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It is shown that the interplay of a confining potential with a periodic potential leads for free particles to states
spatially confined on a fraction of the total extension of the system. A more complex “slicing” of the system
can be achieved by increasing the period of the lattice potential. These results are especially relevant for
fermionic systems, where interaction effects are in general strongly reduced for a single species at low

temperatures.
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[. INTRODUCTION to a splitting of the system with eigenstates that have a non-

vfanishing weight only in a fraction of the trap. Hence, such

The study of trapped atomic gases has become a field 0 I . :
intense research in the past years. The realization of Boséystems are qualitatively different from the cases without the

Einstein condensatiofBEC) in trapped dilute atomic vapors |attice, which have been studied recerfty-12. _
[1-3 was the main motivation starting all the experimental e also study the nonequilibrium dynamics of the fermi-
and theoretical research in this area. BEC was obtained tra@MiC cloud on a lattice. In particular, we study the case in
ping and evaporatively cooling bosonic alkali metals. Re-Which the center of the trap is initially displaced a small
Cent'y, the poss|b|||ty of trapping and C00|ing Fermi gasesd|stance. It allows to realize the existence of the S|ng|e par-
has attracted a lot of attention, due to the fact that in thdicle states confined in a part of the trap obtained in the
quantum degeneracy regime, superfluidity appears withigquilibrium case, since for some values of the parameters the
reach[4]. However, cooling single component Fermi gasescenter-of-masgc.m,) of the system oscillates in one side of
up to very low temperatures is more difficult than cooling the trap. With these results, we reproduce the experimental
bosonic gases since tlsewave collisions are forbidden for observations in Ref415-17, and complement other theo-
identical fermions. On the other hand, single species Fermietical approaches to this problgh7-19.
gases make in this way possible to access experimentally an We show that if in addition to the lattice an alternating
ideal Fermi gas. As shown below, such a simple system capotential is introduced, doubling the original periodicity, an
develop a rich behavior by the combination of a confiningadditional “slicing” of the system can be achieved. The width
and a lattice potential. and number of such regions can be controlled in a given
For atoms confined in a harmonic trap, a case that adenergy range by the amplitude of the new modulation. By
equately describes most of the experiments realized so fdilling these systems with fermions, insulating regions may
[5], a fairly complete theoretical understanding was achieve@ppear, that in the case of an alternating potential, are similar
for the one-dimensiona(1D) [6—9 and two- or three- to the Mott insulating plateaus of the trapped fermionic Hub-
dimensional [10-12 single component spin polarized bard model[20,2]. In the noninteracting case it is possible
trapped Fermi gas, which at very low temperatures can b& calculate the local density of states, which exhibits the
considered as a noninteracting gas. The harmonic form of thpresence of local gaps in the system. In addition, a local
potential allows obtaining a number of exact analytical re-compressibility{20,2]] also serves as a local order parameter
sults for these systems. However, these results cannot lie characterize the insulating regions. This extends the re-
extended to incorporate an additional lattice potential, a cassults initially obtained for the bosonic ca$22], showing
of increasing interest after the experimental realization of ahat in general, the distinction between commensurate and
Mott insulator in the presence of an optical latticS]. A incommensurate fillings typical in extended solid-state sys-
further interest on the introduction of an optical lattice intems is lost in the trapped system.
fermionic systems arises from the possible connections with The presentation is organized as follows: In Sec. Il we

central problems in condensed matter phy$ic§. study 1D lattices superposed to a confining potential. We
We analyze here ground state properties of single speciemalyze the generic features valid for any kind of trapping
noninteracting fermions confined on 1D optical lattices.potential, and focus on fermionic systems. In Sec. lll, an

These systems are relevant for the understanding of receanhalysis of the nonequilibrium dynamics of the 1D trapped
experimental resultgl5-17, where due to the very low tem- fermions is presented, and recent experimental results repro-
peratures achieved, fermions can be considered as nonintefuced. In Sec. IV we study the case in which an additional
acting particles. On the theoretical side, the Hamiltonian camlternating potential in introduced, and dicuss analogies and
be diagonalized numerically, which allows to consider anydifferences with the results obtained for the fermionic Hub-
kind of trapping potential and any number of dimensions forbard model. In Sec. IV, we extend the analysis of Sec. Il and
the system. We show that the interplay between the latticéV to two dimensiong2D). Finally the conclusions are given
and the confining potential leads in a region of the spectrunin Sec. V.
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II. NONINTERACTING PARTICLES CONFINED
IN 1D OPTICAL LATTICES

We analyze in this section 1D noninteracting systems con-
fined by arbitrary potentials when an underlying optical lat-
tice is present. We first show results for a harmonic confining
potential and then discuss the features that are generally
valid for any other kind of confining potential. For definite-
ness we concentrate on the fermionic case, although the
spectral features are equally valid for bosons, since we deal
with the noninteracting case.

In the second quantization language, the Hamiltonian de-
scribing a confined dilute and ultracoldoninteracting gas
of single-species fermions, under the influence of a 1D opti-
cal lattice, can be written as

level spacing

2
H:fdr «iﬁ(r){—;—mvhwrhvo(x) w(r), (1)

where\if*(r) and\if(r) are the creation and annihilation fer- 0 . .
mionic field operators, respectively. The confining potential 0 2000 4000 6000 8000 10000
is denoted a¥(r)=V(x)+V(y) +V(z). We analyze in this sec- level number

tion the case in which the transversal component of the con- ) ) .
fining potential V(y)+V(2) is very strong so that only its FIG. 1. Single particle spectruii@) and level spacingb) for a

L > 7 )
lowest energy state is populated, and the exited states are ropem withN=10000 andv;a"=3x 10"t. Energies are measured

accessible for the given experimental setup. Hence, the ref” units oft. For the explanation of the arrows see text.

