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Static and rotating domain-wall cross patterns in Bose-Einstein condensates
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For a Bose-Einstein condensg®EC) in a two-dimensiona{2D) trap, we introduce cross patterns, which
are generated by the intersection of two domain wellgVs) separating immiscible species, with opposite
signs of the wave functions in each pair of sectors filled by the same species. The cross pattern remains stable
up to the zero value of the immiscibility paramel&f, while simpler rectilineatquasi-1D DWs exist only for
values of|A| essentially exceeding those in BEC mixtuigso spin states of the same isotpprirrently
available to the experiment. Both symmetric and asymmetric cross configurations are investigated, with equal
or different numbersN; , of atoms in the two species. In rotating traps, “propellgssable revolving crossgs
are found too. A full stability region for the crosses and propellers in the system’s parameter space is identified,
unstable crosses evolving into arrays of vortex-antivortex pairs. Stable rotating rectilinear DWs are found too,
at larger values ofA|. All the patterns produced by the intersection of three or more DWs are unstable,
rearranging themselves into ones with two DWSs. Optical “propellers” are also predicted in a twisted nonlinear
photonic-crystal fiber carrying two different wavelengths or circular polarizations, which can be used for
applications to switching and routing.
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I. INTRODUCTION perimental creation of two-component mixtures has already

Domain walls(DWs) separating immiscible species are been reported for different spin states’lRb [6,7] and**Na
generic dynamical structures in mixed Bose-Einstein con8]- Accordingly, the use of a mixture of two spin states of
densategBECS [1]. Originally, the DWs were studied in the same isotope seems to be the most straightforward way
one-dimensional1D) BEC models, but they can be naturally of creating the DW cross configuration, as the latter can be
extended into the 2D geometry as quasi-1D obj¢213]; in imprinted onto the BEC by optical beams passed through a
particular, circular DWs, between a less repulsive componerroperly designed phase mask. Moreover, the DW cross ap-
in the middle of the trap and a more repulsive one formingpears, in our extensive computations, to be the most robust
an outer shell, have been found. Recently, complex 2D largestructure among the various types of domain walls consid-
area structures in rotating binary BECs were predicted irered. Indeed, the immiscibility condition for the repulsive
simulations, including vortex lattices and sheets in mixture BEC mixture (the one with positive scattering lengths of

[49. _ _ _ atomic collision$ is
Our aim is to construct genuinely two-dimensional DW
patterns, in the form ofrossesormed by the intersection of A= ajap- a?,<0, (1)

two DWs, in trapped binary BECs. We will consider both . )
symmetric and asymmetric crosses, depending on the ratio $fhereays, az,, anda, are strengths of the intraspecies and
the numbers of atoms in the two specigstoichiometric ~ interspecies interactions, respectivgee Eqs(5) and (7)
ratio’). Patterns in a rotating trap will be considered too. Abelow]. As is shown below, the crossésoth static and ro-
rotating DW cross seems like a “double-vane propeller,'tating oneg remain stable up t@A|=0, while the rectilinear
which may also be symmetric or asymmetric. Note that theDW is stable only for

DWs may move, in the general case; however, their motion

is not amenable to straightforward observation in the 1D A$A§§2t:—0.061. (2
settings, because of the relatively small size of domains ) ]
available in BEC experiments. Thus, the “propeller” offers aOn the other hand, experimental measuremg yield an
unique poss|b|||ty to Createermanent]y movin@Wsl We extremely small actual value M| in the mixture of two spin
identify stability regions for the quiescent and rotating States of'Rb,

crosses, and investigate the evolution of unstable ones. All

multihanded crosses, formed by the intersection of more than Agp = —0.0009, 3

two DWs, are shown to be unstable. We will also briefly,\hich does notsatisfy the condition2). For the mixture of

