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Kerr-lens mode-locked, femtosecond Ti:sapphire lasers can operate in two coexistent pulsed modes of
operation, namedP1 (transform limited output pulses) and P2 (chirped output pulses). We study, both theo-
retically and experimentally, the transition to chaotic behavior for each of these two modes of operation as the
net intracavity group velocity dispersion parameter approaches to zero. We find thatP1 reaches chaos through
a quasiperiodic route, whileP2 does it through intermittency. The modulation frequencies involved, the size of
the transition regions in the parameter’s space, and the embedding and correlation dimensions of the attractors
(and also the kurtosis for the intermittent regime) are theoretically predicted and also measured, showing a
satisfactory agreement. We consider that this finding of a low-dimensional system of widespread practical use
with (at least) two coexistent chaotic scenarios will have a broad impact on the studies on nonlinear dynamics.
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I. INTRODUCTION

The Kerr-lens mode-locked(KLM ) Ti:sapphire laser is
the most widespread source of femtosecond(fs) laser pulses
nowadays, and it is becoming increasingly important for
many applications. Yet because of the complex interlacing
between spatial and temporal variables intrinsic in the KLM,
it displays a variety of dynamical effects, such as period
doubling and tripling[1–3], multistability [4], self Q switch-
ing [5,6], and even deterministic chaos[6–9]. Many of the
features of these effects are still poorly known. Their study
has revealed the KLM lasers to be not only interesting be-
cause of their practical applications, but also fruitful as
model nonlinear systems.

A particularly difficult challenge is the description of cha-
otic dynamics. The obtained signals are apparently random,
so that a direct comparison between the theoretical descrip-
tions and the experimental results is meaningless. The reason
is that, in a chaotic state, any small difference between the
initial conditions (say, the assumed and the actual ones) is
amplified exponentially with time. At first sight, trying to
grasp information from chaotic signals is as hopeless as try-
ing to do it from “noise.” However, a system in a truly de-
terministic chaotic state evolves in phase space following the
paths of a bunch of(infinite) unstable orbits, tightly packed
in a topologically complex but low-dimensional manifold
usually called astrange attractor. “Noise,” instead, comes
from the coupling to the environment, which has a very large
number of dynamical dimensions. From these consider-
ations, it is clear that any study of the chaotic state must not
involve a direct comparison between simulated and observed
mode-locking signals, but instead the comparison(between
prediction and observation) of the properties of the underly-
ing attractor. These properties can be extracted from a nu-

merical analysis of the time series. However, in the case of
KLM lasers, the very short duration of the pulses(beyond
the resolution of the fastest electronics), the high repetition
rate (about 100 MHz), and the high level of noise make the
recording of useful time series difficult.

To our knowledge, the first successful measurement of the
features of a chaotic attractor in a Ti:sapphire KLM laser was
performed by Bolton and Acton[10] through the numerical
analysis of time series, of the instrumental response of pho-
todiodes to the mode-locking signal, recorded in a large-
memory digital oscilloscope. In this way, only the dynamics
of the total energy of the pulses was observed, but that
proved to be sufficient. A quasiperiodic route to chaos was
revealed, and the correlation dimension of the attractor
(which is presumably a fractal) was measured between 3 and
4. The results agreed well with the calculations of a theoret-
ical model using iterative maps built from Gaussian matrices,
which has become a standard approach to describe KLM
dynamics[11,12].

The description of a nonlinear system with maps is an
alternative to that with a differential equation, and no infor-
mation is gained or lost. There are some immediate
advantages: the dimensionality of the problem is reduced,
and the numerical simulations are easier and run faster. In the
particular case of KLM, additional advantages are that the
stability of the solutions is easily determined and that large
pulse-to-pulse variations(which are, indeed, observed in the
practice) can be described without restrictions.

In general, writing the map equation can be as difficult as
solving the differential equation, unless the physical system
has some “internal clock” that determines the position of the
adequate discrete times. In the case of KLM lasers, that clock
is provided by the cavity round-trip time, whose duration is
not affected by the laser dynamics. The fluctuations of the
cavity round-trip time, which are due to thermal or mechani-
cal noise, are negligible during the recording time of a time
series.

In this paper, we extend the study of the chaotic dynamics
in the KLM Ti:sapphire laser to include the two observable
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modes of pulsed operation—namely,P1 (transform limited
output pulses) and P2 (output pulses with positive chirp)
[4,7]. We experimentally find that each mode follows its
own, clearly distinguishable, route to chaos:P1 through
quasiperiodicity,P2 through a bifurcation cascade and inter-
mittencies. In spite of this difference, we find that the dimen-
sionality of both attractors in the fully developed chaotic
regime is between 3 and 4. Our observations confirm the
results of Ref.[10] which (it is evident now) were obtained
for the modeP1.