evant dynamics of the system is restricted to occur in the o ) )
longitudinal direction where the trap is considered to have af@ined by considering the level spacing as a function of the
arbitrary power a, V(X)=V,x% In Eq. (1), Vy(x) level numbefFig. 1(b)]. There it can be seen that in the low
=V,cof(kx) describes the potential generated by a 1D opti-€N€rgy part of the spectruriegion A), the level spacing
cal lattice. The wave vectdk=27/\ is determined by the decreases ;Iowly with Increasing Ieyel number, in cont_rast.to
wavelengthi of the laser beam(The lattice spacing is then 1€ case without the lattice in which the level spacing is
a=\/2.) Assuming the atoms to be at the lowest vibrationa/constant. However, at the point signaled with the first arrow,

level in each site, the fermionic field operators can be ex@ qualitative change in the single particle spectrum occurs,

. . . . - characterized by an oscillating behavior of the level spacing.
panded in single band Wannier function(x),W(X)  The part with values of the level spacing increasing with the

=2i¢i¢i(x), and from Eq.(1) one obtains the single band |gye number corresponds to odd level numbers and the one
Hamiltonian with a level spacing that decreases up to zero corresponds to
even level numbers. That is, a degeneracy sets in that con-
H=-t> (cle+H.c.)+ V> xn;, 2 9 y
i i

tinues up to the point signaled with the second arrow, where
a new change in the behavior of the level spacing shows up.
WhereciT andc; are creation and annihilation operators, re-The region beyond the second arrow corresponds to decon-
spectively, for a spin polarized fermion on sitethe local fined states, which are of no interest since experimentally
density isni:c;rci, andx; measures the positions of the sitesthey are associated to particles that scape from the trap
in the trap(x,=ia with -N/2+1<i<N/2,N being the num- (which in the system of Fig. 1 has 10000 lattice sites
ber of lattice sites The hopping parameter is denoted thy In the lowest part of the spectrum of Hamiltonié®), the
which for Vo> E; can be written in terms of the experimental eigenfunctions are essentially the harmonic oscillgtt0)
parameters a$=4/\m(Vo/E,)%E,e2 V0 [23], where the orbitals in the absence of a lattice. This is shown in Fig) 2
recoil energy of the atoméwith massm) is E,=A%k?/2m.  for the first and the second eigenfunctions of &), and the
The total number of spin polarized fermions in the system issame parameters of Fig. 1. These orbitals are perfectly scal-
denoted byN;. We diagonalize the Hamiltonian numerically, able independently of the size of the system and of the ratio
and consider the cases in which all particles are confined. betweenV, andt. It is only needed to consider that the usual
Results obtained for the single particle spectrum of a sysHO characteristic lengtR~ (mw) /2 (without the latticg is
tem confined by a harmonic potential are presented in Figgiven in terms of the lattice parameters through
1(a). The spectrum is clearly different from the usual straight~ (V,/ta?)~*4, with the effective massn~ (ta?)~* for very
line in the absence of a lattice. It is possible to see that ilow energies, so that the scaled orbitals are givengby
Fig. 1(a) the spectrum can be divided in two regions accord-=(R/a)'2¢ where ¢ are the HO orbitals with the lattice, i.e.,
ing to the behavior of the energy as a function of the levelthe same relation as for the H@thoutthe lattice holds for
number. An arrow is introduced where a change in the curthe lowest energy orbitalwith the periodic potential. This
vature is observed. More detailed information can be obimplies that very dilute systems behave similarly to continu-
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85 n=1, and in the other cag®&;=5001), the Fermi energy lies

at the value corresponding to the levels depicted in Hig). 2
The positions in the trap are normalized in terms of the char-

1 025

(0 0

. acteristic length for a trapped system when a lattice is
04l v 1 ossl present, which is given bj20,21]
Y (a)
1 1 1 1 1 — _1/2
e 4 2 0 2 4 & 30 @00 0 200 5000 £=(Volt)™=. (3
x/R xla