ﬁ:qns,lder rotating one-dimensiongectilinea) DWs, i.e., different spin states iA®Na, the immiscibility parameter ex-
_s;_mgle-vane propellersthowever, we conclude that the rec- tracted from experimental measurements is larger.
tilinear DWs are less relevant than the crosses for experi- '

ments with currently available BEC mixtupes _ Ana=~ —0.036 (4)
An appealing feature of the cross structures is the feasi-
bility of their experimental realization in binary BECs. Ex- [8], but it does not meet the conditig8) either.
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We also note in passing that work is currently in progress _d R .
towards the creation of two-component BECs with different 'ﬁzl = [H +2 gjk|'/fk|2] o 1=1,2, ©)
atomic species, such 4%:8Rb [9] and 'Li: 1*3Cs[10]. In k=12
that case|A| may take values very different from those given wherey; are the wave functions of the two species, normal-
in Egs. (3) and (4). Furthermore, we should note that an ized so thatN;=f|y;|dr is the respective number of atoms.
additional po_s_S|b|I|ty to pus'h the experlmental valuesAof '}'he single-species Hamiltonian in Eq(5) is H=
toward the critical one mentioned above is through the use of ., Y . .

—(h4/12m)V*-w L,+V, wherem is the atomic masg@ssum-

the so-called Feshbach resonarjt#&] that can control the | X X . .
strength of the interatomic interactions. ing a mixture of two spin states of the same isolppg is

The same “propeller” effect may be implemented in com-the rotation frequency, antd,=i%(xd,—yd,) is the angular-
pletely different physical media, namely, photonic crystalsmomentum operator. The trapping potential is
(PC9 or photonic-crystal fibers(PCFg, with a self-
defocusing nonlinearity and a superimposed twist. In PCFs, V= T(w,zr2+ w22, (6)
the twist bends the inner holes, which run along the fiber, 2
into helices. In that case, the cross configuration may b?\/hererzzxz
realized as an intersection of stable optical DWs separatingre assume

two olrthogr(])nal C|r'cula|r polarlgarlgns or two Q'ﬁfr%r&/cag'ertraspecies and interspecies interactions are characterized by
wavelengths(previously, spatial-domain optica S be- e coefficientsgjj:4ﬂ'h2ajj/m and g,,=gy,=4mh%a ,/m,

tween different polarizations were predicted in driven d'ss"respectively, whereay, are the corresponding scattering

pative cavities[12], b.Ut no experimen.tal settipg was pro- lengths; as mentioned above, we consider(thest typica)
posed to observe their permanent mofidrhe twist-induced .50 of positivea,. Then, the condition of the immiscibility

ro tatio.n of the DW cross may tgke place a'of‘g the Propagapetyeen the components takes the well-known form of Eg.
tion distance, so that the entire pattern will seem like

double helix. Twisted PCs per se were studied in a stac
model[13], and very recently the first twisted PCF was fab-
ricated[14] (it was used as a polarization filjeMNote that,
combining a modulation of the air holes density along th ; . :
radius of the PCF core and a properly structured claddineleremthsjglzj pggﬁftii’or:f "\ii(/)meE;Sn_ d(5)1 /wzésreSZi(;tl\zlil)y’
the distribution of the effective refractive index across the:(271_)_1,‘,,\0‘,mu_(r DD (expi—iyt),  where ] q')_('z)
PCF can be made similar to the parabolic trapping potentiaéw_l,4 exp(—zzzlzl)l iJs t,he g];round stgjte,of the 1D har]monic

in the BEC modelsee below. ilator. Multiolving th i " . and i
Besides the first possibility to observe permanent motiorPSc!!ator. Mulliplying the resufting equations Iy and in-
tegrating it inz, we arrive at a system of 2D equations,

of optical DWs(in the spatial domain the proposed con-

+y?, and the confining frequencies, and w,
d to obey the conditian/ w,=Q0<1. The in-

Following Ref.[16], effective 2D GP equations can be
derived from the 3D ones. To this aim, measuring the coor-
dinates and time in units of the harmonic-oscillator

figuration suggests a design of a new all-optical switch: the Ju [~ ) _

turn of the sectors occupied by a signal field, with a specific == Hpp+ 2 apdu[uy, j=1,2, (7)
; o . o : o at 1.2

circular polarization or wavelength, just by 90° is sufficient

for complete switching. The diameter of the twist-tolerant .

