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Kerr-lens mode-locked, femtosecond Ti:sapphire lasers can operate in two coexistent pulsed modes of
operation, namedP1 (transform limited output puls¢snd P2 (chirped output pulsgsWe study, both theo-
retically and experimentally, the transition to chaotic behavior for each of these two modes of operation as the
net intracavity group velocity dispersion parameter approaches to zero. We firRiLtheaches chaos through
a quasiperiodic route, while2 does it through intermittency. The modulation frequencies involved, the size of
the transition regions in the parameter’s space, and the embedding and correlation dimensions of the attractors
(and also the kurtosis for the intermittent reginage theoretically predicted and also measured, showing a
satisfactory agreement. We consider that this finding of a low-dimensional system of widespread practical use
with (at leas} two coexistent chaotic scenarios will have a broad impact on the studies on nonlinear dynamics.
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I. INTRODUCTION merical analysis of the time series. However, in the case of
. . ~ KLM lasers, the very short duration of the pulsg®yond
The Kerr-lens mode-lockedKLM) Ti:sapphire laser is the resolution of the fastest electronicthe high repetition
the most widespread source of femtosecdsyilaser pulses  rate (about 100 MH3z, and the high level of noise make the
nowadays, and it is becoming increasingly important forrecording of useful time series difficult.
many applications. Yet because of the complex interlacing To our knowledge, the first successful measurement of the
between spatial and temporal variables intrinsic in the KLM,features of a chaotic attractor in a Ti:sapphire KLM laser was
it displays a variety of dynamical effects, such as periodperformed by Bolton and ActofiL0] through the numerical
doubling and tripling1-3], multistability [4], self Q switch-  analysis of time series, of the instrumental response of pho-
ing [5,6], and even deterministic chagé—9]. Many of the todiodes to the mode-locking signal, recorded in a large-
features of these effects are still poorly known. Their studymemory digital oscilloscope. In this way, only the dynamics
has revealed the KLM lasers to be not only interesting beof the total energy of the pulses was observed, but that
cause of their practical applications, but also fruitful asProved to be sufficient. A quasiperiodic route to chaos was
model nonlinear systems. revgale.d, and the correlation dimension of the attractor
A particularly difficult challenge is the description of cha- (Which is presumably a fractalvas measured between 3 and
otic dynamics. The obtained signals are apparently randonf: The results agreed well with the calculations of a theoret-
so that a direct comparison between the theoretical descripic@l Model using iterative maps built from Gaussian matrices,
tions and the experimental results is meaningless. The reasééﬂ"'Ch haslfelcome a standard approach to describe KLM
is that, in a chaotic state, any small difference between th ynamics[11,12.

initial conditions (say, the assumed and the actual gries The description of a nonlinear system with maps is an
o ( Y, N ) . () alternative to that with a differential equation, and no infor-
amplified exponentially with time. At first sight, trying to

inf ion f haotic sianals | hopel mation is gained or lost. There are some immediate
grasp in o.rmatlon“ rom C aofic signals Is as hopeless as try:51dvantages: the dimensionality of the problem is reduced,
ing to do it from “noise.” However, a system in a truly de-

paths of a bunch ofinfinite) unstable orbits, tightly packed
in a topologically complex but low-dimensional manifold
usually called astrange attractor “Noise,” instead, comes
from the coupling to the environment, which has a very larg

nu'mber. pf (ijnar}:ucal dlmegsm?sh Frﬁm 'these Cor‘S'der'solving the differential equation, unless the physical system
ations, it is clear that any study of the chaotic state must nNof, .5 g5 me “internal clock” that determines the position of the

involve a direct comparison between simulated and observegye q ate discrete times. In the case of KLM lasers, that clock
mode-locking signals, but instead the comparigb@tween g oy ided by the cavity round-trip time, whose duration is

prediction and observatigrf the properties of the underly- ' attected by the laser dynamics. The fluctuations of the

ing attractor. These properties can be extracted from a nL{:'avity round-trip time, which are due to thermal or mechani-
cal noise, are negligible during the recording time of a time

stability of the solutions is easily determined and that large
pulse-to-pulse variation@vhich are, indeed, observed in the
epractice) can be described without restrictions.

