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We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the
processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the
terms depending on the electron spin. The resulting general real-space conductivities are presented and dis-
cussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties
of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is
transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a
homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in
which we treatw andq as independent variables, thereby opening the theory to near-field optics and the study
of evanescent waves. We show that in regions ofdhg spectrum, the presence of diamagnetism and spin
dynamics significantly alters the response in comparison to considering only the paramagnetic response. Ad-
ditionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect
the present theory to existing methodsain initio solid-state physics.
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[. INTRODUCTION polar expansionelectric dipole, magnetic dipole, electric
_ ) _ _quadrupole, etg, and (iii) the Born approximation. Aban-
The influence of the electron spin on the nonlinear opticaljoning the refractive-index concept is necessary if the theory
response of condensed matter has to our knowledge so fghould also be applicable to nonhomogeneous media, where
only been described in connection with magnetism, surfacesarge field gradients occur at, e.g., surfaces, interfaces, or
and interfaces. Experimentfl—-13 as well as theoretical impurities. Close to such features it would be impossible to
and numerical studie[d 2—-21 have shown that the presence tell exactly where to change from one refractive index to
of magnetism leads to interesting and significant results. Deanother. Thus it is more appropriate to allow the theoretical
witz, Chen, and HibngR2,23 have performed a theoretical model to include such changes in a more direct manner, in-
treatment of optical second-harmonic generation from magstead of attempting to modify the concept of the refractive
netic thin films within the electric-dipole model, with focus index by, e.g., making it depend on spatial coordinates, wave
on the use of density-functional theofFT) to determine Vectors, time, etc. When the local dipole approximation be-
the material properties. While providing a good starting pointcomes invalid(in both the inversion symmetric extreme of
from a materials science point of view, the limitations of the the bulk, and the extreme of nanostructyyese could resort
electric-dipole model in the description of nonlinear opticall© include the electric quadrupole, magnetic dipole, and

responses from surfaces, interfaces, thin films, and even fgfgher-order terms, but it is difficult to determine where to
terminate the multipolar expansion, and the analytical ex-

the bulk in the presence of inversion symmetry, are well , b ther | Th ho miaht wish to d
known [24]. It is therefore desirable to develop better theo-PreSSIONS beécome rainer fong. 1hose who might wish 1o de-
rive the local multipoles can do so from our formalism using

retlliil/v?\?gf I?rcf)(r)r: t;r? c? pttilc?zill oint of view, magnetism is athe Power-Zienau-Woolley transformatigal-33.
' P P » mag In any microscopic theory of the electromagnetic re-

complicated phenomenon. It depends on the spin-orbit Interéponse one finds a nonlocal constitutive relation, where the

action and the exchange coupling, and it would be quite gggnonse at one pointis related to the field-induced pertur-
complicated step to include everything into a model that bothy 4iqns at neighboring points at earlier times. If the elec-
goes beyond the electric-dipole approximation and allows fofromagnetic field is slowly varying over the neighboring
inclusion of spin-dependent effects in a single-shot approac'boints(for a metal, typically over a few atomsthe zeroth-

In order to better understand the processes that are presentdpyer term of a Taylor series expansion of the electromag-
nonlinear optics, a better starting point would be to include,qiic field atr’, E(r';w), aroundr leads to the local ap-

the spln_-depende_nt_term from the _Paul| Hamiltonian in theproximation(see Ref[29] for a detailed descriptionWhen
description, and limit the s.tudy to simpler metals. the electromagnetic field varies rapidly, as is the case at in-
In the present formulation we .abarlldon.from _the OULSefy faces or when evanescent fields are considered, the zeroth-
some of the usually made approxlmatlipns In optics, 'n.C|Ud'order term of the Taylor series expansion becomes a rather
ing (i) the concept of a refractive indegi) the local multi- poor approximation, and one thus has to go back to a nonlo-
cal description.
Thus in Sec. Il we develop expressions for the linear and
*Electronic address: thor@physik.uni-kl.de second-harmonic nonlocal conductivity responses, starting
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from the microscopic Maxwell equations and the Paulisecond order, andiii) second-harmonic generatiqg®HG)
Hamiltonian. First, we introduce a gauge in order to describg@rocesses in nanostructures such as quantum wells, quantum
the relation between the electric field and the vector potenwires, quantum dots, clusters of atoms, molecules, etc.

tial, leading to a wave equation for the nonlinear optical

response. In the construction of expressions for the relevant A. Choice of gauge

conductivities, the full Pauli Hamiltonian is considered, i.e., . _ : ..
compared to conventional descriptions we include both the 1 N€ starting point for our electrodynamic analysis is the

spin-dependent and the second-order terms of the interactidfl/c'oScoPic Maxwell-Lorentz equations, in which the mate-

Hamiltonian, as well as the corresponding terms in the mi-rIaI response at the space-time poinit) is completely de-

croscopic current density. Finally, we discuss the physicaPCriPed via the microscopic current densityr,t), and the
processes involved in the optical response. In Sec. Ill, wéelated charge density(r,t). If we denote the local electric
apply our theory for the spin conductivities to the homoge-and magnetic fields bf(r,t) and B(r,t), respectively, the
neous electron gas, paving the way for a numerical study oficroscopic field equations are

the influence of diamagnetism and spin on the optical re- JB(r 1)

sponse in the simplest possible system that can be described VXE(r,t)=-——, (1)
within a single-electron theory in the random-phase approxi- Jat

mation. We establish the free-electron gas conductivity ten-
sors in such a way that they obey the cylindrical symmetry
around the optical axis. The resulting conductivities are com-
pared to the Lindhard conductivities in terms of the so-called
classical and quantum-mechanical nonlocality parameters in 1
the sharp limit. We discuss the symmetries of the conductivi- V -E(r,t) = —p(r,1), 3)
ties in the homogeneous electron gas, and finish the section €0

by presenting and discussing numerical results \gitind »

treated as independent variablghis is relevant for near- V-B(r,t)=0, 4

field optics and evanescent wayebhe numerical results are whereeq, o, andcy= (equo)~Y2 are the vacuum permittivity,

focused on the free-electron properties of Cu. While the re- o . . ;
sults in Sec. Il are based onpthg local field. we look at thepermeablllty, and speed of light. To determine the local fields

D ‘one needs in addition to the field equations, equations de-
response to a transverse external electromagnetic field In_ > . . . ;
. ) s scribing the response of the microscopic particles to the pre-

Sec. IV. We begin this treatment by establishing the local-" .. =
vailing field. Here, only the electrons are assumed to be mo-

field qup for the propaga_tion of an external electromagn_eticbile and their dynamics is described quantum mechanically
(lase field to the interaction region, and for the propagation n t’he basis of a single-particle approach. The starting point

of the response to the detector. In terms of the laser field an  our (nonrelativistig calculation of the linear and nonlin-
the field at the detector, we construct the relevant screened

i . . o . ear electron responses hence is the Pauli Hamiltonian
inear and nonlinear optical conductivities frafm the con-

ductivities we found for the local field and@) the screening 1 eh

processes. Numerical results for the screened linear and non-  H =5 —[p+eA(r,H) >+ om? B(r,t) —eu(r,t), (5
linear conductivities are presented and discussed, and the Me Me

section is finished with a discussion of the longitudinal andwherem,, p, —e, and o are the mass, conjugate momentum
transverse collective resonances, the so-cglladmonsand  operator, charge, and spin operator of the electon,7ail
plasmaritons In Sec. V, we discuss how to connect the Planck’s constant divided bys2 In the spin-field interaction
present theory with existing numerical methodsalm initio  term theg factor of the electron has been set to 2. In general
condensed-matter physics, and, finally, in Sec. VI, we conit is not possible to eliminate the gauge dependent vector
clude. [A(r,t)] and scalafU(r,t)] potentials from the Hamiltonian

in favor of theE and B fields. In the present contexsee
Sec. I Q it is adequate to make a particular gauge choice
before carrying out, in a perturbative fashion, the calculation
of the linear and nonlineafsecond-harmonjcelectron re-

We begin by analyzing Maxwells equations and choosingPonses. Since the gauge we use is not the most common
a particular gauge where the dynamical equations for th&ne, let us briefly consider the gauge choice and the resulting
electric field and the vector potential are of the same formdynamical equations foA and U. The usual relations
Following this, we define a constitutive relation for the field- B(r.) =V XA(r,t) and E(r,t)==dA(r,t)/st=VU(r,t) en-
matter interaction, and establish a self-consistent loop for gure that the Maxwell equatioii$) and(4) are automatically
monochromatic local electric field. Then we include the spinsatisfied, and by insertion into the remaining inhomogeneous
into the formalism of the Liouville equation of motion for equations(2) and (3) one obtains the following coupled

19E(rt
V X B(r,t):,u,oJ(r,t)+az)%, 2

Il. DETERMINATION OF GENERAL LINEAR
AND NONLINEAR SPIN CONDUCTIVITIES

the specific gauge and Hamiltonian we have chosen. (standargl equations among andU:

The resulting linear and nonlinear conductivities are espe- 1.9U(r 1)
cially well suited for(but not limited tg the description ofi) OA(r,1) = ued(r,t) = V| V-A(r,H) + — |, (6)
centrosymmetric materialdj) near-field optical processes of Co It
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1 d 19U(r,1) ensures that the equation of continuity for the charge is al-
ou(r,) = ;P(f,t) iy VALY + 2 at | (1) ways fulfilled. It is worth noting that the dynamical equa-
0

tions for A(r,t) in the gauge where the time-dependent part
where[]=(1/c3)?/ >~ V? is the d’Alembertian operator. In  of the scalar potential is set to zero has the same form as the
passing we would like to note for historical reasons that if(usua) wave equation,

the gauge choice of Loreri34,35, namely,

- _ 4J(r,t)
VA + éﬁu;:'t) _o, ® (10+VeV)-E(r,t)= Bo—r (16)
0

for the microscopic electric field. By differentiation of Eq.

is made the resulting wave equations farand U, i.e., i X
(13) with respect to time, and subsequent use)Afr ,t)/ ot

OA=ugJ and OU=p/ey couple only through the equation

of continuity V-J+dp/dt=0 (which is automatically ful- =_E(",)=VUq(r) [and not just the incorrect GA(r,t)/ it
filled). These wave equations, which, together with @&,  =E(",D!] one regains Eq(16).

constitute a dynamical set of field equations completely

analogous to the Maxwell equations were established in B. Wave equation for the nonlinear field

1867 by L. V. LorenZ 34,35 independently of MaxwellThe . - .
covariant form of the classical field equations hence was on | Ne generated nonlinear electric field of frequenayig
the scene of physics in 186TheE andB fields are invariant W/ ten as

under the gauge transformation

1 . —i2w
A'(F, D) — A D = A/(r 1) + VE(T ), (9) Enu(rt) = J[En(r;2w)e™ +c.cl, 17
, o d where “c.c.” denotes the complex conjugate of the first term.
U'(r,) = U,y =u'(r.t) - EF(r’t)' (10) In general E(r,t) is a real quantity, i.e E*(r; w)=E(r;-w).

