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We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light.
Using the theory of quantum parameter estimation, we show that this can be done more accurately when
feedback is use@adaptive phase estimatipthan byany scheme not involving feedbagkonadaptive phase
estimation in which the beam is measured as it arrives at the detector. Such schemes not involving feedback
include all those based on heterodyne detection or instantaneous canonical phase measurements. We also
demonstrate that the superior accuracy of adaptive phase estimation is present in a regime conducive to
observing it experimentally.
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I. INTRODUCTION justed in an attempt to maximize its accuracy at each mo-
. . . . ment in time. This is done by changing or adapting it based
Phase is a physical property found in both classical an%n earlier measurement results. For both EM-field pulses and

quantum electromagneticEM) fields. For classical EM 5154 continuous EM beams, it has been shown that adaptive
fields comprising a single mode, it can be determined exactlypase estimation is more accurate than least many in-

via measuring t.wo orthogonql guadratures or components tances of the conventional nonadaptive apprdaels.
such_ fleld_s. This, however, is not thg case for single-mode | this paper we consider the problem of estimating the
EM fields in quantum mechanics. Estimates of the phases Qfandomly fluctuating phase of a continuous-wawe)) EM
such fields are necessarily imperfect due to intrinsic quanturfield (EM beam) as introduced in Ref8]. We show that this
noise in measurements of noncommuting observables sugan be done more accurately using adaptive phase estimation
as quadratures. Given this limitation, quantphase estima- than via any nonadaptive phase estimation scheme in which
tion, the process of estimating the phase of a quantumthe field is measured in real tingéhat is, as it arrives at the
mechanical EM field as accurately as possible, is nontrivialdetectoy. We also show that this improved accuracy exists
In addition to being nontrivial, phase estimation in quan-for fields with small to moderate photon fluxes. These are
tum mechanics is interesting for a number of reasons. Firsgur two main results. The latter is significant, first, athe-
at some time in the future it may be practical to encode an@retical difference between the accuracies of adaptive and
send information in the phase of a single electromagneti©onadaptive phase estimation is most readily sexperi-
field mode at or near the ultimate quantum limit—the uppermentallyin fields with small to moderate photon fluxes. Sec-
limit permitted by quantum mechani¢g—3). In such a sce- ©nd, in a communication scenario in which a receiver is try-
nario, the more accurately a receiver could estimate phadB9 0 extract information encoded in the phase of an EM
the more information could be sent. Second, it also may bd€!d by & distant sender, it is likely that the receiver will be
useful in interferometric gravity-wave detection. Third, Making measurements on fields with small to moderate pho-

phase estimation is interesting as it is an instance of quantur:ﬁg ljtlv%erseglljﬁstov?éter;gusaetﬁﬁg. ':Qetgfet(i:gglr?eec%fn?rﬂ\gT‘grattasti-
parameter estimatiof4,5], an increasingly experimentally y P q

accessible field concerned with estimating parameters oé‘atmg phase that may be applicable to a range of problems.

¢ tat I ible in the f ; dab ur results build upon earlier woil6—8] and further dem-
quantum states as well as possibie In the face ol unavoldabif,sirate the superiority of adaptive schemes over conven-
guantum noise.

. . tional nonadaptive ones for the important task of phase esti-
Phase can be estimated via two broad approacis, P P P

. o : e mation.
adaptivephase estimation aratlaptivephase estimatiofb].

rule, the Kushner-Stratonovitch equation, and the Zakai

e : . %%uation. Next, Sec. Il presents the phase estimation

estimation, however, the measurement is continually adschemes considered, some of which are adaptive and some of
which are nonadaptive. In Sec. IV, we compare the accura-
cies of the schemes in the steady-state regime, showing that

*Electronic address: d.pope@griffith.edu.au each of the adaptive schemes is more accurate than all of the
"Electronic address: h.wiseman@griffith.edu.au nonadaptive schemes. Finally, in Sec. V we discuss our re-
*Electronic address: langford@physics.ug.edu.au sults.
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Before proceeding further, we first review existing work
on adaptive phase estimation. As previously stated, the con-
ventional method for estimating the phase of an EM field is
via nonadaptive phase estimation. For a single-mode EM-
field pulsein the coherent statgs), where g e C, the most
widely known method[2,9] of estimating the phasep
[=argB)] uses a nonadaptive detection technique called het-
erodyne detectiof2,10—14. This involves mixing the pulse, signal

which we call thesignal pulse with an intense local oscilla- beam

tor of phaseb=d,+At at a 50:50 beam splitter. Heteis a ()
detuning,t denotes time, and, is the phase at=0. The

difference between the photocurrents in the beam splitter’s local
two output ports is proportional to the quadrature phase am- oscillator

plitude X,=ae'®+a'éd®, wherea and a' are creation and
annihilation operators for the signal pulse. Assuming that
>T", wherel is the signal pulse’s spectral width, all quadra-

tures are rapidly measured and thus, for all practical PUhich the difference in the number of photons they detect is found

poses, heterodyne detection .inStantan?OUSIV measures then fed back to the local oscillator’s phase. A signal processor
complex photocurrent; containing equal information about s genoted by SP.

the observableX4-¢ and X¢-.». Once the signal pulse has

been measured) can then be estimated from an appropriateshows a schematic diagram of the apparatus implementin
functional of all the recorded currents. For large valuegpf . 'ag . bp > Impie 9
this approach leads to an estimate with a variance otfh's. scheme. Wheztﬁ\ IS Iarge, I leads to a variance in our
1/(21? [6]. Half of his is nonfundamental and results from ©<tmate of 1U4I5%) [6], which is only hal as large as that
excess noise introduced by heterodyne detection due to t is improved {:E.)CCUI’aC has been seen ex erirﬁer[m]l '
fact that it measures two noncommuting quadratures. Thi P : y ; P y

For the continuous EM beam with a randomly fluctuating

excess contribution fo the variance can also_ be thought of Shase considered earlier, it is known that a particular adap-
arising from the fact that heterodyne detection measures ag '
r

o . Ive scheme is more accurate than one particular nonadaptive
quadratures equally. Because of this, it sometimes measu ¥ P p

i : . : one[8]. But is it also more accurate than the best possible
the so-called amplitude quadratu®,-4) which contains no nonadaptive scheme? One of the main results of this paper is

information aboutp. to show, in Sec. IV, that in the steady-state regime adaptive

beé:?gg;gggg i?smiL'Sgdu;rMWQg]mpr}ﬁseaft?ém;t'%ne?asphase estimation is more accurate than any nonadaptive es-
- -np ’ ' timation scheme in which the EM field is measured in real

e e B o 2 SenLnuots b2 " fme, even one invohig  canonical phase measuremens
P y [17]. In addition, we show that the improved accuracy of

as a Wiener proceg45]. This paper found that one particu- : o .
lar nonadaptive phase estimation scheme estimatedth a adaptive phase estimation persists b« 1.

