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We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the
processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the
terms depending on the electron spin. The resulting general real-space conductivities are presented and dis-
cussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties
of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is
transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a
homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in
which we treatv andq as independent variables, thereby opening the theory to near-field optics and the study
of evanescent waves. We show that in regions of thev-q spectrum, the presence of diamagnetism and spin
dynamics significantly alters the response in comparison to considering only the paramagnetic response. Ad-
ditionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect
the present theory to existing methods inab initio solid-state physics.
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I. INTRODUCTION

The influence of the electron spin on the nonlinear optical
response of condensed matter has to our knowledge so far
only been described in connection with magnetism, surfaces,
and interfaces. Experimental[1–13] as well as theoretical
and numerical studies[12–21] have shown that the presence
of magnetism leads to interesting and significant results. De-
witz, Chen, and Hübner[22,23] have performed a theoretical
treatment of optical second-harmonic generation from mag-
netic thin films within the electric-dipole model, with focus
on the use of density-functional theory(DFT) to determine
the material properties. While providing a good starting point
from a materials science point of view, the limitations of the
electric-dipole model in the description of nonlinear optical
responses from surfaces, interfaces, thin films, and even for
the bulk in the presence of inversion symmetry, are well
known [24]. It is therefore desirable to develop better theo-
retical models for the optics.

However, from an optical point of view, magnetism is a
complicated phenomenon. It depends on the spin-orbit inter-
action and the exchange coupling, and it would be quite a
complicated step to include everything into a model that both
goes beyond the electric-dipole approximation and allows for
inclusion of spin-dependent effects in a single-shot approach.
In order to better understand the processes that are present in
nonlinear optics, a better starting point would be to include
the spin-dependent term from the Pauli Hamiltonian in the
description, and limit the study to simpler metals.

In the present formulation we abandon from the outset
some of the usually made approximations in optics, includ-
ing (i) the concept of a refractive index,(ii ) the local multi-

polar expansion(electric dipole, magnetic dipole, electric
quadrupole, etc.), and (iii ) the Born approximation. Aban-
doning the refractive-index concept is necessary if the theory
should also be applicable to nonhomogeneous media, where
large field gradients occur at, e.g., surfaces, interfaces, or
impurities. Close to such features it would be impossible to
tell exactly where to change from one refractive index to
another. Thus it is more appropriate to allow the theoretical
model to include such changes in a more direct manner, in-
stead of attempting to modify the concept of the refractive
index by, e.g., making it depend on spatial coordinates, wave
vectors, time, etc. When the local dipole approximation be-
comes invalid(in both the inversion symmetric extreme of
the bulk, and the extreme of nanostructures), one could resort
to include the electric quadrupole, magnetic dipole, and
higher-order terms, but it is difficult to determine where to
terminate the multipolar expansion, and the analytical ex-
pressions become rather long. Those who might wish to de-
rive the local multipoles can do so from our formalism using
the Power-Zienau-Woolley transformation[31–33].

In any microscopic theory of the electromagnetic re-
sponse one finds a nonlocal constitutive relation, where the
response at one pointr is related to the field-induced pertur-
bations at neighboring pointsr8 at earlier times. If the elec-
tromagnetic field is slowly varying over the neighboring
points (for a metal, typically over a few atoms), the zeroth-
order term of a Taylor series expansion of the electromag-
netic field at r8 , Esr8 ;vd, aroundr leads to the local ap-
proximation(see Ref.[29] for a detailed description). When
the electromagnetic field varies rapidly, as is the case at in-
terfaces or when evanescent fields are considered, the zeroth-
order term of the Taylor series expansion becomes a rather
poor approximation, and one thus has to go back to a nonlo-
cal description.

Thus in Sec. II we develop expressions for the linear and
second-harmonic nonlocal conductivity responses, starting*Electronic address: thor@physik.uni-kl.de
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from the microscopic Maxwell equations and the Pauli
Hamiltonian. First, we introduce a gauge in order to describe
the relation between the electric field and the vector poten-
tial, leading to a wave equation for the nonlinear optical
response. In the construction of expressions for the relevant
conductivities, the full Pauli Hamiltonian is considered, i.e.,
compared to conventional descriptions we include both the
spin-dependent and the second-order terms of the interaction
Hamiltonian, as well as the corresponding terms in the mi-
croscopic current density. Finally, we discuss the physical
processes involved in the optical response. In Sec. III, we
apply our theory for the spin conductivities to the homoge-
neous electron gas, paving the way for a numerical study of
the influence of diamagnetism and spin on the optical re-
sponse in the simplest possible system that can be described
within a single-electron theory in the random-phase approxi-
mation. We establish the free-electron gas conductivity ten-
sors in such a way that they obey the cylindrical symmetry
around the optical axis. The resulting conductivities are com-
pared to the Lindhard conductivities in terms of the so-called
classical and quantum-mechanical nonlocality parameters in
the sharp limit. We discuss the symmetries of the conductivi-
ties in the homogeneous electron gas, and finish the section
by presenting and discussing numerical results withq andv
treated as independent variables(this is relevant for near-
field optics and evanescent waves). The numerical results are
focused on the free-electron properties of Cu. While the re-
sults in Sec. III are based on the local field, we look at the
response to a transverse external electromagnetic field in
Sec. IV. We begin this treatment by establishing the local-
field loop for the propagation of an external electromagnetic
(laser) field to the interaction region, and for the propagation
of the response to the detector. In terms of the laser field and
the field at the detector, we construct the relevant screened
linear and nonlinear optical conductivities from(i) the con-
ductivities we found for the local field and(ii ) the screening
processes. Numerical results for the screened linear and non-
linear conductivities are presented and discussed, and the
section is finished with a discussion of the longitudinal and
transverse collective resonances, the so-calledplasmonsand
plasmaritons. In Sec. V, we discuss how to connect the
present theory with existing numerical methods inab initio
condensed-matter physics, and, finally, in Sec. VI, we con-
clude.

II. DETERMINATION OF GENERAL LINEAR
AND NONLINEAR SPIN CONDUCTIVITIES

We begin by analyzing Maxwells equations and choosing
a particular gauge where the dynamical equations for the
electric field and the vector potential are of the same form.
Following this, we define a constitutive relation for the field-
matter interaction, and establish a self-consistent loop for a
monochromatic local electric field. Then we include the spin
into the formalism of the Liouville equation of motion for
the specific gauge and Hamiltonian we have chosen.

The resulting linear and nonlinear conductivities are espe-
cially well suited for(but not limited to) the description of(i)
centrosymmetric materials,(ii ) near-field optical processes of

second order, and(iii ) second-harmonic generation(SHG)
processes in nanostructures such as quantum wells, quantum
wires, quantum dots, clusters of atoms, molecules, etc.

A. Choice of gauge

The starting point for our electrodynamic analysis is the
microscopic Maxwell-Lorentz equations, in which the mate-
rial response at the space-time pointsr ,td is completely de-
scribed via the microscopic current densityJsr ,td, and the
related charge density,rsr ,td. If we denote the local electric
and magnetic fields byEsr ,td and Bsr ,td, respectively, the
microscopic field equations are

= 3 Esr,td = −
] Bsr,td

] t
, s1d

= 3 Bsr,td = m0Jsr,td +
1

c0
2

] Esr,td
] t

, s2d

= ·Esr,td =
1

«0
rsr,td, s3d

= ·Bsr,td = 0, s4d

where«0, m0, andc0=s«0m0d−1/2 are the vacuum permittivity,
permeability, and speed of light. To determine the local fields
one needs in addition to the field equations, equations de-
scribing the response of the microscopic particles to the pre-
vailing field. Here, only the electrons are assumed to be mo-
bile, and their dynamics is described quantum mechanically
on the basis of a single-particle approach. The starting point
for our (nonrelativistic) calculation of the linear and nonlin-
ear electron responses hence is the Pauli Hamiltonian

H =
1

2me
fp + eAsr,tdg2 +

e"

2me
s ·Bsr,td − eUsr,td, s5d

whereme, p, −e, ands are the mass, conjugate momentum
operator, charge, and spin operator of the electon, and" is
Planck’s constant divided by 2p. In the spin-field interaction
term theg factor of the electron has been set to 2. In general
it is not possible to eliminate the gauge dependent vector
fAsr ,tdg and scalarfUsr ,tdg potentials from the Hamiltonian
in favor of theE and B fields. In the present context(see
Sec. II C) it is adequate to make a particular gauge choice
before carrying out, in a perturbative fashion, the calculation
of the linear and nonlinear(second-harmonic) electron re-
sponses. Since the gauge we use is not the most common
one, let us briefly consider the gauge choice and the resulting
dynamical equations forA and U. The usual relations
Bsr ,td==3Asr ,td and Esr ,td=−]Asr ,td /]t−=Usr ,td en-
sure that the Maxwell equations(1) and(4) are automatically
satisfied, and by insertion into the remaining inhomogeneous
equations(2) and (3) one obtains the following coupled
(standard) equations amongA andU:

hAsr,td = m0Jsr,td − =F= ·Asr,td +
1

c0
2

] Usr,td
] t

G , s6d
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hUsr,td =
1

«0
rsr,td +

]

] t
F= ·Asr,td +

1

c0
2

] Usr,td
] t

G , s7d

whereh=s1/c0
2d]2/]t2−¹2 is the d’Alembertian operator. In

passing we would like to note for historical reasons that if
the gauge choice of Lorenz[34,35], namely,

= ·Asr,td +
1

c0
2

] Usr,td
] t

= 0, s8d

is made the resulting wave equations forA and U, i.e.,
hA=m0J and hU=r /«0 couple only through the equation
of continuity = ·J+]r /]t=0 (which is automatically ful-
filled). These wave equations, which, together with Eq.(8),
constitute a dynamical set of field equations completely
analogous to the Maxwell equations were established in
1867 by L. V. Lorenz[34,35] independently of Maxwell.The
covariant form of the classical field equations hence was on
the scene of physics in 1867. TheE andB fields are invariant
under the gauge transformation

A8sr,td → Asr,td = A8sr,td + =Fsr,td, s9d

U8sr,td → Usr,td = U8sr,td −
]

] t
Fsr,td, s10d

whereF is an arbitrary function ofr and t. If we divide the
scalar potential into time-independents0d and time-
dependentsTd parts, i.e.,

U8sr,td = U08srd + UT8sr,td, s11d

in this work we choose, starting from a general gauge, a
gauge in which the time-dependent part ofU8sr ,td vanishes
identically—that is,

] Fsr,td
] t

= UT8sr,td, s12d

and thereforeU=U08srd=U0srd. The dynamical equations for
Asr ,td andU0srd now take the forms

s1Jh + = ^ =d ·Asr,td = m0Jsr,td, s13d

¹2U0srd = −
1

«0
rsr,td −

]

] t
= ·Asr,td, s14d

where [in Eq. (13)] 1J is the 333 unit tensor, and̂ is the
dyadic(outer) product operator. In the gauge where the time-
independent part of the scalar potential is set to zero the
wave equation forAsr ,td does not containU=U0srd. The
differential equation in Eq.(14) which as it stands does con-
tain bothA andU0 may be split into a time-independent part
containing onlyU0, viz.,

¹2U0srd = −
1

«0
r0srd, s15d

wherer0srd is the time-independent part of the microscopic
charge density, and a time-dependent parts1/«0drTsr ,td=
−]= ·Asr ,td /]t for Asr ,td [rTsr ,td being the time-varying
part of r]. The equation forAsr ,td together with Eq.(13)

ensures that the equation of continuity for the charge is al-
ways fulfilled. It is worth noting that the dynamical equa-
tions for Asr ,td in the gauge where the time-dependent part
of the scalar potential is set to zero has the same form as the
(usual) wave equation,

s1Jh + = ^ =d ·Esr,td = − m0
] Jsr,td

] t
, s16d

for the microscopic electric field. By differentiation of Eq.
(13) with respect to time, and subsequent use of]Asr ,td /]t
=−Esr ,td−=U0srd [and not just the incorrect −]Asr ,td /]t
=Esr ,td!] one regains Eq.(16).

B. Wave equation for the nonlinear field

The generated nonlinear electric field of frequency 2v is
written as

ENLsr,td =
1

2
fENLsr ;2vde−i2vt + c.c.g, s17d

where “c.c.” denotes the complex conjugate of the first term.
In general,Esr ,td is a real quantity, i.e.,Epsr ;vd=Esr ;−vd.
We will assume that the lowest-order nonlinear interaction
dominates over higher-order mixing processes. Expanding
the current density in a Fourier series in the incoming fre-
quency, the relevant nonlinear current density is

JNLsr,td =
1

2
fJNLsr ;2vde−i2vt + c.c.g, s18d

and the linear current densityJLsr ,td is written in a similar
manner. To account for the linear propagation of the second-
harmonic response, the linear current density at 2v contrib-
utes. Thus we retain the linear and the lowest-order nonlinear
contribution. The wave equation for the second-harmonic re-
sponse hence takes the form

F1JS4v2

c0
2 + ¹2D − = ^ =G ·Esr ;2vd = − i2m0vfJLsr ;2vd

+ JNLsr ;2vdg. s19d

To close the self-consistent loop for the second-harmonic
field, the microscopic current densitiesJLsr ;2vd and
JNLsr ;2vd are given in terms of the local electric field
through constitutive relations describing the field–matter in-
teraction in a perturbative manner. The linear constitutive
relation we write in the form

JLsr ;vd =E sJsr,r8;vd ·Esr8;vdd3r8, s20d

where sJsr ,r8 ;vd is the linear conductivity tensor and the
integration runs over the spatial interaction region. Theith
element of the first-order current density is proportional to
the integral offsJ ·Egi =o jsi jEj. The second-order constitu-
tive relation is written in a similar fashion, i.e.,
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JNLsr ;2vd =E E SJsr,r8,r9;vd:Esr8;vdEsr9;vdd3r8d3r9,

s21d

whereSJsr ,r8 ,r9 ;vd is the nonlocal second-order conductiv-
ity tensor. The two-dimensional sum–product operator “:” is
here meant to be interpreted for theith element of the

second-harmonic current density asfSJ :EEgi =o jkSi jkEjEk,
i.e., i is the resulting coordinate(corresponds to the
unprimed variables), j corresponds to the single-primed vari-
ables, andk to the double-primed variables. The electric
fields appearing in Eqs.(20) and (21) can in general be dif-
ferent from each other. Inserting Eqs.(20) and (21) into Eq.
(19) the loop for the second-harmonic field is closed.

