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Structure of excited vortices with higher angular momentum in Bose-Einstein condensates
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The structure of vortices in Bose-Einstein condensed atomic gases is studied taking into account many-body
correlation effects. It is shown that for excited vortices the particle density in the vortex core increases as the
angular momentum of the system increases. The core density can increase by several times with only a few
percent change in the angular momentum. This result provides an explanation for the observations in which the
measured angular momentum is higher than the estimation based on counting the number of vortices and the
visibility of the vortex cores is simultaneously reduced. The calculated density profiles for the excited vortices
are in good agreement with experimental measurements of a single vortex.
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When a superfluid is put into rotation, vorticity is split good agreement with experimental measurements of a single
into discrete vortex lines rather than continuously distributedsortex in the center of the trap. The existence of vortices
as in the case of solid-body rotatigf,2]. The dynamics, with a higher angular momentum also provides a possible
such as formation, reconnection, and decay, of vortex lines iexplanation for the observations in which the measured an-
influenced by the microscopic structure of the vortex coregular momentum is higher than the estimation based on
[3]. Direct imaging of rotating Bose-Einstein condensedcounting the number of vortices, and the visibility of the
atomic gasegBEC’s) has revealed, for the first time, the vortex cores is simultaneously redudéd]. Note that for the
particle density profile of the vortex core in neutral superflu-observations reported in RgfL7], the visibility of the vortex
ids [4—8]. The particle density is reduced in the core, and thecores is also reduced due to a static distortion of the trap and
density dips in the measured images are used to identify thieending for off-centered vortices. The present theory only
presence of vortex lines in the experiments. In the mean-fieldonsiders a single vortex in the center of the trap and does
approximation, known as the Gross-PitaevgkiP) theory  not take into account nonequilibrium processes during the
[9,1Q], the predicted particle density at the center of the vorformation of vortex lattices.
tex core is exactly zero because the phase of the single- The importance of many-body correlations in the vortex
particle wave function at the vortex line is not well defined. core can be seen in the following way. In the GP theory, the
Observationally, the particle density at the core center is fidescription of a vortex line is “classical” in the sense that the
nite and varies in a wide range with different experimentalposition and velocity of a vortex line can be simultaneously
conditions. The finite core density in the observations coulddetermined. A quantum description would be required if the
arise due to the finite resolution of the imaging systemsposition uncertainty of a vortex line is comparable to the size
However, in many cases the core densities appear to be quitd the vortex core. The position uncertainty of a vortex line is
large and not simply an experimental artifact. given by the interatomic spacind3,18, because the total

Theoretically, finite particle density at the core center re-angular momentum of the system would be altered by/one
sults from quantum fluctuations of the locations of vortexif a vortex line fluctuates across an atom in the superfluid.
lines due to many-body correlatiofis1-13. The estimated The size of the vortex core is given by the healing length
density at the core center for a straight vortex line after takwhich is determined through a balance between the kinetic
ing into account quantum fluctuations is comparable to thend potential energies for a density gradient. Although the
density of particles depleted from the condensate in théealing length can be much larger than the interatomic spac-
ground state of a BECL11], which is not sufficient to explain ing in the weakly interacting limit, they are often comparable
the observed large core densities. The fact that the core dewdth each other in realistic situatior{see Table | for com-
sity is large and varies from measurements to measuremenpgrison$. As a result, the quantum fluctuations of vortex
suggests that these vortex lines may be in different vibratindines are generally important. We should note that although it
modeg[14] rather than straight. In this paper, the structure ofis possible to address the finite column densities within the
excited vortices is studied using many-body wave functiongramework of the GP theory by considering bent vortex lines
that incorporate quantized motion of the vortex lines. It is[19], such considerations are limited to metastable states
proposed that the observed vortices with large core densitiesith broken rotational symmetry and a lower angular mo-
are in vibrating modes corresponding to excited rotationamentum.
states of BEC’s with an angular momentum higher than the For simplicity | consider a rotating BEC with only a
stationary GP states. This proposal is based on my resul&ngle vortex point in two dimensions, but the formulation
that the core density increases rapidly as the angular momenan be applied to a vortex line in a three-dimensional system.
tum increases and is supported by the experimental findingso obtain a quantum description for the vortex, many-body
that the angular momentum per particle, averaged over awave functions are constructed as linear combinations of the
ensemble of one-vortex systems, is larger thqh5,16. The = GP wave functions parameterized by the location of the vor-
calculated density profiles for the excited vortices are intex [13,18. The GP wave functions are used as basis states
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TABLE I. Ratios between the interatomic spacingand the  However, in the case that the radius of the system is much
healing lengthé at the center of the traps in different experiments. Jarger than the size of the vortex core and the vortex is near
In the Thomas-Fermi approximation, the ratio is given ®¥  the trap center, the weight functions can be approximated by
=2(15m°Nnvalw? w /%)%, whereN is the total number of par-  Eq.(2) with p,p equal to the local density of the ground state
ticles,mis the massay is thes-wave scattering length, anrd, and 13]. Therefore, | will use the wave function in E€lL) with
w) are the trapping f_requer_lcies in the perpendicular and pgrall he weight functions given by Eq2) to study the structure
Q|re_ct|0ns_ to the rotgtlon axis. The last column _sho_vvs the ratio forof vortex cores in trapped BEC's.
liquid helium assuming that the vortex core radius is 1 A. To use Eq.(1), the first step is to set up the GP basis
states. In order to solve the GP equation for a system with a