In general, writing the map equation can be as difficult as

series.
*Permanent address: CEILAP, Zufriategui 4382603 Villa In this paper, we extend the study of the chaotic dynamics
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modes of pulsed operation—nameB/] (transform limited Pout= (Kpin + N/(IP;, + L), (5)
output pulses and P2 (output pulses with positive chiyp

[4,7]. We experimentally find that each mode follows its Where{A, ....D} and{K, ... L} are the nonzero elemenis
own, clearly distinguishable, route to chaos1 through @an appropriately designed cavitpf the 4x4 matrix that

quasiperiodicityP2 through a bifurcation cascade and inter- deéscribes the pulse propagation and dispergits]. The
mittencies. In spite of this difference, we find that the dimen-form of the matrix element§A, ... L} for the usual optical
sionality of both attractors in the fully developed chaotic €lements is well known. The matrix of propagation through a
regime is between 3 and 4. Our observations confirm th&eries of optical elements is simply obtained by multiplica-
results of Ref[10] which (it is evident novwy were obtained  tion of the elementary matrices. In the Ti:sapphire rod non-
for the modeP1. linear effects occur whose expression in terms of matrix el-
We also find that our simple theoretical model, based on &ments deserves some comment. In the spatial domain, the
five-dimensional iterative map, not only predicts the differentKerr nonlinearity produces self-focusing and self-shortening
dynamical regimes foP1 and P2 and the embedding and effects, which are taken into account in ABCD matrix of
correlation dimensions of the attractors, but also the approxithe form[14]
mate size of the transition regions and the Fourier spectra. 1 —yd4
Taking into account the approximations involved in the ( )
model and the noisy features of the nonlinear system under ~vd 1
study, we had expected to observe only a qualitativeyhered is the Rayleigh lengttiin the low energy limit at
theoretical-experimental agreement. Nevertheless, the nghe Ti:sapphire rod ang=c, U/70* whereU is the total
merical values of most of the predictions are remarkablyenergy of the pulse. The meaningafis discussed below. In
close to the observed ones. the time domain, the Kerr nonlinearity produces a self-phase

~ In the next section, Sec. Il, we briefly review the theoret-modulation of the pulse which is taken into account in an
ical model and describe the experimental setup. In Sec. lljkjL matrix of the form

we present the resultboth theoretical and experimentébr

(6)

the transition from the stable mode locking to the regime of 10

: (7
fully developed chaos, for the two pulsed modes of opera- B 1
tion.

where B=c;z U/ 70?. The exact expression @f, andc, are
not trivial [15]. For our purposes here, we can consider them
Il. BACKGROUND simply as constants proportional to the nonlinear Kerr coef-
ficient n,. That is why we call them “nonlinearities.” They
hold to y, B6<1, whered is the absolute value of the net
The electric field in the laser pulse is assumed to be of thgmount of (negative group velocity dispersioiGVD) per
form round trip in the laser cavity. The approximations implicit in
) ] this approach are generally valid for pulses longer than 10 fs
E(r,t) = Eq exp(— ikr?/2g)exp(— ikt%/2p), (1) and for paraxial beams.
. . . . It is convenient to define new pulse variabl8s1/0?,
wherek is the wave vector; is the distance from the optical T=1/7 andp=1/R. The expressions that link the variable
axis (2), tis the time(measured from the peak of the pulse values ,at the exit rod surfadee., propagating towards the
and the parameters q are output mirror; see Fig. Ylat the(n+1) round trip in the laser
cavity with the ones at tha round trip are then

A. Theoretical model

t=q-i @
P m Sw1= ? 2 (8)
(A +Bpp-+(BAS)
1 n . n\
e R i— 2 3) pi= (A +Bp,)(C + Dp,) + BD(AS)? ©
" (A+Bp)*+(BAS)?
where\ is the central wavelength,is the index of refraction
of the medium(at \), 7 is the pulse duratiorQ is the pulse T = Ta _+ L 710 (10)
chirp, o is the beam waist, an® is the beam radius of " KAIQ2+(ITYm? "K+1Q,
curvature. These equations are written for each possible po-
larization and for each of the directiofis,y) transversal to (K+1Q,)[+LQ,) +IL (T/m)?
the optical axis. We assume, as usual, that the field is linearly n+1= 2 2 ' (1)
! ! (K+|Qn) +(|Tn/77)

polarized and that astigmatism has been compensated by the
cavity design(whose details are of no interest at this ppint where{A, ... ,D} and{K, ... L} are the elements of the cor-
As the pulse propagates, tipeand q parameters change ac- responding round-trip matrices. The equation for the variable
cording to “pulse energy’U has several possible forms. For example, a
sixth variable for the population inversion can be introduced,
Jout= (Agy, + B)/(Cq, + D), (4) and then the equation fdJ is obtained in a straightforward
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way. Nevertheless, we have found that if S@Iswitching is  output pulses with negative chifmamedP3). These solu-

not presentland this can be the case even well inside thetions have a simple interpretation also in physical tefdjs
chaotic regioi, then the approximation The stability of the solutions is easily obtained by calcu-
2(U* S, +U,S 1 lating the eigenvalues of the round-trip matrices at the fixed
Upi=U, ) 1 ——< n ) + 4t (12)  points. If for a given set of the parameter values one of the

Ds M eigenvalues becomes larger thanii modulug, then the

is sufficient for our purposes. Equatioh?) is obtained by solution becomes unstable, and the corresponding eigenvec-

expansion of the usual expression for gain saturation for thg)r: |nd|catﬁs th_e d|re(it|o(1n phase r.:,paQeDIf th'fs m;tgb;lﬁy.
mean valuesJ* and S, D, is the saturation energy flux for | ne Way the eigenvalue crosses the circle of radius he