C. Spin-dependent Hamiltonian

The starting point for this calculation is the Liouville
equation of motion for the single-particle density-matrix op-
eratorr, i.e.,

i"
] r

] t
= fH,rg. s22d

In the equation above, the single-particle Pauli Hamiltonian
H appearing in the commutatorfH ,rg in the present descrip-
tion is given by

Hsr,td = H0srd + HIsr,td + HR, s23d

where H0 is the nonrelativistic(Schrödinger) Hamiltonian
operator for the electron in the material when the perturbing
optical field is absent,HI is the electron-photon interaction
Hamiltonian, andHR represents the irreversible coupling to
the “surroundings.”H0srd=s1/2medp·p+Vsrd, where V is
the potential energy of the electron, viz.V=−eU.

Introducing the vector potential as a sum of two Fourier
components, i.e.,

Asr,td =
1

2
Asr ;vde−ivt + c.c., s24d

we divide the interaction Hamiltonian according to the dif-
ferent optical(electron-photon) processes it describes, i.e.,

HIsr,td =
1

2
hfH1sr ;vd + H1

ssr ;vdge−ivt + H.a.j + H2
0srd

+
1

2
fH2sr ;2vde−i2vt + H.a.g, s25d

whereH1 is the part of the interaction Hamiltonian that is
linear in the vector potentialAsr ,td and independent of the
spin,H1

s is the spin-dependent part of the interaction Hamil-
tonian,H2 is the interaction Hamiltonian of second order in
Asr ,td, “H.a.” denotes the Hermitian adjoint. The Hermitian
adjoint is found from the relationfHsr ;vdg†=Hsr ;−vd for
any part of the interaction Hamiltonian, where † stands for
Hermitian adjugation[36]. Hence the linear interaction terms
read[38]

H1sr ;vd =
e

2me
fp ·Asr ;vd + Asr ;vd ·pg, s26d

H1
ssr ;vd = mBs ·Bsr ;vd s27d

and the nonlinear interaction terms are

H2
0srd =

e2

4me
Asr ;vd ·Asr ;− vd, s28d

H2sr ;2vd =
e2

4me
Asr ;vd ·Asr ;vd, s29d

wheremB=e" / s2med is the Bohr magneton. For a spin-1/2
particle, such as the electron, the three Cartesian components
of the Pauli spin operator can be represented by the Pauli
spin matrices(the so-called standard representation)

sx = S0 1

1 0
D, sy = S0 − i

i 0
D, sz = S1 0

0 − 1
D , s30d

taking thez axis as the quantization axis.

D. Mean current density

For the sake of interpretational simplicity it is appropriate
to choose a basis where spin and space coordinates are sepa-
rated. Considering the spin(without spin-orbit and exchange
interactions, and neglecting correlation effects as well) re-
sponse we make use of a spinor representation of the eigen-
functions of the field-unperturbed Hamiltonian, i.e.,un,sl
= unl ^ usl, and in ther representation, we may write

kr un,sl = kr unl ^ usl s31d

with cnsrd=kr unl, and where we have used the fact that the
eigenenergies are degenerate for our particularH0. Thus unl
and usl are orthogonal. The Schrödinger equation is then

H0srdun,sl = Enun,sl, s32d

and for any operatorO that separates into a product of a
space-dependent and a spin-dependent term, i.e.,O=OrOs

we may thus write

kn,suOun8,s8l = knuOrun8lksuOsus8l. s33d

Consequently, the matrix representation ofH0 is diagonal
skn,suH0un8 ,s8l=Endnn8dss8d, and

kn,sufH0,rgun8,s8l = sEn − En8dknurrun8lksursus8l. s34d

Introducing the usual transition frequencyvnn8=sEn

−En8d /", the solution to the Liouville equation becomes
knur0sr ,tdun8l= fnknun8ldnn8, since the thermal excitation is
expected to be an incoherent process, and therefore cannot
produce coherent superpositions of atomic states
(knur0srdun8l=0 for nÞn8). It is thus called the thermal equi-
librium density matrix, which for a fermion(such as the
electron) is given by the Fermi-Dirac distribution for thermo-
dynamic equilibrium, i.e.,
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kaur0srdual ; fa = F1 + expSEa − m

kBT
DG−1

s35d

for statea (a is n8 or n above), kB being the Boltzmann
constant,m the chemical potential of the electron system, and
T the absolute temperature.

As often is the practice in optics we assume that the irre-
versible coupling to the surrounding reservoir can be de-
scribed using a phenomenological relaxation-time ansatz in
the Liouville equation, so that

1

i"
knufHR,rsr,tdgun8l =

knur0srdun8l − knursr,tdun8l
tnn8

,

s36d

nÞn8. It is convenient to expand the density matrix in a
power series in the formrsr ,td=r0srd+oa=1

` rasr ,td, wherea
represents the number of incoming photons. The quantity
tnn8 in Eq. (36) is the relaxation time associated with the
nn8th density matrix element. It is in general depending on
both the electron momentum and spin[39,40]. Thus in order
to describe the different second-order processes we need
only the three lowest orders in the power series. The density
matrix depends, of course, on the electron spin, so it is con-
venient to writer1sr ,td and r2sr ,td in terms of the spin, as
well as in terms of a Fourier series in the frequency of the
incoming field in the manner

r1sr,td =
1

2
hfr1sr ;vd + r1

ssr ;vdge−ivt + H.a.j, s37d

r2sr,td = r2
0srd +

1

2
hfr2sr ;2vd + r2

ssr ;2vd+ r2
sssr ;2vdge−i2vt

+ H.a.j. s38d

By knowledge of the matrix elementsknur0srduml we may
find the matrix elements of the terms of higher order in the
power series expansion of the density matrix in the usual
iterative manner.

In order to determine the conductivity response tensors,

sJsr ,r8 ;vd and SJsr ,r8 ,r9 ;vd, appropriate for describing the
second-order processes, we consider the ensemble average
Jsr ,td of the microscopic single-particle current-density op-
eratorjsr ,td. This ensemble average is obtained as the trace
of rj, carried out in the usual manner as a quantum-
mechanical double sum over states, i.e.,

Jsr,td = Trhrsr,tdjsr,tdj

; o
nn8ss8

kn,sursr,tdun8,s8lkn8,s8ujsr,tdun,sl. s39d

The microscopic current densityjsr ,td, as well as the transi-
tion matrix elements between two quantum states can be
found in Appendix A.

E. Linear spin conductivity

For the ease of understanding it is favorable to divide the
direct (unscreened) linear optical conductivity tensor into

four parts, according to the different optical processes they
describe, i.e., into the following parts:

sJ = sJA + sJB + sJs
B + sJss

B , s40d

where the subscripts indicates the number of spin transition
current densities contained in the conductivity tensor. The
different optical processes involved in creating the total lin-
ear current density are shown schematically in Fig. 1. Omit-
ting the spin terms, the division is the usual one, and with
our particular basis andH0, sJs

B is identically zero(the basis
and Hamiltonian does not allow the ground-state spin of the
electron to change). An explicit calculation has confirmed
that this is true after carrying out the spin summation. The
linear current density is to be obtained from

JLsr ;vd = Trhr0j1j + Trhr1jFj + Trhr1
sjF

sj, s41d

where the different microscopic currents are given in Appen-
dix A. The three terms in Eq.(41) above are the diamagnetic,
paramagnetic, and spin terms, respectively. After a tedious
but straightforward insertion of the relevant expressions, fol-
lowed by execution of the spin summation, we find that the
three corresponding parts of the linear conductivity tensor
are

sJAsr,r8;vd =
2ie2

vme
o

n

fnknudsr8 − redunl1Jdsr − r8d, s42d

sJBsr,r8;vd =
2i

"v
o
nn8

fn − fn8

vnn8 − v − i/tnn8

3kn8ujFsrdunl ^ knujFsr8dun8l, s43d

and

sJss
B sr,r8;vd

=
2i

"v
o
nn8

fn − fn8

vnn8 − v − i/tnn8
f1Jkn8ujF

ssrdunl · knujF
ssr8dun8l

− knujF
ssr8dun8l ^ kn8ujF

ssrdunlg, s44d

respectively[consult Ref.[41], Eq. (3.113)].
The diamagnetic part of the linear conductivity tensor

[Eq. (42)] has the symmetry of the unit tensor appearing in it,

FIG. 1. Linear optical processes. The leftmost process is dia-
magnetic and does thus not change the spin configuration. The sec-
ond process from the left is the usual paramagnetic process, and it
does not change the spin configuration. The next two processes
from the left change the spin configuration once during the process,
and thus the spin configuration of the ground state. The rightmost
process flips the spin twice during the process, and does not change
the spin configuration of the ground state.
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and thus three nonzero elements in the diagonal which are all
equal to each other. The two other linear conductivities have
in general nine nonzero independent elements. In order to
reduce the number of tensor elements, one can specialize the
treatment to specific systems, which we shall see in Sec. III.

F. Nonlinear spin conductivity

It is favorable to divide the total direct(unscreened) non-
linear optical conductivity tensor into separate parts accord-
ing to the different optical processes that appear when one
takes the trace involved in generating the nonlinear current
density, i.e., we get

SJ = SJA + SJs
A + SJB + SJs

B + SJss
B + SJsss

B + SJC + SJs
C, s45d

which by omission of the spin reduces to the division made
in previous works[42]. The nonlinear current density is ob-
tained as

JNLsr ;2vd = Trhr2jFj + Trhr2jF
sj + Trhr2

sjFj + Trhr2
sjF

sj

+ Trhr2
ssjFj + Trhr2

ssjF
sj +

1

2
Trhr1j1j

+
1

2
Trhr1

sj1j. s46d

The different optical processes involved in creating the non-
linear current density are sketched in Fig. 2. The traces cor-
respond to the nonlinear conductivity tensors as follows: The

first trace contains the processes appearing inSJA andSJB. The
second trace contains the process appearing inSJs

A and the
rightmost process ofSJs

B in Fig. 2. The third trace describes
the two other processes inSJs

B. The fourth trace contains the
leftmost and the rightmost processes ofSJss

B as depicted in
Fig. 2, and the fifth trace contains the centermost process
there. The sixth trace represents the process inSJsss

B . The
seventh trace corresponds toSJC, and the eighth toSJs

C. It is
easy to show(by carrying out the spin summation) that with
our particular basis andH0 all tensor parts with an odd num-
ber of spins are zero.

The processes that end in another spin configuration than
they begin in are only possible if the Hamiltonian allows for
them, e.g., by(i) an inclusion of terms that allow for differ-
ent spin populations in the ground state, such as the spin-
orbit interaction and the exchange coupling, or(ii ) include
two-electron processes where one electron goes from one
spin state to the other at the same time as another electron
goes the other way. The latter point is excluded by the choice
of a single-electron theory. Including either of the above-
mentioned features will result in the fact that all processes in
Fig. 2 should be considered, and additional new processes
would have to be taken into account, since more processes
than those described here become possible.

Thus the nonlinear spin conductivity can be identified as

SJss
B alone. With a little algebra, ending, as in the linear case,

with performing the spin summation, the nonzero nonlinear
conductivity tensors can be identified as

SJAsr,r8,r9;vd =
i

4"v2

e2

me
o
nn8

fn8 − fn

vnn8 − 2v − i/tnn8
kn8ujFsrdunl ^ 1Jknudsr8 − redun8ldsr8 − r9d, s47d

SJBsr,r8,r9;vd = −
1

v2"2 o
nn8n9

1

vnn8 − 2v − i/tnn8
S fn − fn9

vnn9 − v − i/tnn9
−

fn9 − fn8

vn9n8 − v − i/tn9n8
Dkn8ujFsrdunl ^ kn9ujFsr8dun8l

^ knujFsr9dun9l, s48d

FIG. 2. Possible nonlinear optical processes when spin is included consistently in the formalism. The division is done according to the
number of spin flips involved in each process and the different orders of the processes. Under the braces is mentioned which part each
process corresponds to in Eq.(45). The two leftmost and the two rightmost processes are partly diamagnetic, while the rest contains different
combinations of the free current(spin-dependent as well as spin-independent part).
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SJss
B sr,r8,r9;vd = −

1

v2"2 o
nn8n9

1

vnn8 − 2v − i/tnn8
S fn − fn9

vnn9 − v − i/tnn9
−

fn9 − fn8

vn9n8 − v − i/tn9n8
D

3hkn8ujFsrdunl ^ s1Jkn9ujF
ssr8dun8l · knujF

ssr9dun9l − knujF
ssr9dun9l ^ kn9ujF

ssr8dun8ld + s1Jkn8ujF
ssrdunl · kn9ujF

ssr8dun8l

− kn9ujF
ssr8dun8l ^ kn8ujF

ssrdunld ^ knujFsr9dun9l + kn8ujF
ssrdunl · knujF

ssr9dun9l o
iPhx,y,zj

ei ^ kn9ujFsr8dun8l ^ ei

− knujF
ssr9dun9l ^ kn9ujFsr8dun8l ^ kn8ujF

ssrdunlj, s49d

SJCsr,r8,r9;vd = −
1

"v2

e2

me
o
nn8

fn − fn8

vnn8 − v − i/tnn8
kn8udsr − redunl1J ^ knujFsr9dun8ldsr − r8d. s50d

Whereas the three spin-independent terms of the nonlinear
conductivity tensor have quite intuitive structures in terms of
simple outer products, the spin-dependent one[Eq. (49)] is
more complicated in its structure(because of the spin sum-
mation), with a mixture of inner and outer products between
transition current densities. Therefore an overview of the dif-
ferent contributions to each of the 27 generally independent
Cartesian components of the nonlinear spin-dependent con-
ductivity tensor is given in Table I.