87 87 23 87 87 4
Atoms Rb[4] "Rb[5] “Na[6] Rb[7] "Rb[8] "He gy an number of particles, it is convenient to choose the
w, /27 (Hz) 7.8 219 84 62 8.35 length unit to be the healing lengix \ o>/ 8mas, whereo is
w27 (H2) 78 11.7 20 175 5.45 thedlnt(_arattr(])mlc spacing t?f t_he ?rou?r(]j srt1ate att the_- tratg;] center
N 3x1F 1 5x1F 2x10°  10F anda; is thes-wave scattering length characterizing the in-
teraction strength between particles. The ground-state wave
ol & 0.6 0.9 0.9 0.8 0.6 3.5 —

f_unction gdr) is first solved with the boundary condition

e 0)=1. This particular choice of boundary condition and

analogous to the position space representation of a particle iength unit has the advantage that the normalization of the
guantum mechanics. For M-particle system, such a wave wave function is related to the total number of particles as
function is written as,

1 J—
, N N= ? j d2r|¢/fgs(r)|2. (3)
W(ry, ...y :fd roF(ro) [T weelrisro), (1)
i=1 Then the GP state that has a centered vortex and the same
whereF(r,) is the weight function that represents the effec-"umber of particles is solved and written as
tive dynamics of the vortex andicq(r ;1) is the normalized — T i0
solution of the time-independent GP equation with a vortex Yr(:0) = 9(r)iedr)e”, @)
located atry=(rq, 6y). When Eq.(1) is generalized to de- whereg(r) is the amplitude ratio of the vortex state to the
scribe a vortex line in three dimensions, the weight functionground state. The normalized GP basis states with an off-
becomes an effective “wave function” of a string rather thancentered vortex can now be approximated by
a particle. For the case of a straight vortex line with the
zero-point motion, the wave function in E() is similar to YeplF To) =~ E glr - ro|)$5(r)ei¢(r;ro) (5)
the shadow wave functions used to study vortices in liquid ' VNo g '
4
He [20]. - . . .
The weight functions for the energy eigenstates of thét/_vf}ere thte_ phz.ise satisfies the following set of linear differen-
vortex can be solved by diagonalizing the many-body Hamil-'&' €quations:

tonian within the sub-Hilbert space spanned by the GP basis V X V(rirg) =2m 8r —ry), (6)
states. In the case that the system has a uniform ground state
with a densityp,p=0"2, the weight functions are found3] ] BENY: . -

