which influence of the relative position of the detector and the TLA
effectively is a one-dimensional problem. In this case weon the dynamics of the system is shown in Fig. 4. The time
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FIG. 3. The decay rate of the TLA excited state population over F!G- 4. The intensity profile of the emitted photon for the cases
the free decay rate as its relative position with the detector is varie@® @nd(d) of Fig. 3. In the top part of each figure we show the
(insed. We considered four cases, from the TLA being at the centeff°'TeSPonding detector profile and position. The distance is mea-
of the detectora) to the TLA outside of the detectah. The decay sured from the TLA and in units of detector full width at half
rate changes smoothly from the results obtained in Rafto the =~ Maximum. Lighter shading stands for higher intensities.

free decay rate. The detector is assumed to have an effective Gausgs jnteraction with the detector, so as to explicitly take into
ian profile, with a full width at half maximum of 3&=c=0=1),  5c0qunt the position and the spatial width of the detector.
as shown in the inset. ParameterstAd y=100,/y=10, discreti- e mogdified formulation allows the analysis of the realistic
zation as in Fig. 2C(k,k')=0.10g (K755, situation in which the detector is spatially separated from the

atom, yielding the model of Refl] as a special case which
evolution of the intensity profile of the emitted photon showsis shown to correspond to the detector overlapping with the
two qualitatively distinct features. In the case where the TLAatom. This is actually the case of an excited atom decaying
and the detector overlap, the detector captures the emittdfside a dielectri¢11,12. Having calculated the decay prob-
photon instantly and acts as a “memory” retaining the photor@bility of the TLA, we find that it is not affected by the
close to the TLA and slowing down the decay rate. In fact,measurement procedure, except in t_he rather unphysical situ-
this is the effect reported in Reffl]. Once the TLA is sepa- ation in which the atom overlaps with the detector. We are
rated from the detector, the photon travels uninterrupted untflhu.S compelled to conclude that.the QZE does not occur by
it is absorbed by the detector. In this case the atom decayBdiréct measurements, at least in the context of Ref.

with the free space rate without being influenced by the de- NOt€ added in proofRecently we became aware of Ref.
tector. [13], which addresses the same issue with similar conclu-

sions.
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