
Vortex dipole in a trapped atomic Bose-Einstein condensate

Qi Zhou and Hui Zhai
Center for Advanced Study, Tsinghua University, Beijing, China

(Received 21 June 2004; published 20 October 2004)

We calculate the angular momentum and energy of a vortex dipole in a trapped atomic Bose-Einstein
condensate. Fully analytic expressions are obtained. We apply the results to understand an interesting phenom-
enon in the MIT group experiment[Ramanet al., Phys. Rev. Lett.87, 210402(2001)], an excellent agreement
is achieved, and further experimental investigation is proposed to confirm this vortex dipole mechanism. We
then suggest an effective generation and detection of vortex dipole for experimental realization. Application of
the sum rule to calculate collective mode frequency splitting is also discussed.
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I. INTRODUCTION

The distinguished behavior of superfluid to carry angular
momentum has attracted people’s attention from long ago. It
is well known that vortex excitation plays an important role
when a superfluid responds to the external rotation. Nowa-
days, the vigorous development in cold atom physics has
provided a different and more favorable arena to prove many
theoretical predictions of the behavior of rotating superfluid.
It has been clearly demonstrated by many recent experiments
that the vortex will be a stable excitation with quite long
lifetime when sufficient angular momentum is imparted, and
the vortex lattice will be generated when even more angular
momentum is brought to this system.

Besides the vortex itself, the vortex dipole, i.e., a bound
vortex-antivortex pair, is also of particular interest. It is well
known that the low-lying behavior of two-dimensional he-
lium superfluid is dominated by vortex dipole, for the exci-
tation energy of a vortex dipole is much smaller than a single
vortex. With the increase of temperature, the vortex pairs
will become unbounded and vortices will be free. This will
lead to a phase transition known as the Kosterlize-Thouless
(KT) transition. Although no vortex-antivortex pair has yet
been observed directly so far in atomic Bose-Einstein con-
densate(BEC), it is natural to presume that the vortex dipole
may play an important role when the imparted angular mo-
mentum is not large enough to support the vortex excitation.
So it is worthwhile to study the properties of vortex dipole
excitation in an atomic BEC.

The existence and importance of vortex dipole in an
atomic BEC are also indicated by some recent experiments
and numerical simulations. The MIT group stirred the BEC
locally with the stirring frequency which was too small to
generate any surface mode, however, they observed a large
number of vortices after stirring for some time. This sug-
gested a local mechanism of generating vortex, say through
vortex dipole excitation[1]. Recently some numerical calcu-
lations also indicated that a stable vortex dipole could exist
in a trapped atomic BEC for a broad range of parameters[2].
All of these lead us to believe that cold atomic physics will
offer people the opportunity to investigate this intricate vor-
tex dipole excitation in superfluid. What is more, the charac-
teristics of trapped atomic BEC will add much richer physics
content to the properties of vortex dipoles, as well as to the

experimental detection and production of vortex dipoles,
which will be emphasized in this paper.

To proceed in this interesting and meaningful research
field, we of course should first make clear the properties of a
single vortex dipole in BEC, i.e., its angular momentum and
energy. In Sec. II, we will first deduce an exact result of its
angular momentum and energy. It is not trivial to calculate
the angular momentum and energy of a vortex dipole in an
inhomogeneous condensate. Here we use an integration
method in complex coordinate to obtain fully analytical re-
sults, which will be described explicitly in this section and
the appendixes. We then apply our results to investigate the
MIT group experiment[1]. Through our calculations, we
provide strong evidence to support the presence of a vortex
dipole during this kind of vortex nucleation process, and sug-
gest further experiment to confirm this mechanism.

To experimentally study the properties of the vortex di-
pole in detail, an effective way to generate and detect it is
required. Although various methods have been widely
adopted to produce vortices successfully, the formation of
the vortex dipole has not been systematically discussed. In
Sec. III, we will suggest that JILA’s method[3], which gen-
erate vortex through a coherent spatial and temporal cou-
pling between two-component BEC, could also be used to
produce vortex dipole.