variance of 142N in the steady-state regime fhi> 1. Here,
N is the beam’s photon flux in an amount of time equal to its Il. BACKGROUND THEORY
coh_erenqe timgwhich is set by the time scale of the fluc- A. What is phase?
tuations ing). o ) )
Though nonadaptive phase estimation using heterodyne Within quantum mechanics, the term “phase” has multiple
detection yields a reasonable estimatepdbr both a single  Meaningg18,17. In this paper, however, it refers to a single
EM-field pulse and a continuous EM beam, this quantity carfoncept which we now state. The electric field aflassical
be more accurately estimated via adaptive techiqées].  Single-mode EM-field pulse incident on an ideal photodetec-
For a single pulse of light, again in the coherent sige  tOr is, in the vicinity of this detector,
this can be done by measuring the field using adaptive ho- ) CY
modyne detection. Nonadaptive homodyne detection is iden- E(t) = 4 / §(|a|e—i<wt—¢c|) +c.c). (2.1
tical to heterodyne detection except that the local oscillator €AC
g)a.s the same frequency as the pu[ses mean 'frequency SO ﬂ?—‘i“é\re,t denotes timew is the field’s angular frequency,
is constan{16]. It is made adaptive by varying so asto  genotes the permittivity of free spacd, is the transverse
try to measure th? so-_called phase quadrature. This is th{frea over which the field is sprea&represents a unit vector
quadrature for whichP=¢+ /2, ’and, moreover, the one denoting the field’s directionja| is a complex amplitude
:Eat mfm;lmtlzes dthe rrée?sutr.emegt stextiess uncerta[[rrl]ty, bﬁ'°With dimensions of time*’?, ¢ denotes the speed of light, and
at ot heterodyne detection. 10 lry 10 measure the phasg . represents a complex conjugate. Given this, we define
quaollraAture we use.the results of p.I’E\-/IOUS measurements qg)d to be this field’s phase. Similarly, the phase of a quantum-
obtain ¢p(t), an estimate foki(t). This is then fed back to  mechanical single-mode EM-field pulse is defined to be the
the local oscillator andb is set tod(t)=¢y,(t)+7/2 in an  guantum-mechanical analog @f,, which we denote by.
attempt to “home in” on the phase quadrature. Figure IFor instance, the phase of the coherent sfiie’?) is de-

FIG. 1. Schematic diagram of the measurement setup for adap-
tive homodyne-based phase-estimation schemes. The symbol BS
denotes the 50:50 beam splittér; andD, are photon counters for
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EOM C. Nonadaptive and adaptive phase estimation
I — ] S .
Jaser 0  detection Ina number of the phase-estimation schemes we consider,
set-up ¢ is estimated using the theory of quantum parameter esti-

o _ . . mation[4,5]. This process involves two steps. First, Bayes'’

_ FIG. 2. Schematic diagram of the physical scenario consideredyje is used to obtain a differential equation with respect to
First, an idealized cw laser outputs a continuous beam of lightime for P(¢), the probability distribution encoding our
which is then incident on an electro-optical modula@&OM). The knowledge ofé, which we then solve. Bayes' rule updates
EOM Imprints phase; on segments Of. the beam which are theBur knowledge ’of some unknown parameter given the mea-
incident on the detection setup on the right. surement resulM. For the situations we consider, it is

fined to be¢ which is a parameter and not an observable. In P(¢)P(M|¢)
particular, it is not the observable associated with the Pegg- P(¢|M) = BTV
Barnett phase operatgl9] which is also called phase but (M)

nvgrg% does not have a well-defined value for the StatewhereP(x|y) denotes the probability of giveny. The sec-

ond step in the process of estimatiggvia quantum param-
eter estimation is to usl(¢) to calculate our estimate @f,

which we denote byh(t).

The scenario that we consider throughout this paper cen- To explain in more detail the first step of generating and
ters around a continuous EM bed8j known as thesignal  solving a differential equation fdP(¢), we begin by observ-
beam This beam is the output of an idealized laser, and sgng that in Eq.(2.6) the termP(M) is a normalization factor

can be described by a coherent state with complex amplitud@at ensures the normalization Bf | M). This can be seen
a. The mean photon fluxal? is constant. However, the by realizing that we can writ®(M) as

beam’s phase(t) fluctuates randomly such that, again in the
vicinity of the detector, bot2m
6 - P(M) = P(¢)P(M|$)ds, 2.7

—~ =k P=dq
el ). (2.2

(2.6

B. Continuous EM beam

where ¢y is an arbitrary lower limit. It follows from this that
upon replacing?(M) in Eq. (2.6) by another function oM
that is independent op we obtain a quasi-Bayes’ rule that
(EDET)) = s(t—t'). (2.3  updates amnnormalizedprobability” distribution for ¢ that

In practice, this fluctuation could be achieved via an electroyve labelP(¢) [4]. We choose to replad&(M) by P(M)q/=o,

optical modulato20] that “imprints” a fluctuating phase on vv_hereP(E/I)M:O IS the probability of measuring the resdit

each segment of the beam. These phase fluctuations give tHeen |a|=0, and so Eq(2.6) becomes

beam a linewidth ofk, so thatN=|a/|?/ k is the number of -

photons in the coherence tinisee Fig. 2 B(gIM) = P(¢)P(M| )
In the continuous EM beam scenario, we measure the B P(M)|4/=0 '

signal beam via either homodyne or heterodyne detection.

For homodyne detection, the photocurrgnineasured in the

interval dt is given by

Here k is a noise strength anglis real Gaussian white noise
defined by

(2.9

The functionP(M),,-o Was chosen as it corresponds to con-
sidering the measurement reshitin the denominator to be
| dt=279 Re(|a|e‘<""‘1’))dt+\e‘"77dw. (2.4) Gaussian white noise which, in turn, simplifies qu.es).
) _ ) ) ~ Furthermore, it yields a linear evolution equation ().
HeredW is a real Wiener incremeny is the detector's effi- g s in contrast to the nonlinear one fBt¢) that would
ciency(which is its probability of detecting an incident pho- have been obtained h&{M) not been replaced.

ton), and® is the local oscillator phase. In contrast, hetero- The next step in obtaining and solving a differential equa-
dyne detection simultaneously measures the quadratur%%n for P(¢b) is to transform Eq(2.8) into the form

