
Confinement control by optical lattices

Marcos Rigol and Alejandro Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

(Received 1 October 2003; revised manuscript received 24 June 2004; published 26 October 2004)

It is shown that the interplay of a confining potential with a periodic potential leads for free particles to states
spatially confined on a fraction of the total extension of the system. A more complex “slicing” of the system
can be achieved by increasing the period of the lattice potential. These results are especially relevant for
fermionic systems, where interaction effects are in general strongly reduced for a single species at low
temperatures.
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I. INTRODUCTION

The study of trapped atomic gases has become a field of
intense research in the past years. The realization of Bose-
Einstein condensation(BEC) in trapped dilute atomic vapors
[1–3] was the main motivation starting all the experimental
and theoretical research in this area. BEC was obtained trap-
ping and evaporatively cooling bosonic alkali metals. Re-
cently, the possibility of trapping and cooling Fermi gases
has attracted a lot of attention, due to the fact that in the
quantum degeneracy regime, superfluidity appears within
reach[4]. However, cooling single component Fermi gases
up to very low temperatures is more difficult than cooling
bosonic gases since thes-wave collisions are forbidden for
identical fermions. On the other hand, single species Fermi
gases make in this way possible to access experimentally an
ideal Fermi gas. As shown below, such a simple system can
develop a rich behavior by the combination of a confining
and a lattice potential.

For atoms confined in a harmonic trap, a case that ad-
equately describes most of the experiments realized so far
[5], a fairly complete theoretical understanding was achieved
for the one-dimensional(1D) [6–9] and two- or three-
dimensional [10–12] single component spin polarized
trapped Fermi gas, which at very low temperatures can be
considered as a noninteracting gas. The harmonic form of the
potential allows obtaining a number of exact analytical re-
sults for these systems. However, these results cannot be
extended to incorporate an additional lattice potential, a case
of increasing interest after the experimental realization of a
Mott insulator in the presence of an optical lattice[13]. A
further interest on the introduction of an optical lattice in
fermionic systems arises from the possible connections with
central problems in condensed matter physics[14].

We analyze here ground state properties of single species
noninteracting fermions confined on 1D optical lattices.
These systems are relevant for the understanding of recent
experimental results[15–17], where due to the very low tem-
peratures achieved, fermions can be considered as noninter-
acting particles. On the theoretical side, the Hamiltonian can
be diagonalized numerically, which allows to consider any
kind of trapping potential and any number of dimensions for
the system. We show that the interplay between the lattice
and the confining potential leads in a region of the spectrum

to a splitting of the system with eigenstates that have a non-
vanishing weight only in a fraction of the trap. Hence, such
systems are qualitatively different from the cases without the
lattice, which have been studied recently[6–12].

We also study the nonequilibrium dynamics of the fermi-
onic cloud on a lattice. In particular, we study the case in
which the center of the trap is initially displaced a small
distance. It allows to realize the existence of the single par-
ticle states confined in a part of the trap obtained in the
equilibrium case, since for some values of the parameters the
center-of-mass(c.m.) of the system oscillates in one side of
the trap. With these results, we reproduce the experimental
observations in Refs.[15–17], and complement other theo-
retical approaches to this problem[17–19].

We show that if in addition to the lattice an alternating
potential is introduced, doubling the original periodicity, an
additional “slicing” of the system can be achieved. The width
and number of such regions can be controlled in a given
energy range by the amplitude of the new modulation. By
filling these systems with fermions, insulating regions may
appear, that in the case of an alternating potential, are similar
to the Mott insulating plateaus of the trapped fermionic Hub-
bard model[20,21]. In the noninteracting case it is possible
to calculate the local density of states, which exhibits the
presence of local gaps in the system. In addition, a local
compressibility[20,21] also serves as a local order parameter
to characterize the insulating regions. This extends the re-
sults initially obtained for the bosonic case[22], showing
that in general, the distinction between commensurate and
incommensurate fillings typical in extended solid-state sys-
tems is lost in the trapped system.

The presentation is organized as follows: In Sec. II we
study 1D lattices superposed to a confining potential. We
analyze the generic features valid for any kind of trapping
potential, and focus on fermionic systems. In Sec. III, an
analysis of the nonequilibrium dynamics of the 1D trapped
fermions is presented, and recent experimental results repro-
duced. In Sec. IV we study the case in which an additional
alternating potential in introduced, and dicuss analogies and
differences with the results obtained for the fermionic Hub-
bard model. In Sec. IV, we extend the analysis of Sec. II and
IV to two dimensions(2D). Finally the conclusions are given
in Sec. V.
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II. NONINTERACTING PARTICLES CONFINED
IN 1D OPTICAL LATTICES

We analyze in this section 1D noninteracting systems con-
fined by arbitrary potentials when an underlying optical lat-
tice is present. We first show results for a harmonic confining
potential and then discuss the features that are generally
valid for any other kind of confining potential. For definite-
ness we concentrate on the fermionic case, although the
spectral features are equally valid for bosons, since we deal
with the noninteracting case.