Measuring the density distribution could demonstrate the
density depression in the neighborhood of the vortex center
but have nothing to do with its phase. The same problem will
be encountered in the case of the vortex dipole. We could not
distinguish which vortex is positive or negative only from
the density image. What is more, the velocity field of a vor-
tex dipole decreases quickly from the dipole center, and any
closed path, which is a little far away from the vortex dipole
and includes both the vortex and antivortex, will be quite
similar with the case that there is no singularity at all in this
area. It is also not so effective to use the interference method
to reveal the phase information of the vortex dipole as in the
vortex case[4]. However, experimentalists now could accu-
rately measure the frequency splitting of the collective
modes when the time-reversal symmetry is broken due to the
presence of vortices. This splitting will clearly distinguish
the vortex dipole from single vortex and vortex-free states.
In theory, there are usually two ways to calculate the fre-
quency of the collective mode in the presence of vortices:
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one is perturbative calculation and the other is the sum rule
approach. The results obtained from these two approaches
are in good agreement with each other when the vortex is in
the center of condensate. However, they are no more consis-
tent when the vortex is off center as pointed out in Ref.[5].
In Sec. IV, we first use perturbation approximation to calcu-
late the frequency splitting of the collective mode, and then
we explain why the sum-rule approach fails here. A brief
conclusion and discussion will be given in the last section.

II. PROPERTIES OF A VORTEX DIPOLE

A. Angular momentum and energy

We hereafter consider a BEC confined in a pancake har-
monic trap, which allows us to deal with a quasi-two-
dimensional system. The Gross-Pitaevski equation in a non-
rotating coordinate frame is

−
"2

2m
¹2c + Vc + gucu2c = Ec, s1d

where V= 1
2mv'

2 r2, and g is the effective quasi-two-
dimensional interaction strength, obtained by integrating the
usual three-dimensional one 4p"2asc/m over thez direction.
As we are considering the small angular momentum case, we
could start with the Thomas-Fermi(TF) approximation. So
the density distribution of the ground state is well known as

rsrd =
"v'

2 m

2g
sR2 − r2d, s2d

whereR is the TF radius. Once a vortex dipole appears, in
the region outside of the vortex core we can write

c = Îrsrdeiusr,wd, s3d

with

usr,wd = QsrW − rW1d − QsrW − rW2d. s4d

HereQsrWd is the angle ofrW with respect tox axis. rW1 and rW2

denote the positions of vortex and antivortex, respectively.
Equation(3) follows from the assumption that the presence
of vortices will not change the density distribution of the
condensate but only introduce a phase, except inside the vor-
tex core. This is true when the vortex coreL is small in the
TF region. With Eq.(3) we could calculate the angular mo-
mentum of the condensate as

L = "E
0

R

rrdrE
0

2p usr,wd
]w

dw = "E
0

R

urrdrusr,wdu0
2p. s5d

Only in the regionr1, r , r2, u will change 2p after going
along a circle. Thus

L = 2p"E
r1

r2

rrdr . s6d

We notice that the energy of a vortex dipole increases with
their distance, and the most efficient way to carry angular
momentum is thatrW1 and rW2 direct along the same radius,
namely they are fully polarized, as are schematically shown

in Fig. 1. So we could denoter1=D−d/2, r2=D+d/2, there-
fore

L = 2p"r0R
2SDd

R2 −
D3

R3

d

R
−

d3

4R3

D

R
D , s7d

wherer0 is "v'
2 mR2/ s2gd. Now we turn to the energy of the

vortex dipole. In the TF region, it could be written as

E =
"2

2m
E ry2dxdy, s8d

where

yW =
ẑ3 srW − rW1d

urW − rW1u2
−

ẑ3 srW − rW2d
urW − rW2u2

. s9d

Here we have neglected the presence of mirror dipole due to
the edge effect, which would be a good approximation in a
broad region except when the dipole is very close to the
boundary of the condensate. For convenience, we do all the
calculation in complex coordinates. We will usez=x+ iy and
z̄=x− iy, and then obtain

E =
"2r0

4imR2E
V

sR2 − uzu2d
uz1 − z2u2

uz− z1u2uz− z2u2
dz̄∧ dz. s10d

According to the Green formula

E
V

dv =E
]V

v, s11d

we could obtain the energy expression in the regionL!d
!R,

FIG. 1. Vortex dipole configuration: the grey torus expresses the
effective part of the condensate which carries the angular
momentum.
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E =
2"2r0

m
F1 −SD

R
D2Gln

d

L
. s12d

The detailed calculations are given in Appendix B. As the
energy is dependent ond logarithmically, the vortex and an-
tivortex should bind up to each other closely, and we could
neglect higher orders ofd/R. Compared with the well-known
result for the homogenous case, we also find that in Eq.(12)
the homogenous density is replaced by a local density at the
position of vortex dipole. It can be easily understood because
the amplitude of the velocity field of vortex dipole falls rap-
idly from the center of the vortex dipole, and most contribu-
tion to the energy of a dipole comes from the local velocity
field.