Ti:sapphire(i.e., the saturation energy multiplied by the cav- comple)_( _planye a_lso gives us some information. For ex-
ity round trip time, and u is the product of the small signal ample, if it does it by becoming smaller tharil, we expect

gain and the single-passage feedback factor due to lined? S€€ an instability by period doublingnd this is, indeed,

losses(mirror reflectivity, scattering, misalignment, etc. what is experjmentally observedhis analysis also explains
The matrix elements in Eqg8)~(11) include the nonlin- why the solutionP2 is more robust than thiel (even though

earities{y, B8}, calculated when the pulse propagates toward?%th %oe;ést ir|1 a Iarﬁe volumebof the g)arameter sparel
the output mirror(see Fig. 1, and also the nonlinearities y the P3 solution has never been obserd!

{¥',B’'}, calculated when the pulse returns from the output In order to desc.rit_)(_a the dyp_amics in the u_nstable regime,
mir’ror ’The general form of th&BCD matrix elements is we choose as the initial condition a perturbation of the fixed

then point, and then the complete ma&B)—(14) is numerically
iterated. The time series of one or several of the pulse vari-
A=Ay+ yA,+y'A, +[higher orders im; (neglectedl] ables are stored after a transighypically 10* iterations,
(13) which corresponds te=100 us in real timg. In what fol-
lows, the length of these numerically generated series is cho-
(the same foB, C, D), where the coefficients are algebra- sen to be comparable to that of the experimentally obtained
ically intricate functions of the geometrical parameters of theones (about 2200 iterations; see belpwn this way, any
cavity. TheKIJL matrix elements are simpl€at first order  difference between the prediction and the observation is
in ny): known to be caused by experimental imperfections or to fail-
ures of the model, but not to numerical artifacts. The only

K=1+256", exceptions to this criterion are the series used for drawing the
=25 attractors(Figs. 8 and 1§ which are significantly longer
' than the experimental ones, because short series produce
: , , blurred figures. These exceptions are justified, for these fig-
J=25BB"+ B+ A ures have only illustrative purposes.
The parameters in these simulations are taken from mea-
L=1+258. (14) sured or tabulated values. They are summarized in the Ap-

The recursive relationé8)—(14) form the simplest iterative Pendix. No numerical fine-tuning of the parameters is per-
map that appropriately describes the KLM laser dynamicsformed. As was commented on before, we cannot expect a
But even this highly simplified five-dimensional description Precise reproduction of the experimental time series because
is excessive, for even the most complex dynamics of thi®f the extreme sensitivity to per.turbatlons chgracterlsth of
system evolve, as we will see, inside a four-dimensionanonlinear systems. That is, looking for a precise numerical
space. conpordance is meanlngless. So we limit ourselves to a com-
The laser operation values are obtained by imposing tha@arison of the properties of the observed and the predicted
the variables at thén+1) round trip be equal to the ones at attractors and, even in this case, we expect a qualitative
then round trip. These are the fixed points of the map, whichrather than a quantitative agrgement. Despite this anq as is
show very good agreement with the observed stable pms%h_oyvn below, often the numerical agreement reached is sur-
values[12]. The fixed points can be obtained easily from Prisingly good.
Egs. (10) and (11). An immediate solution isT,,=T,,;=0.
This corresponds to a continuous-wave solu{jpalse dura-
tion 7—o0), which is namedP0. If T#0, then there is one A scheme of our Ti:sapphire laser is shown in Fig. 1. It is
solution with Q,=Q,;;=Q*=0 (transform-limited pulsg  constructed in th& configuration, with a flat HR rear mirror
which impliesK=L and henceg8~= g'; that is, the magni- (M,) and a 12% output coupléM,). The total cavity length
tudes of the nonlinearities are the same for both directions ds 1724 mm (mode-locking rate or cavity frequency:
propagation. This solution is namétl, and it corresponds 86.94 MH2, and the typical output power is 0.4 W for 5 W
to the shortest observable pulses. Another solution is obef continuous-wave pumping at 532 nm. The typical spectral
tained assuming tha®* #0; then, 2Q*=L-K and Q* bandwidth of the output is 30 nm, centered at 820 nm. A
=B-B'. In turn, this solution splits into two: one in which typical pulse duration for stable mode locking is 35tfans-
the “backwards” nonlinearitys’ is negligible, and hence form limited, modeP1) or 65 fs(chirped, modeP2).
pulses with positive chirp are obtained at the output mirror To obtain the experimental time series, we essentially fol-
(namedP2), and the opposite case, which corresponds tdow the experimental approach of R¢t0]. We measure the

B. Experimental setup
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FIG. 1. Scheme of our Ti:sapphire laser. LB, pump focusing lens 0T 5 + 3 * ‘E *
(f=10 cm; M, 3 curved mirrors(radius, 10 cny R, laser rod 1 2 3 . _5 . 7
(length, 4 mm; MPy 5, plane mirrors;P; 5, pair of fused silica embedding dimension

risms introducing negative GVD. Distances in mMz;—R=R .
P . 9 heg . . s FIG. 3. The percentage of false nearest neighlgeiiN’s) as a
-M,, 50; M,-MP,, 140; MP,—M, 465; M3-P,, 297; P, . : . .