Looking at Eqs.(47)–(50) one observes that part B[Eq.
(48)] and the spin part[Eq. (49)] of the nonlinear conductiv-
ity tensor in the general case have 27 nonzero and indepen-
dent elements. Part A[Eq. (47)] has, due to the appearance of
the 333 unit tensor, nine nonzero elements, of which only
three are independent, since elements with indicesjk
P hxx,yy,zzj are equal. Similarly, and for the same reason,
part C [Eq. (50)] has nine nonzero elements, of which three
are independent but here it is elements with indicesi j
P hxx,yy,zzj that are equal.

Reduction of the number of nonzero independent ele-
ments can be done in many ways by selecting different

physical systems to investigate, i.e., by applying a specific
set of symmetries and translational invariance(discrete or
continuous). The simplest possible system leading to a non-
zero result is the homogeneous electron gas, which we hence
will discuss in the following.

III. SPIN CONDUCTIVITY IN A HOMOGENEOUS
ELECTRON GAS

A. Translational invariance

In the homogeneous three-dimensional electron gas
(3DEG), there is translational invariance in all three dimen-
sions, and atq=0 it is also inversion symmetric. Thus the
conductivity tensors become functions of the relative dis-
tances between coordinates rather than the coordinates them-

selves, i.e.,sJsr ,r8d→sJsr −r8d, and SJsr ,r8 ,r9d→SJsr −r8 ,r
−r9d. The presence of a finiteq breaks the inversion symme-
try and thus allows for nonlinear optical processes to take
place.

The translational invariance in all three dimensions makes
it natural to express the various vector and tensor quantities

TABLE I. An overview of which terms contribute to which tensor element ofSJss
B . The first column lists the different indicesj andk, the

second to fourth columns list the different contributions to elements withi =x, i =y, and i =z, respectively. In the latter three columns,
abbreviations have been used in the following way: A bar over a symbol indicates that it is a component of a matrix element of the
spin-independent transition current densityjF , taken in the Cartesian direction of the symbol, i.e., alongx,y, or z. The others(without bars)
are components of a matrix element of the spin-dependent transition current densityjF

s , with the same rule as before. The primes refer to the
index of the spatial coordinatesr ,r8, andr9, respectively. As can be observed from this table, no two tensor elements have moduli equal to
each other in the general case.

jk i =x contains i =y contains i =z contains

xx x̄z8z9+ x̄y8y9+zz8x̄9+yy8x̄9+yx̄8y9+zx̄8z9 ȳz8z9+ ȳy8y9−xy8x̄9−xx̄8y9 z̄z8z9+ z̄y8y9−xz8x̄9−xx̄8z9
xy −x̄y8x9+zz8ȳ9+yy8ȳ9−yx̄8x9 −ȳy8x9−xy8ȳ9+xx̄8x9+zx̄8z9 −z̄y8x9−xz8ȳ9−yx̄8z9
xz −x̄z8x9+zz8z̄9+yy8z̄9−zx̄8x9 −ȳz8x9−xy8z̄9−zx̄8y9 −z̄z8x9−xz8z̄9+xx̄8x9+yx̄8y9
yx −x̄x8y9−yx8x̄9+yȳ8y9+zȳ8z9 −ȳx8y9+zz8x̄9+xx8x̄9−xȳ8y9 −z̄x8y9−yz8x̄9−xȳ8z9
yy x̄z8z9+ x̄x8x9−yx8x̄9−yȳ8x9 ȳz8z9+ ȳx8x9+zz8ȳ9+xx8ȳ9+xȳ8x9+zȳ8z9 z̄z8z9+ z̄x8x9−yz8ȳ9−yȳ8z9
yz −x̄z8y9−yx8z̄9−zȳ8x9 −ȳz8y9+zz8z̄9+xx8z̄9−zȳ8y9 −z̄z8y9−yz8z̄9+xȳ8x9+yȳ8y9
zx −x̄x8z9−zx8x̄9+yz̄8z9+zz̄8z9 −ȳx8z9−zy8x̄9−xz̄8y9 −z̄x8z9+xx8x̄9+yy8x̄9−xz̄8z9
zy −x̄y8z9−zx8ȳ9−yz̄8x9 −ȳy8z9−zy8ȳ9+xz̄8x9+zz̄8z9 −z̄y8z9+xx8ȳ9+yy8ȳ9−yz̄8z9
zz x̄x8x9+ x̄y8y9−zx8z̄9−zz̄8x9 ȳx8x9+ ȳy8y9−zy8z̄9−zz̄8y9 z̄x8x9+ z̄y8y9+xx8z̄9+yy8z̄9+xz̄8x9+yz̄8y9
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in a Fourier representation. Thus, for any vector fieldV,

Vsr ;vd =
1

s2pd3 E Vsq,vdeiq·rd3q. s51d

In the three-dimensional Fourier representation the relevant
constitutive relations take the forms

JLsq,vd = sJsq,vd ·Esq,vd s52d

and

JNLs2q,2vd =
1

s2pd3SJs2q,vd:Esq,vdEsq,vd, s53d

respectively, where we have imposed the conditions for
second-harmonic generation, i.e.,(i) the two incoming fields
have the same wave vector, calledq, and (ii ) the generated
second-harmonic field has the wave vector 2q.

It is convenient also to express the wave functioncnsrd as
a Fourier series over all possible values of the wave vector.
The basis set for the space-dependent part of the wave func-
tion may thus be taken in the form

ckn
srd =

1

s2pd3/2eikn·r , s54d

wherek is a real quantity. In both Eqs.(51) and(54) we have
normalized the periodic function for later convenience.

The space-dependent transition current density from state
n8 to staten skn,sujFsrdun8 ,s8l=knujFsrdun8ldss8d, takes, by
means of Eq.(54), the form

knujFsrdun8l = −
1

s2pd3

e"

2me
skn8 + kndeiskn8−knd·r , s55d

in a notation where adequate subscripts have been added to
the wave vectors. Similarly, the spin-dependent transition
current density becomes

knujF
ssrdun8l = −

1

s2pd3

ie"

2me
skn8 − kndeiskn8−knd·r . s56d

Finally,

knudsr − redunl =
1

s2pd3 , s57d

and we should mention that the Fermi-Dirac distribution
function and the transition frequencies becomek dependent,
i.e., since the eigenenergy takes the form

En =
"2

2me
uknu2, s58d

we find

fn ; fnsknd = fnS "2

2me
uknu2D s59d

and

vnn8 =
"

2me
suknu2 − ukn8u

2d. s60d

The latter quantity we will denotevnn8skn,kn8d in the follow-
ing, for brevity.

B. Linear spin conductivity and its relation
to the Lindhard conductivities

In the three-dimensional Fourier space one can construct
relevant direct linear conductivity tensors by combining Eqs.
(20), (51), and(52), giving

sJsq,vd =
1

s2pd3 E sJsR;vde−iq·Rd3R, s61d

R=r −r8, from which the individual parts of the nonlinear
conductivity tensor are then calculated by(i) successive in-
sertion of the relevant conductivity tensor part and Eqs.
(55)–(57), (ii ) integration over ther spaces,(iii ) assume that
different k’s spans a three-dimensional continuum, thereby
allowing us to reduce the number ofk’s to one by integration
and thus remove the remaining index on it, since it is there-
after superfluous,(iv) reorientation of the space in the direc-
tion of q, i.e., q=qex, and (v) since we are working with a
quite simple basis, it also makes sense to reduce our expres-
sions to what they will be for a free-electron gas in the low-
temperature limit[43], and a single relaxation timet. After a
little algebra, the expressions for the linear space conductiv-
ity tensors in a 3DEG appear as

sJAsq,vd =
2ie2

vme
E Qskd

d3k

s2pd31
J, s62d

sJBsq,vd =
ie2"

2me
2v
E Qsk + qexd − Qskd

"sq2 + 2kxqd/2me − v − i/t

3s2k + qexd ^ s2k + qexd
d3k

s2pd3 , s63d

and the spin conductivity,

sJss
B sq,vd =

ie2"q2

2me
2v
E Qsk + qexd − Qskd

"sq2 + 2kxqd/2me − v − i/t

d3k

s2pd3

3f1J− ex ^ exg, s64d

in integral form[compare Eqs.(62) and (63) to Ref. [30]].
Equations(62) and(63) are the famous Lindhard conduc-

tivities [44]. Refined spatial conductivities that let the elec-
tron system relax towards local thermal equilibrium can be
established[45]. A similar refinement can be done for the
spin conductivity.

The analytical solution to these integrals is discussed in
Appendix B. Above, we observe(i) that limq→0sJss

B sq,vd
=0J, and (ii ) that the last term insJss

B sq,vd projects out the
transverse electric field, sinceET'q. This is a remarkable
feature of the spin conductivity, since both the diamagnetic
and the paramagnetic conductivities contribute to both the
longitudinal and the transverse electric fields.
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Performing the integration overk space(see Appendix C),
the longitudinal fsLsq,vd=sAsq,vd+sxx

B sq,vdg and trans-
verse fsTsq,vd=sAsq,vd+syy

B sq,vdg linear conductivities
appear in the usual[29,44,46–48] manner in the sharp limit
st→`d as

sLsq,vd =
3e2nu2

2imev
F1 +

1

4z
Sf1 − su − zd2glnUz− u + 1

z− u − 1
U

+ f1 − su + zd2glnUz+ u + 1

z+ u − 1
UDG , s65d

sTsq,vd =
3ie2n

8mev
Fz2 + 3u2 + 1

−
1

4z
Sf1 − su − zd2g2lnUz− u + 1

z− u − 1
U

+ f1 − su + zd2g2lnUz+ u + 1

z+ u − 1
UDG , s66d

wheren=kF
3 /3p2, u=v /qvF andz=q/2kF are the “classical”

and “quantum-mechanical” nonlocality parameters, respec-
tively, andvF="kF /me is the Fermi velocity of the electron.
In the same representation, the linear spin conductivity be-
comes

sss
B sq,vd =

3e2nz2

2imev
F1 +

1

4z
Sf1 − su − zd2glnUz− u + 1

z− u − 1
U

+ f1 − su + zd2glnUz+ u + 1

z+ u − 1
UDG . s67d

Peculiarly(since it is transverse), the expression for the spin
conductivity is very similar to the longitudinal conductivity.
One observes that

sss
B sq,vd =

z2

u2sLsq,vd. s68d

The factor by which the spin conductivity differs from the
longitudinal conductivity isz/u="q2/2vme squared, and at
q=q0=v /c0, we find that"v=2mec0

2 is the photon energy
required to make the spin conductivity of the same size as

the longitudinal conductivity. That is two times the rest mass
energy of the electron! The nonrelativistic description we are
using is assumed to be valid only for"v!mec0

2. Thus, for
q=q0, the spin contribution to the linear response is vanish-
ing. If, however, we look atq andv as independent variables
(which they can be viewed as in configurations with large
contributions from evanescent waves), we observe that for
large values ofq and small values ofv, z@u, and the spin
contribution is dominating. This we shall substantiate on in a
separate communication.

C. Nonlinear spin conductivity

In the three-dimensional Fourier space one can construct
relevant direct nonlinear conductivity tensors by combining
Eqs.(21), (51), and(53), giving the general expression

SJs2q,vd =
1

s2pd3 E E SsR,R8;vde−iq·sR+R8dd3R8d3R,

s69d

R=r −r8 andR8=r −r9. Performing this convolution integral,
one actually obtains a nonlinear conductivity tensor that de-
pends on two generally differentq’s. Let us call themq and
q8. In our particular case we are interested in the second-
harmonic response, and we chooseq=q8. From Eq.(69), the
individual parts of the nonlinear conductivity tensor are then
calculated using a procedure analogous to that of the linear
conductivity, i.e., by(i) successive insertion of the relevant
conductivity tensor part and Eqs.(55)–(57), (ii ) integration
over ther spaces,(iii ) assume that the differentk’s spans a
three-dimensional continuum,(iv) reorienting the space in
the direction ofq, (v) take a free-electron gas in the low-
temperature limit[43], and a single relaxation timet, and
(vi) taking into account the permutation symmetry between
indices j andk that exist due to the single incoming electric
field. Thus we get

SJAs2q;2vd =
e3

4me
2v2 E Qsk + 2qexd − Qskd

2"sq2 + kxqd/me − 2v − i/t

3sk + qexd ^ 1J
d3k

s2pd3 , s70d

SJBs2q;2vd =
e3"

8me
3v2 E 1

2"kxq/me − 2v − i/t
S Qsk + qexd − Qskd

"sq2 + 2kxqd/2me − v − i/t
−

Qskd − Qsk − qexd
"s2kxq − q2d/2me − v − i/t

D
3k ^ fs2k + qexd ^ s2k − qexd + s2k − qexd ^ s2k + qexdg

d3k

s2pd3 , s71d

SJss
B s2q;2vd =

e3"q2

4me
3v2 E 1

2"kxq/me − 2v − i/t
S Qsk + qexd − Qskd

"sq2 + 2kxqd/2me − v − i/t
−

Qskd − Qsk − qexd
"s2kxq − q2d/2me − v − i/t

D
3 o

iPhy,zj
sei ^ ei ^ k + ei ^ k ^ ei − k ^ ei ^ eid

d3k

s2pd3 , s72d
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SJCs2q;2vd =
e3

4me
2v2 E Qsk + qexd − Qskd

"sq2 + 2kxqd/2me − v − i/t o
iPhx,y,zj

fei ^ ei ^ s2k + qexd + ei ^ s2k + qexd ^ eig
d3k

s2pd3 . s73d

It should be noted here that Eqs.(71) and (72) each have
other representations that in view of Eq.(53) lead to the
same physically observable second-harmonic field, but their
self-symmetry is lower. In contrast, Eq.(73) has a represen-
tation with higher self-symmetry—but in order to make the
nonlinear conductivity tensor represent the overall cylindri-
cal symmetry, the lower-symmetry representation above has
been chosen[compare Eqs.(70), (71), and(73) to the expres-
sions given in Ref.[49]]. The analytical solution to the inte-
grals appearing in Eqs.(70)–(73) is discussed in Appendix B.