PCFs,=100 um, and their length, a few centimetdkshich Hop = (- 1/2V2 +V(r) - QL,, (8

is tantamount to tens of rotation perigd44], make these 5

experiments and applications quite feasible. Moreover, th&/hereV7 is the 2D Laplacian, and
copropagation of several different wavelengths in the PC fi- /) = (1/20%2 L,= i(xd,=yd), QL =awlo,
ber can make atable multi-handedross and propeller pos-
sible. The latter may be promising for routing applications in 9
wavelength-division-multiplexed(WDM) telecommunica-  The nonlinearity coefficients in the 2D syste) are ay;
tions. Similar configurations with more than two species may=1, «,,=g,,/g;;, and @,=02,/911. Then, the numbers of
also be relevant in terms of immiscible multicomponent BECatoms in the species a,mj:(4\fzw3/2)—l\mej, where
mixtures. The latter issue will be considered elsewhere. @ = [|u;|?d?r , are the norms of the 2D wave functions.
The paper is organized as follows. In Sec. II, we construct * The ‘spatial evolution of bimodal optical beams in the
the rectilinear and cross DW configurations and study som@pove-mentioned twisted PCFs is also described by &gs.
of their prppertigs. In Sec. lll, we focus on the stability of for the amplitudes; of the two components, withreplaced
CI’_OSS(BS, |nC|Ud|ng I’Otatlng QneS. The abOVe-'menuonegy the propagation distanaeandV(r) in Eq(s) is a poten_
‘single-vane propeller(a rotating rectilinear DWis also  tja| function describing the cladding surrounding the PCF
discussed. Section IV summarizes our findings and presenfsoper. In this casel\; are total powers of the two compo-
our conclusions. nents of the beam, and the nonlinear coefficients take values
IIl. CONSTRUCTION AND PROPERTIES OF DOMAIN- close t0ay,=2a1,=2ay,; according to Eq(1), the latter val-
WALL CONFIGURATIONS ues definitely guarantee the “immiscibility'mutual repul-
sion of the two optical modes
The two-component rotating repulsive BEC is described Solutions to Eqs(7) in the form of either a simple recti-
by a system of coupled Gross-PitaevgiP) equationg15], linear DW (first, without the rotation{), =0) are constructed
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as follows. We start with the Thomas-Fer(iF) configura- » 0
tion for the two components with chemical potentials =
—i N o's
(uj)TF =e Iﬂ]t\“’[lu“j - V(I’)]/a” ’ (10) y o . -
if wu;—V(r)>0 and(u;)r=0 otherwise(in the PCFs, #; are : 02
the propagation constants of the optical mgddsen, to -20
-20 [} 20

construct a rectilinear DW, we effectively remove each com-
ponent from a half-plane, upon multiplyir(g;)+¢ by

X
1 20 (C) 0.8
fi(x) = 5[1 - (- 1'tanhx]. (11 .. o

y o
The resulting functionu;(u,) is positive in the left(right) ‘ o
half of the (x,y) plane. " 02
To construct a DW cross in a similar fashion, we also start ~ 0
-20 0 20
X

from the TF ansatz10), and then remove two quarter-planes
in each component, multiplying the expressioh0) by
(1/2)[fj(x)fj(y)+fj(—x)fj(—y)], where the factorggl'2 are de- FIG. 1. Gray-scale plots showing the distribution of the density
fined as per Eq(11). As a result, the wave functiong and  |til® of one speciesthe densitylu,|* is complementary tgu,|?) in

u, have support, respectively, practically only in the quad—the initial confi_guratior(a) correspond?ng to the prototype_rect_ilin-
rants(sectors 1 and 3(i.e.,xy>0), and 2 and 4i.e., xy<0). ear DW, and in the corr_espc_mdlng f_mal counterp@it which is
Next, we multiply the entire configuration bi-1)itanhx, ~ 9enerated by the numerical integration of the GP equaii@nm
hence the functionsi; and u, are, respectively, positive 'mag'?ary time, in d.the Case_Of Wea_k 'mm'sc'b_'"ty‘ with=-9
(negative in the sectors 13) and 2(4). In other words, we f()lgs %orrespo:w 9 t0a1151,|a22;10.94, “12];_0'? and
introduce the phase shift of between the two quadrants .~ e panelec) and(d) display the same for the initial and