. . function of the embedding dimension, for the three methods of
-MPy, 198;MP,—-P,, 415; P,—M,, 109. - ) ; .
obtaining a processed time series from the same experimentally

. . . . . obtained time seriegpartially displayed in Fig. 2 The area and
pulse train with a fast respong@.5 ns rise timgphotodiode raw-peak methods produce processed time series with a high level

and store the output, in the single-sweep mode, in a larg&st contamination with noise. The polynomial-fitting method pro-
memory(50 K Samplesf 8 bits n single sweep m@d@igh-  gyces an acceptable, low-noise time series. Squares: raw peak
speed(2 G samples/sdigital oscilloscope. We use a small method. Circles: area method. Triangles: polynomial method.

area photodiod€0.2 mm diametey displaced from the cen-

ter of the relatively large laser beafsize 2.5 mm diameter mode-locking pulses and is almost useless. Only a few points

at t.hf. point Otf otise_rv?rflonlr: this way, V‘E)e texlpect to dtgtect_ are available to draw each peak. Of course, seldom does a
variations not only in the puise energy, but aiso variations 1 ample point coincide with the real peak of the pulse. In

the beam area. According to the theoretical predictions an rder to find the value of the real peak of the pulse, we

our previous observations, the beam area is the variable th@tssayed three different methods to reconstruct the original

becc;mes unstat:le mc;st eis'lg' tﬁo ghat np!sr,na facig the (instrumental respongeulse. One methodfollowing Ref.
mo_?h conhvetm;ndoneto unl 0 ‘ € ylnaﬁj[Ir?S.f | h 10Q)) is to use a fourth-order polynomial algorithm to find

€ photodiode IS 100 Slow 10 resolve e IS PuiSe SNap&y, o a4 fitting to the ten points closest to the peak. Then, the
What we observe is the instrumental response to the fs pulssaIue of the maximum of the fitting curve is taken as the

The valuable information is contained in the observed pUIS‘?/alue of the real peak of thgnstrumental respongeulse. A

peak value, which is proportional to the pulse energy COI'second method is to fit with @ strumental response-shaped

lected by the photodiode. We recorq 50 000 sample point ulse with the same area than the area below the sample
separated 0.5 ns, which cover a series of roughly 2200 su Soints. Finally, the third method is simply to pick up the

cessive mode-locking pulses. As an illustration, a section o ighest sample point in each round trip. For a given experi-

?_n expepmente(;l time s%r;es '3 ?hown in Figi@2complete mental run, each method produces slightly different “pro-
ime series produces a blurred figure cessed” time series.

On the average, there are 23 points to determine the shape To evaluate which one of the three methods provides the

of the 5|g_nal c_junng a round-trip time, but the main part Of_series with the lowest noise, we compute the number of false
these points just draws the base line between success

Yearest neighboré-NN's) [16] as a function of the embed-
ding dimension(dg) in each “processed” time series for all

« 2 . A A T _ the experimental series available. To do this we use the

. b4 I ' I 1 method by Kennegt al. [17]. A number of FNN’s falling to

v 1 & zero(and staying equal to zerasdg increases is considered
] i ’ a good indicator of a noise-free time series. In Fig. 3 we
i - 4 e o » show a typical result, obtained from the complete time series
| '1 \ of Fig. 2.

ﬂ i 'l f' =k BN RS I i The raw-peak method gives an erratic behavior of the
T[22 [Ta =_L=_,l_--_ ,|1__., i___ é_'_&h_. in number of FNN’s, never reaching zero. The area method

ﬁﬁi! ﬁﬁuﬂg‘ﬁfﬂ! K !4-"*?@ E‘ appears to reach a stationary value of 3&¥%e raw time

& series displays a pulse to pulse variation of only about)10%

but then it increases again, indicating a high level of con-
FIG. 2. A section(about 3400 points or 150 p®f a typical tamination with noise. Fina”y, the pOIynomial method de-
experimental time series obtained as explained in the text. Note th&ays to zero for a dimension of 3 and stays there, being, in
the complete experimental time series is much long 000  consequence, the best of the three. As a further check, we
points or 25us). Lines are added to the sample points to make thecomputed the percentage of FNN's for the polynomial
pulses easier to see. method processed series with surrogate {6 obtaining a
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near-constant value around 50%, regardless of the value o
de. This indicates that the polynomial-method-processed se-d
ries does contain dynamical information, which is lost when ™¢
the data are “scrambled.”