B. Interpretation of experiment

It is of long-standing interest to investigate the intrinsic
mechanism of vortex nucleation since the study of helium
superfluid. In Ref.[1] dynamic nucleation of vortices in a
trapped atomic BEC was studied experimentally. When the
condensate was stirred by a laser with the beam waist com-
parable to the TF radius, the condensate was globally rotated.
In this case they found an enhanced vortex generation when
the stirring frequency coincides that of surface excitations. It
is indicated that vortex could be generated through surface
excitation. However, when the condensate was stirred locally
by a small beam, and the stirring frequency was far below
any surface excitation frequency, they also found large num-
ber of vortices. This phenomenon suggested that the vortex
can also be created locally in the bulk of the condensate,
which seems to be in conflict with the topological argument,
unless the vortex dipole was excited as an intermediate step.
With the increase of angular momentum, the antivortices will
finally be expelled out from the system and leave only the
vortices in the condensate.

A remarkable feature of the local nucleation is that the
vortex number produced by this local stirring is strongly de-
pendent on the distancel between stirring position and the
center of condensate. The vortex number presents a maxi-
mum in the region where the ratio ofl to the condensate size
R is around 0.4. Hence a question can be raised that whether
we can understand the maximum from the properties of vor-
tex dipole excitation.

Our answer to this question is, it is just in this region that
the excitation energy of vortex dipole takes a minimum. In
other word, the vortex dipole is easiest to be excited in this
region. With Eqs.(7) and (12) in hand, we could calculate
the energy as a function of the position of vortex dipoleD
for a given small value of angular momentumL0. The result
is

E

E0
= F1 −SD

R
D2Gln3 L0

2p"r0R
2

R

LsDd
1

D

R
− SD

R
D34 , s13d

whereE0 denoting 2"2r0/m is introduced as an energy unit.
Here we should emphasize that the vortex core sizeL also
depends onD /R via

LsDd =
L0

Î1 −SD

R
D2

. s14d

This result is plotted in Fig. 2. We could clearly see that
the energy minimum occurs atD /R around 0.4. Our calcu-
lation thus provides a support to the vortex dipole mecha-
nism.

To further confirm the vortex dipole mechanism, we in-
vestigate the properties of vortex dipole in an anharmonic
trap [9],

Vsrd =
1

2
mv'

2 r2 +
1

2
mk2r4. s15d

The angular momentum and energy of the vortex dipole will
become

L = 2p"r0R
2Fs1 + Ad

Dd

R2 −
D3

R3

d

R
− A

D5

R5

d

R
G , s16d

and

E =
2"2r0

m
H1 −SD

R
D2

+ AF1 −SD

R
D4GJln

d

L
, s17d

where A=k2R2/v'
2 . We find that with the increase of the

quartic term, the minimum in theE-D curve moves toward
larger value ofD /R as shown in Fig. 3. Hence we predict
that the stirring position where the number of generated vor-
tices reaches its maximum will also change correspondingly,
if a similar experiment is performed in an anharmonic trap.

III. VORTEX DIPOLE FORMATION

Let us first briefly review the vortex formation by the
phase imprinting method[3], which used a laser to couple a
two-component BEC. When we write the order parameterc
as n1/2eiax, where xT=(cossu /2de−iw/2,sinsu /2deiw/2), we
could map the wave function to a pseudospinx on a Bloch

FIG. 2. Vortex dipole energy. Solid, dashed, and dash dot denote
T=0.05, 0.1, 0.2, respectively, whereT=L0/2p"r0RL0.
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sphere. Under the optical coupling, the pseudospin will ro-
tate with the effective Rabi oscillation frequencyVeff. In the
experiment the laser was locally applied and moved around a
circle with the frequencyvr, and the condensate in different
points acquires a phase difference proportional toVeffDt,
where Dt is the time interval of the laser passing through
these two points. Ifvr =Veff, the phase difference between
the two points is identical toDu, and the phase configuration
of a vortex is built up. Besides, if we only change the sign of
Veff and keep the circling direction of the laser unchanged,
an antivortex will be produced.