B o241 L, The first equation specifies that the vortex is locatedyat

Fri(ro) = Ny Xe™ e’ 1 F3(a,b;x9), (2)  and the second is the continuity equation which directly fol-
wheren=0,n=1=-N, x=\nro/ o, N, is the normalization lows from t.he GP equation. The general solutions of (.
constant determined byW,|¥,)=1, a=-(2n-1-|l|)/2, ~ can be written asp(r;ro)=9(r—ro)+¢(r;ro), where 9(r
b=[l|+1, and,F;(a,b;x? is the confluent hypergeometric —ro) is the azimuthal angle of the vectorryand(r ;ro) is
function [21]. It is straightforward to verify that the state a single-valued function that remains to be determined by
|¥,)) is an eigenstate of the angular momentum operajor Eg. (7).
with eigenvalue(N+1)%, given that the phase afgp(r ;ro) In the case that the vortex is close to the trap center, the
takes the form of+f(6- 6,) in azimuthally symmetric sys- correction termg(r;ro) is only significant in the region,
tems. For example, the weight functig o(ro) is @ Gaussian r>r,. In this region, the general solution of E@) can be
centered at the origin, and the stlg, o is the correspond- expanded as a Fourier series,
ing many-body state that includes the zero-point motion to " j
the Hartree state of a centered vortex. The weight functions N Mo\l ~ N -
in Eq. (2) have exactly the same form as the energy eigen- ¢(riro) =0+ 21 (?) [¢j(r) + J*}S”{l(a' )], (8)
functions of a charged particle in a constant magnetic field :
[22]. This is because the motion of a vortex is also driven bywhere the factor 1j/ comes from the expansion of the azi-
a velocity-dependent transverse force like the Lorentz forcemuthal angled(r —r). Since the density profile of the vortex
For nonuniform systems such as BEC'’s in harmonic trapsstate in this region is not far from the ground-state density
the exact solutions for the weight functions are not knownprofile, we can replach/sdr ;ro)|? in Eq. (7) with the den-
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sity profile of the ground statey(r) =|4,{r)|% By substitut- o ) ,
ing Eq. (8) into Eq. (7), the differential equation for each Pn,l(f)=Nf d rof dr oF  (r ) Fri(r o) ap(r ;T ) (T ;T o)
:bj(r) is obtained as follows:

Xex%_ aR

) oot BroXib] g
1d d pnd PE0_ 1 e
rdrdr po()dr 2] 1 py(r)’ where the many-body overlap corresponding to the single-
particle overlap in Eq(12) falls off exponentially with the
wherep((r)=dpy(r)/dr. To solve Eq(9), two boundary con- separation of the vortex coordinates in the lakyémit. To
ditions are needed. The boundary condition at a distance farompare this two-dimensional theory with experimental data,
away from the trap center can be obtained by noting thawve assume that the healing lengtand the interatomic spac-
po(r) behaves like a Gaussian at large distances, and, thersyg o at the trap center are the same as in the three-

fore, dimensional(3D) system. In the following, | will use the
experimental conditions of Madisaet al. [5] (the trapping

pi(r) frequencies are listed in Tablg IFor a BEC withNzp=1.4

r'm o(0) =- (100  x10° particles, the healing length i6=0.19um and the

interatomic spacing is=0.17 um. The corresponding num-

, i o ber of particles in two dimensions given by E®) is about
Thus, the asymptotic value of the first derivative of the so-350 The two coefficients in the overlap ang=5.84 and

lution is fixed by @ =3.25.
Although all states described by E®) can exist, some of
d ?ﬁ-(r) 1 them are more stable and likely to be realized in actual ex-
arl | T for r—e. (11 periments than the others. A rotating BEC is typically created

by a stirring laser beam. The system is first driven by the
. ~ laser stirrer for a period of time and then relaxes to a station-
The other boundary condition can be chosers8)=0 be- 4y state. The laser stirrer breaks the rotational symmetry and
cause t.he correction near the origin is small in a large sySgransfers both energy and angular momentum into the sys-
tem. With these two boundary conditions, Kf) is solved  tem. During the relaxation period, the energy can relax
numerically to obtaing;(r) and, thus, the GP basis states. through collisional processes, but it is harder for the angular
The second step is to find the overlap between two GEnomentum to relax unless the rotational symmetry is broken
basis states because they are not orthogonal to each othby other means. There is experimental evidence showing that
However, it is sufficient to calculate the overlap between twathe system can maintain its angular momentum for a long
single-particle wave functions up to the second order in theperiod of time[23]. This leads us to assume that the system
separation between their vortex coordinates because the caill fall into the lowest-energy state with the initially given
responding many-body wave functions are nearly orthogoangular momentum. As the angular momentum of the system
nal. The overlap between two single-particle wave functionsncreases, more and more vortices will form. However, it is
is energetically favorable to excite the existing vortices if the
change in angular momentum is small. The energy cost for