We also find that our simple theoretical model, based on a
five-dimensional iterative map, not only predicts the different
dynamical regimes forP1 and P2 and the embedding and
correlation dimensions of the attractors, but also the approxi-
mate size of the transition regions and the Fourier spectra.
Taking into account the approximations involved in the
model and the noisy features of the nonlinear system under
study, we had expected to observe only a qualitative
theoretical-experimental agreement. Nevertheless, the nu-
merical values of most of the predictions are remarkably
close to the observed ones.

In the next section, Sec. II, we briefly review the theoret-
ical model and describe the experimental setup. In Sec. III
we present the results(both theoretical and experimental) for
the transition from the stable mode locking to the regime of
fully developed chaos, for the two pulsed modes of opera-
tion.

II. BACKGROUND

A. Theoretical model

The electric field in the laser pulse is assumed to be of the
form

Esr,td = E0 exps− ikr2/2qdexps− ikt2/2pd, s1d

wherek is the wave vector,r is the distance from the optical
axis szd, t is the time(measured from the peak of the pulse),
and the parametersp, q are

1

p
= Q − i

nl

pt2 , s2d

1

q
=

n

R
− i

nl

ps2 , s3d

wherel is the central wavelength,n is the index of refraction
of the medium(at l), t is the pulse duration,Q is the pulse
chirp, s is the beam waist, andR is the beam radius of
curvature. These equations are written for each possible po-
larization and for each of the directionssx,yd transversal to
the optical axis. We assume, as usual, that the field is linearly
polarized and that astigmatism has been compensated by the
cavity design(whose details are of no interest at this point).
As the pulse propagates, thep andq parameters change ac-
cording to

qout = sAqin + Bd/sCqin + Dd, s4d

Pout = sKpin + Id/sJPin + Ld, s5d

wherehA, . . . ,Dj andhK , . . . ,Lj are the nonzero elements(in
an appropriately designed cavity) of the 434 matrix that
describes the pulse propagation and dispersion[13]. The
form of the matrix elementshA, . . . ,Lj for the usual optical
elements is well known. The matrix of propagation through a
series of optical elements is simply obtained by multiplica-
tion of the elementary matrices. In the Ti:sapphire rod non-
linear effects occur whose expression in terms of matrix el-
ements deserves some comment. In the spatial domain, the
Kerr nonlinearity produces self-focusing and self-shortening
effects, which are taken into account in anABCD matrix of
the form [14]

S 1 − gd/4

− g/d 1
D , s6d

whered is the Rayleigh length(in the low energy limit) at
the Ti:sapphire rod andg=cg U /ts4, whereU is the total
energy of the pulse. The meaning ofcg is discussed below. In
the time domain, the Kerr nonlinearity produces a self-phase
modulation of the pulse which is taken into account in an
IKJL matrix of the form

S1 0

b 1
D , s7d

whereb=cb U /t3s2. The exact expression ofcg andcb are
not trivial [15]. For our purposes here, we can consider them
simply as constants proportional to the nonlinear Kerr coef-
ficient n2. That is why we call them “nonlinearities.” They
hold to g, bd!1, whered is the absolute value of the net
amount of(negative) group velocity dispersion(GVD) per
round trip in the laser cavity. The approximations implicit in
this approach are generally valid for pulses longer than 10 fs
and for paraxial beams.

It is convenient to define new pulse variablesS=1/s2,
T=1/t2, andr=1/R. The expressions that link the variable
values at the exit rod surface(i.e., propagating towards the
output mirror; see Fig. 1) at thesn+1d round trip in the laser
cavity with the ones at then round trip are then

Sn+1 =
Sn

sA + Brnd2 + sBlSnd2 , s8d

rn+1 =
sA + BrndsC + Drnd + BDslSnd2

sA + Brnd2 + sBlSnd2 , s9d

Tn+1 =
Tn

sK + IQnd2 + sITn/pd2 = Tn
L − IQn+1

K + IQn
, s10d

Qn+1 =
sK + IQndsJ + LQnd + IL sTn/pd2

sK + IQnd2 + sITn/pd2 , s11d

wherehA, . . . ,Dj andhK , . . . ,Lj are the elements of the cor-
responding round-trip matrices. The equation for the variable
“pulse energy”U has several possible forms. For example, a
sixth variable for the population inversion can be introduced,
and then the equation forU is obtained in a straightforward
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way. Nevertheless, we have found that if selfQ switching is
not present(and this can be the case even well inside the
chaotic region), then the approximation

Un+1 = UnH1 −
2

m
SU * Sn + UnS*

Ds
D + 4

m − 1

m
J s12d

is sufficient for our purposes. Equation(12) is obtained by
expansion of the usual expression for gain saturation for the
mean valuesU* and S*, Ds is the saturation energy flux for
Ti:sapphire(i.e., the saturation energy multiplied by the cav-
ity round trip time), andm is the product of the small signal
gain and the single-passage feedback factor due to linear
losses(mirror reflectivity, scattering, misalignment, etc.).