) ) . . We will assume that the lowest-order nonlinear interaction
whereF is an arbitrary function of andt. If we divide the  gominates over higher-order mixing processes. Expanding
scalar potential into time-independen0) and time-  the current density in a Fourier series in the incoming fre-

dependentT) parts, i.e., quency, the relevant nonlinear current density is
U’ (r,t) = Upg(r) + Ug(r,b), (11) 1
- = . —i2wt
in this work we choose, starting from a general gauge, a In(rt) = Z[JNL(ﬁZw)e' +c.cl, (18

gauge in which the time-dependent partlf(r,t) vanishes

identically—that is, and the linear current density (r,t) is written in a similar
IF(rb) manner. To account for the linear propagation of the second-
——= =U(r,1), (12 harmonic response, the linear current density atcantrib-
at utes. Thus we retain the linear and the lowest-order nonlinear
and thereford) =U}(r) =U,(r). The dynamical equations for contribution. The wave equation for the second-harmonic re-
A(r,t) andUq(r) now take the forms sponse hence takes the form
(D +V& V) A = ud(r,b), (13)

2
M% + Vz) -V® V} -E(r;20) = = i2u0[J (1} 2w)
0

V2Uy(r) = - ip(r,t) - %V A1), (14) + (1 2w)]. (19
€0

- To close the self-consistent loop for the second-harmonic
where[in Eq. (13)] 1 is the 3X 3 unit tensor, and® is the  field, the microscopic current densitied (r;2w) and
dyadic(outen product operator. In the gauge where the time-J,, (r;2w) are given in terms of the local electric field
independent part of the scalar potential is set to zero théhrough constitutive relations describing the field—matter in-
wave equation forA(r,t) does not contaird=Uq(r). The  teraction in a perturbative manner. The linear constitutive
differential equation in Eq(14) which as it stands does con- relation we write in the form
tain bothA andUy may be split into a time-independent part
containing onlyU,, viz.,

JL(r;w):fE(r,r’;w) CE(r w)dr, (20)
) 1
VUy(r) = = —po(r), (15)
€o where o(r,r’; w) is the linear conductivity tensor and the
wherepy(r) is the time-independent part of the microscopicintegration runs over the spatial interaction region. Tite
charge density, and a time-dependent parteg)p+(r,t)= element of the first-order current density is proportional to
-V -A(r,t)/ ot for A(r,t) [p(r,t) being the time-varying the integral of[&’-E]i=2,-aijEj. The second-order constitu-
part of p]. The equation forA(r,t) together with Eq.(13) tive relation is written in a similar fashion, i.e.,
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JNL(r;Zw)=Jf§(r,r',r”;w):E(r’;w)E(r”;w)d3r’d3r”. Hl(r:w)=i[p-A(r;wHA(r;w) -pl, (26)

(21)

. HI(r;w) = ugo - B(r; ) (27)
whereX(r,r’,r"; w) is the nonlocal second-order conductiv- ) . .
ity tensor. The two-dimensional sum—product operator “” is@nd the nonlinear interaction terms are
here meant to be interpreted for thth element of the 2
second-harmonic current density BS:EE]=3;,3;,E E H(r) = EA(“‘*)) AN - o), (28)
i.e.,, i is the resulting coordinatgcorresponds to the
unprimed variables j corresponds to the single-primed vari- &2
ables, andk to the double-primed variables. The electric Ho(r;20) = —A(r; o) Al o), (29)
fields appearing in Eq$20) and(21) can in general be dif- 4me
ferent from each other. Inserting Eq20) and(21) into Eq.

(19) the loop for the second-harmonic field is closed. where ug=ef/(2m,) is the Bohr magneton. For a spin-1/2

particle, such as the electron, the three Cartesian components
of the Pauli spin operator can be represented by the Pauli

C. Spin-dependent Hamiltonian spin matricegthe so-called standard representation
The starting point for this calculation is the Liouville 01 0 —i 10
equation of motion for the single-particle density-matrix op- 0= ( ) o= ( ) o,= ( ) (30)
eratorp, i.e., 10 Y \io 0 -1

_dp taking thez axis as the quantization axis.
IﬁEZ[H,p]. (22

D. Mean current density
In the equation above, the single-particle Pauli Hamiltonian
'H appearing in the commutatfk , p] in the present descrip-
tion is given by

For the sake of interpretational simplicity it is appropriate
to choose a basis where spin and space coordinates are sepa-
rated. Considering the spi{mwithout spin-orbit and exchange

H(r,t) = Ho(r) + H,(r,t) + Hg, (23 interactions, and neglecting correlation effects as et
sponse we make use of a spinor representation of the eigen-

where H,, is the nonrelativistiqSchrodingey Hamiltonian  functions of the field-unperturbed Hamiltonian, i.n,s)
operator for the electron in the material when the perturbing=|n)® |s), and in ther representation, we may write
optical field is absentH, is the electron-photon interaction
Hamiltonian, andHy represents the irreversible coupling to (rlng)=(riny ® |s) (3D
the “surroundings.”Hy(r)=(1/2my)p-p+V(r), whereV is
the potential energy of the electron, vi¢=—eU.

Introducing the vector potential as a sum of two Fourier
components, i.e.,

with ¢,(r)=(r|n), and where we have used the fact that the
eigenenergies are degenerate for our partichlgrThus|n)
and|s) are orthogonal. The Schrodinger equation is then

HO(r)|nvS> =&,

n,s), (32

1 .
A(r,t) = =A(r;w)e"“ + c.c., 24 ,
.9 2 (rie) 29 and for any operatoO that separates into a product of a

space-dependent and a spin-dependent term,Q=20,0,
we may thus write

(n,s0ln’,s") =(n|O;|n"XO,|s"). (33

we divide the interaction Hamiltonian according to the dif-
ferent optical(electron-photopprocesses it describes, i.e.,

1 . Ty —i o 0
H|(r,t):5{[H1(r,w)+H1(r,w)]e' "+ H.a} + Hy(r) Consequently, the matrix representation7g§ is diagonal

(n,s|Holn",8"Y=EnSnw s¢), and
[Ho.pln',8") = (En = Ex)nlpenXSlp,ls).  (34)

whereH; is the part of the interaction Hamiltonian that is Introducing the usual transition frequencyon, =(&,
linear in the vector potentiah(r,t) and independent of the —&.)/#A, the solution to the Liouville equation becomes
spin, H{ is the spin-dependent part of the interaction Hamil-{n|po(r,t)[n")=f(n|n") &y, since the thermal excitation is
tonian, H, is the interaction Hamiltonian of second order in expected to be an incoherent process, and therefore cannot
A(r,t), “H.a.” denotes the Hermitian adjoint. The Hermitian produce coherent superpositions of atomic states
adjoint is found from the relatiofiH(r; w)]"=H(r;—w) for  ((n|pg(r)|n’)=0 for n+n"). It is thus called the thermal equi-
any part of the interaction Hamiltonian, where T stands foidibrium density matrix, which for a fermior{such as the
Hermitian adjugation36]. Hence the linear interaction terms electron is given by the Fermi-Dirac distribution for thermo-
read[38] dynamic equilibrium, i.e.,

+ %[Hz(r;Z(u)e‘iz‘”t +H.al, (25

(n,s
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L <5a—#) -1 - ¢t | t | |n)
(apo(r)fay=fa=|1+ex KT (35) ir ir jﬁ[ kF J'i kg JP i
1 V1 Vot
e

for statea (a is n’ or n above, kg being the Boltzmann ¢ |n')
constantu the chemical potential of the electron system, and ~—~—" “~—y— *~ hnend
T the absolute temperature. o o’ S6 oo

As often is the practice in optics we assume that the irre- _ . o
versible coupling to the surrounding reservoir can be de- FIG. 1. Linear optical processes. The leftmost process is dia-

scribed using a phenomenological relaxation-time ansatz imagnetic and does thus not change the spin configuration. The sec-
the Liouville equation, so that ond process from the left is the usual paramagnetic process, and it

does not change the spin configuration. The next two processes
(n|po(r)|n”y =<{n|p(r,t)In") from the left change the spin configuration once during the process,
) and thus the spin configuration of the ground state. The rightmost
process flips the spin twice during the process, and does not change
the spin configuration of the ground state.
(36 h i fi i f th d

0] =

Thn'

n#n’. It is convenient to expand the density matrix in a
power series in the form(r,t)=po(r) +=_,p,(r,t), wherea
represents the number of incoming photons. The quantit
v N EQ. (36) is the relaxation time associated with the F=A+B+B+B (40)
nn’'th density matrix element. It is in general depending on 7o

both the electron momentum and sp89,4Q. Thus in order Where the subscript indicates the number of spin transition
to describe the different second-order processes we nedédirrent densities contained in the conductivity tensor. The
only the three lowest orders in the power series. The densitglifferent optical processes involved in creating the total lin-
matrix depends, of course, on the electron spin, so it is corgar current density are shown schematically in Fig. 1. Omit-
venient to writep,(r,t) and p,(r,t) in terms of the spin, as ting the spin terms, the division is the usual one, and with

well as in terms of a Fourier series in the frequency of theour particular basis an#, & is identically zero(the basis
incoming field in the manner and Hamiltonian does not allow the ground-state spin of the

electron to change An explicit calculation has confirmed
that this is true after carrying out the spin summation. The
linear current density is to be obtained from

JL(r;w) =Trpoj1} + Tr{paje} + Tr{pfj ¢}, (41

four parts, according to the different optical processes they
)(,iescribe, i.e., into the following parts:

it 0= {lpn(r0) + )™+ Ha), (37

1 )
- 0 = . Tl TO(y . —i2wt
P2, D) = pa(r) + Slpo(r; 20) + p3(r; 20)+ p"(r; 20) Je I where the different microscopic currents are given in Appen-
dix A. The three terms in Eq41) above are the diamagnetic,
+H.a}. (38) paramagnetic, and spin terms, respectively. After a tedious

By knowledge of the matrix element®|po(r)|m) we may but straightforwa_rd insertion qf the relev_ant expre_zssions, fol-
lowed by execution of the spin summation, we find that the

find the matrix elements of the terms of higher order in theh d s of the li ductivity t
power series expansion of the density matrix in the usuajarreee corresponding parts of the linear conductivity tensor

iterative manner.

In order to determine the conductivity response tensors,
a(r,r';w) and f(r,r’ ,I'"; w), appropriate for describing the
second-order processes, we consider the ensemble average
J(r,t) of the microscopic single-particle current-density op- . ¢
eratorj(r,t). This ensemble average is obtained as the trace FB(rr' ) = ﬂz S —
of pj, carried out in the usual manner as a quantum- ho an’ Ony — @ = 1/ Ty
mechanical double sum over states, i.e., ) )

X(n'ligM[m @ (nljg(r)n’),  (43)

J(r,t) = Tr{p(r,)j(r, 1)}

-, 2ie? -
oA(r,r’;w):—meEfn<n|6(r’—re)lnﬂlé(r—r’), (42

~fo

and
= n,sp(r,t)|n’,s"’Xn",s’lj(r,t)in,s). (39 ,
2 SOl XTSI (D a e
. . . i 2| f _f ’ = . .
The microscopic current densigir ,t), as well as the transi == n _ni/T [T’ [iS(n)]ny - (i) In’)
nn’

tion matrix elements between two quantum states can be _%nn, Wppy — @
found in Appendix A. . .
= (nli(r)In") ® (n'[jR([m], (44)

E. Linear spin conductivity respectivelyconsult Ref[41], Eq. (3.113].
For the ease of understanding it is favorable to divide the The diamagnetic part of the linear conductivity tensor
direct (unscreenedlinear optical conductivity tensor into [Eg.(42)] has the symmetry of the unit tensor appearing in it,
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¥ t ¥ 4 ¥
Jr JF iy J¢ Jr
Jjr V= ir A A P V- lir YV
g7 JF Jr J7 J7
‘1 V1 v ) t

FIG. 2. Possible nonlinear optical processes when spin is included consistently in the formalism. The division is done according to the
number of spin flips involved in each process and the different orders of the processes. Under the braces is mentioned which part each
process corresponds to in Ed5). The two leftmost and the two rightmost processes are partly diamagnetic, while the rest contains different
combinations of the free currefdgpin-dependent as well as spin-independent) part

and thus three nonzero elements in the diagonal which are aist trace contains the processes appearifiand3B. The