, , introducing an additional vortex into the system is approxi-
<¢GP(r(,))|¢GP(rO)>zf dPrelriro-arirolg(|r —rg)) mately IMR/ §) 7h2/mo?, whereR is the characteristic radius
of the system, while the energy cost for having an excited
Xg(r =) ¢hgd)[? vortex is approximately3n42/mo? [13,18, whereg is an
umerical constant less than 1 amds the angular momentum
zf d2rei[ﬁ(f:fo)—ﬂ“:fé)]gqr -1y increase. Although adding another vortex would eventually
become energetically favorable for larger values of the angu-
Xg(|r = ro)|¢hedN)2= ro =42 lar momentum, the critical valug@,) is so far not known. If

we consider a two-dimensional system with parameters simi-
lar to those in Ref[5] (R/é=15), but the ground state den-
sity is constant, theg is about 0.05 and.~ 50 [13]. Accu-

rate comparison of the energies of different vortex
~1-ag | . (12 configurations is complicated by the nonuniformity of the

No? No? system and require further studies.

In the case of a single excited vortex, the lowest-energy
whereag and a; are numerical constants for a given system.state for a given angular momentum is th&, ) state.
The coefficientag generally scales logarithmically with the Hence the density profiles of tH#, ) states are compared
system size, while the coefficient is not sensitive to the against experimental data. Figur@)lshows that the data of
system size or local density variations and is exactly giverMadisonet al. [5] can be best fitted with the state that the
by 7r in an asymptotically uniform systefd3]. angular momentum is increased by %%=18 compared to

Finally, the density profile of the stat@,,) is given by N=350). The experimental data are shown by the solid dots.

d?r -~ -
XJ4—rr2[2¢1(r)+¢1(r)2]|1//(3p(r;0)2

ro—rol® . 2-roXrg
—ia
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J T T b | L L B file of the GP statéL,=N#). The valuen=18 should only be
0.8 (b) 08 considered as an upper bound of the angular momentum in-
[ 1 crease for this particular data set since the measured core
@ 0.6- 7] 0-690 density was partly contributed by the finite resolution of the
e ) E‘ imaging system. Figure(l) shows the calculated trend that
,E 0.4F 400 000° 04@ the core density increases with increasing angular momen-
s I °°o°° . 5 tum of the systenfL,=(N+n)4).
0.2 0°° -102 < In summary, | have calculated the density profiles of dif-
i ,o° 1 ferent rotational states of a trapped Bose gas with one quan-
o™ , . ., N T s [ tized vortex using many-body wave functions which are lin-
20 -10 0 10 5 10 15 20 ear combinations of GP wave functions. The core density
x/§ n increases with increasing angular momentum of the system,

which suggests that vortices with large core densities are in

FIG. 1. (a The integrated column density profile of a rotating excited states with higher angular momentum. The possibil-
BEC with a vortex at the center. The solid dots show the eXperi-ity of having excited vortices suggests that for given angu|ar
mental data in Ref[5]. The solid line shows the density profile of momentum, the lower-energy rotational state can have num-
the excited statén=18) whose angular momentum per particle is par of vortices less than expected in the mean-field theory.
about 1.05. The 3D column density is approximated by using the g5 the quantitative agreement on the density profile be-
2D results aspeo(r) =p2p(r)edr). The density profile of the GP  tween the theoretical prediction and the experimental mea-

density of the ground statéb) The open circles show the scaling experimentally by Madisoet al. [5] is in a state with angu-
behavior of the central density with respect to the angular mMoMeNtyr momentum higher than orfeper atom.

tum increase.
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density profile is significantly deviated from the density pro-viding data shown in Fig. 1.
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