The above-mentioned response functions[Eqs. (62)–(64)
and(70)–(73)] can also be used in the description of a semi-
infinite medium [49], but the Friedel oscillations[50] are
lost.

D. Symmetries of the nonlocal conductivity tensors

Part A of the linear conductivity tensor[Eq. (62)] is diag-
onal, i.e.,xx=yy=zz, part B [Eq. (63)] has two independent
nonzero elements, namelyxx andyy=zz, and the linear spin
conductivity tensor[Eq. (64)] reflects the fact that it projects
out the transverse part, i.e., it has one independent nonzero
element,yy=zz. These symmetries are shown in Fig. 3. We
observe from Fig. 3 that the linear spin conductivitycannot
be separated in a measurement, not even differentially. The
reason being that in the total linear conductivity there are
two nonzero elements, namely(i) the one coupling longitu-
dinal input polarization to longitudinal output,sxx=sA+sxx

B ,
and (ii ) the other one that couples transverse input polariza-
tion to transverse output,syy=sA+syy

B +sss
B . The result is

that we end up with two coupled equations with four un-
knowns, making separation impossible.

Letting qiex, we recognize immediately the fact that in
order to give nonzero contributions, the nonlinear conductiv-
ity tensors have to be even iny, as well as inz, reducing the
number of possible nonzero elements from 27 to 7, namely
the elementsxxx, xyy, xzz, yyx, yxy, zzx, zxz.

With this selection, throughout the rest of the paper we
will use the termslongitudinal and transverseelectromag-
netic fields, where a longtitudinal field is parallel toex, and a

transverse field is perpendicular toex. In a cylindrically sym-
metric system this distinction is the logical and minimal one.

Diamagnetic part A of the nonlinear space conductivity
contributes purely to the longitudinal response, and contrib-
utes evenly to this response, no matter which input polariza-
tion is chosen. It does that via the three nonzero elements,
xxx=xyy=xzz, that are equal due to the unit tensor appearing
in the outer product of Eq.(70). It is depicted in the symme-
try scheme Fig. 4(a).

The paramagnetic part B of the nonlinear conductivity
[given by Eq.(71)] has seven nonzero tensor elements, of
which two are independent, since they andz directions are
equivalent. The independent elementxxx is the one that
couples longitudinal input polarization to longitudinal output
polarization. The other independent element,xyy=xzz=yxy
=yyx=zxz=zzx, is responsible for coupling transverse input
to longitudinal output, as well as mixed input to transverse
output. These properties are shown in Fig. 4(b).

The contributions from the nonlinear spin conductivity
can be identified by the terms appearing in the parentheses
appearing after the sum in Eq.(72). The first term contributes
to elementsyyx andzzx, the second term contributes to ele-
mentsyxyandzxz, and the third term contributes to elements
xyyandxzz, giving a total of six nonzero tensor elements. As

FIG. 3. Self-symmetries of the linear nonlocal conductivity ten-
sor, each column corresponding to one tensor part, as shown. The
dots represent elements with zero moduli, while the disks represent
elements with nonzero moduli. Lines connect tensor elements of
equal nonzero moduli.

FIG. 4. Self-symmetries of the nonlocal nonlinear conductivity
tensor, each row corresponding to one tensor part, and each column
to a Cartesian coordinate in the second-harmonic field. Row(a)

corresponds toSJAs2q,2vd, row (b) to SJBs2q,2vd, row (c) to

SJss
B s2q,2vd, and row(d) to SJCs2q,2vd. Elements with equal non-

zero moduli are connected with lines, a dot represents an element
with zero modulus, disks represent elements with nonzero modulus,
and open circles represent elements with equal moduli as the disks
they are connected to, but they have opposite sign.
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can be seen from Eq.(72), the term in front of the sum is the
same for all elements, and inside the sum appear only unit
vectors andk=kex. Thus all six tensor elements have the
same magnitude, but as can be seen from the signs, elements
xyy andxzzhave opposite sign from the others. This is illus-
trated in Fig. 4(c), and we notice in particular that the spin
conductivitydoes notcontribute to the pure longitudinal pro-
cess(it has noxxx element), as in the linear case.

Finally, the diamagnetic part C of the nonlinear conduc-
tivity contributes to two types of processes through its two
different nonzero elements. Looking at Eq.(73), we observe
that it contributes to the pure longitudinal process with an
xxx element, and to the process with mixed input polariza-
tion and transverse output polarization through the element
yxy=yyx=zxz=zzx. The two different nonzero elements are
related by a factor of 2, i.e.,Sxxx

C /2=Syxy
C . The resulting sym-

metry scheme is depicted in Fig. 4(d).
We observe from Fig. 4 that no element of any of the

individual parts of the nonlinear conductivity can be mea-
sured independently. However, unlike in the linear case, this
nonseparability can be broken by differential measurements.
This is so, because it is possible to measure three elements of
the total nonlinear conductivity independently, namely using
the following optical configurations:(i) longitudinal input
polarization with longitudinal response givesSxxx=SA

+Sxxx
B +Sxxx

C , (ii ) transverse input polarization with longitudi-
nal response givesSxyy=SA+Sxyy

B −Sss
B , and (iii ) mixed

transverse and longitudinal input polarization with a trans-
verse response gives usSyxy=Syxy

B +Sss
B +Syxy

C . Adding to
that the fact that we know the relationSxxx

C /2=Syxy
C , we end

up with three equations with three unknowns, from which we
in principle can extract each of the nonzero elements in Fig.
4. Of course, in order to be able to do this, we need both the
amplitude and phase information.

E. Spin conductivities with q and v as independent variables

The integrals appearing in Eqs.(62)–(64) and (70)–(73)
can be solved analytically. The solution is discussed in some
detail in Appendixes B and C. In order to calculate the direct
[52] linear and nonlinear optical conductivities, we still need
to determine the Fermi wave numberkF. In a 3DEG, it is
kF=Î33p2N [see, e.g., Ref.[53], Eq. (2.21)], whereN is the
free-electron density of the 3DEG.

1. Linear conductivity

The moduli of the different elements contributing to the
linear nonlocal conductivity are plotted in Figs. 5(a)–5(d),
while the moduli of the two independent elements of the
complete(sum of all terms) linear conductivity are plotted in
Figs. 5(e) and 5(f). In all plots we are varying the two inde-
pendent variables occurring in Eqs.(62)–(64), namely the
cyclic frequency of the incoming photons in units of the
photon energy"v, and the wave numberq in units of the
Fermi wave numberkF. All calculations have been per-
formed with the electron density and relaxation time of Cu
(N=8.4731028 m−3, t=27 fs, giving kF=1.36 Å−1 [53]).
The phase information has been left out here and in subse-
quent figures for brevity. Since linear and nonlinear optical

processes usually are able to resolve many orders of magni-
tude in the optical response, all figures have been plotted on
a logarithmic scale. To guide the eye, contours are plotted at
every integer order of magnitude, and a line at the bottom of
each figure denotes the position of the vacuum wave number
q=q0=v /c0.

Figure 5(a) naturally reflects the fact that the diamagnetic
linear conductivity[as given by Eq.(62)] does not depend on
q. Figures 5(b) and 5(c) show the two independent nonzero
elements of the paramagnetic linear conductivity,sxx

B and
syy

B , respectively[consult Eq.(63)]. They are roughly of the
same order of magnitude, but the longitudinal onessxx

B d falls
off a bit slower than the transverse onessyy

B d, asv increases.
In Fig. 5(d), the linear spin conductivity shows the expected,
generally much lower, order of magnitude compared to both
the diamagnetic and the paramagnetic conductivities in the
region of largev and smallq. In the region with smallv and
large values ofq, however, it is the dominating contribution
to the total linear conductivity[compare Eqs.(63) and(64)].

Additionally, we observe that there is a region in thev-q
space where the paramagnetic conductivity has a larger mag-
nitude than the diamagnetic conductivity, and regions where
it is opposite. This is illustrated in Fig. 5(e) and 5(f), whereas
the spin conductivity, as expected, leaves no easily recogniz-
able mark on the total linear conductivity in the greater part
of the v-q space. Only in the corner whereq is large andv
small, the order of magnitude of the spin conductivity be-
comes larger than competing components. Figure 5(e) is the
longitudinal conductivity,sxx=sA+sxx

B , and (f) the trans-
verse conductivity,syy=sA+syy

B +sss
B . The transverse con-

ductivity differs slightly from the transverse Lindhard con-
ductivity we presented in Ref.[51], since the contribution of
the spin term alters the result in the corner whereq is large
and v small. This difference may be of importance if one
considers near-field optics at surfaces, where an expansion in
q can be relevant for a given frequencyv (see, e.g., Ref.
[54]). The two small insets(g) and(h) show the results at the
vacuum wave numberq=q0 for (g) the individual parts of
the linear conductivity, and(h) the two independent elements
of the total linear conductivity. No special features are
present forq=q0 in Fig. 5.

Independently of the fact that we have shown that the spin
response in a part of thev-q space is dominating the total
linear conductivity(and the diamagnetic part is dominating
the rest, except for some destructive interference with the
paramagnetic part for smallv and largeq), knowledge of the
linear optical properties is important when we consider the
screened nonlinear optical response later in our treatment
(namely in Sec. IV).

2. Nonlinear conductivity

In Figs. 6 and 7 we have plotted the nonlinear nonlocal
optical conductivity tensors, and as in the linear optical case
they are plotted on a logarithmic scale as functions of the
two independent variablesq (normalized tokF, as before)
and"v.

In the nonlinear optical response, two different diamag-
netic processes contribute to the response, given by Eqs.(70)
and(73). Figure 6(a) shows the modulus of one of them[the
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one given by Eq.(70)], uSAu. The other diamagnetic process,
uSxxx

C u =2uSyxy
C u, is depicted in Fig. 6(f). The paramagnetic

response described by Eq.(71) has, as determined in the
symmetry analysis in Fig. 4, two independent nonzero ele-
ments, anduSxxx

B u is plotted in Fig. 6(b), while uSxyy
B u appears

in Fig. 6(c). The spin conductivityuSss
B u has two different

nonzero elements, but since the difference is only a sign, the
modulus remains the same. It is given by Eq.(73) and plot-
ted in Fig. 6(d).

Looking at the orders of magnitude between the paramag-
netic and spin conductivities, we observe that in most of the

v-q plane, the paramagnetic response prevails. However, at
high photon energies and highq, the spin conductivity be-
comes more important. This is illustrated in Fig. 6(e), where
the two contributions to thexyy element of the nonlinear
conductivity have been added. In the high end of the spec-
trum there is an additional minimum(zero) where the mag-
nitude of the two contributions become equal. In contrast to
this stands theyxy element, where the addition of the spin
contribution changes the amplitude of the response only, and
none of the appearing features in Fig. 6(c) are changed quali-
tatively [thus the relevant plot is essentially the same plot as

FIG. 5. Moduli of the linear conductivity tensor elements plotted as a function of the photon energy"v and the wave number normalized
to the Fermi wavenumbersq/kFd. (a) is the diamagnetic linear conductivityusAu, (b) the longitudinal paramagnetic conductivityusxx

B u, (c) the
transverse paramagnetic conductivityusyy

B u, and (d) the spin conductivityusss
B u. The total linear conductivity tensor(compare to Fig. 3)

elementusxxu = usA+sxx
B u is depicted in(e), andusyyu = usA+syy

B +sss
B u in (f). Contours are plotted at every integer order of magnitude, and at

the bottom of these plots is drawn a line at the vacuum wave numberq0. The insets show the results atq=q0, where(g) shows the individual
elements[as given in(a)–(d)] and (h) the total xx and yy elements[(e) and (f)]. (g) and (h) are cut off to the right atq0=kF s"v
=2.68 keVd.
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Fig. 6(c)]. Apart from this influence from the spin, if we look
at the diamagnetic contribution in Fig. 6(f), we also expect
this to give a significant contribution to the total nonlinear
optical conducitivity in elements where it is present(and thus
not to thexyyelement). As in the linear case, we have shown
the results atq=q0 in the two small insets(g) and (h).

In order to get sufficient accuracy at the edges of the
nonlinear conductivities, most notoriously at high photon en-
ergies and low values ofq (roughly in the area of the lower
right corner larger than 10q0) we had to go beyond the nu-

merical precision given by the IEEE 754 standard[55]. We
have done so by making use of Smith’s multiple-precision
FORTRAN90 routinesFMLIB1.2 [56], and sufficient computer
precision was reached with a 60-digit mantissa.