Qqual to each other. The MO other linear conductivities hav%econd trace contains the process appearin@ﬁjrand the
in general nine nonzero independent elements. In order tqQ =B . .
reduce the number of tensor elements, one can specialize tfightmost process ok, in Fig. 2. The third trace de§cr|bes
treatment to specific systems, which we shall see in Sec. lithe two other processes Ef. The fourth trace contains the
leftmost and the rightmost processesXj, as depicted in
Fig. 2, and the fifth trace contains the centermost process

there. The sixth trace represents the procesgag},. The
Itis favorable to divide the total dire¢unscreenednon-  seventh trace corresponds Y&, and the eighth t&C. It is
linear optical conductivity tensor into separate parts accordaasy to showby carrying out the spin Summaﬂpmgt with

ing to the different optical processes that appear when ongur particular basis ant{, all tensor parts with an odd num-
takes the trace involved in generating the nonlinear currerter of spins are zero.

density, i.e., we get The processes that end in another spin configuration than
AL AL SB.SB.TB L <B <c . < they begin in are only possible if the Hamiltonian allows for
I3RS IS+ 30,20 +55, (45 them, e.g., by(i) an inclusion of terms that allow for differ-

which by omission of the spin reduces to the division madeENt SPIN populations in the ground state, such as the spin-

in previous workg42]. The nonlinear current density is ob- OrPit intéraction and the exchange coupling, (by include
two-electron processes where one electron goes from one

F. Nonlinear spin conductivity

tained as : ;
spin state to the other at the same time as another electron
INL(T;20) = THpoj e} + THpoi F} + Tr{psj e} + Tr{pgif} goes the other way. The latter point is excluded by the choice
1 of a single-electron theory. Including either of the above-
+ Tr{pg%j e} + Tr{p3°i & + =Tr{psj} mentioned features will result in the fact that all processes in
2F 22 ! Fig. 2 should be considered, and additional new processes

1 would have to be taken into account, since more processes
+=Tr{pJj.}. (46)  than those described here become possible.
2 Thus the nonlinear spin conductivity can be identified as
The different optical processes involved in creating the non-fﬁ(, alone. With a little algebra, ending, as in the linear case,
linear current density are sketched in Fig. 2. The traces comwith performing the spin summation, the nonzero nonlinear
respond to the nonlinear conductivity tensors as follows: The&onductivity tensors can be identified as

SA ropn. — I e2 fn’ B fn i 17 ’ ' ’ "
A .w)—%wzn—]enn, m(n lie(DIM © Kn[a(r' =r[n")s(r' —r"), (47)

- 1
B, w) = -
L 1 b 2 2 .
wh o @nnr ~ 20 = i/ Ty

® (lje(r")|n"), (48)

1 f - f " f T f ! . H
( T B ><”’|Jp(r)|n> @ (nje(r)in’)
Wnpy

-—w~— i/Tnnlr Wt _w_i/anrnr
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TABLE I. An overview of which terms contribute to which tensor eIemenEﬁﬁj,. The first column lists the different indicgsandk, the

second to fourth columns list the different contributions to elements iwthi=y, andi=z, respectively. In the latter three columns,

abbreviations have been used in the following way: A bar over a symbol indicates that it is a component of a matrix element of the

spin-independent transition current dengity taken in the Cartesian direction of the symbol, i.e., aleng or z. The othergwithout barg

are components of a matrix element of the spin-dependent transition current gignsiish the same rule as before. The primes refer to the
index of the spatial coordinatesr’, andr”, respectively. As can be observed from this table, no two tensor elements have moduli equal to
each other in the general case.

jk i=x contains i=y contains i=z contains

XX X Z'HXY'Y' +z2ZX +yy' X +yXy +2X 7 YZ'Z'+yy'y" =Xy X —XX'y" ZZ'7'+7y'y - XZX" - XX 7"

Xy —Xy'X"+2ZY" +yyy -yxX' X" —YY' X' =Xy Y + XX X" +2X 7' -zy'X'-xZy"-yxX' 7'

Xz —XZ'X"+2Z7'+yy'7 - ZX X" —yz'X'=xy'Z' - zXy" —ZZ' X' =XZ 7"+ XX X" +yXy"

yX XXy —yx'X'+yy'y"+zy' 7' “YX'Y"+2ZX + XXX = XYY" X'y -yZX'-Xy'Z'

yy X2+ X = yX' X =Yy X YZ'Z'+yX' X' +2ZY + XXy + Xy X' +2y 7' 27+ XX -yZy' ~yy' 7'

yz X2y’ -yxXZ'-zy X’ ~YZ'Y'+2Z7 +XX'Z = 2y'y" —Z'y' -yZZ XY X +yy'y!

zX —-XX'Z'-zXX'+y7 7' +2Z 7" -yX'Z'—zy' X" -xZ'y" X'+ XXX +yy' X' -xZ 7'

zy -xy'Z'-zXy"-yZ X" ~yy'Z'=zy'y'+xZ X" +2Z 7' -2y 2"+ XXy +yy'y' -yzZ' 7'

7z X'X"+xy'y"-zX 7' -zZ X" yxX'X'+yy'y"'-zy'7'-z7y" xX'X'+zy' Y +xX'Z'+yy' 7'+ XZ X' +yZ'y"

S8 e) = -

1 2 1 ( fl’]_ fn// _ fn//_fn/ )

w2ﬁ2nn,n,, Wnn! — 2w - i/Tnn! Wppyr — W — i/TnnN Wy — W~ i/Tanr

XU [ @ ANl -liEeIn = ¢nliEem[n’ @ niRe) ') + @n’ iRy - (iEe)n’
=iy @ (0 [iR0[M) @ (nlier)n’) + 'O -l X & @ nir)in) @ e

ie{xy.z

= (nljp(r)In")y @ (Wlje(r")In") @ (n'lje(r)[m}, (49)

_ ifz fo = o

ha? M Wy ~ = i Ty

SC 1 w) = ('] 8(r = r M1 @ (nljer)nyor = r'). (50)

Whereas the three spin-independent terms of the nonlineghysical systems to investigate, i.e., by applying a specific
conductivity tensor have quite intuitive structures in terms ofset of symmetries and translational invariar(déscrete or
simple outer products, the spin-dependent {ffg. (49)] is  continuou$. The simplest possible system leading to a non-
more complicated in its structui®@ecause of the spin sum- zero result is the homogeneous electron gas, which we hence
mation), with a mixture of inner and outer products betweenyjj|| discuss in the following.

transition current densities. Therefore an overview of the dif-
ferent contributions to each of the 27 generally independent
Cartesian components of the nonlinear spin-dependent con-
ductivity tensor is given in Table I.

Looking at Eqs.(47)—(50) one observes that part EQ. ) )
(48)] and the spin patteqg. (49)] of the nonlinear conductiv- In the homogeneou; thr.ee-dllmens[onal electro'n gas
ity tensor in the general case have 27 nonzero and indepe@DEG)v there is tr_ar_13|at|0ngl invariance in all _three dimen-
dent elements. PartEq. (47)] has, due to the appearance of Sions, and ag=0 it is also inversion symmetric. Thus the
the 3x 3 unit tensor, nine nonzero elements, of which On|yconduct|V|ty tensors b_ecome functions of the re.latlve dis-
three are independent, since elements with indiges tances between coordinates ratherlhan the cooldmates them-
e {xx,yy,zz are equal. Similarly, and for the same reasonselves, i.e.,o(r,r')—a(r-r’), and 3(r,r',r")—=3(r=r’,r
part C[Eq. (50)] has nine nonzero elements, of which three—r"). The presence of a finitg breaks the inversion symme-
are independent but here it is elements with indiges try and thus allows for nonlinear optical processes to take
e {Xx,yy,zz that are equal. place.

Reduction of the number of nonzero independent ele- The translational invariance in all three dimensions makes
ments can be done in many ways by selecting differentt natural to express the various vector and tensor quantities

IIl. SPIN CONDUCTIVITY IN A HOMOGENEOUS
ELECTRON GAS

A. Translational invariance
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in a Fourier representation. Thus, for any vector fi¢ld 3 ) )
Wnpy = 2_(|kn| - |kn/| ) (60)
. — 1 ig-r 3 me
Viriw)= (2m)3 V(gw)eT'dg. (5D The latter quantity we will denote,, (k,, k) in the follow-

_ _ _ _ ing, for brevity.
In the three-dimensional Fourier representation the relevant

constitutive relations take the forms
B. Linear spin conductivity and its relation

J (q,0) = 7(q,0) - E(q, ) (52 to the Lindhard conductivities

and In the three-dimensional Fourier space one can construct
relevant direct linear conductivity tensors by combining Eqgs.
1 (20), (51), and(52), giving

(277)35’(264,w):E(q,w)E(q,w), (59

Ini(29,2w) =
| | ) Fow= s [ FRwe TR, (61
respectively, where we have imposed the conditions for (2m)
second-harmonic generation, i.@),the two incoming fields
have the same wave vector, callgdand(ii) the generated
second-harmonic field has the wave vectqr 2

R=r-r’, from which the individual parts of the nonlinear

conductivity tensor are then calculated @y successive in-

. : . sertion of the relevant conductivity tensor part and Egs.
Itis c onvement also to EXpress the wave functig(r) as 55)—<57), (ii) integration over the spaces(iii) assume that

a Fourier series over all possible values of the wave vectoyiterent k's spans a three-dimensional continuum, thereby

The basis set for the space-dependent part of the wave fungyqing us to reduce the numberldé to one by integration

tion may thus be taken in the form and thus remove the remaining index on it, since it is there-
after superfluougjiv) reorientation of the space in the direc-

—meikn'f, (54) tion of g, i.e., g=qe,, and(v) since we are working with a

(2m) quite simple basis, it also makes sense to reduce our expres-

sions to what they will be for a free-electron gas in the low-

temperature limif43], and a single relaxation time After a

I!'ttle algebra, the expressions for the linear space conductiv-

ity tensors in a 3DEG appear as

i (1) =

wherek is a real quantity. In both Eq&51) and(54) we have

normalized the periodic function for later convenience.
The space-dependent transition current density from sta

n’ to staten ((n,sjg(r)|n’,s’)=(n|je(r)|n")ésy), takes, by

f Eq(54), the f ie? L
means of Eq(54), the form gA(q,w):Zl—;ef(k)(g l;ﬂ, (62
w T
(liemnY == szi(knr+kn)e“kn""n”, (55)
(2m)° 2m, ie%h O(k+qe,) - O(k)

B —
in a notation where adequate subscripts have been added to ¢ (@0) = 2miw ) h(?+ 2k Q)/2m— w —ilT

the wave vectors. Similarly, the spin-dependent transition 3

current density becomes X (2k +qe) ® (2k + le)@' (63)
(nljig(nin")=- (277)3%(&1' —ky)ek k)T (56)  and the spin conductivity,
Finally, & (g0 = iezﬁzqz f 2®(k +ge) — 0(K) . dgk3
2mio J A(Q°+ 2k@Q)/12Mme— w — i/ 7(27)
(it =rm= s 57) X[i-e,o 6], (64)

) o ___ inintegral form[compare Eqs(62) and(63) to Ref.[30]].
and we should mention that the Fermi-Dirac distribution Equations(62) and(63) are the famous Lindhard conduc-
function and the transition frequencies becdkgependent, jyities [44]. Refined spatial conductivities that let the elec-
i.e., since the eigenenergy takes the form tron system relax towards local thermal equilibrium can be
52 established45]. A similar refinement can be done for the
En=—lkq% (58) spin conductivity.
2me The analytical solution to these integrals is discussed in
Appendix B. Above, we observé) that Iinhﬂo&ﬁ(,(q,w)

=0, and(ii) that the last term inr> (q,®) projects out the
B N S transverse electric field, sindgr L g. This is a remarkable
fn = falkn) =1, ﬁ|kn| (59 feature of the spin conductivity, since both the diamagnetic
and the paramagnetic conductivities contribute to both the
and longitudinal and the transverse electric fields.

we find
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Performing the integration ovérspacesee Appendix
the longitudinal [0 (q, w)=0/\(q, ®) +05(q,w)] and trans-
verse [o7(q, ) =0\(q, ») +o§‘y(q ,w)] linear conductivities
appear in the usudk9,44,46—48manner in the sharp limit
(r— ) as

oL (Q0) = 3e2nu2{ 1

P 1 +4_z<[1 —-(u=-2>?]In

i

z—u+ﬂ
z-u-1
z+u+1l
z+u-1

+[1-(u+2>?]In (65)

3ie?n
8m,

UT(qrw) =

{zz+3u2+1

w

z—u+1‘
z-u-1
> z+u+1
+[1-(u+2In|———| ]|, (66
z+u-1

wheren:k§/3n2, u=w/que andz=q/ 2k are the “classical”

- 432([1 -(u-22%Pn

PHYSICAL REVIEW A 70, 043806(2004)

the longitudinal conductivity. That is two times the rest mass
energy of the electron! The nonrelativistic description we are
using is assumed to be valid only fékw < mecg. Thus, for
=0y, the spin contribution to the linear response is vanish-
ing. If, however, we look af| andw as independent variables
(which they can be viewed as in configurations with large
contributions from evanescent wayese observe that for
large values ofj and small values of», z>u, and the spin
contribution is dominating. This we shall substantiate on in a
separate communication.