Xop=0 and Xg=2. An alternate way of doing this is to first
split the signal beam at a 50:50 beam splitter and then to ~ ~
measureXg-o at one output an&q-,, at the other. Assum- dP(¢) =[f(#)g(M) + c.c]P(g)dt, (2.9
ing perfect detectors, each photodetector measures, on aver-
age, half of the beam’s photons and thus the quantum effivhere f(¢) and g(M) are functions whose nature depends
ciency of each measurement is=1/2. Representing both upon P(M|¢) and P(M) .-, by neglecting terms of order
outcomes in terms of a single complex quantity, we obtain dt* or higher. This equation is known asZakai equation

. [21]. To obtain the desired differential equation fB(¢)

| dt=|a|e'?dt+ dW, (2.5

with respect to time from Eq2.9) we normalizel~3(¢) using
wheredWcis a complex Wiener increment defined by the a known procedure detailed in Appendix A. This leads to the
correlations<dchV\/g>:dt and (dWdW,)=0. following differential equation folP(¢):
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dP(¢) = |a|[(ei‘/’—<ei‘/’>P(¢))P(¢)§(t) +c.cldt, It is interesting to note that the approach to estimating
210 ¢(t) outlined above differs from that in other work on phase
(2.10 estimation [5-8]. These other papers generated estimates
where{ is either real or complex Gaussian white noise de-based on intuitive, partially justified mathematical functions
pending on the nature d¥l. This is known as &ushner- and, as a consequence, their estimates were sometimes sub-
Stratonovitch (KS) equatiof22]. optimal. In contrast, a number of this paper’s phase-
Thus far, we have only considered the evolutionP9®)  estimation schemes use quantum parameter estimation which
due to our measurement of the signal beam. However, thel@ads to optimal estimates faf(t) [at least according to the
is also its evolution resulting from the diffusion described bycost or error function/™(¢)].
Eqg. (2.2. In the absence of measurement, this diffusive evo- To illustrate our method of obtainin@(t) via quantum
lution leads toP(¢) being a Gaussian distribution centered parameter estimation, we now demonstrate its application in
on ¢(t=0) with variancext. A straightforward calculation the case of measuring the signal beam via heterodyne detec-
shows that the evolution equation for this distribution in thistion. (Its use in the other cases we consider is very similar.

case is the Fokker-Planck equation For this type of detection, Bayes’ rule is
Kk PP(p)
dP(¢) = = dt. 2.11) P(¢)P(I|¢)
#=5" 5 (2.10 Plgito = 28 )c' | (2.19
C
Adding the effects of phase diffusion to E@.20 leads to
the final KS equation Replacing the normalization consta?( ) by P(l¢) - leads
2p to the quasi-Bayes’ rule
dP= ngH |a|[(€¢ = (€9)p(PLD) + C.Cldt. _
¢ = PP
(2.12 P(llc) = P | (2.16)

Solving this equation we obtaiR(¢).

As stated at the start of this subsection, the second step faquation(2.5) tells us that the real and imaginary partsl of
estimatinge(t) via quantum parameter estimation is to cal-are Gaussian random variables with variances df2dt}
culate the optimal estimate fab(t) from P(¢). This is de- and, respectively, means pf|cos¢ and|a|sin ¢. From this
fined to be the estimate with the following two properties. it follows that

(1) It has the smallest possible average error as measured
by the Holevo variancg?3]. ~ _[dt 5

(2) It is such that(exp{i(q[)—;b)]),ée]m. Here(:--) ¢ is Pd¢) = \/;exp(— dt[Re(lo) ~[alcos ] +[Im(l)
an average ovdrand¢, wherel is eitherl, or I, dependin .
on the mgasurementgscheme. @O e ’ = |alsin ¢]7}) (2.17

The Holevo variance is a measure of statistical spread , .
suitable for any cyclical variable and is given by while

Hiy) = [(alXy|~2 —
V() = [(e)[ - 1. (2.13 P(1)|af=0= \/gexp(— d—tIZIC>. (2.18

For such variables, it is superior to the standard variarfce 2
as the latter can be ill defined. To illustrate this problem, o ) _ )
observe thatp has the rangdy, ¢o+21), Whered, is usu- Substituting the expressions on the nght-ha_nd side of Egs.
ally chosen to be eitheror 0. As a result, depending on (2-17 aznd (2.1 into Eq.(2.16 and neglecting terms of
our choice of¢y, () can take different values for a single orderdt® or higher leads to the Zakai equation
distribution. The reason for the second property is to rule out _ _
estimates with small Holevo variances but which are system- dP(¢) =|a|(€?l.+ c.c)P(p)dt. (2.19
atically biased and hence do not estimétaccurately.

The optimal estimate we wish to calculate is given by NormanzingTD via the known procedure detailed in Appen-

dix A, from Eqg. (2.19 we obtain the Kushner-Stratonovitch

#(t) = ard (exp(i §))pp)] (2.19 equation[22]
where(: - -)p4 denotes an average ovef¢). While the es- B is i
timate(¢)p(4 is @ more obvious choice for the optimal esti- dP(¢) = [a|[(€ = (€)p() P(){(1) + c.cldt,
mate of ¢(t), it sometimes estimateg(t) poorly due to the (2.20

fact that ¢(t) is cyclical. This occurs, for instance, when

P(¢) is centered neas,. It is important to realize that the where ¢ is complex Gaussian white noisg{=I;
estimate in Eq(2.14) is not optimal in an absolute sense. —|a/(€?¥)p(4 and is the so-called observation or measurement
Rather, it is the best estimate ¢fgiven that we have chosen noise[24]). Incorporating the effects of phase diffusion, we
to minimize the “cost function'VH(¢). arrive at
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TABLE |. Summary of phase estimates.

Name of measurement scheme 1) dd/dt Type of detection
Canonical arffexpli$))pg)] N/A Canonical
Optimal heterodyne based &expli d))pg)] A Heterodyne
BW heterodyne based any) A Heterodyne
BW adaptive ar@A+ XBtA: ) Vil, Homodyne
Semioptimal adaptive arexp(i ) p(g)] de/dt Homodyne
Simple adaptive ara@y) Vi, Homodyne
Kk PP(p) N, argA; was an accurate estimate for a continuous EM

dP(¢)=

2 dg? dt+||[(€7 = (€9)p)P(P)L(D) +c.cldt.  beam wheny was set toy=2]a]\ .