Extending the above method to dipole generation is
straightforward. From Fig. 4, we can see that the velocity
field of a vortex dipole is clockwise in the left plane and
anticlockwise in the right plane. To produce a vortex dipole,
the moving laser is required to change the sign ofVeff once
it crosses they axis. What is more, the phase configuration of
the vortex dipole could be produced exactly.Veff, the veloc-
ity of the moving laseryWr and the phase change gradient of
the vortex dipole¹u should satisfy the relationship

yWr ·¹W u = Veff s18d

everywhere along the circle.u denotes dipole phase expres-
sion Eq.(4). Once the phase along the circle is fixed, accord-

ing to the uniqueness of solution to the equation¹2u=0, the
two phase singularities, as well as the phase elsewhere inside
the circle, will consequently be determined.

IV. VORTEX DIPOLE DETECTION

When the ground state of the condensate possesses time-
reversal symmetry, the ±m collective modes will be degen-
erate. However, once the time-reversal symmetry is broken
due to the presence of vortex, the frequencies of the two
modes will split. Zambelli and Stringari used the sum-rule
approach to obtain an analytical result of this splitting when
a single vortex lies in the center of the condensate[6]. Svidz-
insky and Fetter also obtained a consistent result by solving
the the hydrodynamic equations with perturbational approxi-
mation [7]. They both found that the frequency splitting is
proportional to the total angular momentum carried by the
condensate. Later the frequency splitting when the vortex is
off center was also calculated perturbatively[5,8]. They
found that the result obtained from the sum-rule approach
does not agree with that from the perturbative approach any-
more. In this section, we will first calculate the collective
mode splitting in the presence of a vortex dipole from the
perturbation approximation, and we find the similar disagree-
ment between perturbation approach and the sum-rule ap-
proach will also occur here. We will briefly discuss the rea-
son why the sum-rule approach fails to meet the result of
perturbative approach. We shall point out that it is not the
sum rule itself but the incorrect way we use it that leads to
this failure.

A. Frequency splitting induced by vortex dipole

Substitutingc=Îreif into Eq. (1), we could obtain the
well-known hydrodynamic equations in the TF region,

]r

]t
+ ¹W · sryWd = 0, s19d

M
]yW

]t
+ ¹W SV + gr − m +

1

2
My2D = 0, s20d

whereyW =¹W f. Expandingr=r0+dr andyW =yW0+dyW with

yW0 = yW1 + yW2 =
ẑ3 srW − rW1d

urW − rW1u2
−

ẑ3 srW − rW2d
urW − rW2u2

, s21d

and after linearization, we could obtain the equation for col-
lective modes,

Sv2 +
g

M
¹W · r0¹W Ddr = − iv¹W syW0drd

+
ig

Mv
¹W · fr0¹W syW0 ·¹W ddrg. s22d

We notice that the left-hand side of Eq.(22) is just the equa-
tion of collective motion corresponding to a vortex-free
ground state. And we also note that the effect ofy0 to the
collective modes is always small, becausey0 decreases

FIG. 3. Vortex dipole energy. Solid, dashed, and dash dot denote
A=0.5,1,2respectively, andT is fixed at 0.05.

FIG. 4. Vortex dipole generation. Left: arrowhead denotes the
velocity field of the vortex dipole along the circle. Right:yWr denotes
the velocity of the moving laser.
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quickly from the vortex dipole center as 1/r2 while dr in-
creases from the condensation center asrm, their overlapping
is always small except that the position of the vortex dipole
is nearby the boundary. So we could treat the right-hand side
as perturbation safely and obtain

v2 − v0
2 = − iv0kguyW0 ·¹W ugl +

ig

Mv0
kgu¹W · r0¹W syW0 ·¹W dugl,

s23d

wherev0 is the collective mode frequency in a vortex free
case. Hereafter we consider the following surface mode:

ugl =Îm+ 1

p

rm

Rm+1eimu. s24d

From the calculation presented in Appendix C, we could ob-
tain the splitting between +m mode and −m mode as

v+ − v− =
2sm+ 1d

R2 FS r2

R
D2m−2

− S r1

R
D2m−2G . s25d

In experiments, from the optical absorption image the vorti-
ces positionsr1 andr2 can be determined, and then by mea-
suring the frequency splitting and comparing the obtained
result with Eq.(25), one can distinguish a vortex dipole from
two vortices with the same winding directions.