C. Nonlinear spin conductivity

In the three-dimensional Fourier space one can construct
relevant direct nonlinear conductivity tensors by combining
Egs.(21), (51), and(53), giving the general expression
1

§(2q,w) = W

f f S(R,R’; w)e T RRIPR PR,

(69)

R=r-r" andR’'=r-r". Performing this convolution integral,

and “quantum_mechanica|” non|oca|ity parameters, resped)ne aCtuaIIy obtains a nonlinear CondUCtiVity tensor that de-

tively, andvg=7ke/m, is the Fermi velocity of the electron.

pends on two generally differenfs. Let us call theng and

In the same representation, the linear spin conductivity bed’- In our particular case we are interested in the second-

comes
5 _3e2n22{ i( I z—u+1‘
U‘m(q’w)_Zimew 1+ A\ =u=27n| ———
_ b |ZHuU+1 )]
+[1-(u+2%]In ~ru-1 . (67)

Peculiarly(since it is transvergethe expression for the spin
conductivity is very similar to the longitudinal conductivity.
One observes that

75,0 0) = 501(q0). (68)
The factor by which the spin conductivity differs from the
longitudinal conductivity isz/u=#0?/2wm, squared, and at
q=qp=w/cy, we find thatﬁw:Zmecg is the photon energy

harmonic response, and we chooseq’. From Eq.(69), the
individual parts of the nonlinear conductivity tensor are then
calculated using a procedure analogous to that of the linear
conductivity, i.e., by(i) successive insertion of the relevant
conductivity tensor part and Eq&5)—(57), (ii) integration
over ther spaces(iii) assume that the differefts spans a
three-dimensional continuungiv) reorienting the space in
the direction ofq, (v) take a free-electron gas in the low-
temperature limif43], and a single relaxation time, and
(vi) taking into account the permutation symmetry between
indicesj andk that exist due to the single incoming electric
field. Thus we get

e f O(k +2qe,) - O(k)
4miw? ) 2h(cP +ka)/Me = 20 =il T

3

SA2q;20) =

-

SB(2q;20) =

h
$B (2:20) = —

X(k+ge) ® 1 , 70
required to make the spin conductivity of the same size as (k+ e (2m)3 (70
|
e f 1 ( Ok+ge)-0k) Ok -0(k-ge) )
8miw? ) 2hkg/im— 2w —i/T\A(q? + 2kQ)/2me - w —i/7  #(2kq-g?)I2me— w —ilT
d*k
Xk ®[(2k +qe) ® (2k - qe) + (2k — ge) @ (2k +gey) ] 2’ (72
*ha’ f 1 ( Ok+ge)-0k) Ok -0(k-ge) )
amiw? J 2hKgIme— 20— i/T\ A(q? + 2k,Q)2me— 0 —ilT  #(2kq-g?)/2me— w —ilT
3
X > (eeeek+teekoe-koeoe) (72)

ielyz

(2m)*'
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- & Ok +qe) - O(K) %k
C(oq D) =
Xeeg;20)=, x f Py —— E%yvz}[e. ®6®(2k+ae)te® (k+ue) ®eal, s

(73

It should be noted here that Eq&.1l) and (72) each have transverse field is perpendiculareg In a cylindrically sym-
other representations that in view of E3) lead to the metric system this distinction is the logical and minimal one.
same physically observable second-harmonic field, but their Diamagnetic part A of the nonlinear space conductivity
self-symmetry is lower. In contrast, EZ3) has a represen- contributes purely to the longitudinal response, and contrib-
tation with higher self-symmetry—but in order to make the utes evenly to this response, no matter which input polariza-
nonlinear conductivity tensor represent the overall cylindri-tion is chosen. It does that via the three nonzero elements,
cal symmetry, the lower-symmetry representation above hasxx=xyy=xzz that are equal due to the unit tensor appearing
been choseftompare Eqg.70), (71), and(73) to the expres- in the outer product of Eq.70). It is depicted in the symme-
sions given in Ref[49]]. The analytical solution to the inte- try scheme Fig. &).
grals appearing in Eq$70)—73) is discussed in Appendix B. The paramagnetic part B of the nonlinear conductivity
The above-mentioned response functipBgs. (62)—(64) [given by Eq.(71)] has seven nonzero tensor elements, of
and(70)—<73)] can also be used in the description of a semi-which two are independent, since thieand z directions are
infinite medium[49], but the Friedel oscillation§50] are  equivalent. The independent elementx is the one that
lost. couples longitudinal input polarization to longitudinal output
polarization. The other independent elemeqty=xzzyxy
=yyx=zxz=zzx is responsible for coupling transverse input
to longitudinal output, as well as mixed input to transverse
Part A of the linear conductivity tens¢Eq. (62)] is diag-  output. These properties are shown in Fig)4
onal, i.e.,xx=yy=zz part B[Eq. (63)] has two independent The contributions from the nonlinear spin conductivity
nonzero elements, namekx andyy=zz and the linear spin can be identified by the terms appearing in the parentheses
conductivity tensofEq. (64)] reflects the fact that it projects appearing after the sum in E@.2). The first term contributes
out the transverse part, i.e., it has one independent nonzet® elementsyyx andzzx the second term contributes to ele-
element,yy=zz These symmetries are shown in Fig. 3. We mentsyxy andzxz and the third term contributes to elements
observe from Fig. 3 that the linear spin conductiignnot ~ Xyyandxzz giving a total of six nonzero tensor elements. As
be separated in a measurement, not even differentially. The

D. Symmetries of the nonlocal conductivity tensors

X : : L _ [xk] _ Dk _ _ [zj4]

reason being that in the total linear conductivity there are L o
two nonzero elements, nameliy the one coupling longitu-
dinal input polarization to longitudinal output,,=d*+a,, @] - )
and(ii) the other one that couples transverse input polariza- |- " |- B
tion to transverse outputry,=c"+oy,+05,. The result is N7 I i R 7
that we end up with two coupled equations with four un- ¢ - : : co
knowns, making separation impossible. )] - . /\\/

Letting qlle,, we recognize immediately the fact that in \_/ L. ..
order to give nonzero contributions, the nonlinear conductiv- T il T ik T i

ity tensors have to be even yn as well as irg, reducing the . .

number of possible nonzero elements from 27 to 7, namely © |- . /\

the elementsxx, Xyy, X2z YyX YXY, ZzX ZXZ \& \
With this selection, throughout the rest of the paper we . -

will use the termdongitudinal and transverseelectromag- _ _ DA _ T

netic fields, where a longtitudinal field is parallelég and a * - /'\ /

N

84 (g, 0) 5%(g,0) 884(9,)
¢ FIG. 4. Self-symmetries of the nonlocal nonlinear conductivity
\; ) \ tensor, each row corresponding to one tensor part, and each column
. . to a Cartesian coordinate in the second-harmonic field. Raw
corresponds tofA(Zq,Zw), row (b) to fB(Zq,Zw), row (c) to
FIG. 3. Self-symmetries of the linear nonlocal conductivity ten- §§,,(2q,2w), and row(d) to §C(2q,2w). Elements with equal non-
sor, each column corresponding to one tensor part, as shown. Ttzero moduli are connected with lines, a dot represents an element
dots represent elements with zero moduli, while the disks representith zero modulus, disks represent elements with nonzero modulus,
elements with nonzero moduli. Lines connect tensor elements odnd open circles represent elements with equal moduli as the disks
equal nonzero moduli. they are connected to, but they have opposite sign.
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can be seen from E@72), the term in front of the sum is the processes usually are able to resolve many orders of magni-
same for all elements, and inside the sum appear only untude in the optical response, all figures have been plotted on
vectors andk=ke,. Thus all six tensor elements have the a logarithmic scale. To guide the eye, contours are plotted at
same magnitude, but as can be seen from the signs, elememtgery integer order of magnitude, and a line at the bottom of
Xyy andxzzhave opposite sign from the others. This is illus- each figure denotes the position of the vacuum wave number
trated in Fig. 4c), and we notice in particular that the spin q=qy=w/c,.
conductivitydoes notontribute to the pure longitudinal pro- Figure Fa) naturally reflects the fact that the diamagnetic
cess(it has noxxx elemeny, as in the linear case. linear conductivity{as given by Eq(62)] does not depend on

Finally, the diamagnetic part C of the nonlinear conduc-g. Figures %b) and 5c) show the two independent nonzero
tivity contributes to two types of processes through its twoelements of the paramagnetic linear conductiv&tﬁx and
different nonzero elements. Looking at E@3), we observe oyBy, respectivelyfconsult Eq.(63)]. They are roughly of the
that it contributes to the pure longitudinal process with ansame order of magnitude, but the longitudinal QaEX) falls
xxx element, and to the process with mixed input polariza-off a bit slower than the transverse oft€)), asw increases.
tion and transverse output polarization through the elemenh Fig. 5d), the linear spin conductivity shows the expected,
yXy=yyx=zxz=zzx The two different nonzero elements are generally much lower, order of magnitude compared to both
related by a factor of 2, i.e35,/2=37 - The resulting sym-  the diamagnetic and the paramagnetic conductivities in the
metry scheme is depicted in Fig(ds. region of largew and smalk. In the region with small» and

We observe from Fig. 4 that no element of any of thejarge values ofj, however, it is the dominating contribution
individual parts of the nonlinear conductivity can be mea-to the total linear conductivitjcompare Eqs(63) and(64)].
sured independently. However, unlike in the linear case, this Additionally, we observe that there is a region in ihe
nonseparability can be broken by differential measurementspace where the paramagnetic conductivity has a larger mag-
This is so, because it is possible to measure three elements gitude than the diamagnetic conductivity, and regions where
the total nonlinear conductivity independently, namely usingit is opposite. This is illustrated in Fig(& and 5f), whereas
the following optical configurationsti) longitudinal input  the spin conductivity, as expected, leaves no easily recogniz-
polarization with longitudinal response gives,,=>"  able mark on the total linear conductivity in the greater part
+2>?xx+2>(<:xx1 (ii) transverse input polarization with longitudi- of the w-q space. Only in the corner whecgis large andw
nal response give§xyy:2A+EEyy—2§U, and (i) mixed  small, the order of magnitude of the spin conductivity be-
transverse and longitudinal input polarization with a trans-comes larger than competing components. Figeg iS the
verse response gives (B, =30 +35 +3° Adding to  |ongitudinal conductivity, . =c?+02, and (f) the trans-

that the fact that we know the relatidif; ./ 2=E$Xw we end  verse conductivityoy,=c+o) + a(Bm).(XThe transverse con-

up with three equations with three unknowns, from which weductivity differs slightly from the transverse Lindhard con-

in principle can extract each of the nonzero elements in Figductivity we presented in Ref51], since the contribution of

