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The structure of vortices in Bose-Einstein condensed atomic gases is studied taking into account many-body
correlation effects. It is shown that for excited vortices the particle density in the vortex core increases as the
angular momentum of the system increases. The core density can increase by several times with only a few
percent change in the angular momentum. This result provides an explanation for the observations in which the
measured angular momentum is higher than the estimation based on counting the number of vortices and the
visibility of the vortex cores is simultaneously reduced. The calculated density profiles for the excited vortices
are in good agreement with experimental measurements of a single vortex.
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When a superfluid is put into rotation, vorticity is split
into discrete vortex lines rather than continuously distributed
as in the case of solid-body rotation[1,2]. The dynamics,
such as formation, reconnection, and decay, of vortex lines is
influenced by the microscopic structure of the vortex core
[3]. Direct imaging of rotating Bose-Einstein condensed
atomic gases(BEC’s) has revealed, for the first time, the
particle density profile of the vortex core in neutral superflu-
ids [4–8]. The particle density is reduced in the core, and the
density dips in the measured images are used to identify the
presence of vortex lines in the experiments. In the mean-field
approximation, known as the Gross-Pitaevskii(GP) theory
[9,10], the predicted particle density at the center of the vor-
tex core is exactly zero because the phase of the single-
particle wave function at the vortex line is not well defined.
Observationally, the particle density at the core center is fi-
nite and varies in a wide range with different experimental
conditions. The finite core density in the observations could
arise due to the finite resolution of the imaging systems.
However, in many cases the core densities appear to be quite
large and not simply an experimental artifact.

Theoretically, finite particle density at the core center re-
sults from quantum fluctuations of the locations of vortex
lines due to many-body correlations[11–13]. The estimated
density at the core center for a straight vortex line after tak-
ing into account quantum fluctuations is comparable to the
density of particles depleted from the condensate in the
ground state of a BEC[11], which is not sufficient to explain
the observed large core densities. The fact that the core den-
sity is large and varies from measurements to measurements
suggests that these vortex lines may be in different vibrating
modes[14] rather than straight. In this paper, the structure of
excited vortices is studied using many-body wave functions
that incorporate quantized motion of the vortex lines. It is
proposed that the observed vortices with large core densities
are in vibrating modes corresponding to excited rotational
states of BEC’s with an angular momentum higher than the
stationary GP states. This proposal is based on my results
that the core density increases rapidly as the angular momen-
tum increases and is supported by the experimental findings
that the angular momentum per particle, averaged over an
ensemble of one-vortex systems, is larger than" [15,16]. The
calculated density profiles for the excited vortices are in

good agreement with experimental measurements of a single
vortex in the center of the trap. The existence of vortices
with a higher angular momentum also provides a possible
explanation for the observations in which the measured an-
gular momentum is higher than the estimation based on
counting the number of vortices, and the visibility of the
vortex cores is simultaneously reduced[17]. Note that for the
observations reported in Ref.[17], the visibility of the vortex
cores is also reduced due to a static distortion of the trap and
bending for off-centered vortices. The present theory only
considers a single vortex in the center of the trap and does
not take into account nonequilibrium processes during the
formation of vortex lattices.

The importance of many-body correlations in the vortex
core can be seen in the following way. In the GP theory, the
description of a vortex line is “classical” in the sense that the
position and velocity of a vortex line can be simultaneously
determined. A quantum description would be required if the
position uncertainty of a vortex line is comparable to the size
of the vortex core. The position uncertainty of a vortex line is
given by the interatomic spacing[13,18], because the total
angular momentum of the system would be altered by one"
if a vortex line fluctuates across an atom in the superfluid.
The size of the vortex core is given by the healing length
which is determined through a balance between the kinetic
and potential energies for a density gradient. Although the
healing length can be much larger than the interatomic spac-
ing in the weakly interacting limit, they are often comparable
with each other in realistic situations(see Table I for com-
parisons). As a result, the quantum fluctuations of vortex
lines are generally important. We should note that although it
is possible to address the finite column densities within the
framework of the GP theory by considering bent vortex lines
[19], such considerations are limited to metastable states
with broken rotational symmetry and a lower angular mo-
mentum.