In the second quantization language, the Hamiltonian de-
scribing a confined dilute and ultracold(noninteracting) gas
of single-species fermions, under the influence of a 1D opti-
cal lattice, can be written as

H =E dr Ĉ†sr dF−
"2

2m
¹2 + Vsr d + V0sxdGĈsr d, s1d

whereĈ†sr d andĈsr d are the creation and annihilation fer-
mionic field operators, respectively. The confining potential
is denoted asVsr d=Vsxd+Vsyd+Vszd. We analyze in this sec-
tion the case in which the transversal component of the con-
fining potential Vsyd+Vszd is very strong so that only its
lowest energy state is populated, and the exited states are not
accessible for the given experimental setup. Hence, the rel-
evant dynamics of the system is restricted to occur in the
longitudinal direction where the trap is considered to have an
arbitrary power a , Vsxd=Vaxa. In Eq. (1), V0sxd
=V0cos2skxd describes the potential generated by a 1D opti-
cal lattice. The wave vectork=2p /l is determined by the
wavelengthl of the laser beam.(The lattice spacing is then
a=l /2.) Assuming the atoms to be at the lowest vibrational
level in each site, the fermionic field operators can be ex-

panded in single band Wannier functionsfisxd ,Ĉsxd
=oicifisxd, and from Eq.(1) one obtains the single band
Hamiltonian

H = − to
i

sci
†ci+1 + H . c .d + Vao

i

xi
ani , s2d

whereci
† and ci are creation and annihilation operators, re-

spectively, for a spin polarized fermion on sitei, the local
density isni =ci

†ci, andxi measures the positions of the sites
in the trap(xi = ia with −N/2+1ø i øN/2 ,N being the num-
ber of lattice sites). The hopping parameter is denoted byt,
which for V0@Er can be written in terms of the experimental
parameters ast=4/ÎpsV0/Erd3/4Ere

−2ÎV0/Er [23], where the
recoil energy of the atoms(with massm) is Er ="2k2/2m.
The total number of spin polarized fermions in the system is
denoted byNf. We diagonalize the Hamiltonian numerically,
and consider the cases in which all particles are confined.

Results obtained for the single particle spectrum of a sys-
tem confined by a harmonic potential are presented in Fig.
1(a). The spectrum is clearly different from the usual straight
line in the absence of a lattice. It is possible to see that in
Fig. 1(a) the spectrum can be divided in two regions accord-
ing to the behavior of the energy as a function of the level
number. An arrow is introduced where a change in the cur-
vature is observed. More detailed information can be ob-

tained by considering the level spacing as a function of the
level number[Fig. 1(b)]. There it can be seen that in the low
energy part of the spectrum(region A), the level spacing
decreases slowly with increasing level number, in contrast to
the case without the lattice in which the level spacing is
constant. However, at the point signaled with the first arrow,
a qualitative change in the single particle spectrum occurs,
characterized by an oscillating behavior of the level spacing.
The part with values of the level spacing increasing with the
level number corresponds to odd level numbers and the one
with a level spacing that decreases up to zero corresponds to
even level numbers. That is, a degeneracy sets in that con-
tinues up to the point signaled with the second arrow, where
a new change in the behavior of the level spacing shows up.
The region beyond the second arrow corresponds to decon-
fined states, which are of no interest since experimentally
they are associated to particles that scape from the trap
(which in the system of Fig. 1 has 10000 lattice sites).

In the lowest part of the spectrum of Hamiltonian(2), the
eigenfunctions are essentially the harmonic oscillator(HO)
orbitals in the absence of a lattice. This is shown in Fig. 2(a)
for the first and the second eigenfunctions of Eq.(2), and the
same parameters of Fig. 1. These orbitals are perfectly scal-
able independently of the size of the system and of the ratio
betweenV2 andt. It is only needed to consider that the usual
HO characteristic lengthR,smvd−1/2 (without the lattice) is
given in terms of the lattice parameters throughR
,sV2/ ta2d−1/4, with the effective massm,sta2d−1 for very
low energies, so that the scaled orbitals are given byw
=sR/ad1/2f wheref are the HO orbitals with the lattice, i.e.,
the same relation as for the HOwithout the lattice holds for
the lowest energy orbitalswith the periodic potential. This
implies that very dilute systems behave similarly to continu-

FIG. 1. Single particle spectrum(a) and level spacing(b) for a
system withN=10000 andV2a

2=3310−7t. Energies are measured
in units of t. For the explanation of the arrows see text.
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ous systems, which have been already discussed in the litera-
ture so that we do not present any further analysis on them.
TheNf oscillations in density profiles and momentum distri-
bution function(MDF), and other mentioned characteristics
of the 1D trapped system without the lattice[7,8] are easily
obtained in this case.

A qualitative difference between the cases of the trap with
and without a lattice starts for levels in region B. Once the
degeneracy appears in the spectrum, the corresponding
eigenfunctions of the degenerate levels start having zero
weight in the middle of the trap, and for higher levels the
regions over which the weight is zero increases. As an ex-
ample, we show in Fig. 2(b) two normalized eigenfunctions
belonging to region B in Fig. 1. The cases despited corre-
spond to the normalized eigenfunctions 5000(that is only
different from zero for negative values ofx) and 5001(only
different from zero for positivex), for the same parameters
of Fig. 1 (in principle a lineal combination of these two
eigenfunctions could have been the solution since the level is
degenerated). Hence, particles in these states are confined to
a fraction of the trap, showing that the combination of both a
confining and a periodic potential lead to features not present
either in the purely confined case without a lattice or in the
case of a purely periodic potential. Furthermore, since we are
dealing with a noninteracting case, such features are com-
mon to both fermions and bosons. However, in the case of
fermions, it is easy to understand the reason for such effects,
as discussed next.