(2.21)

Note that this equation has been previously derived, albeit
for a different(but relatedl physical system via a different
method[25]. It is also interesting to realize that we could
have obtained Eq.2.21) via beginning with Eq(2.6), sub-
stituting into it expressions foP(l.| ¢) and P(l.), and per-
forming some algebra while neglecting terms of ord&ror
higher. Although this method is conceptually simpler than

2. Optimal heterodyne-based scheme

In this scheme, the signal beam is measured via hetero-
dyne detection and then, following the calculation in Sec. Il,
quantum parameter estimation is used to obtain the KS equa-
tion Eq. (2.20. This is then solved and its solution used to

obtain (t) in accordance with Eq2.14).

the one we used, it involves a more challenging calculation. 3. Canonical scheme

To complete the process of determinigg once we have The canonicalphase estimation scheme involves making
obtained Eq(2.21), we solve it and then use(¢) to calcu- 5 canonical phase measuremgtif] on the signal beam at
late #(t) via Eq.(2.14). each instant in time and then takirit) to be its outcome.

Naively, it might be thought that this scheme would be more

accurate than any other as a canonical measurement, or so it
ll. PHASE-ESTIMATION SCHEMES is thought, is the most accurate measurement of phase one
ggan make. Results in Sec. IV show, however, that this is not
i

In this paper we compare the accuracies of a number . .
pap P e casgfor reasons explained in Sec).V

nonadaptive and adaptive phase estimation schemes for
EM beam. Prior to doing so, however, we outline the
schemes considered, detailing nonadaptive and adaptive

. . ) B. Adaptive schemes
schemes in turn. These are summarized in Table . P

1. Simple adaptive scheme

In the simple adaptivephase-estimation schenj8] we
measure the signal beam via adaptive homodyne detection

1. Berry-Wiseman heterodyne-based scheme and then estimaté(t) to be
In the Berry-Wiseman (BW) heterodyne-basptiase- (1) =
L . . . =argA), 3.3
estimation schemg8] the signal beam is measured via het- ¢ 9A) 3.3
erodyne detection. The phase estimate at tingét), is then ~ Where here

A. Nonadaptive schemes

calculated from the measurement record upt.t&pecifi- t _
cially, it is A= f du e Ve®| (u). (3.9
u=-—oc

¢0) = argAy, (3. We also adapt the homodyne measurement, setting the local
whereA; can be written as oscillator's phase tab(t)=¢(t)+ /2. From this it follows

t [8] that it is updated such that its rate of change with time is

A= B du eV (u), (3.2 o -
u — =kl (1). (3.5

. . . ot
where y is a scaling parameter. More specifically,scales

the weight exg—x(u—t)] given to each curren,. While this  This equation follows from Iettings(:2|a|v’7< in Eq. (3.9
estimate may not seem intuitive, it was chosen as an analavhich is known to be optimal for largdl [8]. One of the
gous estimate for the single-shot scenario was known to beeasons the simple adaptive scheme was considered in Ref.
accurate[6]. Moreover, Ref.[8] showed that, for large [8] was that the fact that for largd it was known to be
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optimal. In Section IV we show that it also performs well for <ei(d:—d:)>§‘l - <|<ei¢>P(¢)|>l (4.2)
small to moderate values o.

to express/H(p-¢) as

VR = &) = ([(€D)p )2 - 1. 4.3
The Berry-Wiseman adaptivghase-estimation scheme in- (¢=9)=(K >P(¢)|>' 4.3
volves measuring the signal beam via adaptive homodyné demonstration of Eq(4.2) is given in Appendix B. After
detection. The phase estimate at titpé(t), is then a func-  arriving at Eq.(4.3), we then use the ergodic theorem within

tion of two functionals of all measurement results up to timethis equation to replace the ensemble averd@t)p(| )1 in
t. Specifically, it is the steady statby the temporal average

~ _ * 1 t B
o) =ardA xBA). (39 P f CLICHGIE (4.4
whereA, is as defined in Eq3.2) andB;, is Fo 7t

2. Berry-Wiseman adaptive scheme

¢ wheret5%is the time at which the steady-state regime begins
Bt:f du e g2id) (3.7 andt; is the final time we conside(t;>t59. This allows us
u=-o to determinevgS through simulating just a single stochastic

As for the BW heterodyne-based scheme, this estimate wagectory. o H
Upon calculatingVsg a number of trends are apparent.

chosen as an analogous estimate for the single-shot case was~" A _
known to be accuratfs]. Furthermore, Ref8] showed that ~The first of these concerns the proximity ¢fto ¢ in the
it was accurate for larghl, for y=2|a| V. simple adaptive scheme. For lardg the initial estimate
¢(t=0) for this scheme is usually some distance from the
actual phaseh(t=0). Then, as we gain more and more infor-

mation via measurement and postprocessihgpmes in on
during an initial period of transience. After this it locks

3. Semioptimal adaptive scheme

In the semioptimal adaptivecheme for phase estimation,

we assume it is optimal to always measure the S|gnal beam nto ¢, staying close tap as it continues to fluctuate a little.
phase quadrature and thus, as in the other adaptive schem%ﬁ,is pattern of behavior is illustrated in Fig(a. It is an-

set®(t)=¢(t) + /2. The reason we use the label “semiopti- ticipated that all the schemes considered behave similarly,

mal adaptive” is that, while we use quantum parameter estialthough we did not explicitly verify this. For small values of

mation in determiningp, we are not certain that it is always N, ¢ never locks ontap but instead continues to fluctuate in

best to attempt to measure the phase quadrature. Perhaps gievicinity with a magnitude that increases with decreasing

could obtain a more accurate estimate by occasionally tryingy, as highlighted in Fig. ).

to measure the amplitude quadrature, for example. A second trend in our results concerns the size of the
interval within which we are fairly certain tha lies at any
moment in time. This is measured by the Holevo variance

IV. RESULTS [(€%)p(4| 2= 1 which can be thought of as a measure of our

To compare the accuracies of the estimates introduced itfck of confidence irp. For largeN, this quantity, at least for
Sec. Ill, we now calculate their average errors as measuré@®€ schemes based on parameter estimation, only fluctuates
by the Holevo variance/t of the difference between the OVer time by a small amount once the initial transience ends.

actual phasep and our estimatep. Typically, this quantity This behavior is illustrated in Fig.(8). It can be explained
fluctuates for some time before settling down to a fixedPY r€alizing that whem is large we are in a linear regime in
steady-state value. Intuitively, this occurs as a balance aris%ge sense that the measured photocurtent I is alinear
(on averagebetween the information we gain abagifrom unction of the actual phase. qu mslance, for homodyne
a new photocurrent measurement and that we lose diésto detection we have,dt=27]a|(¢-¢)+ 7 dW. It is a charac-
phase diffusion over the measurement’s duration. We choodeéristic trait of such linear systems that our level of confi-
this steady-state value 8(¢—-¢), denoted by as our dence(and hence also our lack of confidenaeany estimate
measure of the efficacy of our phase-estimation schemes a2 System parameter Is constant in the steady paleFor
hence numerically determine it for all of them for a range ofSMall N. however,[(€%)q(,| -1 fluctuates appreciably for
N values. We also obtain analytic expressions for it for soméll t (for the schemes based on parameter estimptias

schemes for both large and small valuesNof shown in Fig. 4b).
From the definition of the Holevo variance in Eg.13),
VH(¢_3)) is given by A. Nonadaptive schemes