The matrix elements in Eqs.(8)–(11) include the nonlin-
earitieshg ,bj, calculated when the pulse propagates towards
the output mirror(see Fig. 1), and also the nonlinearities
hg8 ,b8j, calculated when the pulse returns from the output
mirror. The general form of theABCD matrix elements is
then

A = A0 + gAg + g8Ag8 + fhigher orders inn2 sneglecteddg

s13d

(the same forB, C, D), where the coefficients are algebra-
ically intricate functions of the geometrical parameters of the
cavity. TheKIJL matrix elements are simpler(at first order
in n2):

K = 1 + 2db8,

I = 2d,

J = 2dbb8 + b + b8,

L = 1 + 2db. s14d

The recursive relations(8)–(14) form the simplest iterative
map that appropriately describes the KLM laser dynamics.
But even this highly simplified five-dimensional description
is excessive, for even the most complex dynamics of this
system evolve, as we will see, inside a four-dimensional
space.

The laser operation values are obtained by imposing that
the variables at thesn+1d round trip be equal to the ones at
then round trip. These are the fixed points of the map, which
show very good agreement with the observed stable pulse
values [12]. The fixed points can be obtained easily from
Eqs. (10) and (11). An immediate solution isTn=Tn+1=0.
This corresponds to a continuous-wave solution(pulse dura-
tion t→`), which is namedP0. If TÞ0, then there is one
solution with Qn=Qn+1=Q* =0 (transform-limited pulse),
which implies K=L and henceb<b8; that is, the magni-
tudes of the nonlinearities are the same for both directions of
propagation. This solution is namedP1, and it corresponds
to the shortest observable pulses. Another solution is ob-
tained assuming thatQ* Þ0; then, 2IQ* = L−K and Q*
=b-b8. In turn, this solution splits into two: one in which
the “backwards” nonlinearityb8 is negligible, and hence
pulses with positive chirp are obtained at the output mirror
(namedP2), and the opposite case, which corresponds to

output pulses with negative chirp(namedP3). These solu-
tions have a simple interpretation also in physical terms[4].

The stability of the solutions is easily obtained by calcu-
lating the eigenvalues of the round-trip matrices at the fixed
points. If for a given set of the parameter values one of the
eigenvalues becomes larger than 1(in modulus), then the
solution becomes unstable, and the corresponding eigenvec-
tor indicates the direction(in phase space) of this instability.
The way the eigenvalue crosses the circle of radius 1(in the
complex plane) also gives us some information. For ex-
ample, if it does it by becoming smaller than,1, we expect
to see an instability by period doubling(and this is, indeed,
what is experimentally observed). This analysis also explains
why the solutionP2 is more robust than theP1 (even though
both coexist in a large volume of the parameter space) and
why theP3 solution has never been observed[4].

In order to describe the dynamics in the unstable regime,
we choose as the initial condition a perturbation of the fixed
point, and then the complete map(8)–(14) is numerically
iterated. The time series of one or several of the pulse vari-
ables are stored after a transient(typically 104 iterations,
which corresponds to<100 ms in real time). In what fol-
lows, the length of these numerically generated series is cho-
sen to be comparable to that of the experimentally obtained
ones (about 2200 iterations; see below). In this way, any
difference between the prediction and the observation is
known to be caused by experimental imperfections or to fail-
ures of the model, but not to numerical artifacts. The only
exceptions to this criterion are the series used for drawing the
attractors(Figs. 8 and 10), which are significantly longer
than the experimental ones, because short series produce
blurred figures. These exceptions are justified, for these fig-
ures have only illustrative purposes.

The parameters in these simulations are taken from mea-
sured or tabulated values. They are summarized in the Ap-
pendix. No numerical fine-tuning of the parameters is per-
formed. As was commented on before, we cannot expect a
precise reproduction of the experimental time series because
of the extreme sensitivity to perturbations characteristic of
nonlinear systems. That is, looking for a precise numerical
concordance is meaningless. So we limit ourselves to a com-
parison of the properties of the observed and the predicted
attractors and, even in this case, we expect a qualitative
rather than a quantitative agreement. Despite this and as is
shown below, often the numerical agreement reached is sur-
prisingly good.