Figure 3(a) shows density profiles of fermions when the
number of particles in the trap is increased. In one case
sNf =4500d the Fermi energy lies just below the level marked
with an arrow in Fig. 1. A second curvesNf =4651d corre-
sponds to the case where the central site reaches a density

n=1, and in the other casesNf =5001d, the Fermi energy lies
at the value corresponding to the levels depicted in Fig. 2(b).
The positions in the trap are normalized in terms of the char-
acteristic length for a trapped system when a lattice is
present, which is given by[20,21]

z = sV2/td−1/2. s3d

When the Fermi energy approaches the level where degen-
eracy sets in, the density of the system approachesn=1 in
the middle of the trap, and at the filling point where the
degeneracy appears in the spectrum, the density in the
middle of the trap is equal to one, so that an insulating region
appears in the middle of the system. Increasing the filling of
the system increases the region over which this insulator ex-
tends. Hence, due to Pauli principle, the eigenfunctions of
such levels cannot extend over the insulating region, and for
the same reason, the region over which the weight is zero
increases for higher levels. The local insulator withn=1 has
zero variance of the density and, it is incompressible, a prop-
erty that could be tested experimentally by using a local
probe.

However, since the system we are considering is a nonin-
teracting one, the confined states discussed above should be
also present in the case of bosons, where the argument about
the filling would not be valid anymore. It is therefore desir-
able to also understand such features from a single particle
perspective[24]. We first notice that the point at which de-
generacy appears is at an energy 4t above the lowest level
sE0d [see Fig. 1(a)], corresponding to the bandwidth for the
periodic potential. Such an energy is reached when the Bragg
condition is fulfilled and in the case of the tight-binding sys-
tem we are considering, when all the available states are
exhausted. Let us next consider the case depicted in Fig.
2(b). There, the energy level corresponding to the wave func-
tions is E5001−E0=4.2176t, that is to a good approximation
4t+V2x1

2 for V2a
2=3310−7t and x1=697a the inner point

where the wave functions drop to a value,10−5. Therefore,
the inner turning point corresponds to the Bragg condition,
whereas for the outer turning point(x2=3770a, again for the
same drop of the wave function), we have thatE5001−E0
.V2x2

2, i.e., the classical turning point corresponding to the
harmonic potential, as expected for such a high level. Hence,
Bragg scattering as in the well known Bloch oscillations
[25], and the trapping potential combine to produce the con-
finement discussed here.

Further confirmation of the argument above can be ob-
tained by considering the MDF, a quantity also accessible in
time of flight experiments[13]. Due to the presence of a
lattice, it is a periodic function in the reciprocal lattice[26]

FIG. 2. Scaled HO orbitals in the presence of a lattice forN
=10000 andV2a

2=3310−7t. (a) First (continuous line) and second
(dashed line) HO orbitals;(b) HO orbitals 5000(only different from
zero for negativex) and 5001(only different from zero for positive
x). In (a) the positions are given in units of the HO lengthR
=sV2/ ta2d−1/4 (for an explanation, see text), and in(b) in units of the
lattice constanta.

FIG. 3. Density profiles(a) and normalized
MDF (b) for Nf =4500 (thick continuous line),
Nf =4651(dashed line), andNf =5001(thick con-
tinuous line) for a system withN=10000 and
V2a

2=3310−7t. In (a) the positions are given in
units of the characteristic lengthz, and in(b) the
momentum is normalized by the lattice constant
a.
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and it is symmetric with respect tok=0, so that we study it in
the first Brillouin zone in the regionf0,p /ag. In addition we
normalize the MDF to unity atk=0snk=0=1d. For the fermi-
onic case, it can be seen that it always has a region withnk

=0 if the insulating phase is not present in the trap, and this
region disappears as soon as the insulator appears in the
middle of the system. More precisely, Fig. 3(b) shows that at
the filling when the site in the middle reachesn=1, also the
momentumk=p /a is reached, such that the Bragg condition
is fulfilled for the first time, confirming the discussion above.
When further sites reach a densityn=1,nk=p/a increases ac-
cordingly. Then the formation of the local insulator in the
system can be tested experimentally observing the occupa-
tion of the states with momentak= ±p /a.

Since for different systems sizes and number of particles,
potentials with different curvatures have to be considered, it
is important to determine the fillingNf

C at which the insulator
appears in the middle of the trap as a function of the curva-
ture of the harmonic confining potential. This question was
already answered for the interacting case(Hubbard model) in
Refs.[20,21] where we determined the phase diagram. There
we showed that if a dimensionless characteristic densityr̃ is
defined asr̃=Nfa/z, then its value when the insulating re-
gions (Mott insulating and band insulating in the interacting
case) appear in the system is always constant for any value
of V2/ t at a given value ofU / t (within error bars there), so
that Nf

C,z /a. However, in Refs.[20,21] we were able to
check this only up to 150 lattice sites and fillings up to the
same order, whereas here we extend those results to much
larger systems. In Fig. 4(a) we show in a log-log scale how
Nf

C depends onV2/ t over three decades on the total filling. In
our fit the slope of the curve is −0.500(with 0.04 percent of
error), as expected on the basis of Eq.(3). The critical char-
acteristic densityr̃C=Nf

CasV2/ td1/2 at which the insulating
region appears isr̃C=eb, with b=0.986(with 0.3 percent of
error), which is curiously rather close to the basis of the
natural logarithms.