4. Of course, in order to be able to do this, we need both théne spin term alters the result in the corner whetie large

amplitude and phase information. and w small. This difference may be of importance if one
considers near-field optics at surfaces, where an expansion in

E. Spin conductivities with g and w as independent variables 0 can be relevant for a given frequenay (see, e.g., Ref.

The integrals appearing in Eqg2)~(64) and (70(73) [54]). The two small inseté&g) and(h) show the results at the

. AT ; vacuum wave numbeq=q, for (g) the individual parts of
can be solved analytically. The solution is discussed in SOMB. - |inear conductivity, an¢h) the two independent elements

d5ezta:! n Appe(;ld|xe|§ B and ? I? ordgr t(t)' Q?Iculate trt].ﬁ dlregtof the total linear conductivity. No special features are
[52] linear and nonlinear optical conductivities, we still nee present forg=q in Fig. 5.

to dg@ne the Fermi wave numb. In a 3DEG, it is Independently of the fact that we have shown that the spin
ke= {37\ [see, €.9., Ref53], Eq. (2.21], where\'is the response in a part of the-q space is dominating the total
free-electron density of the 3DEG. linear conductivity(and the diamagnetic part is dominating
the rest, except for some destructive interference with the
paramagnetic part for small and largeq), knowledge of the
The moduli of the different elements contributing to the linear optical properties is important when we consider the
linear nonlocal conductivity are plotted in Figs(as-5(d), = screened nonlinear optical response later in our treatment
while the moduli of the two independent elements of the(namely in Sec. IV.
complete(sum of all termglinear conductivity are plotted in
Figs. 5e) and gf). In all plots we are varying the two inde-
pendent variables occurring in Eq&62)—(64), namely the In Figs. 6 and 7 we have plotted the nonlinear nonlocal
cyclic frequency of the incoming photons in units of the optical conductivity tensors, and as in the linear optical case
photon energyiw, and the wave numbey in units of the they are plotted on a logarithmic scale as functions of the
Fermi wave numberkg. All calculations have been per- two independent variableg (normalized tokg, as beforg
formed with the electron density and relaxation time of Cuand#w.
(N=8.47x 107 m™3, 7=27 fs, giving ke=1.36 A1 [53)). In the nonlinear optical response, two different diamag-
The phase information has been left out here and in subseetic processes contribute to the response, given by(Egs.
quent figures for brevity. Since linear and nonlinear opticaland(73). Figure &a) shows the modulus of one of theftie

1. Linear conductivity

2. Nonlinear conductivity
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FIG. 5. Moduli of the linear conductivity tensor elements plotted as a function of the photon énergyd the wave number normalized
to the Fermi wavenumbeg/kg). (a) is the diamagnetic linear conductivily?|, (b) the longitudinal paramagnetic conductivity’fXL (c) the
transverse paramagnetic conductiv|it)55y, and (d) the spin conductivitykrEU\. The total linear conductivity tensgcompare to Fig. B
elemento,,| =|c*+ 0% is depicted ine), and|oyy| =|o*+ a';?y+crir| in (f). Contours are plotted at every integer order of magnitude, and at

the bottom of these plots is drawn a line at the vacuum wave nugb&he insets show the resultsat g, where(g) shows the individual

elements[as given in(a)—(d)] and (h) the total xx and yy elements[(e) and (f)]. (g) and (h) are cut off to the right afy=kg (hAw
=2.68 ke\).

one given by Eq(70)], |24. The other diamagnetic process, w-q plane, the paramagnetic response prevails. However, at
|Efxx| :2|E§XJ, is depicted in Fig. ). The paramagnetic high photon energies and high the spin conductivity be-
response described by E@/1) has, as determined in the comes more important. This is illustrated in Fige where
symmetry analysis in Fig. 4, two independent nonzero elethe two contributions to thexyy element of the nonlinear
ments, and=® | is plotted in Fig. b), while |2§‘y appears conductivity have been added. In the high end of the spec-
in Fig. 6(c). The spin conductiviME?J has two different trum there is an additional minimuizero where the mag-
nonzero elements, but since the difference is only a sign, theitude of the two contributions become equal. In contrast to
modulus remains the same. It is given by E£B) and plot-  this stands the/xy element, where the addition of the spin
ted in Fig. &d). contribution changes the amplitude of the response only, and
Looking at the orders of magnitude between the paramagione of the appearing features in Figc)gare changed quali-
netic and spin conductivities, we observe that in most of thdatively [thus the relevant plot is essentially the same plot as
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FIG. 6. Moduli of the nonlinear conductivity tensor elements are plotted as a function of the incoming photonfenaryy the wave
numberg normalized to the Fermi wave numblkg. (a) is the diamagnetic conductivitiz?|, (b) the paramagnetic conductivity tensor
eIemendEE’X , (c) the paramagnetic conductivity tensor elem@fg , (d) the spin conductivityEE{,L (e) the sum of the paramagnetic and
spin conductivitie$25yy+25(,\, and(f) the diamagnetic conductivi ffxxl. Contours are plotted at every integer order of magnitude, and at
the bottom of each plot is drawn a line at the vacuum wave numperhe insetgg) and(h) show results afj=qq, (g) for the individual
elements of the conductivity tensromparga—d) and(f)], and(h) for the paramagneticyy element, the spin element, and the sum of the
two [compare(c)—(e)] in the region where a comparison is of interégy.and(h) are cut off to the right atjy=kg , as beforgparts of this
figure first appeared in Ref51]).

Fig. 6(c)]. Apart from this influence from the spin, if we look merical precision given by the IEEE 754 stand@s8]. We

at the diamagnetic contribution in Fig(f§ we also expect have done so by making use of Smith’s multiple-precision

this to give a significant contribution to the total nonlinear FORTRAN90 routinesFmLIB1.2 [56], and sufficient computer

optical conducitivity in elements where it is preséand thus  precision was reached with a 60-digit mantissa.

not to thexyy elemeny. As in the linear case, we have shown  To complete the picture of the nonlinear optical conduc-

the results atj=q, in the two small insetgg) and (h). tivity tensor, we have in Fig. 7 plotted the moduli of the three
In order to get sufficient accuracy at the edges of theaesulting independent nonzero tensor elements when all con-

nonlinear conductivities, most notoriously at high photon en4ributions are added. Figuréa shows the modulus 9./,

ergies and low values af (roughly in the area of the lower which is responsible for the coupling of the longitudinally

right corner larger than ) we had to go beyond the nu- polarized incoming field to a longitudinally polarized
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FIG. 7. Moduli of the three independent nonzero elements of the total nonlinear condugtoritpare Fig. 4 to see which elements
contributg tensor.(a) shows the tensor elemefd,,, (b) the tensor elemenk,,,/, and(c) the tensor elemerE,,,|. Contours are plotted
at every integer order of magnitude, and at the bottom of each plot is drawn a line at the vacuum waveggupshows the results in
(a)—(c) for g=qq, cut off in the high end atjy=kg , as before.

second-harmonic field. A glance at Fig. 4 tells us that it con- IV. RESPONSE TO A TRANSVERSE EXTERNAL
sists of the paramagnetic and the diamagnetic terms, but is ELECTROMAGNETIC FIELD

without contribution from the spin term. We observe that the
influence of the diamagnetic response is dramatic, effectively
enhancing the feature around 0o@1n the spectrum. In Fig. From the outset we assume that the parametric approxi-
7(b), the magnitude of the tensor element responsible for théation can be adopted, i.e., we assume that the generated
coupling from a pure transversely polarized input field to asecond-harmonic field does not affect the dynamics of the
pure longitudinally polarized second-harmonic field is plot-incident field. This approximation can be regarded as good,
ted, i.e.,[Syy,l. This tensor element has contributions from except for extremely high intensities or short time scales.
only one of the diamagnetic terms, but also from both the Before combining Eqsi19) and(20) we convert Eq(19)
paramagnetic and the spin terms, as one recognizes from Figto an integral equation, namely

4. Comparing to Fig. @) we observe that the additional )  extr.

inclusion of the diamagnetic contribution removes the mini- Enc(r;20) = E¥{(r;20)

mum that was present in the high end of the photon energy -

scale, but introduces changes to the part of the figure with - izﬂowf Golr =1";2w) - I (r';2w)d ",
low w and highg. Figure {c) shows the last of the three

nonzero tensor eIementoXJ. It is responsible for the cou- (74)
pling .Of an input field with mixed I(_)ng_itudingl and ransverse whereE®{r; 2w) is the so-called externgéxt) field driving
polarization to a second-harmonic field with transverse po- _ - _

larization. Here, Fig. 4 tells us that the other diamagnetidhe second-harmonic process, aBglr—r';2w) is the elec-
term contributes to the response in addition to the paramagtomagnetic vacuum propagator taken at 2 discussion of
netic conductivity and the spin conductivity. Furthermore,the electromagnetic vacuum propagator can be found in, e.g.,
the spin contribution has changed sign compared toxghye ~ Ref. [41], including how it is treated at the space pomt
element. —r'=0 [we give the explicit form of5y(r-r’;2w) for three-

A. Local-field loop: General system
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dimensional translationally invariant systems in E85)]. EJ(r;20)
The last term of Eq(74) accounts for the linear propagation

of the generated fiel&,, (r;2w) through the nonlinear me- =E®Nr" 20) ~i2uow

dium[J (r";2w) depends ol (r; 2w), and thus Eq(74) is - .

self-consistefjt From a knowledge of the nonlinear part, XfGo(r—r’;Zw) ~a(r',r";2w) - ESN(r"; 20)

JnL(r; 2w), of the current density of the active medium, the

external field can be calculated from the integral relation Xdr"d%, (80)

. the second Born approximation gives
E®(r;2w) = - iZMowf Go(r —r";2w) - Iy (r"; 2w)d3 .
E@(r;2m)
(75) =E®(r’;2w) - i2uqw
In the parametric approximation adopted here the external - _ @
field can be considered as a prescribed quantity. By inserting X f Go(r —r'";2w) - a(r',r"; 20) - EN/(r"; 2w)
the linear constitutive equatigiq. (20)] into Eq. (74) one
obtains the following integral equation for the second- xd3"d3r’, (81)

harmonic field:
and so on, and so forth.

En(r;20) If one wishes to go beyond the above-mentioned series of
Born approximations, a procedure one can apply in order to

=E%Nr;20) - i2u0w achieve a numerical solution to E(76) is the so-called

- “coupled antenna theory,” in which the separability of the
X j f Go(r = 1";2w) - 5(r",r'; 2w) - En(r'; 20) spatial coordinates i@ (r,r’) is in focus. This separability
makes it possible to rewrite the integral equation problem as
xd3"dr’. (76)  a matrix problem involving the energy eigenstates of the
electronic system. For details, we refer interested readers to
The formal solution of this equation is given by Ref. [41].
En(r;2mw) = f f(r,r’ 20) -E®(r":20)d%’,  (77) B. Local-field loop: Homogeneous system

If one wishes to do an experimental observation of these
phenomena, it is necessary also to consider the influence of
the electronic screening. The convolution intedizd). (79)]
has the Fourier-space representation

where the nonlocal field-field response tenE(xr,r’ (2w) IS
to be derived from the dyadic integral equation

T(r,r:20) = 18(r —r') + J K(r,r":20) - T(r",r'; 20)d3". E (G, o) = EPXY(q,0) = i towGo(q, w) - 7(q, o) - E, (0, ),

(78) (82

In Eq. (78) the tensor En(20,20) = EX(2q,2w)

. . - 121200Go(20, 20) - F(29, 200) - E (20, 20),
K(r,r”;2w)=—i2,u0wf Go(r = r";2w) - & (r' ,r"; 20)dr’ (83

(79 whereE®(q,w) is the externallase) field, and

is the kernel of the integral equatiai’6). This kernel is
formally identical to the one playing a prominent role in the
electrodynamics of mesoscopic media and small particle
[41].