B. Experimental setup

A scheme of our Ti:sapphire laser is shown in Fig. 1. It is
constructed in theX configuration, with a flat HR rear mirror
sM4d and a 12% output couplersM1d. The total cavity length
is 1724 mm (mode-locking rate or cavity frequency:
86.94 MHz), and the typical output power is 0.4 W for 5 W
of continuous-wave pumping at 532 nm. The typical spectral
bandwidth of the output is 30 nm, centered at 820 nm. A
typical pulse duration for stable mode locking is 35 fs(trans-
form limited, modeP1) or 65 fs (chirped, modeP2).

To obtain the experimental time series, we essentially fol-
low the experimental approach of Ref.[10]. We measure the
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pulse train with a fast response(0.5 ns rise time) photodiode
and store the output, in the single-sweep mode, in a large-
memory(50 K samples, 8 bits in single sweep mode), high-
speed(2 G samples/s) digital oscilloscope. We use a small
area photodiode(0.2 mm diameter), displaced from the cen-
ter of the relatively large laser beam(size 2.5 mm diameter
at the point of observation). In this way, we expect to detect
variations not only in the pulse energy, but also variations in
the beam area. According to the theoretical predictions and
our previous observations, the beam area is the variable that
becomes unstable most easily, so that it is,prima facie, the
most convenient one to unfold the dynamics.

The photodiode is too slow to resolve the fs pulse shape.
What we observe is the instrumental response to the fs pulse.
The valuable information is contained in the observed pulse
peak value, which is proportional to the pulse energy col-
lected by the photodiode. We record 50 000 sample points
separated 0.5 ns, which cover a series of roughly 2200 suc-
cessive mode-locking pulses. As an illustration, a section of
an experimental time series is shown in Fig. 2(a complete
time series produces a blurred figure).

On the average, there are 23 points to determine the shape
of the signal during a round-trip time, but the main part of
these points just draws the base line between successive

mode-locking pulses and is almost useless. Only a few points
are available to draw each peak. Of course, seldom does a
sample point coincide with the real peak of the pulse. In
order to find the value of the real peak of the pulse, we
essayed three different methods to reconstruct the original
(instrumental response) pulse. One method(following Ref.
[10]) is to use a fourth-order polynomial algorithm to find
the best fitting to the ten points closest to the peak. Then, the
value of the maximum of the fitting curve is taken as the
value of the real peak of the(instrumental response) pulse. A
second method is to fit with a(instrumental response-shaped)
pulse with the same area than the area below the sample
points. Finally, the third method is simply to pick up the
highest sample point in each round trip. For a given experi-
mental run, each method produces slightly different “pro-
cessed” time series.

To evaluate which one of the three methods provides the
series with the lowest noise, we compute the number of false
nearest neighbors(FNN’s) [16] as a function of the embed-
ding dimensionsdEd in each “processed” time series for all
the experimental series available. To do this we use the
method by Kennelet al. [17]. A number of FNN’s falling to
zero(and staying equal to zero) asdE increases is considered
a good indicator of a noise-free time series. In Fig. 3 we
show a typical result, obtained from the complete time series
of Fig. 2.

The raw-peak method gives an erratic behavior of the
number of FNN’s, never reaching zero. The area method
appears to reach a stationary value of 35%(the raw time
series displays a pulse to pulse variation of only about 10%),
but then it increases again, indicating a high level of con-
tamination with noise. Finally, the polynomial method de-
cays to zero for a dimension of 3 and stays there, being, in
consequence, the best of the three. As a further check, we
computed the percentage of FNN’s for the polynomial
method processed series with surrogate data[16], obtaining a

FIG. 1. Scheme of our Ti:sapphire laser. LB, pump focusing lens
sf =10 cmd; M2,3, curved mirrors(radius, 10 cm); R, laser rod
(length, 4 mm); MP1,2, plane mirrors;P1,2, pair of fused silica
prisms introducing negative GVD. Distances in mm:M3−R=R
−M2, 50; M2−MP2, 140; MP2−M1, 465; M3−P1, 297; P1

−MP1, 198; MP1−P2, 415; P2−M4, 109.

FIG. 2. A section(about 3400 points or 150 ns) of a typical
experimental time series obtained as explained in the text. Note that
the complete experimental time series is much longer(50 000
points or 25ms). Lines are added to the sample points to make the
pulses easier to see.