For simplicity I consider a rotating BEC with only a
single vortex point in two dimensions, but the formulation
can be applied to a vortex line in a three-dimensional system.
To obtain a quantum description for the vortex, many-body
wave functions are constructed as linear combinations of the
GP wave functions parameterized by the location of the vor-
tex [13,18]. The GP wave functions are used as basis states
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analogous to the position space representation of a particle in
quantum mechanics. For aN-particle system, such a wave
function is written as,

Csr 1, . . . ,r Nd =E d2r 0Fsr 0dp
i=1

N

cGPsr i ;r 0d, s1d

whereFsr 0d is the weight function that represents the effec-
tive dynamics of the vortex andcGPsr ; r 0d is the normalized
solution of the time-independent GP equation with a vortex
located atr 0=sr0,u0d. When Eq.(1) is generalized to de-
scribe a vortex line in three dimensions, the weight function
becomes an effective “wave function” of a string rather than
a particle. For the case of a straight vortex line with the
zero-point motion, the wave function in Eq.(1) is similar to
the shadow wave functions used to study vortices in liquid
4He [20].

The weight functions for the energy eigenstates of the
vortex can be solved by diagonalizing the many-body Hamil-
tonian within the sub-Hilbert space spanned by the GP basis
states. In the case that the system has a uniform ground state
with a densityr2D=s−2, the weight functions are found[13]
to be

Fn,lsr 0d = Nn,l xul ue−x2/2eilu0
1F1sa,b;x2d, s2d

wherenù0, nù l ù−N, x=Îpr0/s, Nn,l is the normalization
constant determined bykCn,l uCn,ll=1, a=−s2n− l − ul u d /2,
b= ul u +1, and1F1sa,b;x2d is the confluent hypergeometric
function [21]. It is straightforward to verify that the state
uCn,ll is an eigenstate of the angular momentum operatorLz
with eigenvaluesN+ ld", given that the phase ofcGPsr ; r 0d
takes the form ofu+ fsu−u0d in azimuthally symmetric sys-
tems. For example, the weight functionF0,0sr 0d is a Gaussian
centered at the origin, and the stateuC0,0l is the correspond-
ing many-body state that includes the zero-point motion to
the Hartree state of a centered vortex. The weight functions
in Eq. (2) have exactly the same form as the energy eigen-
functions of a charged particle in a constant magnetic field
[22]. This is because the motion of a vortex is also driven by
a velocity-dependent transverse force like the Lorentz force.
For nonuniform systems such as BEC’s in harmonic traps,
the exact solutions for the weight functions are not known.

However, in the case that the radius of the system is much
larger than the size of the vortex core and the vortex is near
the trap center, the weight functions can be approximated by
Eq. (2) with r2D equal to the local density of the ground state
[13]. Therefore, I will use the wave function in Eq.(1) with
the weight functions given by Eq.(2) to study the structure
of vortex cores in trapped BEC’s.

To use Eq.(1), the first step is to set up the GP basis
states. In order to solve the GP equation for a system with a
given number of particles, it is convenient to choose the
length unit to be the healing lengthj=Îs3/8pas, wheres is
the interatomic spacing of the ground state at the trap center
andas is thes-wave scattering length characterizing the in-
teraction strength between particles. The ground-state wave

function c̄gssrd is first solved with the boundary condition

c̄gss0d=1. This particular choice of boundary condition and
length unit has the advantage that the normalization of the
wave function is related to the total number of particles as

N =
1

s2 E d2r uc̄gssrdu2. s3d

Then the GP state that has a centered vortex and the same
number of particles is solved and written as

c̄GPsr ;0d = gsrdc̄gssrdeiu, s4d

wheregsrd is the amplitude ratio of the vortex state to the
ground state. The normalized GP basis states with an off-
centered vortex can now be approximated by

cGPsr ;r 0d <
1

ÎNs
gsur − r 0udc̄gssrdeifsr ;r 0d, s5d

where the phase satisfies the following set of linear differen-
tial equations:

= 3 = fsr ;r 0d = 2p dsr − r 0d, s6d

= · fucGPsr ;r 0du2 ¹ fsr ;r 0dg = 0. s7d

The first equation specifies that the vortex is located atr 0,
and the second is the continuity equation which directly fol-
lows from the GP equation. The general solutions of Eq.(6)
can be written asfsr ; r 0d=qsr −r 0d+f̃sr ; r 0d, where qsr
−r 0d is the azimuthal angle of the vectorr −r 0 andf̃sr ; r 0d is
a single-valued function that remains to be determined by
Eq. (7).