By insertion of Eq(75) into Eq.(77) and thereafter mak-
ing use of Eq(21), the second-harmonic field may in prin-
ciple be calculated from known quantities. To solve the
local-field loop for the linear response, one simply replaces -

NL with L and 2w with o in Egs.(74)<79) above. = _1-eg®e @8

In cases where the local field deviates only sli Cold@)=—2 "o * T 2

y slightly from ds—d (o
the external field the combination of Eq4.9) and (20) is
solved iteratively. In the first Born approximation, often em-whereqy=w/cy is the free-space wave vector. In a homoge-
ployed in macroscopic electrodynamics the solution is neous electron gas wittjle,, it becomes

ES(20, 20) = - i200Go(20, 20) - Iy, (20, 20). (84)

The electromagnetic propagator contains both a transverse
and a longitudinal part, and its Fourier amplitude can be
written [see Ref.[57], Eq. (50)] as a sum of a transverse
propagator and a longitudinal self-field propagator,

(85)
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- 1 - of causality, while the unscreened ones in general do not.

Go(0, ) = R- I- ;ex ®&]|- (86) The relevant observable is the intensity of the outcoming
0 0 electromagnetic fields. It is calculated as

Since bothG, and ¢ are diagonal here, the self-consistent E E*

solution to the electrodynamics is reduced to an algebraic 1(qg,w) :SO—%M

one, namely 2 (2m)

SCED)
1 +ipewGo;i (0, w)0y(q, )’

~2.16X 10°8E(q,0)|?,

(94)

(87) where the factor of(27)™® arises from the way we have
defined the electric field.

EL,i(q!w) =

EﬁlXLt,i(qu 2(1))
1 +i2u0wGy i(20, 2w) 07i(29, 2w) ’

EnLi(29,20) = 1. Linear response

As with the direct conductivities, let us consider the linear
(88) optical response first. Thus, in Fig. 8, moduli of the screened
linear optical conductivities are plotted as functions of the
photon energy and the normalized wave numdpes-. Fig-
ures 8a) and §c) show the full screened linear tensor ele-
1 — 2i 110w Gy (20, 20) 345 (20, 2) ments |, and|£,,|, respectively, i.e., all terms are included
Enc.i(29,20) = 2 )32 1190 G (20, 20) 0 (20, 20) both above and below the division line in E@2). In all
™ ik R other plots, whenever a term is neglected, it is neglected both
Eﬁf‘{(q,w) above and below this division line. To see the influence of
1 +i 200Gy (0 @)y (0 @) the different' no'nparamagnetic terms on the normally as-
eijt( ’ | e sumed dominating paramagnetic contribution, we have in
ECk(Q

Fig. 8b) plotted |, taking into account only the paramag-
1 +i powGo (0, ) 014G, @)

netic contribution. Similarly, in Fig. @), the spin contribu-
_ _ _ o tion to [£,,| is neglected, in Fig. @) the diamagnetic contri-
The screened linear and nonlinear optical conductivities caRytion t0|§yy| is neglected, and in Fig(8, both the spin and
then be found by comparing the current densitiesthe diamagnetic contributions g,,| are neglected. We ob-
J°(q, w)=0(29, 20) -E (4, ») and JNL(29,20)  serve that also in the screened linear conductivity the spin
=0(2q,2w)-En. (9, ), respectively, to the need of express- contributes to the response in the region wherés small
ing these quantities in terms of the laser figEf*(q,w)]  andqis large[compare Figs.®&) and &d)]. The diamagnetic
rather than the self-consistent fields. Thus the current genecontribution is again the dominating one. Additionally, we
ated at the detector in terms of the laser field is written  notice the presence of resonances, which we shall discuss at
- the end of this section.
1q,0) = &0,0) -EP(q,0), (90) In order to emphasize the behaviorgetqq (at a group
velocity of ¢g) [58], we have in Figs. @) and §h) plotted
1 the results of Figs. @-8(f) at q=qy. Figure &g) also re-
AL (29,20) = (277)3:(2q,2w):EfX‘(q,w)EEX‘(q,w), veals the bottom of the resonance observegtjnand espe-
cially |§yy| appears quite different in the general overview
(92) plot in w-q space than atj=qy. This is a very deep and
narrow creek inw-q space, and impossible to show to its full
xtent in a general overviels,,|, on the other hand, reveals
0 additional information afj=qy,. To access the redq
#(p) of the w-q space, one in general has to resort to using
0ii(q,w) ©2) so-calle|de\|/anescent wavein Fig. 8h) we observe the ef-
- - ) , fect on|&,,|, should one neglect the spin term, the diamag-
1 +i100Go;i(G, @)ii(q, ) netic terrﬁ or both, when considering ordy. It shows that
atq=qg, only the energy range above around 500 eV reveals
the difference, and thus one might be led to conclude that the

Oi e {x,y,z}. Expressing also the latter one in terms of the
laser field, we find by insertion of E¢84)

(89)

where we have defined screened lingarand nonlineaf=)
nonlocal conductivity tensors in terms of the nonscreene%
ones, i.e.,

&i(0,w) =

_ 2ipowaii(29, 20) Gy i (29, 20) % (20, 20)

Eij(29,20) =

1 - 2 powGy;i(29, 2w) (29, 2w) influence of spin and diamagnetism is very small. This is in
1 contrast to the conclusion one can draw from the overview
X . figures, wherdi) it is visible that the spin contributes in the
1 +iuowGoji(9, ©)0jj(q, ) region of low photon energies and high valuesqofic) vs
1 (d)], (ii) there are collective resonances pres@ge Sec.

X7 /0G0 ) ol o) (93) v B 3 below), and(iii ) the magnitude is in most of the-q

space much larger when spin and diamagnetism are included.
It is important here to underscore the fact that the aboveHence, if evanescent waves are used, diamagietid at
mentioned screened linear and nonlinear optical conductivitjow frequencies also the spirtontributions should not be
tensors fulfil the Kramers-Kronig relations and the Einsteinneglected.
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FIG. 8. Moduli of the screened linear conductivity.(, it is |&,,J with all terms included, while iib) the diamagnetic term is neglected.
In (c), itis |§yy| with all terms included, while irid) the spin term is neglected, {®) the diamagnetic term is neglected, andfinboth the
spin and diamagnetic terms are neglected. Contours are plotted at every integer order of magnitude, and at the bottom of each plot is drawn

a line at the vacuum wave numbaeg. The insets(g) and (h) show the results fog=qq, corresponding to the plot&—c) and (c)—(f),
respectively.

2. Nonlinear response diamagnetic and spin terms are neglected, also in the screen-

) ) o ing) in the right column. The upper row shows these two
Having presented the screened linear conductivity we cagases fot=,,,), the middle row foE,,l, and the lower row

go on with the nonlinear one, described by E§3. We  for |=,,|. As in the linear case, we have emphasized the
notice that in Eq.(93), the screened nonlinear optical re- result atq=gq,, showing in Fig. @g) the full tensor elements,
sponse contains linear responses at the fundamental and thad in Fig. $h) the paramagnetitP) contributions. We ob-
second-harmonic frequencies in the screening term. Thus thgerve that screening has an influence on all three tensor ele-
linear optical properties have an influence on the nonlineaments, although for those leading to a longitudinal response
optical properties in this way. (|Exxd @nd|Eyy,)) it is not as dramatic as in the one leading

In Fig. 9 we have plotted the moduli of the screened nonto a transverse response, i.e. |Hy,,|. Additionally, we ob-
linear nonlocal conductivity tensor elements, with the com-serve that neglecting the spin and the diamagnetic parts leads
plete tensor elements in the left column and the corresponde significant changes in the slopgate of falloff with large
ing ones for the pure paramagnefie) response(i.e., all for constant, i.e., denser contoursalthough ag=q, the
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FIG. 9. Moduli of the screened nonlinear conductivity. The leftmost column shows the full tensor elements, and the rightmost column the
tensor elements arising if only the paramagnetic response is consider@).igna plot of |=,,, with all terms included, and the same
element with only the paramagnetic contribution is showfbasln (c) is shown|EXy)J with all terms included, and the corresponding pure
paramagnetic result is given {d). Finally, (e) representﬁmj with all terms included, and) the corresponding pure paramagnetic result.
Contours are plotted at every integer order of magnitude, and at the bottom of each plot is drawn a line at the vacuum waxg. Atmaber
insets show the results far=qg, in (g) for the full screened nonlocal conductivity tensor elements, an@h)irif only the paramagnetic
contributions are included.

only difference appears to be in the order of magnitude of thend Fig. 10d) shows the case where it is opposite. ¢t
results. =(, the results are as shown in Fig.(&0 Comparing Fig.
The effect of neglecting either diamagnetism or spin, in10 with Fig. 9, it is evident that neglecting any of the spin or
stead of none or both of them, is illustrated in Fig. [ diamagnetic contributions produces qualitatively different re-
does not contain contributions from the spin, so neglectingults than including all of them.
the diamagnetic term is equal to just considering the para- Now that all individual screened nonlinear conductivity
magnetic response, as shown in Figh)9 Figure 1Qa) tensor elements have been addressed, it is time to look at the
shows the modulus dEXM when spin is included and dia- different possible optical configurations. The incoming light
magnetism is neglectedD), while in Fig. 1@b), it is op- can be polarized either longitudinallgparallel to g, here
posite (NS). Similarly, Fig. 1Qc) contains the modulus of along thex axis) or transverselyperpendicular ta, in they-
|EyX)J when spin is included and diamagnetism is neglectedz plane. A pure longitudinal input results in a pure longitu-
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FIG. 10. Moduli of the screened nonlinear conductiitpmpare Fig. 8 The leftmost column shows tensor elements when diamagne-
tism is neglected and spin is included, and the rightmost column shows the tensor elements when the spin contribution is neglected and
diamagnetism is includeda) and(b) for |EXM, while (c) and(d) are for\nyJ. Contours are plotted at every integer order of magnitude,
and at the bottom of each plot is drawn a line at the vacuum wave nuggb&he inset(e) shows the results fog=0qq.

dinal output, and the corresponding result can be directlyn longitudinal screening(nonretarded, called g@lasmon
derived from Fig. @a). Similarly, a pure transverse input also resonancg and when

results in a pure longitudinal second-harmonic output, which

is directly proportional to Fig. @). Thus two of the screened

nonlinear optical conductivity tensors are directly available 105
in an experimental setup, while the remaining one is not. To 1010
probe the influence dE,,,, one has to mix longitudinal and 0t S
transverse polarization in the input. In the presence of a PO- |Ew + Zxy + 25| 04 1 10 100 1000

larizer to select the transverse output polarization, this is di- [AVZm3s] ko [eV]

rectly proportional to the result shown in Figie® whereas 1010
if such a selection is not present, one gets the combined 10
= — : 10
response of= .+ Byt Z:MJ (assuming that the two po- 10°
larizations have the same strength, and that the transverse }835
polarization is along thg axis), as shown in Fig. 11. Com- 1020
paring Figs. 11 and 9 we observe that the sum is essentially ° : :
a sum of the magnitudes of the three terms, with no new : % : ' q/k;

features arising from a destructive interference between any
of the terms.

3. Collective resonances

In the screened linear and nonlinear conductivities, collec- FIG. 11. Modulus of the screened nonlinear conductivity for
tive resonances are present where the denominators in Egsixed longitudinal and transverse input polarization and likewise
(92) and(93) become zero, i.e., when mixed output polarization, =+ Exyy+ 2E,x,]. Contours are plot-

) ted at every integer order of magnitude, and at the bottom of each
1 +ipowGo (T, @)y (0, ) = 1 + M =0, (95 plot is drawn a line at the vacuum wave numbgrThe inset shows
' gow the result ag=q.
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108 5 v V. USING DFT WITH OUR MODEL

107 - It is already well known that in order to describe the
SN second-harmonic response of centrosymmetric mgsiéh
§ 1073 one has to go away from the local electric-dipole approxima-
% 10° tion. In the present paper, we have shown that inclusion of
S ot 3 the spin and diamagnetic terms influence the nonlinear opti-
w ] cal response, even in a simple model for the bulk response

10° 3 such as the homogeneous electron gas. We should mention

162 — — that the importance of diamagnetism has previously been
@) y 10 o [oV] 100 stressed for Iower—dllme_nsmnal syste[6,61.