FIG. 3. The percentage of false nearest neighbors(FNN’s) as a
function of the embedding dimension, for the three methods of
obtaining a processed time series from the same experimentally
obtained time series(partially displayed in Fig. 2). The area and
raw-peak methods produce processed time series with a high level
of contamination with noise. The polynomial-fitting method pro-
duces an acceptable, low-noise time series. Squares: raw peak
method. Circles: area method. Triangles: polynomial method.
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near-constant value around 50%, regardless of the value of
dE. This indicates that the polynomial-method-processed se-
ries does contain dynamical information, which is lost when
the data are “scrambled.”

In summary, for all the experimentally obtained series the
polynomial method(originally proposed in Ref.[10]) pro-
duced the best noise-free processed series. In what follows,
all the results presented, are obtained from polynomial-
method-processed series.

The laser normally operates in a region where modesP1
and P2 coexist. Mechanical perturbations induce spontane-
ous transitions from one of the modes to the other. They can
be recognized by observation of the spectrum(bell shaped
for P1, square edged forP2), the pulse duration(almost
twice longer forP2 than for P1), and by eye, as a slight
variation of the spot size. By displacing the prisms(see Fig.
1) the amount of glass inside the laser cavity is increased, so
that the net value of the GVD approaches zero(from the
negative side) without affecting the laser alignment. The
pulse duration shortens(the modeP2 twice as fast as the
mode P1) until the mode-locking train becomes unstable.
The fluctuations are moderate at first, but as the value of the
net GVD goes closer to zero, they become wild and unpre-
dictable, apparently chaotic. In the next section, we show
how this process develops in a different way for each of the
modesP1 andP2 and that the fully developed instability is
not mere noise, but deterministic, low-dimensional chaos.

III. RESULTS

A. Embedding dimension

The observed dynamical regimes have their correspond-
ing representation, in phase space, as manifolds of different
dimension. Perfect mode locking corresponds to a single
point sdimension=zerod, period doubling to two separate
points (two manifolds of zero dimension), periodic oscilla-
tions with a single frequency to a closed curvesdimension
=1d, periodic oscillations with two incommensurate frequen-
cies to a torussdimension=2d, and deterministic chaos to a
strange attractor(dimension fractal). In consequence, as the
value of the GVD approaches zero and the instabilities of the
mode locking become more and more complex, we expect
the embedding dimensionsdEd of the time series to increase.
However, even in the fully developed chaotic regime we also
expectdE to remain a small number, because a high embed-
ding dimension does not mean deterministic chaos, but just
noise.

In Fig. 4, we plot the measured and predicted values ofdE
for the modeP1 as a function of the net GVD per round trip.
As in Sec. II B, we finddE as the smallest dimension value at
which the number of FNN’s, for each time series, drops to
zero (we always check that it stays equal to zero for larger
dimension values).

It is very satisfactory to find that both the experimental
and theoretical values saturate in the small numberdE=4.
The numerical values of the GVD at which the transitions
occur do not deserve much attention, because the measure-
ment of the absolute value of the GVD has a large error(it

involves measuring beam path lengths inside the prisms with
a precision of tenths of mm). More significant is the width of
the region of transition from stable mode locking to fully
developed chaos. This transition for the modeP1 is mea-
sured to span over 40 fs2, while the predicted value is 3
times larger: 130 fs2. This difference is explained by the
presence(in the real laser, but not in the simulations) of the
competing modeP2, which is more stable thanP1 and there-
fore tends to shrink the operable region ofP1. An additional
element of perturbation is the impossibility to obtain stable
mode locking for GVD values at the left of about −110 fs2,
for the beam touches the edge of the prism and coupling to
transversal modes appears. These effects are not present re-
garding the transitions ofP2 (Fig. 5: note that it occurs for
higher values of the GVD) and, indeed, the width of the
predicteds12 fs2d and measureds11 fs2d transitions show ex-
cellent agreement in this case. As in the case ofP1, the
maximum value reached bydE is 4. We remark that the series
of surrogate data(for both modes and all values of GVD) do
not provide a definite value fordE.

B. Correlation dimension

As already stated, in the region close to zero GVD the
mode-locking train shows unpredictable fluctuations. The

FIG. 4. Embedding dimension for the dynamics of the modeP1
as function of GVD. Squares: experimental data. Triangles: numeri-
cally obtained data.

FIG. 5. Embedding dimension for the dynamics of the modeP2
as function of GVD. Upper axis: value of GVD for the experimental
data (squares), lower axis, for the numerically obtained data
(circles).
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Fourier spectra are wide and noisy(see also Secs. III C and
III D ). The low value of the embedding dimension indicates
that the unpredictability is caused by the complex underlying
dynamics. But the mark of chaotic dynamics is the presence
of a strange attractor, identified by a noninteger, or fractal,
correlation dimensionsD2d. As the algorithms to calculate
the correlation dimension are very sensitive to noise, they
provide an additional check of the reliability of the time
series.