In the case that the vortex is close to the trap center, the
correction termf̃sr ; r 0d is only significant in the region,
r . r0. In this region, the general solution of Eq.(6) can be
expanded as a Fourier series,

fsr ;r 0d = u + o
j=1

` S r0

r
D jFf̃ jsrd +

1

j
Gsinf jsu − u0dg, s8d

where the factor 1/j comes from the expansion of the azi-
muthal angleqsr −r 0d. Since the density profile of the vortex
state in this region is not far from the ground-state density
profile, we can replaceucGPsr ; r 0du2 in Eq. (7) with the den-

TABLE I. Ratios between the interatomic spacings and the
healing lengthj at the center of the traps in different experiments.
In the Thomas-Fermi approximation, the ratio is given bys /j
=2s15p5Nm3as

6v'
2 vi /"3d1/15, whereN is the total number of par-

ticles,m is the mass,as is thes-wave scattering length, andv' and
vi are the trapping frequencies in the perpendicular and parallel
directions to the rotation axis. The last column shows the ratio for
liquid helium assuming that the vortex core radius is 1 Å.

Atoms 87Rb [4] 87Rb [5] 23Na [6] 87Rb [7] 87Rb [8] 4He

v' /2p sHzd 7.8 219 84 62 8.35

vi /2p sHzd 7.8 11.7 20 175 5.45

N 33105 105 53107 23104 106

s /j 0.6 0.9 0.9 0.8 0.6 3.5

JIAN-MING TANG PHYSICAL REVIEW A 70, 043626(2004)

043626-2



sity profile of the ground state,r0srd= ucgssrdu2. By substitut-
ing Eq. (8) into Eq. (7), the differential equation for each
f̃ jsrd is obtained as follows:

F1

r

d

dr
r

d

dr
+

r08srd
r0srd

d

dr
−

j2

r2G f̃ jsrd
r j =

1

r j+1

r08srd
r0srd

, s9d

wherer08srd=dr0srd /dr. To solve Eq.(9), two boundary con-
ditions are needed. The boundary condition at a distance far
away from the trap center can be obtained by noting that
r0srd behaves like a Gaussian at large distances, and, there-
fore,

lim
r→`

r08srd
r0srd

= − `. s10d

Thus, the asymptotic value of the first derivative of the so-
lution is fixed by

d

dr
F f̃ jsrd

r j G ,
1

r j+1 for r → `. s11d

The other boundary condition can be chosen asf̃ js0d=0 be-
cause the correction near the origin is small in a large sys-
tem. With these two boundary conditions, Eq.(9) is solved
numerically to obtainf̃ jsrd and, thus, the GP basis states.

The second step is to find the overlap between two GP
basis states because they are not orthogonal to each other.
However, it is sufficient to calculate the overlap between two
single-particle wave functions up to the second order in the
separation between their vortex coordinates because the cor-
responding many-body wave functions are nearly orthogo-
nal. The overlap between two single-particle wave functions
is

kcGPsr 08ducGPsr 0dl<E d2reiffsr ;r 0d−fsr ;r 08dggsur − r 08ud

3gsur − r 0uducgssrdu2

<E d2reifqsr ;r 0d−qsr ;r 08dggsur − r 08ud

3gsur − r 0uducgssrdu2− ur 0 − r 08u
2

3E d2r

4r2f2f̃1srd + f̃1srd2gucGPsr ;0du2

<1 − aR

ur 0 − r 08u
2

Ns2 − iaI

ẑ · r 0 3 r 08

Ns2 , s12d

whereaR andaI are numerical constants for a given system.
The coefficientaR generally scales logarithmically with the
system size, while the coefficientaI is not sensitive to the
system size or local density variations and is exactly given
by p in an asymptotically uniform system[13].