When the Fermi energy approaches the level where degen-
FIG. 2. Scaled HO orbitals in the presence of a lattice Nor eracy sets in, the density of the system approactwek in
=10000 andv,a®=3x 10""t. (a) First (continuous lingand second  tha middle of the trap, and at the filling point where the
(dashed Iin¢H_O orbitals;(b) HO orb?tals 500Qonly different frpm degeneracy appears in the spectrum, the density in the
zero for negatlve()'a.md SOOJ(Omy d'f.ferem. from zero for positive  yiqje of the trap is equal to one, so that an insulating region
X). In (@ the positions are given in units of the HO lend® hh0 014 in the middle of the system. Increasing the filling of
I-(\_/zlta) (for an explanation, see tgxand in(b) in units of the the system increases the region over which this insulator ex-
attice constana. . .. . .
tends. Hence, due to Pauli principle, the eigenfunctions of
such levels cannot extend over the insulating region, and for
ous systems, which have been already discussed in the literthe same reason, the region over which the weight is zero
ture so that we do not present any further analysis on thenincreases for higher levels. The local insulator withl has
The N; oscillations in density profiles and momentum distri- zero variance of the density and, it is incompressible, a prop-
bution function(MDF), and other mentioned characteristics erty that could be tested experimentally by using a local
of the 1D trapped system without the latticg8] are easily  probe.
obtained in this case. However, since the system we are considering is a nonin-
A qualitative difference between the cases of the trap withteracting one, the confined states discussed above should be
and without a lattice starts for levels in region B. Once thealso present in the case of bosons, where the argument about
degeneracy appears in the spectrum, the correspondirie filling would not be valid anymore. It is therefore desir-
eigenfunctions of the degenerate levels start having zerable to also understand such features from a single particle
weight in the middle of the trap, and for higher levels theperspectivg24]. We first notice that the point at which de-
regions over which the weight is zero increases. As an exgeneracy appears is at an energyaiove the lowest level
ample, we show in Fig.(®) two normalized eigenfunctions (Eg) [see Fig. 1a)], corresponding to the bandwidth for the
belonging to region B in Fig. 1. The cases despited correperiodic potential. Such an energy is reached when the Bragg
spond to the normalized eigenfunctions 50@@at is only  condition is fulfilled and in the case of the tight-binding sys-
different from zero for negative values gf and 5001(only  tem we are considering, when all the available states are
different from zero for positivex), for the same parameters exhausted. Let us next consider the case depicted in Fig.
of Fig. 1 (in principle a lineal combination of these two 2(b). There, the energy level corresponding to the wave func-
eigenfunctions could have been the solution since the level ions is Esqy,—E,=4.2178, that is to a good approximation
degenerated Hence, particles in these states are confined taa,t+V2x§ for V,a?=3x10"t and x,=697a the inner point
a fraction of the trap, showing that the combination of both ayhere the wave functions drop to a valse 0>, Therefore,
confining and a periodic potential lead to features not presernhe inner turning point corresponds to the Bragg condition,
either in the purely confined case without a lattice or in thewhereas for the outer turning poi(t,=3770a, again for the
case of a purely periodic potential. Furthermore, since we arsame drop of the wave functipnwe have thatEgy,—E,
dealing with a noninteracting case, such features are com= V2x§, i.e., the classical turning point corresponding to the
mon to both fermions and bosons. However, in the case dharmonic potential, as expected for such a high level. Hence,
fermions, it is easy to understand the reason for such effect®ragg scattering as in the well known Bloch oscillations
as discussed next. [25], and the trapping potential combine to produce the con-
Figure 3a) shows density profiles of fermions when the finement discussed here.
number of particles in the trap is increased. In one case Further confirmation of the argument above can be ob-
(Ny=4500 the Fermi energy lies just below the level markedtained by considering the MDF, a quantity also accessible in
with an arrow in Fig. 1. A second curv@\;=4651 corre- time of flight experimentd13]. Due to the presence of a
sponds to the case where the central site reaches a densifftice, it is a periodic function in the reciprocal lattif26]

1.2 L ! y J T FIG. 3. Density profilega) and normalized
T (@ 1 eosf (b) | MDF (b) for N;=4500 (thick continuous ling
o8 1 osl ] N¢=4651(dashed ling andN;=5001(thick con-
nosr 1™ .1 ] tinuous ling for a system withN=10000 and
o4r 1 .2l V,a?=3Xx 107't. In (a) the positions are given in
o'z [ o ] '0 . . ~\o. units of the characteristic length and in(b) the
4 2 4 0o 1 2 3 0 wé w2 3md T momentum is normalized by the lattice constant
x/g ka a.
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FIG. 4. Total filling in the trap needed for the
formation of the insulator as a function of the
curvature of the confining potentigh) Harmonic
potential.(b) Potential with a power=6.
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and it is symmetric with respect t6=0, so that we study itin trap, the density profiles as a function of the normalized co-
the first Brillouin zone in the regiofD,w/a]. In addition we  ordinate and the normalized MDF remain unchanged.
normalize the MDF to unity ak=0(n,=1). For the fermi- In general, for arbitrary confining potentials the same fea-
onic case, it can be seen that it always has a region myith tures discussed previously for the harmonic case are valid.
=0 if the insulating phase is not present in the trap, and thig'he spectrum and level spacing behave in a different way
region disappears as soon as the insulator appears in tidepending on the power of the confining potential, but al-
middle of the system. More precisely, Figh3shows that at ways at a certain level number degeneracy appears in the
the filling when the site in the middle reaches 1, also the single particle spectrum and it corresponds to the formation
momentuk=/a is reached, such that the Bragg conditionof an insulator in the middle of the system for the corre-
is fulfilled for the first time, confirming the discussion above. sponding filling. In Fig. 5 we show the single particle spec-
When further sites reach a density 1,n,-,,, increases ac- trum [Fig. 5a)] and the corresponding level spacifigig.
cordingly. Then the formation of the local insulator in the 5(b)] for a confining potential with powe&=6, where the
system can be tested experimentally observing the occupdeatures mentioned previously are evident. The arrow in the
tion of the states with momentes = 7/ a. inset of Fig. 5 shows the level at which degeneracy sets in,
Since for different systems sizes and number of particlesyery much in the same way as in the harmonic case.
potentials with different curvatures have to be considered, it We close this section by considering the pair distribution
is important to determine the fillinly¢ at which the insulator  function. This quantity not only reflects the consequences of
appears in the middle of the trap as a function of the curvapayli's exclusion principle but clearly characterizes the insu-

ture of the harmonic confining potential. This question wasating region. In the presence of a lattice the pair distribution
already answered for the interacting cadebbard modelin  f,nction can be written as

Refs.[20,27 where we determined the phase diagram. There

we showed that if a dimensionless characteristic deffsisy

defined asp=N;a/¢, then its value when the insulating re- 1
gions(Mott insulating and band insulating in the interacting 1
case appear in the system is always constant for any value
of V,/t at a given value ofJ/t (within error bars theng so

that N¢~ ¢/a. However, in Refs[20,21 we were able to
check this only up to 150 lattice sites and fillings up to the
same order, whereas here we extend those results to much
larger systems. In Fig.(4) we show in a log-log scale how

N? depends oV, /t over three decades on the total filling. In
our fit the slope of the curve is —0.5Q®ith 0.04 percent of -
erron, as expected on the basis of E8). The critical char- 0.1

energy
888583888

acteristic densitypc=NFa(V,/t)*? at which the insulating 0.08
region appears ipc=€”, with 8=0.986(with 0.3 percent of o I l i
erron, which is curiously rather close to the basis of the 5 0.06 looot | (b) -
natural logarithms. § I