We use the customary algorithm by Grassberger and Pro-
caccia. For the modeP1 and GVD of −29 fs2 the (experi-
mental) time series is apparently chaotic. In Fig. 6 we plot
the calculus ofD2 for increasing embedding dimensions. The
plateau in logsld more than one decade wide indicates a de-
terministic behavior and also that the time series are suffi-
ciently noise free.

For the numerical evaluation ofD2, instead, we plot it
versus the embedding dimension[Fig. 7(a)]. It is clearly seen
that the correlation dimension lies between 3 and 4. The
theoretical prediction(from time series obtained from the
numerical iteration of Eqs.(8)–(14)) is coincident. The nu-
merically generated series display a fractal correlation di-
mension for a wide range of values of GVD. The experimen-
tal ones showing a fractal dimension, instead, are restricted
to a region 5 fs2 wide (for the modeP1). Beyond this region
the laser easily collapses to mode locking andQ switching,
and the data are not reliable any longer.

For the modeP2 we apply the same method, starting at
−25 fs2. As the whole transition from stable mode locking to
fully chaotic dynamics occurs here in only 11 fs2, the pro-
cess of data recording is still more difficult than forP1,
which is reflected in larger error bars. Anyway, from the plot
of D2 vs dE [Fig. 7(b)] we conclude again that the fractal
dimension is between 3 and 4, and that the agreement be-
tween our model and the experimental results is satisfactory.

The same procedure carried out with surrogate data pro-
duces always increasing values ofD2 vs dE both for P1 and
P2.

C. Route to chaos of modeP1 (quasiperiodicity)

We have verified that the dynamics near the zero GVD
point is truly chaotic and that the correlation dimensions of

FIG. 6. Correlation dimension for the modeP1 (from experi-
mental data, GVD=−29 fs2). Curves for increasing values of the
embedding dimension are plotted. Note the plateau more than one
decade wide.

FIG. 7. Correlation dimension of the chaotic attractors of the
modesP1 (a) and P2 (b). Each point in these plots is calculated
from the plateaus ofD2sl ,md as a function of logsld (see Fig. 6). For
both modes the correlation dimension(both the theoretical and the
experimental) is between 3 and 4, an indication of low-dimensional
chaos. Squares: from experimentally obtained time series. Tri-
angles: from numerically generated time series.

FIG. 8. Three-dimensional representation of the(numerically
obtained) toroidal attractor underlyingP1 at GVD=−55 fs2 sdE

=3d—i.e., just before the onset of the chaotic instability. Note that
the time lag is 3, which corresponds to the first minimum of the
average mutual information. This drawing is made of 104 iterations
after leaving out a transient of 5000. The inset displays a first return
map for the same time series and shows the section of the torus.
Compare the differences with the attractor ofP2 in the same dy-
namical situation(Fig. 10).
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the strange attractors are between 3 and 4 for both modesP1
and P2. Nevertheless, thescenarios, or routes, that each
mode follows to reach the chaotic state are different. In this
paragraph we show that the modeP1 follows a quasiperiodic
route to chaos. Hence we confirm the results obtained in the
Ref. [10].

We make use of the results of the “embedding theorem”
[16], which says(roughly speaking) that in a nonlinear sys-
tem the structure of the underlying attractor can be revealed,
or unfolded(no matter what is the original phase space), in a
vector space of dimensiondE reconstructed from a series of

scalar measurements. If the scalar time series is of the form
of equally spaced measurementshss1d ,ss2d , . . . ,ssNdj (which
is precisely what we have), then the attractor can be recon-
structed by building vectors h(ssnd ,ssn+md ,ssn
+2md , . . . ,ssn+sdE−1dmd)j. The value of the time lagm is a
central issue in this reconstruction. We follow Abarbanel’s
prescription[16] and choosem as the first minimum in the
average mutual information versus time delay of the time
series. This number results in being 3 for the modeP1 in
both the experimental and the theoretical time series.

The reconstructed attractor for a GVD value just before
the chaotic region(which impliesdE=3; see Fig. 4) is shown
in Fig. 8 for a numerically generated series. The shape of the
torus and the circular shape of its section are clearly seen, an
indication of the existence of two incommensurate frequen-
cies or quasiperiodicity.