In summary, for all the experimentally obtained series the
polynomial method(originally proposed in Ref[10]) pro-
duced the best noise-free processed series. In what follows
all the results presented, are obtained from polynomial-
method-processed series.

The laser normally operates in a region where mdetes
and P2 coexist. Mechanical perturbations induce spontane-
ous transitions from one of the modes to the other. They car
be recognized by observation of the spectr(rall shaped
for P1, square edged foP2), the pulse durationalmost
twice longer forP2 than for P1), and by eye, as a slight
variation of the spot size. By displacing the pris@mee Fig.

1) the amount of glass inside the laser cavity is increased, so
that the net value of the GVD approaches z€rom the

negative sidg without affecting the laser alignment. The
pulse duration shorten@he modeP2 twice as fast as the

4
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200

T T T T s

O =

100
GVD({s)

FIG. 4. Embedding dimension for the dynamics of the mBde
as function of GVD. Squares: experimental data. Triangles: numeri-
cally obtained data.

involves measuring beam path lengths inside the prisms with

mode P1) until the mode-locking train becomes unstable.a precision of tenths of mmMore significant is the width of
The fluctuations are moderate at first, but as the value of thghe region of transition from stable mode locking to fully
net GVD goes closer to zero, they become wild and unpreedeveloped chaos. This transition for the mdeée is mea-
dictable, apparently chaotic. In the next section, we shovsured to span over 40%swhile the predicted value is 3
how this process develops in a different way for each of théimes larger: 130 & This difference is explained by the
modesP1 andP2 and that the fully developed instability is presencein the real laser, but not in the simulatioresf the
not mere noise, but deterministic, low-dimensional chaos. competing modé#2, which is more stable thadl and there-
fore tends to shrink the operable regionRif. An additional

Ill. RESULTS

A. Embedding dimension

element of perturbation is the impossibility to obtain stable
mode locking for GVD values at the left of about 118, fs

for the beam touches the edge of the prism and coupling to
transversal modes appears. These effects are not present re-

The observed dynamical regimes have their correspon
ing representation, in phase space, as manifolds of differe

dimension. Perfect mode locking corresponds to a ssinglé)re

point (dimension=zerp period doubling to two separate
points (two manifolds of zero dimensionperiodic oscilla-
tions with a single frequency to a closed curfeémension
=1), periodic oscillations with two incommensurate frequen-
cies to a torugdimension=2, and deterministic chaos to a
strange attractogdimension fractgl In consequence, as the

arding the transitions dP2 (Fig. 5: note that it occurs for
(fligher values of the GVPpand, indeed, the width of the
dicted(12 fs%) and measureflL1 fs) transitions show ex-
cellent agreement in this case. As in the casePaf the
maximum value reached g is 4. We remark that the series
of surrogate daté&or both modes and all values of GVY[@do
not provide a definite value falg.

B. Correlation dimension

As already stated, in the region close to zero GVD the

value of the GVD approaches zero and the instabilities of thengge-Jocking train shows unpredictable fluctuations. The

mode locking become more and more complex, we expect
the embedding dimensididg) of the time series to increase.
However, even in the fully developed chaotic regime we also
expectdg to remain a small number, because a high embed-
ding dimension does not mean deterministic chaos, but just
noise.

In Fig. 4, we plot the measured and predicted valuedi-of
for the modeP1 as a function of the net GVD per round trip.
As in Sec. Il B, we finddg as the smallest dimension value at
which the number of FNN’s, for each time series, drops to
zero (we always check that it stays equal to zero for larger
dimension values

It is very satisfactory to find that both the experimental
and theoretical values saturate in the small nunther4.

-95 —7‘5 ‘ . -Sp
‘ 1l
0 Al
| L
R
-55 I I l —:;5 I l l ’ -IIO
GVD (fs%)

FIG. 5. Embedding dimension for the dynamics of the mBde

The numerical values of the GVD at which the transitionsas function of GVD. Upper axis: value of GVD for the experimental
occur do not deserve much attention, because the measuigta (squarey lower axis, for the numerically obtained data

ment of the absolute value of the GVD has a large efitor
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FIG. 6. Correlation dimension for the mod®l (from experi- embedding dimension

mental data, GVD=-29 &. Curves for increasing values of the 6 ]
embedding dimension are plotted. Note the plateau more than one 1

)
decade wide.
. . . 4 ] —~
Fourier spectra are wide and noigee also Secs. Ill C and ; ol
[l D). The low value of the embedding dimension indicates 1

that the unpredictability is caused by the complex underlying
dynamics. But the mark of chaotic dynamics is the presence 2 1
of a strange attractor, identified by a noninteger, or fractal,
correlation dimensior(D,). As the algorithms to calculate

the correlation dimension are very sensitive to noise, they 0

provide an additional check of the reliability of the time 0 2 4 6 8 1
series. embedding dimension