For systems with other powers for the confining potential g 004 - )
it is only needed to define the appropriate dimensionless = o02k 0 5000 10000 15000

characteristic densityp=N;a(V,/t)"*, and determine its
value at the point where the insulator appears. In Fib) 4 0 k :

we show in another log-log plot how$ depends on the 0 7000 14000 21000 28000
curvature of a confining potential with power si¥g/t). As level number

anticipated, we obtain that the slope of the curve is (it FIG. 5. Single particle spectruga) and level spacingb) for a
0.01 percent of errgiin this case and the characteristic den-system with a confining potential with power=6,N=28000, and
sity for the formation of the insulator TSC:ZOQ Finally, we Va®=3x 107"t. Energies are measured in units of Expanded
should mention that it was already shown in Réfl] that  view in (b) shows the first part of the level spacing. An arrow was
keeping constant the characteristic density but changing thigtroduced in the inset for signaling the level at which the degen-
curvature of the confining potential and the total filling in the eracy appears in the spectrum.
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FIG. 7. Evolution of the c.m(x.,) of 1000 confined fermions
when the center of the trap is suddenly displaced 200 lattice sites
(Xo), for V,a2=2x 107% (dashed ling andV,a?=6x 10"% (con-
tinuous ling.

(b) _ . .
served behavior one can analyze the ideal 1D case. Given the
results discussed in the previous section one expects the dis-
placed oscillation of the c.m. to appear when, due to the
initial displacement of the trap, particles that where located

- in region A of the spectrum in Fig.(h) are moved into

2.5 0 25 region B so that Bragg conditions are fulfilled. Then the

x/C particles get trapped in one side of the sys{éfig. 2(b)].

Figure 7 shows exact results obtained for the c.m. dynam-
ics of 1000 fermions in a trap witN=3000 when its center
is suddenly displaced 200 lattice siteslenotes the real time
(only a metal is present in the trapnd (b) Ny=600 (an insulating  \,5riable. The relation between the confining potentia))
rggion is formed in thezmiddle of the traprhe number of lattice and the hopping parameté is increased in order to fulfill
sites isN=1000 andv;a®=3x 10°. the Bragg conditions. This is equivalent in experiments to
increase the curvature of the confining potential keeping con-
Py = (np{n;) —pﬁ, (4)  stant the depth of the lattice, which leads to an increase of
RN - . . . the frequency of the oscillation as shown in Fig. 7. It is also
wherep; =(c/¢;) is the fermionic one-particle density matrix. equivalent to increase the depth of the lattice keeping the
In.Fig. 6 we show as intensity plqts thg pair distgibution confining potential constant, but then our plots in Fig. 7
function for systems witiN=1000 lattice sites anWt,a°=3 g4 pe interpreted with care since there we normalize the

X 10t Figure §a) corresponds to the case with=300 (o yariable by the hopping parameter, which changes in

fermions, where the systems is completely metallic, whereag,q |atter case.

Fig. &(b) corresponds ;=600 fermions, an insulating re- |, ki 7 (dashed lingwe show results for the case where

gion appears in the middle of the trap. Apart from the deyo ¢ m of the cloud oscillates around the minimum of en-

pression along the diagonal that reveals the consequences y of the trap since no Bragg conditions are fulfilled. This

Pauli’s exclusion principle, a clear distinction between thecan be seen in the MDFFig. 8a)] where at any time no

purely metallic case and the one with an insulating region, . +icjes haveé= + 7/a. Figure 7 also shows that a damping

can be seen. Inside the insulating region, the density matri

becomes diagonal, such th@§=1 fori+j andP;=0. 0.9

FIG. 6. (Color onling Intensity plots of the pair distribution
function as a function of the normalized position f@ N;=300

Ill. OSCILLATIONS OF FERMIONS IN A 1D LATTICE 06

Recent experiments have realized single species noninter- #,
acting fermions in 1D optical latticefl5-17. Transport
studies in such systems revealed that under certain condi-
tions a sudden displacement of the trap center is followed by
oscillations of the c.m. of the fermionic cloud in one side of 0 <
the trap. This is in contrast to the system without the lattice = w2 0 w2
where the c.m. oscillates, as expected, around the potential
minimum [15-17. Although the experimental system is not  F|G. 8. MDF of 1000 trapped fermions at three different times
a true 1D system, due to the strong transversal confinemeatter displacing the trap 200 lattice sites, fésa2=2x 107% (a),
the relevant motion of the particles occurs in the longitudinaland V,a?2=6x 10°% (b). The times arer=0 (dotted ling, =
direction. Hence, in order to qualitatively understand the ob=250:/t (dashed ling and7=12500:/t (continuous ling
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(b)

600

300
200 number of fermions
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X/

FIG. 9. Evolution of the local density in a harmonic trap as a function of the position and increasing total number of fermions when an
alternating potential/;=0.5 is present(a) Odd sites(b) Even sites. The system has 1000 lattice sites\&ad=3x 1075,

of the oscillation of the c.m. occurs. This is due to the non-monic trap when the total filling is increased. Since the den-
trivial dispersion relation in a lattice,=—-2t coska, which  sity oscillates due to the alternating potential, we made two
makes the frequency of oscillation of the particles dependerdifferent plots for the oddnegative value of the alternating
on their energies, leading to dephasing. In order to reduce thgotential, Fig. 9a)] and evenpositive value of the alternat-
damping, fermions should populate after the initial displaceing potential, Fig. 8b)] sites. Each of the plots in Fig. 9 is
ment only levels with energies close to the bottom of thevery similar to the evolution of the density profiles already
band in a lattice, so that the quadratic approximation is valigshown for the trapped Hubbard mod2D,21]. The only dif-
for ¢. (Notice that this is not generally fullfiled even if the ference is that in Figs.(8) and 9b) the plateaus witin= 1
initial displacement is smaljl. have densities different between themselves and different
Increasing the relation/,/t makes that some particles from n=0.5, which would be the density of one component
start to fulfill the Bragg conditions so that the center of os-of the spin polarized fermions in the Mott insulating phase of
cillations of the cloud depart from the middle of the trap. In the Hubbard model. In the flat regions of Fig. 9, both even
Fig. 7 (continuous lingwe show a case where the c.m. neverand odd sites have the same densities than the corresponding
crosses the center of the trap. The MDF corresponding to thigites in the periodic case at half filling for the same value of