1. Berry-Wiseman heterodyne-based scheme

Hih= o) = (=), |72
Vg =@ =T Dal -1, @1 Previous work [8] has calculatedV for the BW
where the average: ), is a stochastic average owgandl.  heterodyne-based scheme for a rangé&lafalues. These re-
To calculate this quantity for our three estimates generatedults are plotted in Fig. 5. For larg¢ it is known[8] that the
via parameter estimation, we first use the fact that scheme has a steady-state errovgf=1/ V2N,
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FIG. 3. Graphs showing typical variations of the actual phase FIG. 4. Graphs showing typical variations of our lack of confi-
'~ N H _2_ . .
(solid line) and our estimate (dotted ling versus timet scaled by ~ dence ing as measured bie'?)p,)| -1 (dimensionlesgversus
« for the simple-adaptive phase-estimation scheme(dpa large  Mmet (dlmen§|onles)sscaled by« for the semioptimal adaptive
photon flux(N=1000 and (b) a small one(N=0.1). In (a), ¢ ini- phase-estimation scheme f@ a large photon fluXN=1000 and
tially homes in on¢, before locking onto it. Ir(h), the low photon (b) @ small one(N=0.1).
flux means we gain so little information from our measurements

that&ﬁ never locks ontap. Both ¢ andfb are dimensionless, astis also found for large and smal which arevg'sz4/(7TN)

(smallN) and Vi¢=1/V2N (largeN).
Our analytic result folvEg for small N was obtained by
For the optimal heterodyne-based phase-estimatiofirst rgalizing that vyhem <1 'heterodyne measurements on
schemeViswas calculated by determining the temporal av-the signal beam yield little information about and thus
erage in expressiaf#.4) and then using Eq4.3) to find Vi~ P(¢) is broad. This means that, in contraBt¢)'s Fourier
This was done by, first, expressimje) in Eq.(2.21) as the transform is narrow and, more specifically, that the following
following discrete Fourier series: relations hold(on averagg [bg|>[b;|>[b,|.... Because of
this, we can neglect Fourier coefficients for whigh>1 in

2. Optimal heterodyne-based scheme

P(¢) = 2 b explij¢), (4.5

j:—m

whereb; e C and b_j:b;. Next, the resulting equation was
transformed into Fourier space to produce the following
coupled differential equations:

5 Kl 2b * * %;
bj:— 5 +|(,1’|§bj_l+|a’§bj+1_477bj‘0(|Rd§ bl) 2
(4.6)
These were then numerically solved by considering dxity
for which |j| was less than some finite bound that increased Y S— 5 s a5 s
with N. Next, (€%)p4(t) was determined by exploiting the logN

cht that it is a function of just one Fourier coefficigfi,|). FIG. 5. Log-log plot(to base 19 of the steady-state Holevo
Finally, we averaged over numerous steady-j,tate values QfrianceVH versus photon fluN for the BW heterodyne-based
(€9)p(g)(t) to obtain expressio4.4) and thusVgg The re- nonadaptive(squares and optimal heterodyne nonadaptiglid

sults generated are plotted in Fig. 5. Analytic results werdine) phase estimation schemes. B andN are dimensionless.
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Eq. (4.6). Upon doing this, and also neglecting terms con-
taining |b,|? (as|by|?<|by|), we are left with just the follow-
ing equation forb;:

at 2

2 @7

Note thatby(t)=1/(2w) [as can be determined from the nor-
malization conditionff;;‘ﬁoP(@d(ﬁ: 1]. Solving Eq.(4.7)
we find that in the steady statg is a complex Gaussian
random variable with mean zero and a varianc&df87?)
in both its real and imaginary parts.

To calculateVig from b, we first note that

J¢O+27T
$=do

i——.bjexp(ij ¢) into the right-hand side

KEDpg| = de €P(¢) (4.9

SubstitutingP(¢) =3
of this equation yields

KEp(g) = 27y (4.9
From this it follows that the equation
Vgs:<|<ei¢>P(¢)|)|_2‘ 1 (4.10
simplifies to
Vis= (2mJbi)) )2~ 1. (4.11

Given that(|b,|),= VN/(4/m) we obtain VH=4/(mN)-1.
Neglecting the second teras this produces a more accurate
approximation yields

VH = 4/(mN). (4.12

The largeN approximation for\/gsfor the optimal hetero-

PHYSICAL REVIEW A70, 043812(2004)

2

K P
APL) = 5 0t~ 2iali (6~ (o) REC I
(4.15

To solve this equation, we assume tR4t) is Gaussian and
thus that it can be expressed as

exl— (¢ — up)?(203)]

V2mop

P(¢) = (4.16)

where up and 0'|2:, are, respectivelyP’s mean and variance.
Generating differential equations fa# and op, We obtain

dop = d(¢Ppg) - d((d’)é(@) =K ?p(g) = A DK Dp(g)

= (A Ppy)? (4.17)
nd
dup =~ 2alopRe({)dt. (4.18
Solving these yields
1 exp2y2]a/t/VN) +1
o) = — o (4.19
V2N exp(2\2|al*t/\N) - 1
In the limit of t— oo this reduces to
o o= Vo= 2= (4.20
P SS SS \’/ﬁ

Interestingly, this result is the same as that obtainefB]n
This shows that the BW heterodyne-based scheme, which
was designed for largh, is indeed optimal in this regime.