D,

We use the customary algorithm by Grassberger and Pro-

caccia. l_:or the _modé’l and GVD of _.29 8 th_e (experi- modesP1 (a) and P2 (b). Each point in these plots is calculated
menta) time series '.S appa_rently chaot!c. In. Fig. 6 we pIOtfrom the plateaus dD,(l,m) as a function of log) (see Fig. . For

the CaICL_"us oD for increasing embedd'”g d|r_ner.15|ons. The both modes the correlation dimensigoth the theoretical and the
plateau in logl) more than one decade wide indicates a de'experimente)lis between 3 and 4, an indication of low-dimensional
terministic behavior and also that the time series are suffizhaos, Squares: from experimentally obtained time series. Tri-
ciently noise free. angles: from numerically generated time series.

For the numerical evaluation dd,, instead, we plot it
versus the embedding dimensigfig. 7(a)]. It is clearly seen
that the correlation dimension lies between 3 and 4. The s(n+1)
theoretical prediction(from time series obtained from the
numerical iteration of Eq:8)—(14)) is coincident. The nu-
merically generated series display a fractal correlation di- s(u+6)
mension for a wide range of values of GVD. The experimen-
tal ones showing a fractal dimension, instead, are restricted
to a region 5 féwide (for the modeP1). Beyond this region
the laser easily collapses to mode locking @ndwitching,
and the data are not reliable any longer.

For the modeP2 we apply the same method, starting at 3
-25 f£. As the whole transition from stable mode locking to
fully chaotic dynamics occurs here in only 1% fshe pro-
cess of data recording is still more difficult than ferd, 20
which is reflected in larger error bars. Anyway, from the plot 24 55 27 sm)
of D, vs dz [Fig. 7(b)] we conclude again that the fractal
dimension is between 3 and 4, and that the agreement be- £ g Three-dimensional representation of tmemerically
tween our model and the experimental results is satisfactorypaineq toroidal attractor underlying®l at GVD=-55 & (dg

The same procedure carried out with surrogate data pra=3)—j.e., just before the onset of the chaotic instability. Note that
duces always increasing valuesf vs dg both forP1 and  the time lag is 3, which corresponds to the first minimum of the
P2. average mutual information. This drawing is made df itérations
after leaving out a transient of 5000. The inset displays a first return
map for the same time series and shows the section of the torus.

We have verified that the dynamics near the zero GVDCompare the differences with the attractorR# in the same dy-
point is truly chaotic and that the correlation dimensions ofnamical situation(Fig. 10).

FIG. 7. Correlation dimension of the chaotic attractors of the

s(n)

C. Route to chaos of modeP1 (quasiperiodicity)
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s(nt+12)

W .

-60 |

ot vt e ok Bt VAot et IV e NV e s(m+6)
5 25 45
frequency (MHz)

75
65 s(n)

: FIG. 10. Three-dimensional representation of ¢hemerically

¥y obtained attractor underlyind®2 at GVD=-27 & (dg=3) just be-

i ‘ : : : | : fore the onset of the chaotic instability. Note that the time lag is 6,

-30 SR R S i s which corresponds to the first minimum of the average mutual in-
3 " ’ : : formation. This drawing is made of 1@terations after leaving out

a transient of 5000. Compare the differences with the attractor of

-60 P1 at the same dynamical situatigfig. 8).

scalar measurements. If the scalar time series is of the form
of equally spaced measuremefgtl),s(2), ... ,s(N)} (which
5 25 45 is precisely what we hayethen the attractor can be recon-
frequency (MHz) structed by  building  vectors {(s(n),s(n+m),s(n
+2m), ..., s(n+(dg—1)m))}. The value of the time lag is a
210 | : W N T . N r— central issue in this reconstruction. We follow Abarbanel’s
dB i ; © prescription[16] and choosem as the first minimum in the
ST Y average mutual information versus time delay of the time
series. This number results in being 3 for the mdédein
both the experimental and the theoretical time series.
The reconstructed attractor for a GVD value just before
the chaotic regioiwhich impliesdg=3; see Fig. #is shown
in Fig. 8 for a numerically generated series. The shape of the
torus and the circular shape of its section are clearly seen, an
indication of the existence of two incommensurate frequen-
cies or quasiperiodicity.
In Fig. 9, we display some experimentally obtained Fou-
rier spectra as the GVD increases, to illustrate the transition
to chaos. At -96 f§ a first oscillation of the mode locking