case, at three different times, is displayed in Fidp)8There
it can be seen that initially7=0) no Bragg conditions are

satisfied in the system, and that some time after the initial

displacement the Bragg conditions are fulfilleck 2504 /t).
Finally, we also show the MDF long time after the initial
displacement of the trapr=1250G:/t), when the oscilla-

the alternating potential, so that it is expected that they cor-
respond to local insulating phases.

In Figs. 1@a) and 1@b) we show the single particle spec-
trum and the level spacing respectively for the same param-
eters of Fig. 9. Although in this case the level spacing exhib-
its a more complicated structure, an immediate identification

tions of the c.m. are completely damped and the MDF idPetween the regions signaled in Fig.(i0between arrows
approximately symmetric arourid=0. and different fillings in Fig. 9 can be dong) corresponds
to the fillings in Fig. 9 where only a metallic phase appears

in the trap,(B) to the fillings where the first plateau is present

in Fig. 9, (C) to the fillings where a metallic phase develops
In this section we study the consequences of enlarging th! t_he mlddIeDof thehtr?ﬂ and_|t E’ sugrouhnded hby_lnSL;Iatlng

periodicity in the lattice. For this purpose we introduce an'€g'ons, andD) to the fillings in Fig. 9 where the insulator

alternating potential, and the Hamiltonian of the system caﬁf‘”th n=1 appears n th_e center of the system. The region
be written as after the last arrow in Fig. 1B) corresponds to deconfined

states. Notice that the level spacing in regig@3 and (D)
H==t2 (et H.c.) + Vo2 00+ Va2 (- D'y,
i i i

IV. DOUBLING THE PERIODICITY

shows a behavior that was not present in Fig. 1.

In order to understand the complex behavior of the level
(5) spacing we study, as in the previous section, the eigenfunc-

tions of the system shown in Fig. 10. The eigenfunctions

where the last term represents the oscillating potentiaMgnd corresponding to region A in Fig(l)) behave as expected for
its strength. The purpose of introducing an alternating potena metallic phase, where the combination of the alternating
tial in the trapped system is twofold. For fermionic systems,and confining potentials generates a different modulation
the increase of the numbers of sites per unit cell leads to théhan the one studied in Sec. Il, but without qualitative differ-
possibility of creating insulating statésand insulators in the ences. In the second region of the spectrwegion B the
unconfined cagefor commensurate fillings. On the other eigenfunctions have zero weight in the middle of the trap,
hand, by changing the periodicity, new Bragg conditions areexactly like in the insulator discussed in Sec. Il. In region C
introduced, giving the possibility of further control on the there is, as pointed out above, a new feature since in this case
confinement discussed in the previous sections. it is possible to obtain a metallic region surrounded by an

Figure 9 shows how the density profiles evolve in a har-insulating one. This is reflected by the eigenfunctions shown
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FIG. 12. Density profile per unit ce{how containing two con-

tiguous lattice sitesfor a trap withN=10000 V,a?=3Xx 10"'t, and
N¢=2000. The insets show the density of states per unit cell for two

points in the profile. The arrows in the insets signal the Fermi en-
ergy for the selected filling.

level spacing

0 200 400 600 800 1000 that with the introduction of new Bragg conditions, due to
level number the altered periodicity, the “slicing” of the system can be
_ _ _ explained in an analogous way as in the previous section. In
FIG. 10. Single particle spectruta) and level spacingb) fora  the unconfined case, the doubling of the periodicity creates
system with an alternating potenti#}=0.5 and withN=1000 and oy Bragg conditions &=+ 7/2a, such that an energy gap
V,a®=3x 10", Energies are measured in unitstoFor the expla- o\ annears. Figure 18) shows that in the confined case the
nation of the regions between the arrows, see text. spectrum is continuougn the sense that the level spacing is
much smaller than\2,), so that the imprint of the gap can be

- . . _ seen only in the local density of states
in Fig. 11(a), where one of the eigenfunctions is nonzero y y

only inside the local insulating phageontinuous ling and
the other is nonzero only outside the insulating phase
(dashed ling the energy levels associated with the latter
ones are degenerated. For the region D the situation is simwhereG;;(v) is the one-particle Green'’s functi¢@7], which
lar but in this case the system is divided in four parts becausi this case can be easily computed.
of the existence of the insulator with=1 in the middle of The insets in Fig. 12 show the density of states per unit
the trap and the insulator between the two metallic phasesell (now containing two lattice pointdor two different po-
This implies that all the levels are degenerate in region Dsitions along the density profile. The downward arrows in
and the particles are located either between both insulatingach inset corresponds to the location of the Fermi energy.
regions or outside the outermost one, as shown in Fign)11 The inset at the left corresponds to a situation where the
As in the previous section, the spectral features discussdeermi energy goes through the lowest band, whereas the in-
here are equally valid for fermions as well as for bosons. Upset at the right belongs to sites in the middle of an insulating
to now we discussed the “slicing” of the systems only inregion. As expected, in this latter case, the Fermi energy lies
terms of fermions and based on the appearance of insulatirigside the gap. The size of the gap is to a high degree of
regions along the system. As before, it would be also heraccuracy ¥, for the site in the middle of the trap, but
desirable to understand the appearance of forbidden regiomstightly less on the sides. Therefore, again the same argu-
in space in terms of a single particle picture. We show nowments as before can be used, but insteadtof¥ width for