For systems with other powers for the confining potential
it is only needed to define the appropriate dimensionless
characteristic densityr̃=NfasVa / td1/a, and determine its
value at the point where the insulator appears. In Fig. 4(b)
we show in another log-log plot howNf

C depends on the
curvature of a confining potential with power sixsV6/ td. As
anticipated, we obtain that the slope of the curve is 1/6(with
0.01 percent of error) in this case and the characteristic den-
sity for the formation of the insulator isr̃C=2.09. Finally, we
should mention that it was already shown in Ref.[21] that
keeping constant the characteristic density but changing the
curvature of the confining potential and the total filling in the

trap, the density profiles as a function of the normalized co-
ordinate and the normalized MDF remain unchanged.

In general, for arbitrary confining potentials the same fea-
tures discussed previously for the harmonic case are valid.
The spectrum and level spacing behave in a different way
depending on the power of the confining potential, but al-
ways at a certain level number degeneracy appears in the
single particle spectrum and it corresponds to the formation
of an insulator in the middle of the system for the corre-
sponding filling. In Fig. 5 we show the single particle spec-
trum [Fig. 5(a)] and the corresponding level spacing[Fig.
5(b)] for a confining potential with powera=6, where the
features mentioned previously are evident. The arrow in the
inset of Fig. 5 shows the level at which degeneracy sets in,
very much in the same way as in the harmonic case.

We close this section by considering the pair distribution
function. This quantity not only reflects the consequences of
Pauli’s exclusion principle but clearly characterizes the insu-
lating region. In the presence of a lattice the pair distribution
function can be written as

FIG. 4. Total filling in the trap needed for the
formation of the insulator as a function of the
curvature of the confining potential.(a) Harmonic
potential.(b) Potential with a powera=6.

FIG. 5. Single particle spectrum(a) and level spacing(b) for a
system with a confining potential with powera=6,N=28000, and
V6a

6=3310−7t. Energies are measured in units oft. Expanded
view in (b) shows the first part of the level spacing. An arrow was
introduced in the inset for signaling the level at which the degen-
eracy appears in the spectrum.
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Pij = knilknjl − ri j
2 , s4d

whereri j =kci
†cjl is the fermionic one-particle density matrix.

In Fig. 6 we show as intensity plots the pair distribution
function for systems withN=1000 lattice sites andV2a

2=3
310−5t. Figure 6(a) corresponds to the case withNf =300
fermions, where the systems is completely metallic, whereas
Fig. 6(b) corresponds toNf =600 fermions, an insulating re-
gion appears in the middle of the trap. Apart from the de-
pression along the diagonal that reveals the consequences of
Pauli’s exclusion principle, a clear distinction between the
purely metallic case and the one with an insulating region
can be seen. Inside the insulating region, the density matrix
becomes diagonal, such thatPij =1 for i Þ j andPii =0.

III. OSCILLATIONS OF FERMIONS IN A 1D LATTICE

Recent experiments have realized single species noninter-
acting fermions in 1D optical lattices[15–17]. Transport
studies in such systems revealed that under certain condi-
tions a sudden displacement of the trap center is followed by
oscillations of the c.m. of the fermionic cloud in one side of
the trap. This is in contrast to the system without the lattice
where the c.m. oscillates, as expected, around the potential
minimum [15–17]. Although the experimental system is not
a true 1D system, due to the strong transversal confinement
the relevant motion of the particles occurs in the longitudinal
direction. Hence, in order to qualitatively understand the ob-

served behavior one can analyze the ideal 1D case. Given the
results discussed in the previous section one expects the dis-
placed oscillation of the c.m. to appear when, due to the
initial displacement of the trap, particles that where located
in region A of the spectrum in Fig. 1(b) are moved into
region B so that Bragg conditions are fulfilled. Then the
particles get trapped in one side of the system[Fig. 2(b)].

Figure 7 shows exact results obtained for the c.m. dynam-
ics of 1000 fermions in a trap withN=3000 when its center
is suddenly displaced 200 lattice sites.t denotes the real time
variable. The relation between the confining potentialsV2d
and the hopping parameterstd is increased in order to fulfill
the Bragg conditions. This is equivalent in experiments to
increase the curvature of the confining potential keeping con-
stant the depth of the lattice, which leads to an increase of
the frequency of the oscillation as shown in Fig. 7. It is also
equivalent to increase the depth of the lattice keeping the
confining potential constant, but then our plots in Fig. 7
should be interpreted with care since there we normalize the
time variable by the hopping parameter, which changes in
the latter case.

In Fig. 7 (dashed line) we show results for the case where
the c.m. of the cloud oscillates around the minimum of en-
ergy of the trap since no Bragg conditions are fulfilled. This
can be seen in the MDF[Fig. 8(a)] where at any time no
particles havek= ±p /a. Figure 7 also shows that a damping

FIG. 6. (Color online) Intensity plots of the pair distribution
function as a function of the normalized position for(a) Nf =300
(only a metal is present in the trap) and (b) Nf =600 (an insulating
region is formed in the middle of the trap). The number of lattice
sites isN=1000 andV2a

2=3310−5t.

FIG. 7. Evolution of the c.m.sxc.m.d of 1000 confined fermions
when the center of the trap is suddenly displaced 200 lattice sites
sx0d, for V2a

2=2310−06t (dashed line), andV2a
2=6310−06t (con-

tinuous line).