Finally, the density profile of the stateuCn,ll is given by

rn,lsr d = NE d2r 08E d2r 0Fn,l
* sr 08dFn,lsr 0dcGP

* sr ;r 08dcGPsr ;r 0d

3expF− aR

ur 08 − r 0u2

s2 − iaI

ẑ · r 0 3 r 08

s2 G , s13d

where the many-body overlap corresponding to the single-
particle overlap in Eq.(12) falls off exponentially with the
separation of the vortex coordinates in the large-N limit. To
compare this two-dimensional theory with experimental data,
we assume that the healing lengthj and the interatomic spac-
ing s at the trap center are the same as in the three-
dimensionals3Dd system. In the following, I will use the
experimental conditions of Madisonet al. [5] (the trapping
frequencies are listed in Table I). For a BEC withN3D=1.4
3105 particles, the healing length isj=0.19mm and the
interatomic spacing iss=0.17mm. The corresponding num-
ber of particles in two dimensions given by Eq.(3) is about
350. The two coefficients in the overlap areaR=5.84 and
aI =3.25.

Although all states described by Eq.(2) can exist, some of
them are more stable and likely to be realized in actual ex-
periments than the others. A rotating BEC is typically created
by a stirring laser beam. The system is first driven by the
laser stirrer for a period of time and then relaxes to a station-
ary state. The laser stirrer breaks the rotational symmetry and
transfers both energy and angular momentum into the sys-
tem. During the relaxation period, the energy can relax
through collisional processes, but it is harder for the angular
momentum to relax unless the rotational symmetry is broken
by other means. There is experimental evidence showing that
the system can maintain its angular momentum for a long
period of time[23]. This leads us to assume that the system
will fall into the lowest-energy state with the initially given
angular momentum. As the angular momentum of the system
increases, more and more vortices will form. However, it is
energetically favorable to excite the existing vortices if the
change in angular momentum is small. The energy cost for
introducing an additional vortex into the system is approxi-
mately lnsR/jdp"2/ms2, whereR is the characteristic radius
of the system, while the energy cost for having an excited
vortex is approximatelybnp"2/ms2 [13,18], whereb is an
umerical constant less than 1 andn is the angular momentum
increase. Although adding another vortex would eventually
become energetically favorable for larger values of the angu-
lar momentum, the critical valuesncd is so far not known. If
we consider a two-dimensional system with parameters simi-
lar to those in Ref.[5] sR/j<15d, but the ground state den-
sity is constant, thenb is about 0.05 andnc<50 [13]. Accu-
rate comparison of the energies of different vortex
configurations is complicated by the nonuniformity of the
system and require further studies.

In the case of a single excited vortex, the lowest-energy
state for a given angular momentum is theuCn,nl state.
Hence the density profiles of theuCn,nl states are compared
against experimental data. Figure 1(a) shows that the data of
Madisonet al. [5] can be best fitted with the state that the
angular momentum is increased by 5%(n=18 compared to
N=350). The experimental data are shown by the solid dots.
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Only one centered vortex core is clearly visible, and the core
density profile is significantly deviated from the density pro-

file of the GP statesLz=N"d. The valuen=18 should only be
considered as an upper bound of the angular momentum in-
crease for this particular data set since the measured core
density was partly contributed by the finite resolution of the
imaging system. Figure 1(b) shows the calculated trend that
the core density increases with increasing angular momen-
tum of the system(Lz=sN+nd").

In summary, I have calculated the density profiles of dif-
ferent rotational states of a trapped Bose gas with one quan-
tized vortex using many-body wave functions which are lin-
ear combinations of GP wave functions. The core density
increases with increasing angular momentum of the system,
which suggests that vortices with large core densities are in
excited states with higher angular momentum. The possibil-
ity of having excited vortices suggests that for given angular
momentum, the lower-energy rotational state can have num-
ber of vortices less than expected in the mean-field theory.
From the quantitative agreement on the density profile be-
tween the theoretical prediction and the experimental mea-
surements, it is suggested that the rotating Bose gas observed
experimentally by Madisonet al. [5] is in a state with angu-
lar momentum higher than one" per atom.

The author thanks D. J. Thouless and A. Bulgac for valu-
able discussions and K. W. Madison and J. Dalibard for pro-
viding data shown in Fig. 1.
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FIG. 1. (a) The integrated column density profile of a rotating
BEC with a vortex at the center. The solid dots show the experi-
mental data in Ref.[5]. The solid line shows the density profile of
the excited statesn=18d whose angular momentum per particle is
about 1.05". The 3D column density is approximated by using the

2D results asrcolsrd=r2Dsrdc̄gssrd. The density profile of the GP
state is shown as the dotted line for comparison.r0s0d is the central
density of the ground state.(b) The open circles show the scaling
behavior of the central density with respect to the angular momen-
tum increase.
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