1
Ni(w) = ;lmGii(w), (6)

03 —————T—
02| 01 () |
04 ; FIG. 11. Eigenfunctions for a trapped system
with an alternating potentia(V,=0.%) for N
=1000 andV,a?=3x10%. The eigenfunctions
-0.1 correspond to the levels: 26@) (continuous
02 \502 P line), 270 (a) (dashed ling 501 (b) (continuous
03 N S T line), and 502(b) dashed line.
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FIG. 13. Density profileqleft) and their normalized MDRright) for N¢=150 (a),(b), 200 (c),(d), 350 (e),(f), 600 (g),(h) and N
=1000 V,=0.5,V,a?=3x 1075,

each band is given bw“4t2+vg—va:1_5a in our case. the density profilegleft) that characterize the four different
Without repeating the detailed discussion in the previous secsituations present in Fig. 9. They correspond to fillings of the
tion, we can understand the confinement in Figalls trap in the four regions of the single particle spectrum dis-
follows. Level 269 has an energy that for sites in the middlecussed previously in Fig. 10. Notice that in the figures we
of the trap falls in the middle of the upper band, while for included all the odd and even points in the density profiles.
level 270 (the same value of energypasses through the We plotted as horizontal dashed lines the values of the den-
lowest band. In fact, the density of states shown in Fig. 1&ities in the band insulating phase of the periodic system for
can be viewed as approximately shifted\byiz, counting the  the odd and even sitéfrom top to bottom respectivelyso
sites from the middle. Finally, levels in Fig. () correspond that it can be seen where are located the local insulating
to the case where in the middle of the trap they fall beyondphases in the trap. The corresponding normalized MDF are
the highest band, then going outwards, they fall in the middlepresented in Fig. 1&ight).
of the highest band, and further outside, they fall in the In Figs. 13a) and 13b) it is possible to see that when
middle of the lowest band. only the metallic phase is present in the trap, in the MDF an
Again, as in Sec. Il, one can follow the same reasoning byadditional structure appears aftef2, corresponding to the
considering the MDF. Due to the new periodicity it displays contribution from the second Brillouin zone. When a first
new features, associated with the fact that increasing the péasulating phase is reached, by coming to the top of the low-
riodicity the Brillouin zone is decreased, and in the presenest bandk=1/2a is reached, and increasing the fillings of
case a second Brillouin zone is visible. In Fig. 13 we showthe system beyond that point, the dip arol¥dr/2a disap-
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pears[Figs. 13c) and 13d)]. On adding more particles to
the system a metallic phase appears inside the insulating pla-
teau,[Figs. 13e) and 13f)]. When this metallic phase wid-
ens, decreasing the size of the insulating phagstarts to be
similar to then, of the pure metallic phase in the system
without the alternating potential. Increasing even further the
filling of the system, when the trivial insulatén=1) appears
in the center of the trap, the tail with very small valuespf
disappearslike in the system without the alternating poten-
tial the region withn, zero also disappeafEig. 3b)] and the
further increase of the filling in the system makgsflatter
[Figs. 13h) and 13i)]).

Up to this point, several quantities, like density profile,
pair distribution function, or local density of states were
taken as evidence for the existence of an insulating phas
but a quantitative criterion in the sense of an order parametéFXt'
to characterize the phases was not given. As shown already
in the case of the Hubbard modgl0,21], it is possible to iNg potential are changed in the system, as we already

FIG. 14. Phase diagram for systems witha?=3x 107t (V)
gnd V,a?=3x 107% (O). The different phases are explained in the

define a local compressibility: pointed out for the case without alternating potent&éc.
.
¢ The different phases present in Fig. 14 &9 a pure
K= \'|§<V>Xi'i+j’ ) metallic phase(B) an insulator in the middle of the trap
il=tvy

surrounded by a metallic phasg;) a metallic intrusion in
the middle of the insulato(D) an insulator withn=1 in the
where center of the trap surrounded by a metal, an insulator and the
always present external metallic phase. For very small values
Xij = (miny) = (ni{ny) (8) of the alternating potentidV,), phase B is not present, and
the insulator surrounding the metallic phase in the center of
is the density-density correlation function, ané(V,)  the trap disappears leaving a full metallic phase at the very
~b&(Vy), with €V,) the correlation length of; ; in the pe- beginning of phase C. Slmll_arly, the insulator wrﬂtp.l is
riodic system at half-filling for the given value af,. As a  Surrounded only by a metallic phagat the very beginning
consequence of the band gap opened in the band insulatirﬁ{?_l phase D. However, these regions are very small in the
phase at half-filling in the periodic system, density-densityPhase diagram and we did not include them.\At0 the
correlations decay exponentially and thef¥,) can be de- results of Sec. Il are recqvered since upta2.68 theT system
termined. The parametéris considerec~ 10 (see discus- IS & pure meta_l and for higher characterlstu_: densities there is
sion in Ref.[21]). When this definition is applied to the @n insulator withn=1 surrounded by metallic phases. _
different fillings of Fig. 9 the local compressibility is zero in ~ 1here is one important difference between the phase dia-
the insulating regions and nonzero in the metallic phasegd@m in Fig. 14 and the one of the trapped Hubbard model
The local quantum critical behavior found in Rg20] at the ~ [20,23. In Fig. 14 the boundary between regions A and B
transition between the metallic and Mott insulating phase i¢hanges appreciably when the value on the alternating poten-
not present here since there are no interactions between t#@! iS increased while in the Hubbard model cager the
particles that could generate quantum criticality. values ofU that we ;lmulatg)jlt was found independent of
Finally we analyze the phase diagram for these systems. i€ value ofU. This is possibly due to the fact that for the
can be generically described by the characteristic defsity alternating potential, increasing, changes the local densi-

like the Hubbard model and the noninteracting case in Sedi€s of the insulating phase while in the local Mott insulating
Il. In Fig. 14 we show two phase diagrams for two different Phase the density is always constant independently of the

values of the curvature of the confining potentia?=3  value ofU.