To complete the picture of the nonlinear optical conduc-
tivity tensor, we have in Fig. 7 plotted the moduli of the three
resulting independent nonzero tensor elements when all con-
tributions are added. Figure 7(a) shows the modulus ofuSxxxu,
which is responsible for the coupling of the longitudinally
polarized incoming field to a longitudinally polarized

FIG. 6. Moduli of the nonlinear conductivity tensor elements are plotted as a function of the incoming photon energy"v and the wave
numberq normalized to the Fermi wave numberkF. (a) is the diamagnetic conductivityuoAu, (b) the paramagnetic conductivity tensor
elementuoxxx

B u, (c) the paramagnetic conductivity tensor elementuoxyy
B u, (d) the spin conductivityuoss

B u, (e) the sum of the paramagnetic and
spin conductivitiesuoxyy

B +oss
B u, and(f) the diamagnetic conductivityuoxxx

C u. Contours are plotted at every integer order of magnitude, and at
the bottom of each plot is drawn a line at the vacuum wave numberq0. The insets(g) and (h) show results atq=q0, (g) for the individual
elements of the conductivity tensor[compare(a)–(d) and(f)], and(h) for the paramagneticxyyelement, the spin element, and the sum of the
two [compare(c)–(e)] in the region where a comparison is of interest.(g) and(h) are cut off to the right atq0=kF , as before(parts of this
figure first appeared in Ref.[51]).
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second-harmonic field. A glance at Fig. 4 tells us that it con-
sists of the paramagnetic and the diamagnetic terms, but is
without contribution from the spin term. We observe that the
influence of the diamagnetic response is dramatic, effectively
enhancing the feature around 0.01q0 in the spectrum. In Fig.
7(b), the magnitude of the tensor element responsible for the
coupling from a pure transversely polarized input field to a
pure longitudinally polarized second-harmonic field is plot-
ted, i.e., uSxyyu. This tensor element has contributions from
only one of the diamagnetic terms, but also from both the
paramagnetic and the spin terms, as one recognizes from Fig.
4. Comparing to Fig. 6(e) we observe that the additional
inclusion of the diamagnetic contribution removes the mini-
mum that was present in the high end of the photon energy
scale, but introduces changes to the part of the figure with
low v and highq. Figure 7(c) shows the last of the three
nonzero tensor elements,uSyxyu. It is responsible for the cou-
pling of an input field with mixed longitudinal and transverse
polarization to a second-harmonic field with transverse po-
larization. Here, Fig. 4 tells us that the other diamagnetic
term contributes to the response in addition to the paramag-
netic conductivity and the spin conductivity. Furthermore,
the spin contribution has changed sign compared to thexyy
element.

IV. RESPONSE TO A TRANSVERSE EXTERNAL
ELECTROMAGNETIC FIELD

A. Local-field loop: General system

From the outset we assume that the parametric approxi-
mation can be adopted, i.e., we assume that the generated
second-harmonic field does not affect the dynamics of the
incident field. This approximation can be regarded as good,
except for extremely high intensities or short time scales.

Before combining Eqs.(19) and(20) we convert Eq.(19)
into an integral equation, namely

ENLsr ;2vd = Eextsr ;2vd

− i2m0vE GJ0sr − r8;2vd ·JLsr8;2vdd3r8,

s74d

whereEextsr ;2vd is the so-called external(ext) field driving

the second-harmonic process, andGJ0sr −r8 ;2vd is the elec-
tromagnetic vacuum propagator taken at 2v. A discussion of
the electromagnetic vacuum propagator can be found in, e.g.,
Ref. [41], including how it is treated at the space pointr
−r8=0 [we give the explicit form ofGJ0sr −r8 ;2vd for three-

FIG. 7. Moduli of the three independent nonzero elements of the total nonlinear conductivity(compare Fig. 4 to see which elements
contribute) tensor.(a) shows the tensor elementuoxxxu, (b) the tensor elementuoxyyu, and(c) the tensor elementuoyxyu. Contours are plotted
at every integer order of magnitude, and at the bottom of each plot is drawn a line at the vacuum wave numberq0. (d) shows the results in
(a)–(c) for q=q0, cut off in the high end atq0=kF , as before.
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dimensional translationally invariant systems in Eq.(85)].
The last term of Eq.(74) accounts for the linear propagation
of the generated fieldENLsr ;2vd through the nonlinear me-
dium [JLsr8 ;2vd depends onENLsr ;2vd, and thus Eq.(74) is
self-consistent]. From a knowledge of the nonlinear part,
JNLsr ;2vd, of the current density of the active medium, the
external field can be calculated from the integral relation

Eextsr ;2vd = − i2m0vE GJ0sr − r8;2vd ·JNLsr8;2vdd3r8.

s75d

In the parametric approximation adopted here the external
field can be considered as a prescribed quantity. By inserting
the linear constitutive equation[Eq. (20)] into Eq. (74) one
obtains the following integral equation for the second-
harmonic field:

ENLsr ;2vd

= Eextsr ;2vd − i2m0v

3E E GJ0sr − r9;2vd · sJsr9,r8;2vd ·ENLsr8;2vd

3d3r9d3r8. s76d

The formal solution of this equation is given by

ENLsr ;2vd =E GJsr,r8;2vd ·Eextsr8;2vdd3r8, s77d

where the nonlocal field-field response tensorGJsr ,r8 ;2vd is
to be derived from the dyadic integral equation

GJsr,r8;2vd = 1Jdsr − r8d +E KJsr,r9;2vd · GJsr9,r8;2vdd3r9.

s78d

In Eq. (78) the tensor

KJsr,r9;2vd = − i2m0vE GJ0sr − r8;2vd · sJsr8,r9;2vdd3r8

s79d

is the kernel of the integral equation(76). This kernel is
formally identical to the one playing a prominent role in the
electrodynamics of mesoscopic media and small particles
[41].

By insertion of Eq.(75) into Eq.(77) and thereafter mak-
ing use of Eq.(21), the second-harmonic field may in prin-
ciple be calculated from known quantities. To solve the
local-field loop for the linear response, one simply replaces
NL with L and 2v with v in Eqs.(74)–(79) above.

In cases where the local field deviates only slightly from
the external field the combination of Eqs.(19) and (20) is
solved iteratively. In the first Born approximation, often em-
ployed in macroscopic electrodynamics the solution is

ENL
s1d sr ;2vd

= Eextsr8;2vd − i2m0v

3E GJ0sr − r8;2vd · sJsr8,r9;2vd ·Eextsr9;2vd

3d3r9d3r8, s80d

the second Born approximation gives

ENL
s2d sr ;2vd

= Eextsr8;2vd − i2m0v

3E GJ0sr − r8;2vd · sJsr8,r9;2vd ·ENL
s1d sr9;2vd

3d3r9d3r8, s81d

and so on, and so forth.
If one wishes to go beyond the above-mentioned series of

Born approximations, a procedure one can apply in order to
achieve a numerical solution to Eq.(76) is the so-called
“coupled antenna theory,” in which the separability of the
spatial coordinates insJsr ,r8d is in focus. This separability
makes it possible to rewrite the integral equation problem as
a matrix problem involving the energy eigenstates of the
electronic system. For details, we refer interested readers to
Ref. [41].

B. Local-field loop: Homogeneous system

If one wishes to do an experimental observation of these
phenomena, it is necessary also to consider the influence of
the electronic screening. The convolution integral[Eq. (79)]
has the Fourier-space representation

ELsq,vd = EL
extsq,vd − im0vGJ0sq,vd · sJsq,vd ·ELsq,vd,

s82d

ENLs2q,2vd = ENL
exts2q,2vd

− i2m0vGJ0s2q,2vd · sJs2q,2vd ·ENLs2q,2vd,

s83d

whereEL
extsq,vd is the external(laser) field, and

ENL
exts2q,2vd = − i2m0vGJ0s2q,2vd ·JNLs2q,2vd. s84d

The electromagnetic propagator contains both a transverse
and a longitudinal part, and its Fourier amplitude can be
written [see Ref.[57], Eq. (50)] as a sum of a transverse
propagator and a longitudinal self-field propagator,

GJ0sq,vd =
1J− eq ^ eq

q0
2 − q2 +

eq ^ eq

q0
2 , s85d

whereq0=v /c0 is the free-space wave vector. In a homoge-
neous electron gas withqiex, it becomes
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GJ0sq,vd =
1

q0
2 − q2F1J−

q2

q0
2ex ^ exG . s86d

Since bothGJ0 and sJ are diagonal here, the self-consistent
solution to the electrodynamics is reduced to an algebraic
one, namely

EL,isq,vd =
EL,i

extsq,vd
1 + im0vG0,iisq,vdsiisq,vd

, s87d

ENL,is2q,2vd =
ENL,i

ext s2q,2vd
1 + i2m0vG0,iis2q,2vdsiis2q,2vd

,

s88d

∀i P hx,y,zj. Expressing also the latter one in terms of the
laser field, we find by insertion of Eq.(84)

ENL,is2q,2vd =
1

s2pd3o
jk

− 2im0vG0,iis2q,2vdSi jks2q,2vd
1 + 2im0vG0,iis2q,2vdsiis2q,2vd

3
EL, j

extsq,vd
1 + im0vG0,j jsq,vds j jsq,vd

3
EL,k

extsq,vd
1 + im0vG0,kksq,vdskksq,vd

. s89d

The screened linear and nonlinear optical conductivities can
then be found by comparing the current densities
JL

scrsq,vd=sJs2q,2vd ·ELsq,vd and JNL
scrs2q,2vd

=sJs2q,2vd ·ENLsq,vd, respectively, to the need of express-
ing these quantities in terms of the laser fieldfEL

extsq,vdg
rather than the self-consistent fields. Thus the current gener-
ated at the detector in terms of the laser field is written

JL
scrsq,vd ; jJsq,vd ·EL

extsq,vd, s90d

JNL
scrs2q,2vd ;

1

s2pd3Js2q,2vd:EL
extsq,vdEL

extsq,vd,

s91d

where we have defined screened linearsjJd and nonlinearsJJ d
nonlocal conductivity tensors in terms of the nonscreened
ones, i.e.,

jiisq,vd =
siisq,vd

1 + im0vG0,iisq,vdsiisq,vd
, s92d

Ji jks2q,2vd = −
2im0vsiis2q,2vdG0,iis2q,2vdSi jks2q,2vd

1 − 2im0vG0,iis2q,2vdsiis2q,2vd

3
1

1 + im0vG0,j jsq,vds j jsq,vd

3
1

1 + im0vG0,kksq,vdskksq,vd
. s93d

It is important here to underscore the fact that the above-
mentioned screened linear and nonlinear optical conductivity
tensors fulfil the Kramers-Kronig relations and the Einstein

causality, while the unscreened ones in general do not.
The relevant observable is the intensity of the outcoming

electromagnetic fields. It is calculated as

Isq,vd =
«0c0

2

Esq,vd ·Epsq,vd
s2pd6 < 2.163 10−8uEsq,vdu2,

s94d

where the factor ofs2pd−6 arises from the way we have
defined the electric field.

1. Linear response

As with the direct conductivities, let us consider the linear
optical response first. Thus, in Fig. 8, moduli of the screened
linear optical conductivities are plotted as functions of the
photon energy and the normalized wave numberq/kF. Fig-
ures 8(a) and 8(c) show the full screened linear tensor ele-
ments,ujxxu and ujyyu, respectively, i.e., all terms are included
both above and below the division line in Eq.(92). In all
other plots, whenever a term is neglected, it is neglected both
above and below this division line. To see the influence of
the different nonparamagnetic terms on the normally as-
sumed dominating paramagnetic contribution, we have in
Fig. 8(b) plotted ujxxu taking into account only the paramag-
netic contribution. Similarly, in Fig. 8(d), the spin contribu-
tion to ujyyu is neglected, in Fig. 8(e) the diamagnetic contri-
bution toujyyu is neglected, and in Fig. 8(f), both the spin and
the diamagnetic contributions toujyyu are neglected. We ob-
serve that also in the screened linear conductivity the spin
contributes to the response in the region wherev is small
andq is large[compare Figs. 8(c) and 8(d)]. The diamagnetic
contribution is again the dominating one. Additionally, we
notice the presence of resonances, which we shall discuss at
the end of this section.

In order to emphasize the behavior atq=q0 (at a group
velocity of c0) [58], we have in Figs. 8(g) and 8(h) plotted
the results of Figs. 8(a)–8(f) at q=q0. Figure 8(g) also re-
veals the bottom of the resonance observed in(c), and espe-
cially ujyyu appears quite different in the general overview
plot in v-q space than atq=q0. This is a very deep and
narrow creek inv-q space, and impossible to show to its full
extent in a general overview.ujxxu, on the other hand, reveals
no additional information atq=q0. To access the restsq
Þq0d of the v-q space, one in general has to resort to using
so-calledevanescent waves. In Fig. 8(h) we observe the ef-
fect on ujyyu, should one neglect the spin term, the diamag-
netic term, or both, when considering onlyq0. It shows that
at q=q0, only the energy range above around 500 eV reveals
the difference, and thus one might be led to conclude that the
influence of spin and diamagnetism is very small. This is in
contrast to the conclusion one can draw from the overview
figures, where(i) it is visible that the spin contributes in the
region of low photon energies and high values ofq [(c) vs
(d)], (ii ) there are collective resonances present(see Sec.
IV B 3 below), and(iii ) the magnitude is in most of thev-q
space much larger when spin and diamagnetism are included.
Hence, if evanescent waves are used, diamagnetic(and at
low frequencies also the spin) contributions should not be
neglected.
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2. Nonlinear response

Having presented the screened linear conductivity we can
go on with the nonlinear one, described by Eq.(93). We
notice that in Eq.(93), the screened nonlinear optical re-
sponse contains linear responses at the fundamental and the
second-harmonic frequencies in the screening term. Thus the
linear optical properties have an influence on the nonlinear
optical properties in this way.