3. Canonical scheme

dyne scheme was obtained by replacing the exponents in Eq. For the canonical phase-estimation schegi¢) was cal-
(2.21) by a linear approximation and then assuming thatculated via quantum parameter estimation using the method
P(¢) was Gaussian. Differential equations with respect toin Sec. Il C. For this scheme, Bayes'’ rule is

time for the mean and variance of this Gaussian were then

- P(¢)P(6
constructed and solved to obtain the standard varianeg of P(4|6) = M (4.2
in the steady state which, for largé is approximately equal P(6)
to Vs o _ ) where 6 is the measured phase. As a canonical phase mea-
The expressiofie’’-(€'%)p(4){ in Eq.(2.21) can be reex-  suyrement is a projective measurement of the Pegg-Barnett
pressed as phase observabld 9], the probability of it yielding the result

0 is (2m)! times the square of the norm of the measured
state’s projection onto théunnormalizegl phase eigenstate
|0)==_4€"’In). Thus, for the coherent states we consider, to

rf]i_rst order invdt,

(ei(¢—:ﬁ) _ <ei(¢—$)>P(¢))ei<?>§. (4.13

When N> 1, the large photon fluxes present in the signal

beam mean that our measurements yield a great deal of i
formation about¢ and hence thatp is a highly accurate
estimate. As a resulg¥~# =1 and thus we can linearize

expression4.13 as follows:
(&9 — (D)o )@ = (= (Do) &L
(4.14

The expressiorei:"g behaves as complex Gaussian white Substituting the expressions on the right-hand sides of Egs.
noise and hence we denote it &s Substituting the above (4.22 and(4.23 into Eq.(4.21) leads to the following Zakai
results into Eq(2.21), we obtain equation:

1 — 1 —
P(6l¢) = zl(av’dt| o= oL 2|alVdtcog 6~ ¢)]

(4.22

and thus

P(6)jaj=0= (2m)~". (4.23
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dP(¢) = %'t(éw-ﬁ) +c.c)P(o)dt. (4.24)
AY

Using the known correspondence detailed in Appendix A,
this, in turn, leads to the KS equation

—i6
dP(¢p) =2 X Re{|a|<(ei(¢’) - <ei¢>p(¢))e,_gtp(¢)>dt} .
\J
(4.25

Letting 7%/ \dt=f, we find that(f)=(f2=0 (at least when 0 05 1 15 2 2% 85 4

we average over any finite time interyadnd (ff"y=1/dt

from which it follows thatf is complex Gaussian white _ FIG. 6. Log-log plots(to base 19 of the logarithm of steady-
noise. Given this, Eqe.25 reduces to Eq(2.20), the KS state _Holevo varianc®/gg versus t_he photon_ qu;N fqr the BW
equation obtained for the optimal heterodyne-based phas@daptive(squarezand the semioptimal adaptivsolid line) phase-
estimation scheme. As a result, the canonical scheme shardimation schemes. BoWEs andN are dimensionless.

the same accuracy as this other scheme and so shares the

same results foMSg This surprising result is explained in 2. Berry-Wiseman adaptive scheme

Sec. V. For the BW adaptive scheme, R§8] determinedvs as
a function ofN and these results are shown in Fig. 6.

4, Comparison

As can be seen from Fig. 5, whé¥i<10, the optimal 3. Semioptimal adaptive scheme

heterodyne-based phase-estimation scheme is slightly more derived?ﬁ for the semioptimal adaptive scheme via

accurate than the BW heterodyne-based one. For larger valyantym parameter estimation in the same manner as for the
ues of N, however, we see that both schemes seem to b

. 95 ptimal heterodyne and canonical schemes. For this scheme,
equally accurate.(At approximately N=10%5 the BW

heterodyne-based scheme appears to be more accurate, El?ty es’ rule is

this is due to numerical errors, primarily in the BW P(¢)P(,|¢)
heterodyne-based resilfThe first of these features illus- P(d’“r):W- (4.27)
trates that while the BW heterodyne-based scheme is close to '

optimal forN=10,¢ can be estimated more accurately usingreplacing the normalization constaf(l,) by P(1,) aj=0
parameter estimation in this regime. The latter fact is particuyje|ds the quasi-Bayes rule

larly significant as this regime is the one in which an experi-

mental realization could most readily be performed, as dis- _ |3(¢)P(| |b)
cussed in more detail in Sec. V. The second feature P(Hll,) = ———. (4.28
highlights that the BW heterodyne-based scheme is optimal P00
flfl)r[gzlo which is unsurprising as it was designed for IargeFrom Eq.(2.4) we know thatl, is a Gaussian random vari-
: able with variance 1(dt) and mean Ry|cog¢—®) from
which it follows that(for »=1)
B. Adaptive schemes
- . [dt
1. Simple adaptive scheme P(#|l,) = \/ —exp{— difI, - 2|a|cog ¢ - D)1}
For the simple adaptive phase-estimation scheme, the m
Holevo variance in the steady state was calculated by simu- (4.29

lating the evolution ofé(t) via solving Eq.(2.2) and also
simulating the measurement outcomes on the beam using Eq.
(2.4 to obtain a numerical expression figft) for a range of dt
P(I)|af=0= \/;exp(— dt1?).

times. This allowed us to updatg via (4.30

¢ Substituting these two results into E4.28, we obtain the
= V() (4.26  following Zakai equation:

and thus to determing(t) - ¢(t), again for a range of times. dP(¢) = [al (€', + c.c)P(¢)dt. (4.3

The local-oscillator phaseb(t) was then set tab(1)=¢(t)  ysing the known correspondence detailed in Appendix A
+/2. The steady-state 1‘|O|eV0 Varlan‘of§3 was calculated and inc|uding the effects of phase diffusion, £4.31) leads
from the differencep(t) — ¢(t). to the KS equation
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RN ' ' ' ' detector. In this scenario, the best measurement we can make
RN is a canonical phase measuremerg we must decide what

2 ] to measure while knowing nothing about the phastow-
1.5 1 ever, from Sec. Il A 3, we know that estimatirfgnonadap-

5 | A\ tively via such a measurement leads to an estimate only as
I; 05 accurate as that of the optimal heterodyne-based scheme. We
£ o B 1 also know that adaptive phase estimation is more accurate

05 N than this latter nonadaptive scheme in the cw scenario and
1 -E_ﬁ hence it is also more accurate than the canonical nonadaptive
-1.5 1 scheme.

-2
-3 -2 -1 0 1 2 3 4
log N

V. DISCUSSION

FIG. 7. Log-log plots(to base 1 of the logarithm of steady- The results of Sec. IV display a number of interesting
state Holevo varianc¥Ss versus the photon flull for the optimal features which we now discuss. First, it might seem puzzling
heterodyne-basegolid line), semioptimal adaptivésquare and 4t the canonical phase-estimation scheme is only as accu-
simple adaptive phase-estimation schergasterisk The largeN — o40 55 the optimal heterodyne-based scheme and is not, in-
a_nd smallN rszsults lie upon the asymptotes derived for these re'stead, the most accurate scheme. Given that a canon,ical
gions. BothVssandN are dimensionless. phase measurement is generally thought to be the best mea-

surement of phase we can make, why isn’t the canonical

_ 5072P(¢>) i(-D) _ /(D) , scheme the most accurate? The answer to this lies in the
dP(¢) = 2 dg¢? di+|all( (e’ o) P(F (1 details of the scenario we consider. In the standard scenario
in which we wish to estimate phase, we make a single phase