FIG. 8. MDF of 1000 trapped fermions at three different times
after displacing the trap 200 lattice sites, forV2a

2=2310−06t (a),
and V2a

2=6310−06t (b). The times aret=0 (dotted line), t
=250" / t (dashed line), andt=12500" / t (continuous line).
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of the oscillation of the c.m. occurs. This is due to the non-
trivial dispersion relation in a latticeek=−2t coska, which
makes the frequency of oscillation of the particles dependent
on their energies, leading to dephasing. In order to reduce the
damping, fermions should populate after the initial displace-
ment only levels with energies close to the bottom of the
band in a lattice, so that the quadratic approximation is valid
for ek. (Notice that this is not generally fullfiled even if the
initial displacement is small.)

Increasing the relationV2/ t makes that some particles
start to fulfill the Bragg conditions so that the center of os-
cillations of the cloud depart from the middle of the trap. In
Fig. 7 (continuous line) we show a case where the c.m. never
crosses the center of the trap. The MDF corresponding to this
case, at three different times, is displayed in Fig. 8(b). There
it can be seen that initiallyst=0d no Bragg conditions are
satisfied in the system, and that some time after the initial
displacement the Bragg conditions are fulfilledst=250" / td.
Finally, we also show the MDF long time after the initial
displacement of the trapst=12500" / td, when the oscilla-
tions of the c.m. are completely damped and the MDF is
approximately symmetric aroundk=0.

IV. DOUBLING THE PERIODICITY

In this section we study the consequences of enlarging the
periodicity in the lattice. For this purpose we introduce an
alternating potential, and the Hamiltonian of the system can
be written as

H = − to
i

sci
†ci+1 + H . c .d + Vao

i

sxidani + Vao
i

s− 1dini ,

s5d

where the last term represents the oscillating potential andVa
its strength. The purpose of introducing an alternating poten-
tial in the trapped system is twofold. For fermionic systems,
the increase of the numbers of sites per unit cell leads to the
possibility of creating insulating states(band insulators in the
unconfined case) for commensurate fillings. On the other
hand, by changing the periodicity, new Bragg conditions are
introduced, giving the possibility of further control on the
confinement discussed in the previous sections.

Figure 9 shows how the density profiles evolve in a har-

monic trap when the total filling is increased. Since the den-
sity oscillates due to the alternating potential, we made two
different plots for the odd[negative value of the alternating
potential, Fig. 9(a)] and even[positive value of the alternat-
ing potential, Fig. 9(b)] sites. Each of the plots in Fig. 9 is
very similar to the evolution of the density profiles already
shown for the trapped Hubbard model[20,21]. The only dif-
ference is that in Figs. 9(a) and 9(b) the plateaus withnÞ1
have densities different between themselves and different
from n=0.5, which would be the density of one component
of the spin polarized fermions in the Mott insulating phase of
the Hubbard model. In the flat regions of Fig. 9, both even
and odd sites have the same densities than the corresponding
sites in the periodic case at half filling for the same value of
the alternating potential, so that it is expected that they cor-
respond to local insulating phases.

In Figs. 10(a) and 10(b) we show the single particle spec-
trum and the level spacing respectively for the same param-
eters of Fig. 9. Although in this case the level spacing exhib-
its a more complicated structure, an immediate identification
between the regions signaled in Fig. 10(b) between arrows
and different fillings in Fig. 9 can be done.(A) corresponds
to the fillings in Fig. 9 where only a metallic phase appears
in the trap,(B) to the fillings where the first plateau is present
in Fig. 9, (C) to the fillings where a metallic phase develops
in the middle of the trap and it is surrounded by insulating
regions, and(D) to the fillings in Fig. 9 where the insulator
with n=1 appears in the center of the system. The region
after the last arrow in Fig. 10(b) corresponds to deconfined
states. Notice that the level spacing in regions(C) and (D)
shows a behavior that was not present in Fig. 1.

In order to understand the complex behavior of the level
spacing we study, as in the previous section, the eigenfunc-
tions of the system shown in Fig. 10. The eigenfunctions
corresponding to region A in Fig. 1(b) behave as expected for
a metallic phase, where the combination of the alternating
and confining potentials generates a different modulation
than the one studied in Sec. II, but without qualitative differ-
ences. In the second region of the spectrum(region B) the
eigenfunctions have zero weight in the middle of the trap,
exactly like in the insulator discussed in Sec. II. In region C
there is, as pointed out above, a new feature since in this case
it is possible to obtain a metallic region surrounded by an
insulating one. This is reflected by the eigenfunctions shown

FIG. 9. Evolution of the local density in a harmonic trap as a function of the position and increasing total number of fermions when an
alternating potentialVa=0.5t is present.(a) Odd sites.(b) Even sites. The system has 1000 lattice sites andV2a

2=3310−5t.

M. RIGOL AND A. MURAMATSU PHYSICAL REVIEW A 70, 043627(2004)

043627-6



in Fig. 11(a), where one of the eigenfunctions is nonzero
only inside the local insulating phase(continuous line), and
the other is nonzero only outside the insulating phase
(dashed line), the energy levels associated with the latter
ones are degenerated. For the region D the situation is simi-
lar but in this case the system is divided in four parts because
of the existence of the insulator withn=1 in the middle of
the trap and the insulator between the two metallic phases.
This implies that all the levels are degenerate in region D,
and the particles are located either between both insulating
regions or outside the outermost one, as shown in Fig. 11(b).