FIG. 9. Experimentally obtained Fourier spectra of the mBile _traln appears at 25.0 MHFig. 4a)]. At 90 &’ a second,
for different dynamical situationga) the first oscillation shows up Incommensurate f_requency appears at 37.4 NIFig. 9b),
at 25.0 MHz(GVD=-96 f&), (b) a second frequency at 37.4 MHz also a sr_nall beating note at ,12‘4 MHZ he Spe,c”um be-
appears, and also a beating at 12.4 Mi@&/D=-90 &), and(c) comes W'de' apparently chaoth, at about ~74[Fg. 9(c)].
well inside the chaotic regiofGVD=-74 f&). Compare with the 1 n€ numerically generated series show a remarkable agree-
chaotic spectrum for the mode2 in Fig. 1%c). ment in the values of the involved frequencies: the first

oscillation peak lies at 22.46 MHz and the second one at

the strange attractors are between 3 and 4 for both m@tles 33.39 MHz.
and P2. Nevertheless, thecenarios or routes that each In comparison with the analogous experiment reported in
mode follows to reach the chaotic state are different. In thiRRef. [10], the two frequencies involved are in the range of
paragraph we show that the mol# follows a quasiperiodic the tens of MHz in our case, while in that experiment they
route to chaos. Hence we confirm the results obtained in thevere very different from each othére., 2 and 30 MHE We
Ref. [10]. do not observe the period-3 subharmonic oscillati@n

We make use of the results of the “embedding theorem’should appear at 86.93=28.98 MHz in our casewhich
[16], which sayS(roughly speakingthat in a nonlinear sys- was observed in Ref10]. The origin of this oscillation was
tem the structure of the underlying attractor can be revealedyypothesized to be the beating with spatial transversal
or unfolded(no matter what is the original phase spagea  modes. With respect to this, we can say that we take special
vector space of dimensiatk reconstructed from a series of care, at each step in the experiment, to ensure a single-

10 20 40

30
frequency (MHz)
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FIG. 11. Experimentally obtaingexcept for(d)] Fourier spectra of the mode2 for different dynamical situationga) a first bifurcation
of the cavity frequency shows UBVD=-76 f&), (b) a second bifurcation occurs and both peaks broaden at the onset of(G\Ds
-69 &), and (c) inside the chaotic regiofGVD=-64.94 f§). Compare with the chaotic spectrum for the mdete in Fig. 9c). (d)
Spectrum of a numerically obtained time series, just before the onset of chaos. Compare the similarities with the experimental spectrum at
the same dynamical situati@b).

transversal-mode oscillation. This is a plausible reason fors used to reconstruct the shape of the attractor, which has an
this difference between the observations. However, as thappearance clearly different from thatRf. It seems to have
authors of Ref[10] reported that the mode remained Gauss-a central “ring” and a region scattered outwards. This outer
ian all throughout the transition to chaos, it should not beregion is the one “explored” during the sudden excursions
discarded that the cause of the difference is simply in thénade by the systergsee below. . _

details of the experimental setups. Nevertheless, both experi- In Fig. 11, we display some experimental Fourier spectra
ments coincide in the existence of a quasiperiodic route t§0r the modeP2. At about -76 f8af/2 bifurcation occurga
chaos for the transform limited pulse modar P1 in our  frequency peak at 43.47 MHz, Fig. (&]]. As GVD in-
notation) and a chaotic attractor with a correlation dimension¢"€@S€s, a second bifurcation occ(@4.73 MH2 and both
between 3 and 4. As was stated before, these are the onRRgaks broaderiFig. 11(b)]. Well inside the chaotic region
kind of results that one can reasonably expect to be conVD=-64.94 f$, Fig. 11(0)] the spectrum shows no easily
firmed (or refuted by independent experiments performed "€cognizable features.

on different setups for a highly nonlinear and noisy system 1he numerically generated series show a coincident
such as the KLM Ti:sapphire laser. behavior: a first bifurcation at ~36%4sthen a second one at

-33 &, and both peaks broaden, and finally the fully devel-
oped chaos. The spectrum of the numerically generated se-
ries for the regime just at the onset of chdésg. 11(d)]

For modeP2, the first minimum in the average mutual shows a remarkable similarity with the experimentally ob-
information versus time delay of the time series is 6, in bothtained ondgFig. 11(b)].
the experimental and the theoretical series. As in Sec. Il C, Inside the chaotic regime, the time trace of the pulses
we use time series corresponding to a value of GVD juskhows a quasistable or laminar behavior, suddenly inter-
before the chaotic regiofz=3), so that a three-dimensional rupted by an irregular or turbulent phasee Fig. 12 As the
drawing has sense. In Fig. 10, a numerically generated serigsVD value is varied, the duration of the turbulent phase