X 1075 and V,a®=3x 10™%. There it can be seen that al-

though there is one order of magnitude between the curva- V. THE 2D SYSTEM

tures of the confining potentials, the phase diagrams are one In this section we extend to 2D the results obtained in

on top of the other, the smalll differences are only E".Je. to th%revious sections for the 1D case. The Hamiltonian in this
finite number of particles which make the change® idis- ;<0 can be written as

crete. Therefore, the characteristic density allows us to com-

pare systems with dlf_ferent curvatures of the_ confining po-  H=-t> (c;rcj +H.c.)+ >, (V, XXV Y,
tential, number of particles and sizes. In addition we checked G i * Y

that keeping the characteristic density constant for a given 9)
value ofV,, the density profiles as a function of the normal-

ized coordinates and the normalized MDF do not changavhere(x;,y;) are the coordinates of the siteand(i, ) refers
when the number of particles or the curvature of the confinto nearest neighbors. The last term in E9). allows to con-
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FIG. 15. Single particle spectruta) and level spacingb) for a
system withN,=N, =100, andV,a’=V,,a’=5x 10"%. Energies
are measured in units of

sider different strength‘s{axvx,va v and powersy,, ay of the
confining potential in thex,y directions. We call in what
follows N, and N, the number of lattice sites in theandy
directions, respectively.
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additional degeneracies in the system since it does not split
the trap in independent identical parts. Then in contrast to the
1D case no information of its formation can be obtained
from the level spacing.

Two density profiles and their corresponding normalized
MDF for N;=1000 andN;=4000, and the same trap param-
eters of Fig. 15, are presented in Fig. 16. ®andy coor-
dinates in the trap are normalized by the characteristic
lengths,=(Vox/t) ™2 and £, =(V,,/t) ™2 respectively. The
density profile in Fig. 1@) corresponds to a pure metallic
phase in the 2D trap, the corresponding MP#g. 16b)] is
smooth and for some momenta it is possible to see rpat
=0 like in the 1D case. When the filling of the system is
increased, the insulator appears in the middle of the trap
[Fig. 16d)] and all the regions with,=0, present in the pure
metallic phase, disappear from the MDFig. 16e)]. Figs.
16(c) and 16f) show as intensity plots the normalized MDF
of Figs. 1&b) and 1ge).

In 2D it is possible to define a dimensionless characteris-
tic density a$=Nra?/ {,{,. Also in this case it has always the
same value when the insulator appears in the middle of the
system, independently of the values and relations between
Vy, andV,,. The density profiles as function of the normal-
ized coordinates and the MDF remain unchanged when the
characteristic density is kept constant and the values and re-
lations betweenV,, andV,, are changedin the thermody-
namic limit they have the same form shown in Fig).1Bhis
implies that the results shown in Fig. 16 for a symmetric trap
do not change for an asymmetric trap with the same charac-
teristic density. The value of the characteristic density for the
formation of the insulator in a harmonic 2D trap j&
~13.5.

In Fig. 15 we show the single particle spectrum and its The addition of the alternating potential leads to results

corresponding level spacing for a system witp=N, =100
lattice sites confined by a harmonic potential wih,a?

similar to those presented in the 1D case. Four density pro-
files showing the possible local phases in the 2D trap, and

=V, a?=5X 10°%. Figure 1%b) shows that degeneracy sets intensity plots of their corresponding MDF are shown in Fig.
in at the very beginning of the expectrum, and this is becaus&?. In the pure metallic cag&igs. 17a) and 17{b)] the ad-

of the symmetries of the square lattice. In 2D the formationditional structure in the MDF fok,,k,> 7/2a, due to the

of the insulator in the middle of the trap does not generaténcrease of the periodicity, is present. This structure also dis-

n

(b) (©)

FIG. 16. (Color onling 2D density profilega),(d), 2D normalized MDKb),(e), and intensity plots of the 2D normalized MD§),(f), for
N¢=1000(a)—(c) and Ny=4000(d)—f) fermions in a system witi,=N,=100 andV,,a?=V, a?>=5x 10"%. The color scale iric) and (f)

is the same as in Fig. 6.
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FIG. 17. (Color online Density per unit cel(a),(c),(e),(g) and
intensity plots of the normalized MDIb),(d),(f),(h) profiles for
N¢=200 (a),(b), 800 (c),(d), 1100(e),(f), and 3000(h),(i) in a sys-
tem with Ny=N,=100V,,a?=V,,a*=5x 10, and V,=t. The
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@ O
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FIG. 18. (Color onling Intensity plots of the local compressibil-
ity as a function of the normalized coordinates for systems with
Ny=N,=100V,,a*=V,,a?=5x 1073 and V,=t. The fillings are
the same as that in Fig. 1@ N;=200, (b) N;y=800, (¢c) N;=800,
and(d) Ny=1100. Black color means zero compressibility.

filling) and apply the new definition to the 2D trégs for the

1D caseb~10). The results obtained for the same param-
eters of Fig. 17 are presented in Fig. 18. There it can be seen
that the rings of local insulators in Fig. 17 are represented in

color scale in the intensity plots of the normalized MDF is the samé=i9. 18 by rings of incompressible regiofislack ringg so

as in Fig. 6.

appears when the insulator appears in the middle of the sy
tem[Figs. 17c) and 17d)]. Increasing the filling a new me-

tallic phase appears in the center of the tigjgs. 1{c) and
17(d)]. For the highest filling the insulator with=1 devel-

ops in the middle of the trap and the MDF becomes flatter
with n,# 0 everywhere. In a way similar to the 1D case ther

that this definition works also perfectly in the 2D case, and
the local compressibility should be a relevant quantity to

§_haracterize the local Mott insulating phases also in the

trapped 2D Hubbard model.