In Fig. 9 we have plotted the moduli of the screened non-
linear nonlocal conductivity tensor elements, with the com-
plete tensor elements in the left column and the correspond-
ing ones for the pure paramagneticsPd response(i.e., all

diamagnetic and spin terms are neglected, also in the screen-
ing) in the right column. The upper row shows these two
cases foruJxxxu, the middle row foruJxyyu, and the lower row
for uJyxyu. As in the linear case, we have emphasized the
result atq=q0, showing in Fig. 9(g) the full tensor elements,
and in Fig. 9(h) the paramagneticsPd contributions. We ob-
serve that screening has an influence on all three tensor ele-
ments, although for those leading to a longitudinal response
(uJxxxu and uJxyyu) it is not as dramatic as in the one leading
to a transverse response, i.e., inuJyxyu. Additionally, we ob-
serve that neglecting the spin and the diamagnetic parts leads
to significant changes in the slopes(rate of falloff with large
v for constantq, i.e., denser contours), although atq=q0 the

FIG. 8. Moduli of the screened linear conductivity. In(a), it is ujxxu with all terms included, while in(b) the diamagnetic term is neglected.
In (c), it is ujyyu with all terms included, while in(d) the spin term is neglected, in(e) the diamagnetic term is neglected, and in(f) both the
spin and diamagnetic terms are neglected. Contours are plotted at every integer order of magnitude, and at the bottom of each plot is drawn
a line at the vacuum wave numberq0. The insets(g) and (h) show the results forq=q0, corresponding to the plots(a)–(c) and (c)–(f),
respectively.
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only difference appears to be in the order of magnitude of the
results.

The effect of neglecting either diamagnetism or spin, in
stead of none or both of them, is illustrated in Fig. 10.uJxxxu
does not contain contributions from the spin, so neglecting
the diamagnetic term is equal to just considering the para-
magnetic response, as shown in Fig. 9(b). Figure 10(a)
shows the modulus ofuJxyyu when spin is included and dia-
magnetism is neglected(ND), while in Fig. 10(b), it is op-
posite (NS). Similarly, Fig. 10(c) contains the modulus of
uJyxyu when spin is included and diamagnetism is neglected,

and Fig. 10(d) shows the case where it is opposite. Atq
=q0, the results are as shown in Fig. 10(e). Comparing Fig.
10 with Fig. 9, it is evident that neglecting any of the spin or
diamagnetic contributions produces qualitatively different re-
sults than including all of them.

Now that all individual screened nonlinear conductivity
tensor elements have been addressed, it is time to look at the
different possible optical configurations. The incoming light
can be polarized either longitudinally(parallel to q, here
along thex axis) or transversely(perpendicular toq, in they-
z plane). A pure longitudinal input results in a pure longitu-

FIG. 9. Moduli of the screened nonlinear conductivity. The leftmost column shows the full tensor elements, and the rightmost column the
tensor elements arising if only the paramagnetic response is considered. In(a) is a plot of uJxxxu with all terms included, and the same
element with only the paramagnetic contribution is shown as(b). In (c) is shownuJxyyu with all terms included, and the corresponding pure
paramagnetic result is given in(d). Finally, (e) representsuJyxyu with all terms included, and(f) the corresponding pure paramagnetic result.
Contours are plotted at every integer order of magnitude, and at the bottom of each plot is drawn a line at the vacuum wave numberq0. The
insets show the results forq=q0, in (g) for the full screened nonlocal conductivity tensor elements, and in(h) if only the paramagnetic
contributions are included.
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dinal output, and the corresponding result can be directly
derived from Fig. 9(a). Similarly, a pure transverse input also
results in a pure longitudinal second-harmonic output, which
is directly proportional to Fig. 9(c). Thus two of the screened
nonlinear optical conductivity tensors are directly available
in an experimental setup, while the remaining one is not. To
probe the influence ofJyxy, one has to mix longitudinal and
transverse polarization in the input. In the presence of a po-
larizer to select the transverse output polarization, this is di-
rectly proportional to the result shown in Fig. 9(e), whereas
if such a selection is not present, one gets the combined
response ofuJxxx+Jxyy+2Jyxyu (assuming that the two po-
larizations have the same strength, and that the transverse
polarization is along they axis), as shown in Fig. 11. Com-
paring Figs. 11 and 9 we observe that the sum is essentially
a sum of the magnitudes of the three terms, with no new
features arising from a destructive interference between any
of the terms.

3. Collective resonances

In the screened linear and nonlinear conductivities, collec-
tive resonances are present where the denominators in Eqs.
(92) and (93) become zero, i.e., when

1 + im0vG0,xxsq,vdsLsq,vd = 1 +
isxxsq,vd

«0v
= 0, s95d

in longitudinal screening(nonretarded, called aplasmon
resonance), and when

FIG. 10. Moduli of the screened nonlinear conductivity(compare Fig. 9). The leftmost column shows tensor elements when diamagne-
tism is neglected and spin is included, and the rightmost column shows the tensor elements when the spin contribution is neglected and
diamagnetism is included.(a) and (b) for uJxyyu, while (c) and (d) are for uJyxyu. Contours are plotted at every integer order of magnitude,
and at the bottom of each plot is drawn a line at the vacuum wave numberq0. The inset(e) shows the results forq=q0.

FIG. 11. Modulus of the screened nonlinear conductivity for
mixed longitudinal and transverse input polarization and likewise
mixed output polarization,uJxxx+Jxyy+2Jyxyu. Contours are plot-
ted at every integer order of magnitude, and at the bottom of each
plot is drawn a line at the vacuum wave numberq0. The inset shows
the result atq=q0.
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1 + im0vG0,yysq,vdsyysq,vd = 1 +
isyysq,vd

f1 − sq/q0d2g«0v
= 0,

s96d

in transverse screening(retarded byc0, called aplasmariton
resonance). One should notice that while the longitudinal
screening factor equals thexx component of the relative di-
electric tensor, the transverse screening factordoes notequal
the yy component of this tensor(see Ref.[51]).

Looking at Figs. 8–11, several collective resonances are
present. Theplasmonresonance is varying only slightly with
the value ofq, and appears almost constant just above 10 eV
in Figs. 8–11. Theplasmariton resonances have the same
asymptotic energy forq→0 as the plasmon, while for large
values ofq, their position inv-q space approaches the line of
q=v /c0 asymptotically.

In order to emphasize the effect of the collective reso-
nances, we have in Fig. 12 plotted the screened linear(a) and
nonlinear(b) conductivities in the relevant energy range for
q=0.01kF. In Fig. 12(a) jxxsq,vd (dashed line) features a
plasmon resonance just above 10 eV, while injyysq,vd
(solid line) a plasmariton resonance is present a little to the
right of the minimum that occurs atq=q0. In the nonlinear
conductivities, shown in Fig. 12(b), the plasmon resonance is
again present just above 10 eV. There are two different plas-
mariton resonances present. One appears with double degen-
eracy inJxyys2q,2vd, since it originates in the screening of
the laser field. The other one appears as one out of two
nondegenerate plasmariton resonances inJyxys2q,2vd. It
originates in the second-harmonic field. The “mixed” con-
ductivity contains all three resonances, as one would expect.

V. USING DFT WITH OUR MODEL

It is already well known that in order to describe the
second-harmonic response of centrosymmetric media[59]
one has to go away from the local electric-dipole approxima-
tion. In the present paper, we have shown that inclusion of
the spin and diamagnetic terms influence the nonlinear opti-
cal response, even in a simple model for the bulk response
such as the homogeneous electron gas. We should mention
that the importance of diamagnetism has previously been
stressed for lower-dimensional systems[60,61].

In practical applications of solid-state physics, one of
course has to replace the free-electron gas with, e.g., a bulk
periodic potential and, eventually, include spin-orbit and ex-
change interactions, as well as correlation effects, at which
point not onlyall of the processes of Figs. 1 and 2 will be
present(nonzero), but additional processes will arise explic-
itly. That it is technically feasible to perform calculations of
nonlinear optics from real solid-state systems is indicated in,
e.g., Ref.[62], where the nonlinear optical response of an Fe
monolayer on Cu has been studied using the full-potential
linearized augmented plane-wave(LAPW) [63] method in
the electric-dipole approximation. The additional burden of
including nonlocality in the response should not prevent any
calculation, as we shall indicate in the discussion below.

In the perspective ofab initio calculations with reduced
basis sets, such as the LAPW method, the present results for
the homogeneous electron gas can be seen as a first-order
approximation to the so-calledinterstitial region(LAPW and
other reduced-basis-set methods usually divide space into so-
called muffin tinsaround each atom, inside which an atom-
alone-in-the-world approach is taken, and an interstitial re-
gion comprising everything outside the muffin tins). In order
to complete a treatment relevant for use with LAPW(or any
other bulkab initio method), one would have to rewrite the
theory in terms of this basis set, i.e., in LAPW, spherical
harmonics inside the muffin tins and plane waves with the
inclusion of Bloch functions(for the periodic lattice) in the
interstitial region, and thus also allow for the different
weighting factors of the wave functions that appear. There-
fore one would have to(i) go back to the real-space expres-
sions given in Eqs.(42)–(44) for the linear optical properties,
Eqs.(47)–(50) for the nonlinear optical properties, and Eqs.
(74)–(79) for the treatment of electronic screening effects
[alternatively, Eq.(80) if one wishes to use the shortcut that
the Born approximation provides]; (ii ) insert the desired ba-
sis set(s) and Bloch functions according to the symmetry
present in crystals under consideration; and(iii ) transform
these new expressions intok space as needed.

With the present state of the art[64], and the evolution in
computing power and storage for technical computing, we
believe that calculations of nonlocal optical properties using
ab inito methods are becoming feasible, at least in the region
where the crystal lattice is stable. A possible strategy to per-
form such calculations for real metals involves five steps,
namely (i) to determine the ground state(which computer
codes based on density-functional theory are generally good
at) and converge thek mesh and crystal potential to an ac-
curacy that is sufficient to generate well-converged optical
properties atq=0 [62]; (ii ) to introduce additionalk points at

FIG. 12. Collective resonances are present in the form of plas-
mons and plasmaritons in the screened(a) linear and(b) nonlinear
responses. Results are shown forq=0.01kF. The legend refers to the
individual tensor elements, except “mix,” which refers to Fig. 11.
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k+q, k+2q, etc., as required in the formulas;(iii ) to recal-
culate the ground state with this new set ofk points in order
to produce the corresponding eigenstates,(iv) to calculate the
nonlocal optical responses along thev axis using this set of
eigenstates,(v) to change the value ofq and repeat the pro-
cedure from point(ii ) as needed. This can all be done with a
single self-consistent solution to the crystal potential, ob-
tained in step(i), and the added computing time varies lin-
early with the desired number ofq steps, without resorting to
second variational methods such ask ·p. With careful selec-
tion of the q points, the calculation time can be further re-
duced.

If one wants to use real-spaceab initio codes in order to
calculate the second-harmonic response of clusters or mol-
ecules, the analytic part of the work becomes a lot easier,
since one can start directly with Eqs.(42)–(44), Eqs.
(47)–(50), and Eqs.(74)–(79), once the eigenfunctions and
eigenenergies have been determined.

VI. SUMMARY OF CONCLUSIONS

To conclude, we have presented a theory for calculating
the linear and nonlinear optical properties from the Pauli
Hamiltonian. Special emphasis has been given to the simple
homogeneous electron gas, and numerical results based on
the developed theory have proven that diamagnetism, spin,
and screening are all important ingredients in describing lin-
ear and nonlinear optics more accurately than the common
paramagnetism-only approach. Finally, we have discussed
the relation of our theory to existing numerical methods in
condensed-matter theory, and we have proposed a way of
performingab initio calculations that scale linearly(or bet-
ter) with the number ofq points.

Seeing such interesting effects of the spin already in the
three-dimensional electron gas is certainly an indication that
further effects of the influence of the spin on nonlinear optics
may be revealed if one considers low-dimentional systems
such as the two-dimensional electron gas(quantum well) or
the one-dimensional quantum wire. It is furthermore ex-
pected that these features will be present also in more real-
istic models of solid-state systems.
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APPENDIX A: CURRENT DENSITIES AND TRANSITION
MATRIX ELEMENTS

The microscopic current-density is given by[65,66]

jsr,td = jFsrd + jF
ssrd +

1

2
fj1sr ;vde−ivt + c.c.g, sA1d

where

jFsrd = −
e

2me
fpdsr − red + dsr − redpg, sA2d

jF
ssrd =

ie

2me
fpdsr − red − dsr − redpg 3 s sA3d

are the spin-independent and spin-dependent contributions to
the free(F) current density, respectively,re is the position of
the electron,p operates on there space, and

j1sr ;vd = −
e2

me
Asre;vddsr − red sA4d

is the vector-potential dependent current density, which to-
gether with the second-order interaction Hamiltonian ensures
that we get a gauge invariant result for the single-electron
response.

With the spinor wave functions of Eq.(31), the transition
matrix elements for the current densities become

kn,sujFsrdun8,s8l = −
e"

2ime
scn

*=cn8 − cn8=cn
*ddss8,

sA5d

kn,sujF
ssrdun8,s8l = −

e"

2me
scn

*=cn8 + cn8=cn
*d 3 ksusus8l

;knujF
ssrdun8l 3 ksusus8l, sA6d

and

kn,suj1sr ;vdun8,s8l = −
e2

me
knudsr − redun8ldss8Asr ;vd.

sA7d

Above, we have defined a new quantity,knujF
ssrdun8l, in order

to separate the spin and space contributions.
The matrix elements of the different terms in the interac-

tion Hamiltonian thus become

kn,suH1sr ;vdun8,s8l = −E knujFsrdun8ldss8 ·Asr ;vdd3r ,

sA8d

kn,suH1
ssr ;vdun8,s8l = −E kn,sujF

ssrdun8,s8l ·Asr ;vdd3r

= −E knujF
ssrdun8l

3 ksusus8l ·Asr ;vdd3r . sA9d

With two spin states, says1= s 1
0

d and s2= s 0
1

d, there are four
combinations of ksusus8l, namely ks1usus1l=ez, ks1usus2l
=Î2e−, ks2usus1l=Î2e+, and ks2usus2l=−ez, where e±

=sex± ieyd /Î2.