As in the previous section, the spectral features discussed
here are equally valid for fermions as well as for bosons. Up
to now we discussed the “slicing” of the systems only in
terms of fermions and based on the appearance of insulating
regions along the system. As before, it would be also here
desirable to understand the appearance of forbidden regions
in space in terms of a single particle picture. We show now

that with the introduction of new Bragg conditions, due to
the altered periodicity, the “slicing” of the system can be
explained in an analogous way as in the previous section. In
the unconfined case, the doubling of the periodicity creates
new Bragg conditions atk= ±p /2a, such that an energy gap
2Va appears. Figure 10(a) shows that in the confined case the
spectrum is continuous(in the sense that the level spacing is
much smaller than 2Va), so that the imprint of the gap can be
seen only in the local density of states

Nisvd =
1

p
ImGiisvd, s6d

whereGijsvd is the one-particle Green’s function[27], which
in this case can be easily computed.

The insets in Fig. 12 show the density of states per unit
cell (now containing two lattice points) for two different po-
sitions along the density profile. The downward arrows in
each inset corresponds to the location of the Fermi energy.
The inset at the left corresponds to a situation where the
Fermi energy goes through the lowest band, whereas the in-
set at the right belongs to sites in the middle of an insulating
region. As expected, in this latter case, the Fermi energy lies
inside the gap. The size of the gap is to a high degree of
accuracy 2Va for the site in the middle of the trap, but
slightly less on the sides. Therefore, again the same argu-
ments as before can be used, but instead of 4t, the width for

FIG. 10. Single particle spectrum(a) and level spacing(b) for a
system with an alternating potentialVa=0.5t and withN=1000 and
V2a

2=3310−5t. Energies are measured in units oft. For the expla-
nation of the regions between the arrows, see text.

FIG. 11. Eigenfunctions for a trapped system
with an alternating potentialsVa=0.5td for N
=1000 andV2a

2=3310−5t. The eigenfunctions
correspond to the levels: 269(a) (continuous
line), 270 (a) (dashed line), 501 (b) (continuous
line), and 502(b) dashed line.

FIG. 12. Density profile per unit cell(now containing two con-
tiguous lattice sites) for a trap withN=10000,V2a

2=3310−7t, and
Nf =2000. The insets show the density of states per unit cell for two
points in the profile. The arrows in the insets signal the Fermi en-
ergy for the selected filling.
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each band is given byÎ4t2+Va
2−Va.1.56t in our case.

Without repeating the detailed discussion in the previous sec-
tion, we can understand the confinement in Fig. 11(a) as
follows. Level 269 has an energy that for sites in the middle
of the trap falls in the middle of the upper band, while for
level 270 (the same value of energy), passes through the
lowest band. In fact, the density of states shown in Fig. 12
can be viewed as approximately shifted byV2xi

2, counting the
sites from the middle. Finally, levels in Fig. 11(b) correspond
to the case where in the middle of the trap they fall beyond
the highest band, then going outwards, they fall in the middle
of the highest band, and further outside, they fall in the
middle of the lowest band.

Again, as in Sec. II, one can follow the same reasoning by
considering the MDF. Due to the new periodicity it displays
new features, associated with the fact that increasing the pe-
riodicity the Brillouin zone is decreased, and in the present
case a second Brillouin zone is visible. In Fig. 13 we show

the density profiles(left) that characterize the four different
situations present in Fig. 9. They correspond to fillings of the
trap in the four regions of the single particle spectrum dis-
cussed previously in Fig. 10. Notice that in the figures we
included all the odd and even points in the density profiles.
We plotted as horizontal dashed lines the values of the den-
sities in the band insulating phase of the periodic system for
the odd and even sites(from top to bottom respectively), so
that it can be seen where are located the local insulating
phases in the trap. The corresponding normalized MDF are
presented in Fig. 13(right).

In Figs. 13(a) and 13(b) it is possible to see that when
only the metallic phase is present in the trap, in the MDF an
additional structure appears afterp /2, corresponding to the
contribution from the second Brillouin zone. When a first
insulating phase is reached, by coming to the top of the low-
est band,k=p /2a is reached, and increasing the fillings of
the system beyond that point, the dip aroundk=p /2a disap-

FIG. 13. Density profiles(left) and their normalized MDF(right) for Nf =150 (a),(b), 200 (c),(d), 350 (e),(f), 600 (g),(h) and N
=1000,Va=0.5t ,V2a

2=3310−5t.
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pears[Figs. 13(c) and 13(d)]. On adding more particles to
the system a metallic phase appears inside the insulating pla-
teau,[Figs. 13(e) and 13(f)]. When this metallic phase wid-
ens, decreasing the size of the insulating phase,nk starts to be
similar to thenk of the pure metallic phase in the system
without the alternating potential. Increasing even further the
filling of the system, when the trivial insulatorsn=1d appears
in the center of the trap, the tail with very small values ofnk
disappears(like in the system without the alternating poten-
tial the region withnk zero also disappears[Fig. 3(b)] and the
further increase of the filling in the system makesnk flatter
[Figs. 13(h) and 13(i)]).

Up to this point, several quantities, like density profile,
pair distribution function, or local density of states were
taken as evidence for the existence of an insulating phase,
but a quantitative criterion in the sense of an order parameter
to characterize the phases was not given. As shown already
in the case of the Hubbard model[20,21], it is possible to
define a local compressibility:

ki
, = o

u j uø,sVad
xi,i+j , s7d

where

xi,j = kninjl − knilknjl s8d

is the density-density correlation function, and,sVad
.bjsVad, with jsVad the correlation length ofxi,j in the pe-
riodic system at half-filling for the given value ofVa. As a
consequence of the band gap opened in the band insulating
phase at half-filling in the periodic system, density-density
correlations decay exponentially and therejsVad can be de-
termined. The parameterb is consideredb,10 (see discus-
sion in Ref. [21]). When this definition is applied to the
different fillings of Fig. 9 the local compressibility is zero in
the insulating regions and nonzero in the metallic phases.
The local quantum critical behavior found in Ref.[20] at the
transition between the metallic and Mott insulating phase is
not present here since there are no interactions between the
particles that could generate quantum criticality.