In practical applications of solid-state physics, one of

10 course has to replace the free-electron gas with, e.g., a bulk
0t 4 periodic potential and, eventually, include spin-orbit and ex-
mg - change interactions, as well as correlation effects, at which
< 10° point not onlyall of the processes of Figs. 1 and 2 will be
<, 108 N present(nonzerg, but additional processes will arise explic-
=z . itly. That it is technically feasible to perform calculations of
RS 1070 nonlinear optics from real solid-state systems is indicated in,
% 1612 N e.g., Ref[62], where the nonlinear optical response of an Fe
- . : N monolayer on Cu has been studied using the full-potential

10" — T — linearized augmented plane-wa@eAPW) [63] method in
(b) 1 10 ho [eV] 100 the electric-dipole approximation. The additional burden of

including nonlocality in the response should not prevent any
FIG. 12. Collective resonances are present in the form of plascalculation, as we shall indicate in the discussion below.
mons and plasmaritons in the screergadlinear and(b) nonlinear In the perspective oéb initio calculations with reduced
responses. Results are shownder0.0kg. The legend refers to the basis sets, such as the LAPW method, the present results for
individual tensor elements, except “mix,” which refers to Fig. 11. the homogeneous electron gas can be seen as a first-order
approximation to the so-callédterstitial region(LAPW and

1+ 1o@Go (G ) Tl ) = 1 + _loy(qe) other reduced-basis-set methods usually divide space into so-
WYY [1-(a/90)?leow called muffin tinsaround each atom, inside which an atom-

(96) alone-in-the-world approach is taken, and an interstitial re-
gion comprising everything outside the muffin tink1 order
in transverse screenin(getarded byc,, called aplasmariton  to complete a treatment relevant for use with LARSY any
resonance One should notice that while the longitudinal other bulkab initio method, one would have to rewrite the
screening factor equals thex component of the relative di- theory in terms of this basis set, i.e., in LAPW, spherical
electric tensor, the transverse screening fadt@s noequal  harmonics inside the muffin tins and plane waves with the
the yy component of this tensasee Ref[51)). inclusion of Bloch functiongfor the periodic latticgin the
Looking at Figs. 8-11, several collective resonances argterstitial region, and thus also allow for the different
present. The@lasmonresonance is varying only slightly with  weighting factors of the wave functions that appear. There-
the value ofg, and appears almost constant just above 10 e\ore one would have t¢) go back to the real-space expres-
in Figs. 8-11. Theplasmaritonresonances have the same sjons given in Eq42)—(44) for the linear optical properties,
asymptotic energy foq— 0 as the plasmon, while for large Egs.(47)~(50) for the nonlinear optical properties, and Egs.
values ofg, their position inw-q space approaches the line of (74)79) for the treatment of electronic screening effects
q=w/cy asymptotically. [alternatively, Eq(80) if one wishes to use the shortcut that
In order to emphasize the effect of the collective resothe Born approximation providgs(ii) insert the desired ba-
nances, we have in Fig. 12 plotted the screened li@and  sis sets) and Bloch functions according to the symmetry
nonlinear(b) conductivities in the relevant energy range for present in crystals under consideration; aiid) transform
q=0.0ke. In Fig. 12a) &(q,w) (dashed ling features a these new expressions inkospace as needed.
plasmon resonance just above 10 eV, while &p(q, w) With the present state of the 4684], and the evolution in
(solid line) a plasmariton resonance is present a little to thecomputing power and storage for technical computing, we
right of the minimum that occurs at=q,. In the nonlinear  believe that calculations of nonlocal optical properties using
conductivities, shown in Fig. 1B), the plasmon resonance is ab inito methods are becoming feasible, at least in the region
again present just above 10 eV. There are two different plasvhere the crystal lattice is stable. A possible strategy to per-
mariton resonances present. One appears with double degeorm such calculations for real metals involves five steps,
eracy inE,,,(2q,2w), since it originates in the screening of namely (i) to determine the ground stathich computer
the laser field. The other one appears as one out of twoodes based on density-functional theory are generally good
nondegenerate plasmariton resonancesEjf(2q,2w). It af) and converge th& mesh and crystal potential to an ac-
originates in the second-harmonic field. The “mixed” con-curacy that is sufficient to generate well-converged optical
ductivity contains all three resonances, as one would expegproperties atj=0 [62]; (ii) to introduce additionak points at
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k+q, k+2q, etc., as required in the formulagii) to recal- _ e
culate the ground state with this new setkgboints in order jr(n =~ ﬁ[pm —ro +ar—ropl, (A2)
to produce the corresponding eigenstati®g,to calculate the

nonlocal optical responses along theaxis using this set of .

eigenstategyv) to change the value af and repeat the pro- je(r) = ﬁ[pg(r -1 = 8r-rp] X o (A3)
cedure from pointii) as needed. This can all be done with a 2me

single self-consistent solution to the crystal potential, ob
tained in step(i), and the added computing time varies lin-
early with the desired number gfsteps, without resorting to
second variational methods suchlag. With careful selec-
tion of the g points, the calculation time can be further re-
duced.

If one wants to use real-spaed initio codes in order to

calculate the second-harmonic response of clusters or mai® the vector-potential dependent current density, which to-
ecules, the analytic part of the work becomes a lot easiefether with the second-order interaction Hamiltonian ensures

since one can start directly with Eq$42)—44), Egs. that we get a gauge invariant result for the single-electron
(47)~50), and Eqgs.(74)—79), once the eigenfunctions and fesponse.

“are the spin-independent and spin-dependent contributions to
the free(F) current density, respectivels, is the position of
the electronp operates on the, space, and

e
jarw) == n_kA(re; )O(r—re) (A4)

matrix elements for the current densities become
% * *
VI SUMMARY OF CONCLUSIONS (NSRS == (Vi = U Vi) Ssg.

To conclude, we have presented a theory for calculating 2ime
the linear and nonlinear optical properties from the Pauli
Hamiltonian. Special emphasis has been given to the simple o
homogeneous electron gas, and numerical results based on o Py S * /
the developed theory have proven that diamagnetism, spin, (nsliE(nn’. s = 2%(‘/’nv‘/’n' + i Vi) X (gols’)
and screening are all important ingredients in describing lin-
ear and nonlinear optics more accurately than the common
paramagnetism-only approach. Finally, we have discussegnd
the relation of our theory to existing numerical methods in 2
condenged—ma.ttle.r theory, gnd we have pr_oposed a way of (N, 8y (r: )N’ 8"y = = —(n|&r = 1)) S Ar; ).
performingab initio calculations that scale linearlpr bet-
ter) with the number ofy points. (A7)

Seeing such interesting effects of the spin already in the
three-dimensional electron gas is certainly an indication thaf\bove, we have defined a new quantify}j?(r)|n’), in order
further effects of the influence of the spin on nonlinear opticdo separate the spin and space contributions.
may be revealed if one considers low-dimentional systems The matrix elements of the different terms in the interac-
such as the two-dimensional electron gasantum well or  tion Hamiltonian thus become
the one-dimensional quantum wire. It is furthermore ex-
pected that these features will be present also in more real- (n g/H,(r;w)|n’,s') = _f (Nlje(N|n"Y s - A(r; w)dr,
istic models of solid-state systems.

(A5)

=(n|jg(n|n") X (ga|s’), (AB)

(A8)
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X (glals'y - A(r; w)dr. (A9)

APPENDIX A: CURRENT DENSITIES AND TRANSITION With two spin states, sag;=(g) ands,=(7), there are four
MATRIX ELEMENTS combinations 0f(s|g|s’>, namely (s,|o|s))=€, (s)|o]s,)
=\2e., (sjolsy)=12e,, and (sjols)=-e, where e,

The microscopic current-density is given (85,66 =(g,ig) /2.

i1, 0 =je(r) +j2(r) + l[jl(r.w)e—iwt_'_ ccl, (A1)  APPENDIX B: INTEGRALS IN THE 3-D ELECTRON GAS
) 2 ) - HEl

Below, we discuss the analytic solution to the integrals
where overk appearing in the linediEgs.(62)—(64)] and nonlinear
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TABLE II. Identification of the orders, v, r, and B of the generalized type of integral&q. (B1)]
appearing in the different parts of the linear and nonlinear conductivity tensors. The comma between numbers
in p indicates the different values it can take.r, and B, on the other hand, are unique for each element. In
the Cartesian coordinate systekg=k,=k, when ky=Kk/lg. Thusv andr are interchangeable.

Tensor Element Order-deciding part p v r B
&8 XX A+ 4k g+ P 0,1,2 0 0 1
yy=zz 4K 0 0 2 1
7, yy=2z 1 0 0 0 1
SA XXX=XYY=XZZ k+q 0,1 0 0 1
3B XXX 43—k 1,3 0 0 2
XYY=XZZ=YXY=ZXZ=YYX=2ZX 4ka2L 1 0 2 2
fgo Xyy=Xzz -k, 1 0 0 2
YXY=YYX=2ZXZ=Z2ZX K 1 0 0 2
s¢ XXX 4k+2q 0,1 0 0 1
YYX=YXY=ZZX=ZXZ 2k+q 0,1 0 0 1

[Egs.(70—«73)] conductivity tensors in the low-temperature ke m 2m

linear conductivity tensor can, wheylie,, be expressed as a ﬁl [a(p Sin ¢ cos0-9) +b]

limit. Every integral overk in both the linear and the non- 38 (alibhs) = J f psin ¢(p sin ¢ cos - s)P
por 1 ’ -
sum over terms of the general type 000 1_[J=

X (p sin ¢ sin 6)"(p cos ¢)'déd¢dp.

KPKUKLf (K + se
Shattaiog = | | | S, ®2
Hj=1 [ajke+ b Looking at the relevant equations for the conductivity ten-

(B1)  Sors, we observe that* has no denominator. The properties
of the others are summarized in Table Il. It reflects the con-
sequences of the cylindrical symmetry in the Cartesian coor-
dinate system. Therefore, integrals with indicés,r)
=(0,2) gives the same results as for indicesr)=(2,0),

and we may choose to drop one of them, sayy setting
v=0 and definingss, = Fh,. A further reduction in the com-
gplexity of the total solution is possible, since functions with
B=2 can be expressed in terms of functions wa8th1l in the
following way:

wherep,v,r,j,B are nonnegative integers, and the integra
tion runs over the whol& space. The functions in general
depend on(i) a set of real quantitieda}={a,, ... ,as} ap-
pearing in front of the integration variablkg in the denomi-
nator, (i) a set of complex nonzero quantitiegb}
={by, ... ,bg} appearing as the other quantity in each term o
the denominator, andii ) the real quantitys representing the
displacement of the center of the Fermi-Dirac distribution
function sphere frongk,,k,,k,)=(0,0,0. The quantitys to-
gether with each element in the det is in general a func- Sﬁ,(al,az,bl,bz,s) =
tion of the wave vectorsy andk. Each element in the s@b}
is furthermore a function of, the relaxation time. (B3)
One observes that in EgB1) a cylindrical symmetry is . .
present in the Cartesian coordinate system, because the tvgbqﬁ OB’JZE {ﬁ ,Z}Ihlf anyé aj,_sali/,al, flshzerg, we qbserv«_e frgm
directionsy and z are equivalent in a 3DEG wherge,. g. (B2) that the order(in k, of the e2r10m|nator IS de-
However, in the low-temperature limit the Fermi-Dirac dis- creased by one, and thus, tha@'pr(o,az,bl,bz,s)