D. Route to chaos of modeP2 (intermittency)
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sure the fractal dimension of the chaotic attractors, which are
both between 3 and 4. We note that the attractors are differ-
ent, the dynamics dP1 andP2 being easily distinguishable,
even at the threshold of the chaotic region, by their Fourier
‘ spectra. We believe that this finding—i.e., a low-dimensional
! \H H ‘ system o_f practical importance Whic_h sponta_neously presents
. “ .| ‘ | i ‘ [ i the coe>g|stence aht leasy tvyo chaotic ;cenanos—vv_ﬂl have
i A T | L l A a great impact on the studies on nonlinear dynamics.
W |J|]|",Hl!p‘\ il ‘IIM, The good agreement obtained between the predicted and
, ) , ik , the measured properties, all along the transition to chaos,
0 100 200 300 400 500 600 means an additional support to our already tested simplified
time description with a five-dimensional iterative map. In particu-
FIG. 12. Section of an experimental time series for the nfe@le lar, th? m_odel is ablg to.pr(.adict t.he appearance of .the fre-
at the onset of the chaotic regignorizontal scale, round trip time; qUeNCIES N the quasup_erlqdlc regime of the m&de with-
vertical scale, arbitrary units The pulses show a quasistable or Ut @ssuming the oscillation of transversal modes. For the
laminar behavior, suddenly interrupted by an irregular or turbulentNode P2, the bifurcation cascade and the peak broadening
phasewhich appear as the excursions far from the inner ring in thePefore entering the chaotic regime are also correctly pre-

Fig. 10. As the GVD value is varied, the duration of the turbulent dicted. Taken into account that the model is quite schematic
phase increases, until reaching the full developed chaos. The kurt@nd the characteristics of the nonlinear system under study,

sis of this time seriegcomplete is ~12. we had expected to observe only a qualitative theoretical-
experimental agreement. However, the quantitative agree-

increases, until reaching the fully developed chaos. ment obtained in many cases is remarkable. _
Based on these observations, we hypothesizeRBdol- There are still many issues to advance in the study of this

lows a route to chaos through intermittency. Intermittency isSYStem. To mention just a few:  to find the best set of four

usually quantified through the statistical quantity narked variables to describe the chaotic dynamics, to draw sections
tosis of the chaotic attractors, to look for trajectories linking the

two chaotic attractors, and to identify the catastrophes of the

" Lyapunov surface leading to the mode locking instabilities.
> yi-y* Nevertheless, we have found appealing the application to the
= (15) design of a simple scheme of control of chqt8], because
(N-Ds*’ of its practical consequences. We have calculated that, by

stabilizing the mode locking inside the chaotic region by
adjusting the cavity losses, pulses 2 times shorter than in the
limit of the normally stable region may be attaingi®].

wherey is the average value of the time series anig its
standard deviation. The kurtosis of a normal distribution is 3
so that it is usual to define the kurtosis excesk.ak—3. In
this way, a negative value d{, indicates a relatively flat
distribution, while a positive value df, indicates that the ACKNOWLEDGMENTS
tails of the distribution have a high weight. This is a charac- . . . N
teristic of the distributions generated by an intermittent be- Many thanl_<s to Dr. Ma['o_ Marcopl for h's. hos_p|ta||ty In
havior because of the large, sudden excursions from the ag—]e Laborgtono de Electronlcq Cuant|caUn|ve(S|dad de
erage value. uenos Aireg where the experl_mental part of this work was
The experimental series ¢f2 obtained fordz=2 have a carngd out, and to Dr. Franc!sco Manza@ElLAP) for.
very small value ok,. For those withd==3, k, is about 10, lending the large memory oscilloscope. This work received

and for the series obtained inside the chaotic regitur4), ~ SUPPOrt from the subsidies CONICET PIP 0425/98 and

k. reaches values close to 1000. The same happens for t g39/9.8‘ and_ from Contract NO PI_CTQQ 03-06303 Of t_he
gencia Nacional de Promocion Cientifica y Tecnologica

numerically generated time series. From all this experiment ANPCYT)

and theoretical evidence, we conclude ti& evolves to '

chaos following a particular route, showing first a bifurcation

cascade and then intermittencies. APPENDIX: NUMERICAL VALUES OF THE PARAMETERS
USED IN THE SIMULATIONS

IV CONCLUSIONS Thg geometrical parameters are indicated in the caption of

the Fig. 1 and lead to the following values of the elements of
In this paper, we have shown, both theoretically and exthe ABCD round-trip matrix: A;j=4.138 138, B,
perimentally, that the two observable pulsed solutions in thee—2.304 786 cm, C,=8.327 616 cmt, Dy=-4.3965, A,
KLM Ti:sapphire laser—namelyP1 (transform limited out- =3.547 58, B,=1.315 279 cm, C,=-3.246 724 c, D,
put pulsey and P2 (chirped output pulsgsevolve to a low- =8.224 233, A,=0.243136, B,=-0.07309 cm, C,

dimensional chaotic state by following their own route to=-4.6188 crm?, andD,,=0.632 04.

chaos:P1 through quasiperiodicityP2 through period dou- Other parameters’ values are=1.38x 107t cmf* fs nJ?,
bling and intermittency. Besides, we have been able to meas;=2.18x 107’ cn? fsnJ?!, ©=1.61, andD,=1.22 mJ/cr.
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