Finally we analyze the phase diagram for these systems. It
can be generically described by the characteristic densityr̃,
like the Hubbard model and the noninteracting case in Sec.
II. In Fig. 14 we show two phase diagrams for two different
values of the curvature of the confining potential,V2a

2=3
310−5t and V2a

2=3310−4t. There it can be seen that al-
though there is one order of magnitude between the curva-
tures of the confining potentials, the phase diagrams are one
on top of the other, the small differences are only due to the
finite number of particles which make the changes inr̃ dis-
crete. Therefore, the characteristic density allows us to com-
pare systems with different curvatures of the confining po-
tential, number of particles and sizes. In addition we checked
that keeping the characteristic density constant for a given
value ofVa, the density profiles as a function of the normal-
ized coordinates and the normalized MDF do not change
when the number of particles or the curvature of the confin-

ing potential are changed in the system, as we already
pointed out for the case without alternating potential(Sec.
II ).

The different phases present in Fig. 14 are(A) a pure
metallic phase,(B) an insulator in the middle of the trap
surrounded by a metallic phase,(C) a metallic intrusion in
the middle of the insulator,(D) an insulator withn=1 in the
center of the trap surrounded by a metal, an insulator and the
always present external metallic phase. For very small values
of the alternating potentialsVad, phase B is not present, and
the insulator surrounding the metallic phase in the center of
the trap disappears leaving a full metallic phase at the very
beginning of phase C. Similarly, the insulator withn=1 is
surrounded only by a metallic phase(at the very beginning
of phase D). However, these regions are very small in the
phase diagram and we did not include them. AtVa=0 the
results of Sec. II are recovered since up tor̃=2.68 the system
is a pure metal and for higher characteristic densities there is
an insulator withn=1 surrounded by metallic phases.

There is one important difference between the phase dia-
gram in Fig. 14 and the one of the trapped Hubbard model
[20,21]. In Fig. 14 the boundary between regions A and B
changes appreciably when the value on the alternating poten-
tial is increased while in the Hubbard model case(for the
values ofU that we simulated) it was found independent of
the value ofU. This is possibly due to the fact that for the
alternating potential, increasingVa changes the local densi-
ties of the insulating phase while in the local Mott insulating
phase the density is always constant independently of the
value ofU.

V. THE 2D SYSTEM

In this section we extend to 2D the results obtained in
previous sections for the 1D case. The Hamiltonian in this
case can be written as

H = − to
ki,jl

sci
†cj + H . c .d + o

i

sVax,x
xi

ax + Vay,yyi
aydni ,

s9d

wheresxi ,yid are the coordinates of the sitei, andki , jl refers
to nearest neighbors. The last term in Eq.(9) allows to con-

FIG. 14. Phase diagram for systems withV2a
2=3310−5t (,)

andV2a
2=3310−4t (s). The different phases are explained in the

text.

CONFINEMENT CONTROL BY OPTICAL LATTICES PHYSICAL REVIEW A70, 043627(2004)

043627-9



sider different strengthsVax,x
,Vay,y and powersax,ay of the

confining potential in thex,y directions. We call in what
follows Nx andNy the number of lattice sites in thex andy
directions, respectively.

In Fig. 15 we show the single particle spectrum and its
corresponding level spacing for a system withNx=Ny=100
lattice sites confined by a harmonic potential withV2,xa

2

=V2,ya
2=5310−3t. Figure 15(b) shows that degeneracy sets

in at the very beginning of the expectrum, and this is because
of the symmetries of the square lattice. In 2D the formation
of the insulator in the middle of the trap does not generate

additional degeneracies in the system since it does not split
the trap in independent identical parts. Then in contrast to the
1D case no information of its formation can be obtained
from the level spacing.

Two density profiles and their corresponding normalized
MDF for Nf =1000 andNf =4000, and the same trap param-
eters of Fig. 15, are presented in Fig. 16. Thex andy coor-
dinates in the trap are normalized by the characteristic
lengthszx=sV2,x/ td−1/2 andzy=sV2,y/ td−1/2, respectively. The
density profile in Fig. 16(a) corresponds to a pure metallic
phase in the 2D trap, the corresponding MDF[Fig. 16(b)] is
smooth and for some momenta it is possible to see thatnk
=0 like in the 1D case. When the filling of the system is
increased, the insulator appears in the middle of the trap
[Fig. 16(d)] and all the regions withnk=0, present in the pure
metallic phase, disappear from the MDF[Fig. 16(e)]. Figs.
16(c) and 16(f) show as intensity plots the normalized MDF
of Figs. 16(b) and 16(e).

In 2D it is possible to define a dimensionless characteris-
tic density asr̃=Nfa

2/zxzy. Also in this case it has always the
same value when the insulator appears in the middle of the
system, independently of the values and relations between
V2x andV2y. The density profiles as function of the normal-
ized coordinates and the MDF remain unchanged when the
characteristic density is kept constant and the values and re-
lations betweenV2x and V2y are changed(in the thermody-
namic limit they have the same form shown in Fig. 16). This
implies that the results shown in Fig. 16 for a symmetric trap
do not change for an asymmetric trap with the same charac-
teristic density. The value of the characteristic density for the
formation of the insulator in a harmonic 2D trap isr̃C
,13.5.