B. Discussion on the application of the sum rule

When we apply the formulism of Ref.[6] to calculate the
frequency splitting of ±m modes, we cannot obtain the same
result as Eq.(25). To understand the reasons, let us first
briefly remind ourselves of the sum-rules approach. The gen-
eral formula of the sum rules for an arbitrary operatorF can
be easily proved as

o
n

sEn − EkduFnku2 =
kku†F+,fH,Fg‡ukl

2
, s26d

o
n

sEn − Ekd3uFnku2 =
kkuffF+,Hg,†H,fH,Fg‡gukl

2
. s27d

If we choosek=0, and with a particular choice of the opera-
tor F which satisfiesuFn0u,dnn0, we could obtain

"2vn0

2 =
k0uffF+,Hg,†H,fH,Fg‡gu0l

k0u†F+,†H,Fg‡u0l
. s28d

This is a powerful method because we can obtain the exci-
tation energy directly from the property of the ground state
without the explicit wave function of excitation state. How-
ever, the successful application of the sum-rule approach re-
lies on the proper choice ofF, which should excite the
ground state to only one definitive excited state. When the
system possesses some particular symmetry, we may easily
find out a suitableF. That is true when there is a central
vortex, as rotation invariance is still present and the excited
state should also have the formeimf. So we could easily
selectF as sx± iyd2 to make use of the sum rule. However,

the rotation invariance is broken in the case of vortex dipole.
The choice ofF still assx± iyd2 will excite several states, and
Eq. (28) will not be tenable. That is why the sum-rule ap-
proach fails to agree with the perturbative result in Ref.[5].

V. CONCLUSION

In summary, by applying a convenient integration method
in a complex coordinate, we have obtained the fully analytic
expressions of the angular momentum and energy of a vortex
dipole in a trapped BEC. We also suggest an effective
method to generate and detect the vortex dipole. Our work
may provide a starting point for the research in the problem
of vortex dipole excitation. There still remain many interest-
ing fundamental issues in both theoretical and experimental
physics, such as its dynamics, stability, and detailed genera-
tion mechanism.

The precession of an off-center vortex in a trapped con-
densate has been fully investigated both in experiment and
theory. The mutual interaction between vortex and antivortex
is presumed to bring a more nontrivial trajectory for vortex
dipole. On the other hand, its dynamic behavior is closely
related to its stability. In the dual electromagnetic picture
[10], the positive and negative charge, to which the vortex
dipole corresponds, will tend to annihilate each other via
electromagnetic radiation, say phonon excitation in the origi-
nal picture. However, in a trapped condensate, there are two
mechanisms to stabilize the vortex dipole: one is the angular
momentum conservation, and the other is the discrete spec-
trum of the the phonon in a finite system. Investigation of
this interesting competition will reveal the underlying phys-
ics of the numerical simulation[2]. The fundamental mecha-
nism of generating a vortex dipole from a local stirring is
even more complex, and it may resemble the birth of an
electron and a positron from the vacuum polarization of the
electromagnetic field.

Another important issue which should also arouse great
attention is the complex phase diagram of a rotating two-
dimensional superfluid. When the angular momentumL
equals zero, the critical temperatureTc for the KT transition
is well understood. But when the superfluid carries a certain
angular momentum, the dependence ofTc to the angular mo-
mentum, as far as we are concerned, has not been clearly
revealed. On the other hand, with the increase of angular
momentum, the vortex dipoles will break into free vortices,
and finally a stable vortex excitation will become domina-
tive. However, the explicit mechanism of the transition from
vortex dipole excitation to stable vortex excitation is also
still unknown. The interplay of the angular momentum and
the thermal excitation will bring rich physics to the rotating
two-dimensional superfluid. Several works are proceeding.
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APPENDIX A: INTEGRATION IN COMPLEX
COORDINATE AND GREEN FORMULA

In this section we introduce our method used to do inte-
gration in a two-dimensional space. By denotingz=x+ iy and
z̄=x− iy, we can turn the integration into the complex coor-
dinate as

E
V

fsx,yddxdy= −
1

2i
E

V

fsz,z̄ddz∧ dz̄, sA1d

whereV denotes the integration region, and the∧ operator
fulfils dxi ∧dxj =sdi j −1ddxj ∧dxi, herexi is the coordinate in
real or complex space. Introducing a differential one-form
v=gsz, z̄ddz in which the functiong satisfies

]gsz,z̄d
]z

= fsz,z̄d, sA2d

we havedv= fsz, z̄ddz∧dz̄. According to the Green formula,
we could change the above integration overV to over its
boundary denoted as]V as

E
V

fsz,z̄ddz∧ dz̄=E
]V

gsz,z̄ddz̄. sA3d

This method is very useful when doing integration in a ir-
regular region, because it turns a two-dimensional integra-
tion into a one-dimensional one, and result of the latter is
easier to be obtained numerically or approximatively.