APPENDIX B: INTEGRALS IN THE 3-D ELECTRON GAS

Below, we discuss the analytic solution to the integrals
overk appearing in the linear[Eqs.(62)–(64)] and nonlinear

SPIN AND DIAMAGNETISM IN LINEAR AND … PHYSICAL REVIEW A 70, 043806(2004)

043806-21



[Eqs.(70)–(73)] conductivity tensors in the low-temperature
limit. Every integral overk in both the linear and the non-
linear conductivity tensor can, whenqiex, be expressed as a
sum over terms of the general type

Fpvr
b shaj,hbj,sd =E E E kx

pky
vkz

r fsk + sexd

p j=1

b
fajkx + bjg

dkxdkydkz,

sB1d

wherep,v ,r , j ,b are nonnegative integers, and the integra-
tion runs over the wholek space. The functions in general
depend on(i) a set of real quantities,haj;ha1, . . . ,abj ap-
pearing in front of the integration variablekx in the denomi-
nator, (ii ) a set of complex nonzero quantities,hbj
;hb1, . . . ,bbj appearing as the other quantity in each term of
the denominator, and(iii ) the real quantitys representing the
displacement of the center of the Fermi-Dirac distribution
function sphere fromskx,ky,kzd=s0,0,0d. The quantitys to-
gether with each element in the sethaj is in general a func-
tion of the wave vectors,q andk. Each element in the sethbj
is furthermore a function oft, the relaxation time.

One observes that in Eq.(B1) a cylindrical symmetry is
present in the Cartesian coordinate system, because the two
directionsy and z are equivalent in a 3DEG whereqiex.
However, in the low-temperature limit the Fermi-Dirac dis-
tribution function is zero outside the Fermi sphere and equal
to one inside, and it is therefore advantageous to shiftkx by
−s, followed by a one-to-one mapping of the Cartesian coor-
dinate system intosphericalcoordinatessr-f-ud. Although
the above-mentioned cylindrical symmetry is thereby re-
moved in the expressions, it should obviously appear again
after integration. This property can thus be used to check the
results. Using in this way kx=r sin f cosu, ky
=r sin f sin u, and kz=r cosf, we calculate the Jacobian
determinant for this mapping, and thusdkxdkydkz
=r2sin fdrdfdu. Thereby the indefinite integral in Eq.(B1)
is turned into the definite integral

Fpvr
b shaj,hbj,sd =E

0

kF

E
0

p

E
0

2p

r2sin fsr sin f cosu − sdp

p j=1

b
fajsr sin f cosu − sd + bjg

3sr sin f sin udvsr cosfdrdudfdr.

sB2d

Looking at the relevant equations for the conductivity ten-
sors, we observe thatsJA has no denominator. The properties
of the others are summarized in Table II. It reflects the con-
sequences of the cylindrical symmetry in the Cartesian coor-
dinate system. Therefore, integrals with indicessv ,rd
=s0,2d gives the same results as for indicessv ,rd=s2,0d,
and we may choose to drop one of them, sayv, by setting
v=0 and definingFpr

b ;Fp0r
b . A further reduction in the com-

plexity of the total solution is possible, since functions with
b=2 can be expressed in terms of functions withb=1 in the
following way:

Fpr
2 sa1,a2,b1,b2,sd =

a1Fpr
1 sa1,b1,sd − a2Fpr

1 sa2,b2,sd
a1b2 − a2b1

,

sB3d

aj Þ0, j P h1,2j. If any aj, say,a1, is zero, we observe from
Eq. (B2) that the order(in kx) of the denominator is de-
creased by one, and thus, thatFpr

2 s0,a2,b1,b2,sd
=Fpr

1 sa2,b2,sd /b1.
As a consequence of the interchangeability of the indices

v andr, and of Eq.(B3), the integrals appearing can now be
written in terms of functions of the type

Fpr
1 sa,b,sd =E

0

kF E
0

p E
0

2p r2sin fsr sin f cosu − sdp

b − as+ ar sin f cosu

3sr cosfdrdudfdr, sB4d

dropping the now superfluous index ona andb. Before solv-
ing Eq. (B4) in the cases needed, let us mention that in the
special case wherea=0 (i.e., whenq=0), the solution is

TABLE II. Identification of the ordersp, v, r, and b of the generalized type of integrals[Eq. (B1)]
appearing in the different parts of the linear and nonlinear conductivity tensors. The comma between numbers
in p indicates the different values it can take.v, r, andb, on the other hand, are unique for each element. In
the Cartesian coordinate system,ky=kz=k' whenkx=kiiq. Thusv and r are interchangeable.

Tensor Element Order-deciding part p v r b

sJB xx 4ki
2+4kiq+q2 0,1,2 0 0 1

yy=zz 4k'
2 0 0 2 1

sJss
B yy=zz 1 0 0 0 1

SJA xxx=xyy=xzz ki+q 0,1 0 0 1

SJB xxx 4ki
3−kiq2 1,3 0 0 2

xyy=xzz=yxy=zxz=yyx=zzx 4kik'
2 1 0 2 2

SJss
B xyy=xzz −ki 1 0 0 2

yxy=yyx=zxz=zzx ki 1 0 0 2

SJC xxx 4ki+2q 0,1 0 0 1

yyx=yxy=zzx=zxz 2ki+q 0,1 0 0 1
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trivial, and can be left as an exercise to the reader. Thus, after
carrying out the integrals, two specific tests can be applied in
order to verify the results, namely(i) letting a→0 in the final
expressions, and(ii ) showing that an explicit calculation of
sv ,rd=s2,0d in Eq. (B2) gives the results ofF02

1 sa,b,sd and
F12

1 sa,b,sd.
WhenaÞ0, we have to consider the full solution to Eq.

(B4) for the different combinations ofp, v=0, andr men-
tioned in Table II. To solve Eq.(B4), let us make the substi-
tutionsh;sb−asd / sakFd, r;kFu, giving dr=kFdu, and

dr

b − as+ ar sin f cosu
=

1

a

du

h + u sin f cosu
. sB5d

Thereby we get

Fpr
1 =

kF
2+r

a
E
0

1

E
0

p

E
0

2p

u2+rskFu sin f cosu − sdp

h + u sin f cosu

3sin f cosrfdudfdu, sB6d

where for brevity we have left out the reference toa, b, s in
Fpr

1 , since allFpr
1 are functions of exactly one of each of them

from here.
First, we look at the integrals overu. Having Table II in

mind, we observe that the numerator varies as coshu, with
hP h0,1,2,3j and contains only even orders of sinu, which
can be expressed in terms of cosu by use of sin2u+cos2u
=1 [integrals with odd powers of sinu in Eq. (B4) would
vanish anyway if they were present]. Letting w=u sin f, we
thus need to solve the integral

E
0

2p coshu

h + w cosu
du, ∀ h P h0,1,2,3j. sB7d

Using a contour integration along the unit circle, i.e., letting
t=expsiud, we get cosu=st2+1d / s2td and dt/du= i expsiud
= it. Thereby the integral becomes

E
0

2p cosh u

h + w cosu
du =

2

2hiw
R
utu=1

st2 + 1dh

thst − t+dst − t−d
dt, sB8d

with poles att±=−sh /wd±Îsh /wd2−1, and forh.0 also at
t=0. As illustrated in Fig. 13, one pole is outside the unit
circle, and the other two are inside. Using the unit circle as
the integration path, a residue calculation gives[67]

E
0

2p coshu

h + w cosu
du =

p

w
Qsh − 3d +

2p

w
Qsh − 1dS−

h

w
Dh−1

+ S−
h

w
Dh 2p

Îh2 − w2
, sB9d

∀hP h0,1,2,3j, and whereQsxd=0 for x,0 and Qsxd=1
for xù0. Insertion into the relevantFpr

1 functions gives

F00
1 =

2pkF
2

a
E

0

1

u2E
0

p sin f

Îh2 − u2sin2f
dfdu, sB10d

F02
1 =

2pkF
4

a
E

0

1

u4E
0

p sin f − sin3f

Îh2 − u2sin2f
dfdu, sB11d

F10
1 =

2pkF
3

a
E

0

1

u2E
0

p Fsin f − Sh +
s

kF
D sin f

Îh2 − u2sin2f
G

3dfdu, sB12d

F12
1 =

2pkF
5

a
E

0

1

u4E
0

p Fsin f cos2f

− Sh +
s

kF
D sin f − sin3f

Îh2 − u2sin2f
Gdfdu, sB13d

F20
1 =

2pkF
4

a
E

0

1

u2E
0

p FSh2 +
2sh

kF
+

s2

kF
2D sin f

Îh2 − u2sin2f

− Sh +
2s

kF
Dsin fGdfdu, sB14d

F30
1 =

2pkF
5

a
E

0

1

u2E
0

p Fu2

2
sin3f + S3s2

kF
2 +

3sh

kF
+ h2Dsin f

− Sh3 +
3sh2

kF
+

3s2h

kF
2 +

s3

kF
3D sin f

Îh2 − u2sin2f
Gdfdu,

sB15d

and we are left with a number of trivial integrals, and the
three nontrivial ones,

E
0

p E
0

1 uhsinkf

Îh2 − u2sin2f
dudf, sB16d

∀sh,kdP hs2,1d ,s4,1d ,s4,3dj.Using a binomial series ex-
pansion[68] of the square root, i.e.,

s1 + xd−1/2 = o
n=0

`
s− 1dns2n − 1d ! !

s2nd ! !
xn sB17d

and the identity

E
0

p/2

sin2m+1xdx=
s2md ! !

s2m+ 1d ! !
, sB18d

we find, after a little algebra, the solutions

FIG. 13. The poles in the complext-plane in Eq.(B8) are of
order 1 att± and of orderh at t=0, as shown to the left. To the right
is shown the case whereh=0 and the pole att=0 vanishes. The
closed contour shown in each diagram is the integration path used.
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E
0

p

E
0

1

u2sin f

Îh2 − u2sin2f
dudf = o

n=0

`
2

h2n+1

1

s2n + 3ds2n + 1d

=
1

2
Fs1 − h2dln

h + 1

h − 1
+ 2hG ,

sB19d

E
0

p

E
0

1

u4sin f

Îh2 − u2sin2f
dudf = o

n=0

`
2

h2n+1

1

s2n + 5ds2n + 1d

=
1

4
Fs1 − h4dln

h + 1

h − 1
+

2h

3

+ 2h3G , sB20d

E
0

p

E
0

1

u4sin3f

Îh2 − u2sin2f
dudf

= o
n=0

`
2

h2n+1

2n + 2

s2n + 5ds2n + 3ds2n + 1d

=
1

8
Fs1 + 2h2 − 3h4dln

h + 1

h − 1
+ 6h3 − 2hG . sB21d

Looking at the radius of convergence for the sums above, we
can conclude that they are generally convergent in the re-
gime whereqøkF, above which we anyway would be lim-
ited by the model. Since now all relevant integrals have been
solved, we can present the analytic expressions for the rel-
evant combinations ofp, andr of Eq. (B1), as they are listed
in Table II. They are

F00
1 =

pkF
2

a
Fs1 − h2dln

h + 1

h − 1
+ 2hG , sB22d

F02
1 =

pkF
4

4a
Fs1 − h2d2ln

h + 1

h − 1
+

10h

3
− 2h3G , sB23d

F10
1 =

pkF
3

a
H4

3
−

b

akF
Fs1 − h2dln

h + 1

h − 1
+ 2hGJ , sB24d

F12
1 =

pkF
5

a
H 4

15
−

1

4

b

akF
Fs1 − h2d2ln

h + 1

h − 1
+

10h

3
− 2h3GJ ,

sB25d

F20
1 =

pkF
4

a
HS b

akF
D2Fs1 − h2dln

h + 1

h − 1
+ 2hG

−
4

3
S b

akF
+

s

kF
DJ , sB26d

F30
1 =

pkF
5

a H 4

15
+

4

3F b

akF
S b

akF
+

s

kF
D +

s2

kF
2G

− S b

akF
D3Fs1 − h2dln

h + 1

h − 1
+ 2hGJ . sB27d

Finally, we apply the two previously mentioned tests. Calcu-
lation of the limit wherea=0 can conveniently be done using
a power series expansion of the logarithm involved, i.e.,

1

2
ln

h + 1

h − 1
= o

n=0

`
1

s2n + 1dh2n+1 . sB28d

Substitutingh with its original definition and subsequently
letting a=0 in the resulting expressions, we obtain the same
result as if we directly leta=0 in Eq.(B4). To further verify
the solutions, explicit calculations have been carried out, and
they show that, indeed, by interchangingv andr (as given in
Table II) in Eq. (B2) we arrive at the same results as above.
Q.E.D.

APPENDIX C: CONDUCTIVITY TENSORS INTEGRATED

Below, the linear and nonlinear conductivity tensors are
expressed as functions of the general solutions presented in
Appendix B, Eqs.(B22)–(B27).