+c.cldt, (432 measurement on a system for which we have no prior infor-

where (' is real Gaussian white noise given by’'=l, ~ mation about the phase. In this scenario, a canonical mea-
-2 al(cog = D))p(y)- surement is optimal. However, in the scenario we consider

To obtain Vgs from Eq. (4.32 we applied the same prior to making a measurement on the field at tin#e0, we

method used for the optimal heterodyne-based scheme cefill'€ady know something abod, as evidenced by the fact
tered around decomposirR{¢) via the Fourier decomposi- (hat we possess a nontrivial probability distributi®i).
tion in Eq.(4.5). The results obtained are plotted in Fig. 6. In 1S prior information can be exploited by measurements

addition, for small and larg&l the following analytical re- other than a canonical one to yield more information about
sults were found: phase than would a canonical measurement.
- To understand the preceding point it may be helpful to
" {1/(2\"N) (largeN), (4.33 consider the following example. Say we wish to determine as
S

1N (smallN). (4.34 accurately as p_ossible the phase c_>f a system in a weak co-
herent state which we know to be either one of the two states
These results were obtained via calculations very similar tdy,)=|0)+ye*4|1), wherey e R <1, with equal probability.
those used in Sec. IV A 2 to obtain the corresponding estitn this instance, because we already know something about
mates for optimal heterodyne detection. ¢, we can tailor the measurement in accordance with this
prior knowledge and measure tthe= /2 or Y quadrature to
obtain slightly more information abouf than would a ca-
Figures 6 and 7 display a number of interesting featuresonical measurement. Specifically, measuring Yhguadra-
which we now highlight. First, Fig. 7 shows that the semi-ture, we estimate ¢ correctly with probability 1/2
optimal adaptive and simple adaptive schemes are equally0.799y sin ¢, while for a canonical measurement this prob-
accurate, as evidenced by the fact that they have identicability is only 1/2+0.638y sin ¢.
Vgs-versusN plots. Second, Fig. 6 illustrates that the semi- Another interesting feature related to Sec. IV’s results
optimal adaptive schem@nd hence also the simple adaptive concerns the main conclusion we drew from them, which
schemegis more accurate than the BW adaptive one foNall was that adaptive phase estimation in the cw scenario is
values except wheN=10°®. Third, Fig. 7 demonstrates that more accurate than any nonadaptive scheme in which the
the semioptimal adaptive scheme is significantly more accufield is measured in real time. Although we were able to
rate than the optimal heterodyne-based or canonicakrrive at this result, we are uncertain if adaptive phase esti-
schemes. Fourth, Fig. 7 also shows that adaptive phase estiation is better than any nonadaptive scheme at all. This is
mation is more accurate thaany nonadaptive phase- because it is conceivable that there exists a nonadaptive
estimation scheme in which the field is measured in reascheme in which, instead of measuring the field in real time,
time. The reason for this is the following. Assume that wewe store up a portion of it over a period of time and then
measure the field nonadaptively in real time. By this wemeasure the accumulated field as a whole that is more accu-
mean that we measure it via a continuous sequence of idemate than adaptive phase estimation.
tical infinitesimal-time measurements and thus measure each The results of Sec. IV also show that a simple adaptive
spatial “segment” of the signal beam as it is incident on thescheme does as well as the semioptimal adaptive scheme.

4. Comparison
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Why does this relatively uncomplicated scheme do so wellpresent in the adaptive phase estimation schemes considered
One possibility is that the state of the beam we considers instantaneous. That is, that it takes a zero amount of time
being based on coherent states, is somewhat “simple.” Pete obtain an estimate af(t) and then transmit it to the local
haps, it does not allow us to fully utilize the power of the oscillator. This assumption, however, is unrealistic. In prac-
more complicated semioptimal adaptive scheme. tice, this process would take a finite amount of time due to

One final interesting feature of Sec. IV’s results concernghe fact that, for instance, a realistic signal processor would
the variation withN of the relative superiority of adaptive take a finite amount of time to calculate an estimatep)
phase estimation over real-time nonadaptive phase estimgom information such as the measurement result. afo
tion. This is measured by the ratio of the steady-state Holevgive some examples, in the simple adaptive phase-estimation
variances for the optimal heterodyne-based and the semiogcheme a signal processor must calcufatel . (t)dt to obtain
timal adaptive schemes. Fbi<1, this ratio is given by Egs. this estimate while in the semioptimal adaptive scheme it
(4.12 and(4.34) and is 4/m=1.27 while forN>1 itis V2  needs to update a probability distribution fin accordance
=1.41. For intermediat® values, it lies in between these wijth the KS equation Eq(4.32 and then calculate arg
two extremes. Of particular importance is the fact that the((eiaﬁ(t))P(d)))_ Previous worki6,26] has shown that the effect
gap is present foN=1. This is because this regime is the s ych delays in feeding back estimatesydf) to the local
most fertile for experimental implementation as within it the . . . . B

gscillator is to increase the Holevo varianggd ¢— @) of

errors we wish to see are not swamped by technical noise. . ST :

is also noteworthy that the smail-ratio of 4/x is signifi- adaptive phase-estimation schemes. In turn, this means that

cantly greater than the analogous ratio in R&f, which was they_det(_:realsedthet_amou?]t by which thet_SImthe adaptive and

approximately 1.1, between the adaptive and nonadaptive eSEMOPimal adaptive schemes can estimatenore accu-
rately than can nonadaptive schemes. As we wish to maxi-

timates in this other paper. : . . . X .
Having discussedpthre) results in Sec. IV. we now turn toMize this amount, it seems that the simple adaptive scheme is

three theoretical issues arising from our work. First, in thisPréférable to the semioptimal adaptive one. While both
paper we have considered estimating the phase of an Efchemes are equally accurate, the former calculates a
beam in a coherent state. However, other beams could B@mpler calculation which could be performed in less time.
investigated as was done in R¢8] which looked at a so- Consistent with this, it would be challenging to solve the KS
called squeezed EM beam with a randomly fluctuating phaséduation Eq.(4.32 in a short enough time as to make an
That paper found that, for such a beam, adaptive phase estiiteresting experimental implementation of the theoretical
mation was more accurate than heterodyne-based nonadafork in this paper feasible. _ _
tive phase estimation not just by a constant fagas this The recent experimental implementation of adaptive
paper hap but by a factor scaling witiN. In particular, it ~Phase estimatiof®] used an almost identical estimate to that
found that for such a beam the steady-state Holevo varianc@f the simple adaptive phase estimation scheme and involved
of the error scaled ali™?3 in adaptive phase estimation but & delay of approximately 0.4s. Interestingly, the main rea-
only asN~*2in heterodyne-based nonadaptive phase estimason for this delay wasot due to the signal processor having
tion. to perform a calculation. Instead, it was the speed at which a