APPENDIX B: VORTEX DIPOLE ENERGY

To obtain the result of the integration Eq.(10) we first
calculate

E
V

uz1 − z2u2

uz− z1u2uz− z2u2
dz̄∧ dz. sB1d

According to above method, it turns to

E
]V

z1 − z2

sz− z1dsz− z2d
ln

z̄− z1

z̄− z2

dz. sB2d

We notice that not only does the integrand have two singu-
larities z1 and z2, but it also includes multivalue parts lnsz̄
−z1d and lnsz̄−z2d, so the integration in the boundary should
be as the left side of Fig. 5.

In the condition thatd@L, the integration along circleC1
reads

E
z−z1=Leiw

z1 − z2

sz− z1dsz− z2d
ln

z̄− z1

z̄− z2

dz

. E
0

2p − d

sz− z1ds− ddSln
L

d
− isw + pdDisz− z1ddw

= − 2ip ln
L

d
.

The similar result of the integration alongC2 circle reads
2ip lnsd/Ld. We notice that the imaginary part of the loga-
rithmic function in the integrand in branchl1 differs from
that in l2 by 2p, the integration along the two branches gives

E
L

d−L − d

xsx − dd
2pdx= 4ip ln

d

L
. sB3d

The integration is more complex along circleC3, we shall
decompose Eq.(B2) as

o
i=1,2

E lnsz− zid
z̄− r i

dz̄− o
iÞ j
E lnsz− zjd

z̄− r i

dz̄. sB4d

The general form of the integrand could be written as

1

z̄
F1 + o

m=1

` Szj

z̄
DmGFln z− o

n=1

` Szi

z̄
DnG , sB5d

then each of the four terms after decomposition is easier to
calculate. We obtain the integration along theC3 circle as

2ip3ln
S1 −

uz1u2

R2 DS1 −
uz2u2

R2 D
S1 −

uz1z2u
R2 D2 4 . sB6d

The above value will vanish in the limit ofd/R→0 and thus
could be neglected. Then we shall obtain

E
V

uz1 − z2u2

uz− z1u2uz− z2u2
dz̄∧ dz= 8ip ln

d

L
. sB7d

Proceeding with the similar steps, we could obtain

E
V

uzu2uz1 − z2u2

R2uz− z1u2uz− z2u2
dz̄∧ dz= 8ip

D2

R2 ln
d

L
. sB8d

The energy of a vortex dipole will finally read

E =
2"2r0

M
F1 −SD

R
D2Gln

d

L
. sB9d

APPENDIX C: FREQUENCY SPLITTING

We notice that Eq.(23) is linear with respect toy0; we
could first calculate a single positive vortex case. That is,

FIG. 5. The integration along the boundary in the complex
coordinates.
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yx = −
z8 − z̄8

2iz8z̄8
sC1d

and

yy =
z8 + z̄8

2z8z̄8
, sC2d

wherez8=z−z1, z1 denotes the location of the vortex. Thus

kguyW0 ·¹W ugl =KgU ]z

z̄− zz1
−

]z̄

z− z1
UgL

= −
m+ 1

pR2m+2E
V

z̄m

z̄− z1

]zz
mdz∧ dz̄

= −
m+ 1

pR2m+2E
]V

z̄mzm

z̄− z1

dz̄. sC3d

The integration along the boundary is expressed as the right
ride of Fig. 5, and the result is easily to be obtained as

kguyW0 ·¹W ugl =
sm+ 1di

R2 S1 −
uz1u2m

R2m D . sC4d

With the same process, we could also obtain

kgu¹W ·r0¹W syW0·¹W d ugl as

−
2imsm+ 1dr0

R4 F1 +S uz1u
R
D2m

− 2S uz1u
R
D2sm−1dG . sC5d

Recalling thatv0=v'
Îm and substituting the above expres-

sion back into Eq.(23), we will obtain

v − v0 =
m+ 1

R2 F1 −S uz1u
R
D2sm−1dG . sC6d

The same result of Ref.[5] is again obtained. As we have
emphasized that Eq.(23) is linear withv0, the above result of
a single vortex can be directly extended to the vortex dipole,
that is

v − v0 =
m+ 1

R2 FS uz2u
R
D2sm−1d

− S uz1u
R
D2sm−1dG , sC7d

wherez2 is the position of antivortex. To calculate the fre-
quency of the −m mode, we only need to change the sign of
v0 equivalently. So the frequency splitting of the ±m mode is

v+ − v− =
2sm+ 1d

R2 FS uz2u
R
D2sm−1d

− S uz1u
R
D2sm−1dG . sC8d
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