VI. CONCLUSIONS

We performed a detailed analysis of noninteracting sys-

Ctems focusing on the consequences of the combination of a

are f_conélr_led_ states n ;heh radial d're]?t'r?”’ 1€, pa(;tlzles a'€onfining and a periodic potential. It leads to a confinement
confined In rings around the center of the trap, and they Cags haticles in a fraction of the available system size. This

be explained in terms of Bragg conditions. The phase dia

confinement is directly related to the formation of insulating

gram of the 2D case is also similar to the one in the 1D casgygions in the case of fermionic systems. Since the results

and is not be discussed here.

We close this section by considering the local compress

obtained correspond to noninteracting particles they can be
also explained in a single particle picture due to the realiza-

ibility. As it was mentioned in the analysis of the 1D caseyjq of Bragg conditions, and are also valid for bosons. We

with the alternating potential,

nition given by Eq.(7) to

¢
K= X Xisioi 44 (10
Vgt Y
where
Xiyiyiydy = Mg Mg, ) = (i 0y ) (12)

is the density-density correlation function in 2D afi(V/,)
=b &V,). In this case it is also possible to determifi¥,)
in the insulating phase of the 2D periodic cagd half-

\ : 9 P this quantity is zero in they e studied the consequences of the previous confinement
insulating phaseglike in the Mott insulating phases of the

trapped Hubbard modglin the 2D case we extend the defi-

in the nonequilibrium dynamics of trapped particles in 1D
when the center of the trap is suddenly displaced, and con-
firmed evolution of the center of mass obtained in recent
experiments.

The region over which particles are confined in the trap
can be controlled in various ways. The most obvious one is
by changing the strength of the confining potential, where
the extension of such regions can be regulated. The other
way is changing the periodicity of the lattice, which leads to
a different “slicing” of the system. The change of the peri-
odicity also generates in the fermionic case the possibility of
obtaining local insulating phases with sizes that can be con-
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trolled changing the strength of the additional alternating po-of insulating regions due to the presence of periodic poten-
tential. This gives rise to a picture that is similar in sometials. We showed that the local compressibility also charac-
aspects to the the Hubbard model analyzed in Ref$21. terizes those 2D regions in an unambiguous way.

We have shown that although insulating phases appear in this
noninteracting case, the gaps that are locally opened are not
seen in the single particle spectrum. In order to observe them
it is necessary to study the local density of states. The local We gratefully acknowledge financial support from the
compressibility defined in Ref$20,21] was also proven to LFSP Nanomaterialien and SFB 382. We are grateful to T.
be a genuine local order parameter to characterize the neRfau for insightful discussions, and to G. Modugno for inter-
insulating phases since it is always zero there. A scalablesting discussions on the experiments of REI5-17. We
phase diagram for these systems was also presented. Finalligank HLR-StuttgartProject DynMe} for allocation of com-
we considered the two-dimensional case and the formatioputer time.

ACKNOWLEDGMENTS

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, Lukin, Phys. Rev. Lett.89, 220407(2002.

and E. A. Cornell, Scienc69, 198(1995. [15] G. Modugno, F. Ferlaino, R. Heidemann, G. Roati, and M.
[2] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Inguscio, Phys. Rev. A8, 011601R) (2003.

Phys. Rev. Lett.75, 1687(1995. [16] H. Oftt, E. de Mirandes, F. Ferlaino, G. Roati, G. Modugno, and
[3] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, M. Inguscio, Phys. Rev. Lett92, 160601(2004).

D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. [17] L. Pezze’, L. Pitaevskii, A. Smerzi, S. Stringari, G. Modugno,

75, 3969(1995. E. de Mirandes, F. Ferlaino, H. Ott, G. Roati, and M. Inguscio,
[4] K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and Phys. Rev. Lett.93, 120401(2004).

J. E. Thomas, Scienc298 2179(2002. [18] T. A. B. Kennedy, Phys. Rev. A0, 023603(2004).
[5] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. [19] V. Ruuska and P. Térm&, New J. Phy&.59 (2004).

Mod. Phys. 71, 463(1999. [20] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T. Scalettar,
[6] F. Gleisberg, W. Wonneberger, U. Schléder, and C. Zimmer- Phys. Rev. Lett.91, 130403(2003.

mann, Phys. Rev. A2, 063602(2000. [21] M. Rigol and A. Muramatsu, Phys. Rev. 89, 053612(2004).
[7] P. Vignolo, A. Minguzzi, and M. P. Tosi, Phys. Rev. Le85, [22] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A.

2850(2000. Muramatsu, P. J. H. Denteneer, and M. Troyer, Phys. Rev. Lett.
[8] A. Minguzzi, P. Vignolo, and M. P. Tosi, Phys. Rev. 83, 89, 117203(2002.

063604(200D. [23] W. Zwerger, J. Opt. B: Quantum Semiclassical Opt. S9
[9] P. Vignolo, A. Minguzzi, and M. P. Tosi, Phys. Rev. 84, (2003.

023421(2001. [24] We thank T. Pfau for suggesting the line of thinking displayed

[10] J. Schneider and H. Wallis, Phys. Rev.3¥, 1253(1998. below.

[11] M. Brack and B. P. van Zyl, Phys. Rev. Le@&6, 1574(200J). [25] C. Zener, Proc. R. Soc. London, Ser.J45 523 (1934).
[12] P. Vignolo and A. Minguzzi, Phys. Rev. &7, 053601(2003. [26] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov,

[13] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and |I. Phys. Rev. A66, 031601R) (2002.
Bloch, Nature(London) 415, 39 (2002. [27] G. D. Mahan, Many-Particle PhysicgPlenum, New York,
[14] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. 1986.

043627-12