While this result for squeezed beams is interesting, thé&ertain radio-frequency synthesizer in the experiment oper-
calculations behind it contained a number of deficienciesated. Following on from this, as long &gay/tcon<1, where
First, Ref.[8] considered a beam with broadband squeezingldelayis the delay time in the feedback loop for some adaptive
i.e., one that was squeezed at all frequencies, and thus tiRbase estimation scheme afgy(=«<™") is ¢'s coherence
noise present in the beam had infinite energy. The parametéme, ¢(t) would not change appreciably tgeia, and thus a
N=|a|?/ x was finite, however, as it relates only to the energytime delay in the feedbackA loop would not significantly in-
carried by the mean field. Such a beam is unphysical andirease the value of5J$-¢) for either the simple or the
furthermore, constitutes an inappropriate theoretical modedemioptimal adaptive schenfiz7]. Assuming the time delay
for the problem considered, as we shall soon see. The secoiid Ref. [9], the above inequality could be satisfied by con-
deficiency in the calculation was that it involved estimatingstraining « such thatx< 10" s*. This is achievable in prac-
¢(t) using only information about the beam’s signal. Thistice as the electro-optical modulator in Fig. 2 can be changed
meant that information in the beam’s noise was ignored. Islowly enough so as to satisfy the constrain&10’ s
such information had been used then, as the noise had infivithout suffering appreciable decoherence. As a result, the
nite energy, we could have instantly determingdby deter-  presence of a realistic time delay does not seem to make it
mining the relative sizes of the noise in different quadraturesimpossible to see the theoretical superiority of adaptive
Thus, the calculation in Refi8] ignored obtaining phase phase estimation.
information from a potential souraghe nois¢ and revolved One final theoretical issue arising from our work is the
around a model such that if we do consider this potentiafollowing. Throughout the paper, it was assumed thatvas
source, we find that we can instantly determig@) with ~ known precisely. However, even if we know only tHat
perfect accuracy, which is unrealistic. Because of these defiz &, Wherea e R, we can still do at least as well as when we
ciencies, we feel that it is desirable to do additional calculaknow that it equals.. This follows on from work by Stock-
tions on squeezed beams. We anticipate that our “optimalton et al. [28] (Sec. . Knowing |a/ precisely, we have, for
approach to obtaining phase estimates based on quantum ghe simple adaptivéand semioptimal adaptiyeschemes,
rameter estimation may be useful in such calculations. _ 2\;|a| (5.1)

A second theoretical issue arising from this paper is the Xopt= £VHa1- '
fact that throughout it we have assumed that the feedback we know only that/e|=a we can sety equal to
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x=2ka. (5.2 o f 4o P U " d|~=>)2
For N> 1, this leads td8] P() +dP(¢) ~ P+dP | Jg ®
B 2
V= 2Vkal(8a?) + Vkl(2a) (5.3 f do P f do P (f d¢|3)
¢ ¢ ¢
=«l(2a). (5.4) (A5)

That is, we can estimatg at least as well as we can assum- Normalizing the distribution P using the factors of

ing we know thafa/ is exactly the minimum known value. J4d¢ P(¢) in the denominator and also substituting in the
expression fodP in Eg. (Al), we obtain

VI. CONCLUSION

P+dP=[P+(Xl+c.c)Pdt]| 1- | d¢(Xl+c.c)P(¢p)dt
Quantum phase estimation and, in particular, Bayes’ rule [P cc) ]l L o ¢.cP()

were used to find optimally accurate phase estimates and to )
show that, for a continuous EM beam with a randomly fluc- + (f dep(X1 + c.c.)P(¢)dt) } (A6)
tuating phase, adaptive phase estimation is more accurate o
than any nonadaptive phase-estimation scheme in which the
field is measured in real time. Although it is more accurate _ _
for all photon fluxes it is, in particular, more accurate for =[P+ (XI+c.c)P di[1~((0pl +c.c)dt+ (Xl
such beams possessing small to moderate photon fluxes. This +c.c)%dt?]. (A7)
is important as this is the regime in which experiments . . . .
would have the greatest chance of confirming any theoreticejrg)(p‘amdlng this EXpression and keeping only terms of order
difference between the two types of phase-estimatio tor less, we arrive at EqA2).
schemes.
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<ei(¢_¢)>§,| = <|<ei¢>P(¢)‘>l- (B1)
APPENDIX A By definition
This section details the known correspondence between a A A
Zakai equation of the form (e, :f fdgm P(g 1)elee-a], (B2)
- - x4
dP=(Xl+c.c)Pdt (A1) o . .
_ Expressingel#9-¢] as an integral over the dummy phase
and the KS equation variable ¢, we obtain
dP=[(X={X)p)(I =(I)p) + Cc.c]P dt. (A2) o o
i[#(&)-¢()] = - iLe=a(1)
To obtain Eq(A2) from Eq.(A1), we begin with the identity € - L de S((€) — )&t (B3)
_ P+dP Substituting the right-hand side of E(B3) into the right-
P($) +dP(¢) = - o~ (A3) hand side of Eq(B2) yields
f d¢P+dP
¢ L
_ - _ CREONE f f f dé di de P(HP(I[£) 8(p(9)
Taking out a factor of 4d¢ P(¢) in the denominator leads to 1 v
P(¢) +dP(¢) = P+ dp ~ @l B4
() (#)= ~ ~ ~ | Assuming we know the so-called process ngisthen we
¢d¢ Pl 1+(1/ ¢d¢ P) ¢d¢dP know the phasep exactly and thus our probability density

function for ¢ is a Diracé function. From this it follows that
(A4)

MUBE - @)de=P(p,l|&)de. B5
Expanding the expression in the denominator within the (11948 - e)dg =Plellode B3)
square brackets as a power series using the binomial theoreBubstituting this result into EqB4) and integrating oveg
[(1+x)"=1+nx+n(n-1)x?/2+---], yields yields
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<ei(lf>-:f>)>§’| :ff dl de P(QD,|)ei[‘P_:i)<l)]- (B6)
I o
Using elementary probability theory, we obtain
CESONE f di P(1) f de P(glhele?V].  (B7)
| ¢

Given that

PHYSICAL REVIEW A 70, 043812(2004)

$(|)=ar€<f dcp’P(<P’||)ei¢’),

where¢’ is a second dummy phase variable, Ej7) leads
to

(B8)

:<|(ei‘p>P(¢)|>|-

(B9)

Upon replacingy by ¢ in the final expression, wherg now
acts as a dummy phase variable, Egl) is obtained.

<ei(¢—<}5)>§’|:fdl P(|)U de P(el1)e'®
I @
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