The addition of the alternating potential leads to results
similar to those presented in the 1D case. Four density pro-
files showing the possible local phases in the 2D trap, and
intensity plots of their corresponding MDF are shown in Fig.
17. In the pure metallic case[Figs. 17(a) and 17(b)] the ad-
ditional structure in the MDF forkx,ky.p /2a, due to the
increase of the periodicity, is present. This structure also dis-

FIG. 15. Single particle spectrum(a) and level spacing(b) for a
system withNx=Ny=100, andV2,xa

2=V2,ya
2=5310−3t. Energies

are measured in units oft.

FIG. 16. (Color online) 2D density profiles(a),(d), 2D normalized MDF(b),(e), and intensity plots of the 2D normalized MDF(c),(f), for
Nf =1000(a)–(c) andNf =4000(d)–(f) fermions in a system withNx=Ny=100 andV2,xa

2=V2,ya
2=5310−3t. The color scale in(c) and (f)

is the same as in Fig. 6.
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appears when the insulator appears in the middle of the sys-
tem [Figs. 17(c) and 17(d)]. Increasing the filling a new me-
tallic phase appears in the center of the trap[Figs. 17(c) and
17(d)]. For the highest filling the insulator withn=1 devel-
ops in the middle of the trap and the MDF becomes flatter
with nkÞ0 everywhere. In a way similar to the 1D case there
are confined states in the radial direction, i.e., particles are
confined in rings around the center of the trap, and they can
be explained in terms of Bragg conditions. The phase dia-
gram of the 2D case is also similar to the one in the 1D case
and is not be discussed here.

We close this section by considering the local compress-
ibility. As it was mentioned in the analysis of the 1D case
with the alternating potential, this quantity is zero in the
insulating phases(like in the Mott insulating phases of the
trapped Hubbard model). In the 2D case we extend the defi-
nition given by Eq.(7) to

kixiy
, = o

u jx,jyuø,sVad
xixiy,ix+jxiy+jy

, s10d

where

xixiy,jxjy
= knixiy

njxjy
l − knixiy

lknjxjy
l s11d

is the density-density correlation function in 2D and,sVad
.b jsVad. In this case it is also possible to determinejsVad
in the insulating phase of the 2D periodic case(at half-

filling ) and apply the new definition to the 2D trap(as for the
1D caseb,10). The results obtained for the same param-
eters of Fig. 17 are presented in Fig. 18. There it can be seen
that the rings of local insulators in Fig. 17 are represented in
Fig. 18 by rings of incompressible regions(black rings) so
that this definition works also perfectly in the 2D case, and
the local compressibility should be a relevant quantity to
characterize the local Mott insulating phases also in the
trapped 2D Hubbard model.

VI. CONCLUSIONS

We performed a detailed analysis of noninteracting sys-
tems focusing on the consequences of the combination of a
confining and a periodic potential. It leads to a confinement
of particles in a fraction of the available system size. This
confinement is directly related to the formation of insulating
regions in the case of fermionic systems. Since the results
obtained correspond to noninteracting particles they can be
also explained in a single particle picture due to the realiza-
tion of Bragg conditions, and are also valid for bosons. We
have studied the consequences of the previous confinement
in the nonequilibrium dynamics of trapped particles in 1D
when the center of the trap is suddenly displaced, and con-
firmed evolution of the center of mass obtained in recent
experiments.

The region over which particles are confined in the trap
can be controlled in various ways. The most obvious one is
by changing the strength of the confining potential, where
the extension of such regions can be regulated. The other
way is changing the periodicity of the lattice, which leads to
a different “slicing” of the system. The change of the peri-
odicity also generates in the fermionic case the possibility of
obtaining local insulating phases with sizes that can be con-

FIG. 17. (Color online) Density per unit cell(a),(c),(e),(g) and
intensity plots of the normalized MDF(b),(d),(f),(h) profiles for
Nf =200 (a),(b), 800 (c),(d), 1100(e),(f), and 3000(h),(i) in a sys-
tem with Nx=Ny=100,V2,xa

2=V2,ya
2=5310−3t, and Va= t. The

color scale in the intensity plots of the normalized MDF is the same
as in Fig. 6.

FIG. 18. (Color online) Intensity plots of the local compressibil-
ity as a function of the normalized coordinates for systems with
Nx=Ny=100,V2,xa

2=V2,ya
2=5310−3t and Va= t. The fillings are

the same as that in Fig. 17(a) Nf =200, (b) Nf =800, (c) Nf =800,
and (d) Nf =1100. Black color means zero compressibility.
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trolled changing the strength of the additional alternating po-
tential. This gives rise to a picture that is similar in some
aspects to the the Hubbard model analyzed in Refs.[20,21].
We have shown that although insulating phases appear in this
noninteracting case, the gaps that are locally opened are not
seen in the single particle spectrum. In order to observe them
it is necessary to study the local density of states. The local
compressibility defined in Refs.[20,21] was also proven to
be a genuine local order parameter to characterize the new
insulating phases since it is always zero there. A scalable
phase diagram for these systems was also presented. Finally,
we considered the two-dimensional case and the formation

of insulating regions due to the presence of periodic poten-
tials. We showed that the local compressibility also charac-
terizes those 2D regions in an unambiguous way.
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