1
tribution function is zero outside the Fermi sphere and equaTSpr(aZ’bZ'S)/bl' ) . -
to one inside, and it is therefore advantageous to &hifty As a consequence of the interchangeability of the indices

—s, followed by a one-to-one mapping of the Cartesian coor? @ndr, and of Eq(B3), the integrals appearing can now be

dinate system intepherical coordinates(p-¢-6). Although ~ Written in terms of functions of the type

the above-mentioned cylindrical symmetry is thereby re- JkF fﬂf
- 0 0

algér(alyblas) - az@ér(azybz,s)
ayb, —aph;

27 2e; ; _QPp

moved in the expressions, it should obviously appear again S;,(a,b,s) psin ¢(p sin ¢ c0s8-9

after integration. This property can thus be used to check the o b-as+apsinécosd

r_esul'ts. y3|ng in B this  way k,=p sin ¢ cos ¥, kx X (p cos ¢)'dededp, (B4)

=p sin ¢ sin §, andk,=p cos ¢, we calculate the Jacobian

determinant for this mapping, and thuslkdkdk,  dropping the now superfluous index arandb. Before solv-
=p?sin ¢pdpdpdd. Thereby the indefinite integral in E(B1) ing Eq.(B4) in the cases needed, let us mention that in the
is turned into the definite integral special case whera=0 (i.e., whenq=0), the solution is
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NPAANY,

FIG. 13. The poles in the complexplane in Eq.(B8) are of
order 1 att, and of ordeth att=0, as shown to the left. To the right
is shown the case whelte=0 and the pole at=0 vanishes. The

closed contour shown in each diagram is the integration path used.

trivial, and can be left as an exercise to the reader. Thus, after 5
carrying out the integrals, two specific tests can be applied in

order to verify the results, name(i) lettinga— 0 in the final
expressions, andi) showing that an explicit calculation of
(v,r)=(2,0) in Eq. (B2) gives the results ogéz(a,b,s) and
3i(a,b,s).

Whena# 0, we have to consider the full solution to Eq.
(B4) for the different combinations of, v=0, andr men-
tioned in Table II. To solve EqB4), let us make the substi-
tutions = (b—as)/(akg), p=keu, giving dp=kedu, and

dp _1 du (B5)
b-as+ap sin ¢cose_ an+usin¢ cosh’
Thereby we get
1 7 27w
o k,Z:”J J f U2*(keu sin ¢ cos 8- s)P
PP a 7+ U Sin ¢ cos 6
0 0 O
X sin ¢ cos ¢pdédadu, (B6)

where for brevity we have left out the referenceatd, s in
5 since ally, are functions of exactly one of each of them
from here.

First, we look at the integrals ovet Having Table Il in
mind, we observe that the numerator varies as'@osith
he{0,1,2,3 and contains only even orders of ginwhich
can be expressed in terms of c®dy use of siRg+cogd
=1 [integrals with odd powers of sié in Eq. (B4) would
vanish anyway if they were preséntettingw=u sin ¢, we
thus need to solve the integral

J‘Zﬂ'
0

cod'd

——dé,
n+ W Ccos 6

Ohe{0,1,2,3. (B

PHYSICAL REVIEW A 70, 043806(2004)

2w §]0 2 h-1
f =7 =f®(h—3)+—”®(h—1)<—17>
o mtwcost w W w
h
2
+(‘2> — (B9)
W 7 W

0Ohe{0,1,2,3, and where®(x)=0 for x<0 and®(x)=1
for x=0. Insertion into the relevarfsl functions gives

2
0= 2me f f SS9 saqu, (810
o V72— usirfe
4
5= 27rkJ f s’|n2¢ Slrﬁd)dd)d (EB11)
o - u%sirt¢
1:27T|('3_:f1 ZJW{. _( E) sin ¢ }
i u i sin ¢ 7;+kF —\J—nz—uzsinng
X debdlu, (B12)
1 27k

1 T
Ff u“J [sin ¢ code
0 0

_( +i> sin ¢ — sirfe
7 ke ) o= Psirgs

Ll |3t

—| »+—|sin ¢ [d¢du,
Ke

12~

}d¢du, (B13)

27k 287] &

k2

sin ¢
V7 - Usirte

(B14)

1 _
320_

F

5
F30= ZWkJ J {_S'ng¢+<3_522+3ﬂ]+772>3in¢
ke ke
(o378 _sng
(17 * ke k,2: +|(,3; Vo = uPsirte depeul

(B15)

and we are left with a number of trivial integrals, and the
three nontrivial ones,

u'sine
dud
||| s, 0

Using a contour integration along the unit circle, i.e., lettingd(h,k) €{(2,1),(4,1),(4,3)}.Using a binomial series ex-

t=exp(if), we get cos9=(t’>+1)/(2t) and dt/dg=i exp(i6)
=it. Thereby the integral becomes

r?f _ 2 3@ (t2+1)"
0 C 2w ] -t (t-t)

[t}=1
with poles att, =

cod ¢
n+W COS 60

dt, (B8)

—(np/w)£(n/w)>-1, and forh>0 also at

t=0. As illustrated in Fig. 13, one pole is outside the unit

pansion[68] of the square root, i.e.,

1+x)7Y2=3 ED"@n-Dlt |

B17
o (emn (B9
and the identity
/2
2m) !l
f sif™xdx= (L (B18)
0 2m+1)!!

circle, and the other two are inside. Using the unit circle as

the integration path, a residue calculation giye3|

we find, after a little algebra, the solutions
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1
772“+1 (2n+3)(2n+1)

usin ¢
/—.
Vo = uPsint e

d¢2

O%:]
O%H

1 n+1l
== (1-7)In +27|,
2{( ) ,—11 27

(B19)

©

1
u’sin ¢ 2 1
,=d =
{ Vi = Usirt ¢ udé n§::0 7

"1(2n+5)(2n+1)

Og,:l

29

1 +
= —|:(1 - 774)In7]— +
4 n- 3

+ 2773]

(B20)

7P — UPsirf¢

=2

1

n
f\,USI(ﬁ udd
0

Og,:l

2n+2
772”” (2n+5)(2n+3)(2n+1)

1 +1
= g[(l + 2772—3774)an_ 67 - 2n|. (B21)

Looking at the radius of convergence for the sums above, we

PHYSICAL REVIEW A 70, 043806(2004)
mke] 4 4 b (b s\ &
F30= PR e e )
a (15 3| ak-\ak: ke/ kg

b \3 n+1l
—<£> {(1—772)|n7]_1+277]}. (B27)

Finally, we apply the two previously mentioned tests. Calcu-
lation of the limit wherea=0 can conveniently be done using
a power series expansion of the logarithm involved, i.e.,

L n+1_°°
2 -1 n20(2n+1)772”+1'

(B29)

Substituting» with its original definition and subsequently
letting a=0 in the resulting expressions, we obtain the same
result as if we directly lea=0 in Eq.(B4). To further verify

the solutions, explicit calculations have been carried out, and
they show that, indeed, by interchangimgndr (as given in
Table Il) in Eq. (B2) we arrive at the same results as above.
Q.E.D.

APPENDIX C: CONDUCTIVITY TENSORS INTEGRATED

Below, the linear and nonlinear conductivity tensors are
expressed as functions of the general solutions presented in
Appendix B, Eqs(B22)—«(B27).

The diamagnetic linear conductivity tens@Eq. (62)],
where 8=0, has the solution

ie’k3
o 3Zom. (C1

can conclude that they are generally convergent in the r
gime whereq=<kg, above which we anyway would be lim-
ited by the model. Since now all relevant integrals have been

& the paramagnetic and the spin-dependent linear conductiv-
ity tensors,8=1, and we get, according to Table II,

solved, we can present the analytic expressions for the rel-
evant combinations gf, andr of Eq.(B1), as they are listed

in Table Il. They are

k2 +1
Séo:—F{(l-nz)lnn +277] (B22)
a n-1
ke n+1 109
Foo= 4—;[(1 - 79%n 1 3T 2773} , (B23)

3
Sio—%{———{( —772)"1 +27]H, (B24)

)

1 _Wks{ o {(1 2)2In—77+1+&7

12 15 4dake -1 3
(B25)
ke[ b
b= T {(akF) {(1 i’ +2n]
4( b
-—(akF+kSF) (B26)

ie’h

O = Tornia ———[4 F3o(a,by,q) - 4 F3(a,by, 0)
+4q F1o(a,by, Q) — 49 Fio(a,by, 0+ ¢ Foo(a,by,q)
- q2 Séo(ai blv 0)] ) (CZ)
g ieh
Oyy= 4 3m€ [Soz(a b1,q) - goz(a b.,0)], (C3
; Zﬁ 2
7= Tormia SHIEb00) - Shabu 0], (Co

with a=Aqg/m, andb,=Aq?/ (2my) —w—i/ 7.
The only independent element of part A of the nonlinear
conductivity thus becomes, again referring to Table II,

3

[S)
32l 1o(2a,b;,20) - §1¢(2a,b,,0)

+ q g(])-o(zav b2! ZQ) - q Séo(Za, bzvo)]:

with a as above ant,=24q?/m,—2w—i/ 7. In the paramag-
netic and the spin-dependent nonlinear conductivity tensors,
B=2, and we thus get

SA=

(CH
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) S ) . z+u+1
2B= S 2 (22:2.ba 01,0) ~ 2(22,,0.5,,0) SASs 222)[[1 B Frves
—5(2a,a,b3,b4,0) +5(2a,a,b3,b4,—q)], (Co) *[1-(u=-2°]n Z_u+i +4Z}},
Z—U-—
. et (C10

B, = 3)Zwsmng[é’f’(za, a,bs,by,q) - 27(2a,a,b3,b,,0)

3ne u
- - B . — e (11— 97272
- 57(28,8,05,04,0) + 37 2aa.b5, by -, (C7) Boonl28:26) = e 22{[1 2]
with a as above,bs=—2w—-i/7, and by=-A0?/(2my) - w xln‘ 2z-u+1 +[1-(u+ 227
—i/7. The nonzero elements of the third rank tensQrand 2z-u-1

=4 §3, Q5,,=-F3, andQy, =5, in short notation, since L —

the argument of the differend;;, andQjj, applies to each of

the % -functions appearing. _ _ _ 212
Firﬁ;ally, the nonzero elements of part C of the nonlinear 242~ 2| [1-(u+2)7]

conductivity tensor ar&S,, =3< /2, and

97 are defined using Table Il a,,=4 32— 0232 Qyyy I ‘22+u+ 1‘

yyx +u+1l
, xIn| 224 ‘+[1—(U—Z)2]2
c e N 1 z+u-1
o W[Z T10(a,b1,0) — 2 F19(a,by, 0) | s—u+1 }} 1
Xn i)
+9 (@b @) — 4 Foo@br, 0], (C8) zzu-1
with a andb, as defined above. In the sharp limit we get 5 . 3néu o |ZHU+1
E“"'XVV(ZQ'Z‘”)"—smeﬁwZ 2| [1-(u+2n) ———
A _ 3néluz 1 5 q
2(2q,2w)—m 1+ |[1-(u-227] z-u+1
+[1-(u=-2>%]In H
2z-u+1 5 z-u-1
x| gpmy-g | Flm T2 2z-u+1
—[[1—(u—22)2]ln —‘
2z+u+1 2z-u-1
P ©9 1 - 2271 _22+u+1H c12
+[1-(u+
e P
3ne  u
sz(zq;zw)=——{(uz—zz)[[l—(u—Zz)z] 3ne® +u+1
XX 64miw’qZ* ngx(Zq;Zw):Bn—uz{(l—(UJfZ)Z)m z+u_1
2z-u+1 e’ oY
XIn| =———=| +[1-(u+22?] —u+1
2z-u-1 +(1-(u-2?In Z_u_l‘+4z].
0 2z+u+1 + 87 o C13
2z+u-1 (19
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