The diamagnetic linear conductivity tensor[Eq. (62)],
whereb=0, has the solution

sA =
ie2kF

3

3p2vme
. sC1d

In the paramagnetic and the spin-dependent linear conductiv-
ity tensors,b=1, and we get, according to Table II,

sxx
B =

ie2"

16p3me
2v

f4 F20
1 sa,b1,qd − 4 F20

1 sa,b1,0d

+ 4q F10
1 sa,b1,qd − 4q F10

1 sa,b1,0d+ q2 F00
1 sa,b1,qd

− q2 F00
1 sa,b1,0dg, sC2d

syy
B =

ie2"

4p3me
2v

fF02
1 sa,b1,qd − F02

1 sa,b1,0dg, sC3d

sss
B =

ie2"q2

16p3me
2v

fF00
1 sa,b1,qd − F00

1 sa,b1,0dg, sC4d

with a="q/me andb1="q2/ s2med−v− i /t.
The only independent element of part A of the nonlinear

conductivity thus becomes, again referring to Table II,

SA =
e3

32p3me
2v2fF10

1 s2a,b2,2qd − F10
1 s2a,b2,0d

+ q F00
1 s2a,b2,2qd − q F00

1 s2a,b2,0dg, sC5d

with a as above andb2=2"q2/me−2v− i /t. In the paramag-
netic and the spin-dependent nonlinear conductivity tensors,
b=2, and we thus get
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SJB =
e3"

64p3me
3v2fQJ s2a,a,b3,b1,qd − QJ s2a,a,b3,b1,0d

− QJ s2a,a,b3,b4,0d + QJ s2a,a,b3,b4,− qdg, sC6d

SJss
B =

e3"q2

32p3me
3v2fQJ ss2a,a,b3,b1,qd − QJ ss2a,a,b3,b1,0d

− QJ ss2a,a,b3,b4,0d + QJ ss2a,a,b3,b4,− qdg, sC7d

with a as above,b3=−2v− i /t, and b4=−"q2/ s2med−v

− i /t. The nonzero elements of the third rank tensorsQJ and

QJ s are defined using Table II asQxxx=4 F30
2 −q2F10

2 , Qxyy
=4 F12

2 , Qxyy
s =−F10

2 , andQyxy
s =F10

2 , in short notation, since
the argument of the differentQi jk andQi jk

s applies to each of
the Fpr

b -functions appearing.
Finally, the nonzero elements of part C of the nonlinear

conductivity tensor areSyyx
C =Sxxx

C /2, and

Sxxx
C =

e3

16p3me
2v2f2 F10

1 sa,b1,qd − 2 F10
1 sa,b1,0d

+ q F00
1 sa,b1,qd − q F00

1 sa,b1,0dg, sC8d

with a andb1 as defined above. In the sharp limit we get

SAs2q,2vd =
3ne3uz

8me"v2q
H1 +

1

8z
Ff1 − su − 2zd2g

3lnU2z− u + 1

2z− u − 1
U + f1 − su + 2zd2g

3lnU2z+ u + 1

2z+ u − 1
UGJ , sC9d

Sxxx
B s2q;2vd =

3ne3

64me"v2q

u

z2Hsu2 − z2dFf1 − su − 2zd2g

3lnU2z− u + 1

2z− u − 1
U + f1 − su + 2zd2g

3lnU2z+ u + 1

2z+ u − 1
U + 8zG

− 2su2 + 2z2dFf1 − su + zd2glnUz+ u + 1

z+ u − 1
U

+ f1 − su − zd2glnUz− u + 1

z− u − 1
U + 4zGJ ,

sC10d

Sxyy
B s2q;2vd =

3ne3

256me"v2q

u

z2Hf1 − su − 2zd2g2

3lnU2z− u + 1

2z− u − 1
U + f1 − su + 2zd2g2

3lnU2z+ u + 1

2z+ u − 1
U

− 24z3− 2Ff1 − su + zd2g2

3lnUz+ u + 1

z+ u − 1
U + f1 − su − zd2g2

3lnUz− u + 1

z− u − 1
UGJ , sC11d

Sss,xyy
B s2q;2vd =

3ne3u

32me"v2q
H2Ff1 − su + zd2glnUz+ u + 1

z+ u − 1
U

+ f1 − su − zd2glnUz− u + 1

z− u − 1
UG

− Ff1 − su − 2zd2glnU2z− u + 1

2z− u − 1
U

+ f1 − su + 2zd2glnU2z+ u + 1

2z+ u − 1
UGJ , sC12d

Sxxx
C s2q;2vd =

3ne3u

8me"v2q
Fs1 − su + zd2dlnUz+ u + 1

z+ u − 1
U

+ s1 − su − zd2dlnUz− u + 1

z− u − 1
U + 4zG .

sC13d

[1] V. V. Pavlov, G. Tessier, C. Malouin, P. Georges, A. Brun, D.
Renard, P. Meyer, J. Ferre, and P. Beauvillain, Appl. Phys.
Lett. 75, 190 (1999).

[2] A. Kirilyuk, V. Kirilyuk, and T. Rasing, J. Magn. Magn. Mater.
198-199, 620 (1999).

[3] N. N. Dadoenkova, I. L. Lyubchanskii, M. I. Lyubchanskii,
and T. Rasing, Appl. Phys. Lett.74, 1880(1999).

[4] T. Rasing, Appl. Phys. B: Lasers Opt.68, 477 (1999).
[5] T. V. Murzina, E. A. Ganshina, S. V. Guschin, T. V. Misuryaev,

and O. A. Aktsipetrov, Appl. Phys. Lett.73, 3769(1998).
[6] R. Carey, D. M. Newman, and M. L. Wears, Phys. Rev. B58,

14175(1998).

[7] D. Budker, V. Yashchuk, and M. Zolotorev, Phys. Rev. Lett.
81, 5788(1998).

[8] M. Straub, R. Vollmer, and J. Kirschner, Phys. Rev. Lett.77,
743 (1996).

[9] T. Rasing, inNotions and Perspectives of Nonlinear Optics,
edited by O. Keller(World Scientific, Singapore, 1996), pp.
339–369, ISBN 981-02-2627-6.

[10] T. Rasing, M. G. Koerkamp, B. Koopmans, and H. van der
Berg, J. Appl. Phys.79, 6181(1996).

[11] J. Reif, C. Rau, and E. Matthias, Phys. Rev. Lett.71, 1931
(1993).

[12] G. S. Agarwal, P. A. Lakshmi, J. P. Connerade, and S. West, J.

SPIN AND DIAMAGNETISM IN LINEAR AND … PHYSICAL REVIEW A 70, 043806(2004)

043806-25



Phys. B 30, 5971(1997).
[13] Nonlinear Optics in Metals, edited by K. H. Bennemann(Ox-

ford University Press, Oxford, 1998), ISBN 0-19-851893-5.
[14] A. K. Zvezdin and N. F. Kubrakov, Sov. Phys. JETP89, 77

(1999) [Zh. Eksp. Teor. Fiz.116, 141 (1999)].
[15] V. M. Arutunyan, G. G. Adonts, E. G. Kanetsian, and S. T.

Hovsepian, Opt. Appl.27, 151 (1997).
[16] A. V. Petukhov, I. L. Lyubchanskii, and T. Rasing, Phys. Rev.

B 56, 2680(1997).
[17] A. K. Zvezdin, Physica A241, 444 (1997).
[18] U. Pustogowa, W. Hübner, K. H. Bennemann, and T. Kraft, Z.

Phys. B: Condens. Matter102, 109 (1997).
[19] A. Dähn, W. Hübner, and K. H. Bennemann, Phys. Rev. Lett.

77, 3929(1996).
[20] U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann,

J. Appl. Phys.76, 6177(1996).
[21] W. Hübner, Phys. Rev. B42, 11553(1990).
[22] J. P. Dewitz, J. Chen, and W. Hübner, Phys. Rev. B58, 5093

(1998).
[23] J. P. Dewitz and W. Hübner, Appl. Phys. B: Lasers Opt.68,

491 (1999).
[24] As pointed out by Landau and Lifshitz(see Ref.[25], p. 252).

The properties of the multipolar expansion are discussed in
detail in, e.g., Ref.[26] , Chap. 16. How to go beyond this
long-wavelength approximation is discussed in, e.g., Refs.
[27–30].

[25] L. D. Landau and E. M. Lifshitz,Electrodynamics in Continu-
ous Media(Pergamon, New York, 1960).

[26] J. D. Jackson,Classical Electrodynamics(Wiley, New York,
1995), ISBN 0-471-43132-X.

[27] J. E. Sipe and G. I. Stegeman,in Surface Polaritons, edited by
V. M. Agranovich and D. L. Mills (North-Holland, Amster-
dam, 1982), pp. 661–701, ISBN 0-444-86165-3.

[28] A. Bagchi, R. G. Barrera, and A. K. Rajagopal, Phys. Rev. B
20, 4824(1979).

[29] P. J. Feibelman, Prog. Surf. Sci.12, 287 (1982).
[30] G. Mukhopadhyay and S. Lundqvist, Phys. Scr.17, 69 (1978).
[31] J. R. Ackerhalt and P. W. Milonni, J. Opt. Soc. Am. B1, 116

(1984).
[32] E. A. Power and S. Zienau, Philos. Trans. R. Soc. London, Ser.

A 251, 427 (1959).
[33] R. G. Woolley, Mol. Phys.22, 1013(1971).
[34] L. Lorenz,K. Dan. Vidensk. Selsk., Mat.-Fys. Skr.1, 26

(1867); Pogg. Ann.131, 243 (1867); Philos. Mag. 34, 287
(1867).

[35] O. Keller, in Progress in Optics, edited by E. Wolf(Elsevier,
Amsterdam, 2002), Vol. 43, pp. 195–294, ISBN 0-444-
51022-2.

[36] To study the behavior of electrons in an external electromag-
netic field, the usual procedure(minimal coupling) is to re-
placep with p+eA in the Dirac equation(see, e.g., Ref.[37],
Chap. 1)

[37] S. Weinberg,The Quantum Theory of Fields(Cambridge, Uni-
versity Press, Cambridge, 1995).

[38] The magnetic field is usually writtenB==3A, but in this
notation the curl operates only on the vector potential, not on
the wave function, i.e.,Bc=c=3A. In the notationB==

3A+A3=, the nabla operator operates also on the wave
function, i.e.,Bc==3 sAcd+A3=c.

[39] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys.

Rev. Lett. 76, 4250(1996).
[40] T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, Phys. Rev.

Lett. 81, 3120(1998).
[41] O. Keller, Phys. Rep.268, 85 (1996).
[42] O. Keller, Phys. Rev. B33, 990 (1986).
[43] Actually, in the integral form the expressions for the conduc-

tivities are valid also for finite temperature[at finite tempera-
ture one only has to replace the Heaviside unit-step function
Qs¯d with the Fermi-Dirac distribution functionfs¯d] , since
only in the integration step the low-temperature limit is taken.

[44] J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.28,
No.8, 1 (1954).

[45] N. D. Mermin, Phys. Rev. B1, 2362(1970).
[46] K. L. Kliewer, Surf. Sci. 101, 57 (1980).
[47] L. V. Keldysh, D. A. Kirzhnitz, and A. A. Maradudin,The

Dielectric Function of Condensed Systems(North-Holland,
Amsterdam, 1989), ISBN 0-444-87366-X.

[48] O. Keller, Phys. Rev. B43, 10293(1991).
[49] O. Keller, Mater. Sci. Eng., B5, 183 (1990).
[50] J. Friedel, Nuovo Cimento, Suppl.7, 287 (1958).
[51] T. Andersen, O. Keller, W. Hübner, and B. Johansson, Phys.

Lett. A 320, 465 (2003).
[52] By direct conductivitiesis meant that incoming electric fields

are properly screened when they arrive at the relevant space
points, i.e., the conductivities reflect the response to the local
field, not the laser field. Similarly, the response is the local
response, not the response at the site of the detector.

[53] N. W. Ashcroft and N. D. Mermin,Solid State Physics(Holt,
Rinehart and Winston, New York, 1976), ISBN 0-03-
083993-9.

[54] T. Andersen and O. Keller, Opt. Commun.155, 317 (1998).
[55] 754-1985 IEEE Standard for Binary Floating-Point Arithmetic

1985 (IEEE, New York, 1985), ISBN 1-5593-7653-8.
[56] D. M. Smith, ACM Trans. Math. Softw.27, 377 (2001); 24,

359 (1998); 17, 273 (1991).
[57] O. Keller, J. Opt. Soc. Am. B16, 835 (1999).
[58] Strictly speaking, by introducing electrons into the vacuum,

the interactions between the electrons and photons gives rise to
currents, creating a refractive index. Thereby the group veloc-
ity of the light differs fromc0 and thus, in general, in a homo-
geneous electron gas,q*q0.

[59] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys.
Rev. 174, 813 (1968).

[60] A. Liu and O. Keller, Phys. Rev. B49, 13616(1994).
[61] A. Liu and O. Keller, Phys. Scr.52, 116 (1995).
[62] T. Andersen and W. Hübner, Phys. Rev. B65, 174409(2002).
[63] O. K. Andersen, Phys. Rev. B12, 3060(1975).
[64] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz,

WIEN2k, An Augmented Plane Wave Plus Local Orbitals Pro-
gram for Calculating Crystal Properties(Karlheinz Schwarz,
Vienna, 2001), ISBN 3-9501031-1-2.

[65] N. Bloembergen,Nonlinear Optics(W. A. Benjamin, Reading,
MA, 1965), ISBN 0-8053-0938-1.

[66] A. Messiah,Quantenmechanik 2(Walter de Gruyter, Berlin,
1990), ISBN 3-11-012669-9.

[67] T. Andersen and O. Keller, Phys. Rev. B60, 17046(1999).
[68] In Eqs. (B17) and (B18), n! ! is the double factorial(e.g.,

5 ! ! =13335, and 8! ! =2343638), and we have defined
0! ! ;1 ands−1d ! ! ;1, as usual.

ANDERSENet al. PHYSICAL REVIEW A 70, 043806(2004)

043806-26