In Fig. 9, we display some experimentally obtained Fou-
rier spectra as the GVD increases, to illustrate the transition
to chaos. At −96 fs2 a first oscillation of the mode locking
train appears at 25.0 MHz[Fig. 9(a)]. At −90 fs2 a second,
incommensurate frequency appears at 37.4 MHz[Fig. 9(b),
also a small beating note at 12.4 MHz]. The spectrum be-
comes wide, apparently chaotic, at about −74 fs2 [Fig. 9(c)].
The numerically generated series show a remarkable agree-
ment in the values of the involved frequencies: the first
oscillation peak lies at 22.46 MHz and the second one at
33.39 MHz.

In comparison with the analogous experiment reported in
Ref. [10], the two frequencies involved are in the range of
the tens of MHz in our case, while in that experiment they
were very different from each other(i.e., 2 and 30 MHz). We
do not observe the period-3 subharmonic oscillation(it
should appear at 86.94/3=28.98 MHz in our case) which
was observed in Ref.[10]. The origin of this oscillation was
hypothesized to be the beating with spatial transversal
modes. With respect to this, we can say that we take special
care, at each step in the experiment, to ensure a single-

FIG. 9. Experimentally obtained Fourier spectra of the modeP1
for different dynamical situations:(a) the first oscillation shows up
at 25.0 MHzsGVD=−96 fs2d, (b) a second frequency at 37.4 MHz
appears, and also a beating at 12.4 MHzsGVD=−90 fs2d, and (c)
well inside the chaotic regionsGVD=−74 fs2d. Compare with the
chaotic spectrum for the modeP2 in Fig. 11(c).

FIG. 10. Three-dimensional representation of the(numerically
obtained) attractor underlyingP2 at GVD=−27 fs2 sdE=3d just be-
fore the onset of the chaotic instability. Note that the time lag is 6,
which corresponds to the first minimum of the average mutual in-
formation. This drawing is made of 104 iterations after leaving out
a transient of 5000. Compare the differences with the attractor of
P1 at the same dynamical situation(Fig. 8).
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transversal-mode oscillation. This is a plausible reason for
this difference between the observations. However, as the
authors of Ref.[10] reported that the mode remained Gauss-
ian all throughout the transition to chaos, it should not be
discarded that the cause of the difference is simply in the
details of the experimental setups. Nevertheless, both experi-
ments coincide in the existence of a quasiperiodic route to
chaos for the transform limited pulse mode(or P1 in our
notation) and a chaotic attractor with a correlation dimension
between 3 and 4. As was stated before, these are the only
kind of results that one can reasonably expect to be con-
firmed (or refuted) by independent experiments performed
on different setups for a highly nonlinear and noisy system
such as the KLM Ti:sapphire laser.

D. Route to chaos of modeP2 (intermittency)

For modeP2, the first minimum in the average mutual
information versus time delay of the time series is 6, in both
the experimental and the theoretical series. As in Sec. III C,
we use time series corresponding to a value of GVD just
before the chaotic regionsdE=3d, so that a three-dimensional
drawing has sense. In Fig. 10, a numerically generated series

is used to reconstruct the shape of the attractor, which has an
appearance clearly different from that ofP1. It seems to have
a central “ring” and a region scattered outwards. This outer
region is the one “explored” during the sudden excursions
made by the system(see below).

In Fig. 11, we display some experimental Fourier spectra
for the modeP2. At about −76 fs2 a f /2 bifurcation occurs[a
frequency peak at 43.47 MHz, Fig. 11(a)]. As GVD in-
creases, a second bifurcation occurss21.73 MHzd and both
peaks broaden[Fig. 11(b)]. Well inside the chaotic region
[GVD=−64.94 fs2, Fig. 11(c)] the spectrum shows no easily
recognizable features.

The numerically generated series show a coincident
behavior: a first bifurcation at −36 fs2, then a second one at
−33 fs2, and both peaks broaden, and finally the fully devel-
oped chaos. The spectrum of the numerically generated se-
ries for the regime just at the onset of chaos[Fig. 11(d)]
shows a remarkable similarity with the experimentally ob-
tained one[Fig. 11(b)].

Inside the chaotic regime, the time trace of the pulses
shows a quasistable or laminar behavior, suddenly inter-
rupted by an irregular or turbulent phase(see Fig. 12). As the
GVD value is varied, the duration of the turbulent phase

FIG. 11. Experimentally obtained[except for(d)] Fourier spectra of the modeP2 for different dynamical situations:(a) a first bifurcation
of the cavity frequency shows upsGVD=−76 fs2d, (b) a second bifurcation occurs and both peaks broaden at the onset of chaossGVD=
−69 fs2d, and (c) inside the chaotic regionsGVD=−64.94 fs2d. Compare with the chaotic spectrum for the modeP1 in Fig. 9(c). (d)
Spectrum of a numerically obtained time series, just before the onset of chaos. Compare the similarities with the experimental spectrum at
the same dynamical situation(b).
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increases, until reaching the fully developed chaos.
Based on these observations, we hypothesize thatP2 fol-

lows a route to chaos through intermittency. Intermittency is
usually quantified through the statistical quantity namedkur-
tosis:

k =

o
i=1

n

syi − ȳd4

sN − 1ds4 , s15d

where ȳ is the average value of the time series ands is its
standard deviation. The kurtosis of a normal distribution is 3,
so that it is usual to define the kurtosis excess aske=k−3. In
this way, a negative value ofke indicates a relatively flat
distribution, while a positive value ofke indicates that the
tails of the distribution have a high weight. This is a charac-
teristic of the distributions generated by an intermittent be-
havior because of the large, sudden excursions from the av-
erage value.

The experimental series ofP2 obtained fordE=2 have a
very small value ofke. For those withdE=3, ke is about 10,
and for the series obtained inside the chaotic regionsdE=4d,
ke reaches values close to 1000. The same happens for the
numerically generated time series. From all this experimental
and theoretical evidence, we conclude thatP2 evolves to
chaos following a particular route, showing first a bifurcation
cascade and then intermittencies.

IV. CONCLUSIONS

In this paper, we have shown, both theoretically and ex-
perimentally, that the two observable pulsed solutions in the
KLM Ti:sapphire laser—namely,P1 (transform limited out-
put pulses) and P2 (chirped output pulses) evolve to a low-
dimensional chaotic state by following their own route to
chaos:P1 through quasiperiodicity,P2 through period dou-
bling and intermittency. Besides, we have been able to mea-

sure the fractal dimension of the chaotic attractors, which are
both between 3 and 4. We note that the attractors are differ-
ent, the dynamics ofP1 andP2 being easily distinguishable,
even at the threshold of the chaotic region, by their Fourier
spectra. We believe that this finding—i.e., a low-dimensional
system of practical importance which spontaneously presents
the coexistence of(at least) two chaotic scenarios—will have
a great impact on the studies on nonlinear dynamics.

The good agreement obtained between the predicted and
the measured properties, all along the transition to chaos,
means an additional support to our already tested simplified
description with a five-dimensional iterative map. In particu-
lar, the model is able to predict the appearance of the fre-
quencies in the quasiperiodic regime of the modeP1, with-
out assuming the oscillation of transversal modes. For the
mode P2, the bifurcation cascade and the peak broadening
before entering the chaotic regime are also correctly pre-
dicted. Taken into account that the model is quite schematic
and the characteristics of the nonlinear system under study,
we had expected to observe only a qualitative theoretical-
experimental agreement. However, the quantitative agree-
ment obtained in many cases is remarkable.

There are still many issues to advance in the study of this
system. To mention just a few: to find the best set of four
variables to describe the chaotic dynamics, to draw sections
of the chaotic attractors, to look for trajectories linking the
two chaotic attractors, and to identify the catastrophes of the
Lyapunov surface leading to the mode locking instabilities.
Nevertheless, we have found appealing the application to the
design of a simple scheme of control of chaos[18], because
of its practical consequences. We have calculated that, by
stabilizing the mode locking inside the chaotic region by
adjusting the cavity losses, pulses 2 times shorter than in the
limit of the normally stable region may be attained[19].
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APPENDIX: NUMERICAL VALUES OF THE PARAMETERS
USED IN THE SIMULATIONS

The geometrical parameters are indicated in the caption of
the Fig. 1 and lead to the following values of the elements of
the ABCD round-trip matrix: A0=4.138 138, B0
=−2.304 786 cm, C0=8.327 616 cm−1, D0=−4.3965, Ag

=3.547 58, Bg=1.315 279 cm, Cg=−3.246 724 cm−1, Dg

=8.224 233, Ag8=0.243 136, Bg8=−0.073 09 cm, Cg8
=−4.6188 cm−1, andDg8=0.632 04.

Other parameters’ values arecg=1.38310−11 cm4 fs nJ−1,
cb=2.18310−7 cm2 fs nJ−1, m=1.61, andDs=1.22 mJ/cm2.

FIG. 12. Section of an experimental time series for the modeP2
at the onset of the chaotic region(horizontal scale, round trip time;
vertical scale, arbitrary units). The pulses show a quasistable or
laminar behavior, suddenly interrupted by an irregular or turbulent
phase(which appear as the excursions far from the inner ring in the
Fig. 10). As the GVD value is varied, the duration of the turbulent
phase increases, until reaching the full developed chaos. The kurto-
sis of this time series(complete) is <12.
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