. . ) final configurations in the case of the DW cross.

filled by each specie@n other words, we aim to construct a

DW cross which, simultaneously, is a “latent dark solitom ) .

each componentWithout these phase shifts, the cross will 0SS structure may be explained by the additiongihase
be obviously unstable against spliting into a set of two ap-Shifts lent to both its components, as described above.
proximately parallel quasirectilinear DWs, as a pair of the AS @n example, in Fig. 1 we show the result of the relax-
sectors filled by the same species without the phase shifftion for each type of the prototype pattern, with the value of

between them will tend to merge into a single stripelike pat- taken as for the spin-state mixture %Rb, see Eq(3).
tern. This was realized by settingy;;=1, @,,=0.94, and «a;,
After the prototype rectilinear or cross DW configuration =0-97 in EG.(7). As is seen, the rectilinear DW pattern can-
was constructed as described above, Egswere numeri- MOt be formed indeed, preferring to mix itself up into a uni-
cally integrated in imaginary time, to let the system relaxf0rm state[panels(a) and (b)]. On the contrary, the initial
into a stable stationary state closest to the prototype onP'ototypé DW-cross pattern readily relaxes into a configu-
(which is a well-known technical ruseFor the DW-cross ation of exactly the same type. _ .
case, the relaxation in imaginary time did not essentially al- " the exam.ple_shown in Fig. 1, the normalized magnetic-
ter the prototype pattern, always converging to a numerically@P strength is2=0.05 [see Eq.(9)], and both chemical
exact stable cross pattern, provided that the immiscibiliPotentials are set equal to 1. In terms of the real-world pa-
condition (1) was met. This outcome of the imaginary-time "@meters, tg;s choice corresponds to a mixture of two spin
integration took place foarbitrarily small values of the im-  States In theé’Rb condensate in a disk-shaped trap with

miscibility coefficient|A|, including the case whehA was set

precisely equal to 0. WithA>0, the integration always w =27 X 6 Hz, w,=2m X120 Hz (12
showed that two species would completely mix into a uni-
form state. [see Eq(6)], the initial TF radius and numbers of atoms in

In the case of the rectilinear DW, the imaginary-time in- €ach species being
tegration converged to a stable quasi-1D DW pattern only if
the condition(2) was satisfied, which is more restrictive than R=34um, N=3.6X 1C. (13
the general immiscibility criteriongl). For smaller values of
|A|, stable rectilinear DWs could never be found; instead, thén what follows below, we will display examples for larger
two species would completely mix up, evenAfwas nega- |A|, which may be unrealistically large directiiput may be
tive. Thus, the DW-cross pattern, although being more comattainable through the use of the Feshbach resonflide
plex than its simplest rectilinear counterpart, is a much morenentioned above This allows us to generate patterns that
robust one, and has a much better chance to be created ame much sharper and easier to understand, while qualita-
experiments with the currently availablgeakly immiscible tively they are completely tantamount to those found at
spin-state mixtures that actually do not satisfy the conditiorsmaller(more directly realizablevalues of the immiscibility
(2), see Eqgs(3) and (4). The extra robustness of the DW- parameter. So, we will fix
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FIG. 2. Gray-scale plots of the densities of the two spedigF ) 1
0.0 0.1 02

and|u,|? (left and right panels in the symmetriqa,b) and asym-
metric (c,d)y DW-cross patterns. The parameters arg=1, ao»
=1.01, a;,=1.52, andQ=0.05. In the symmetric configuration,
m1=pmo=1, and in the asymmetric ong;=1.1025, u,=1 and
N1/N,=1.2, 6,=67/11, 6,=5m/11. The estimate(in physical
units) for the Thomas-Fermi diameter for both configurations is

FIG. 3. Stability regions for the stati@ and rotating(b) DW
crosses. The values of the nonlinear coefficients are fixed as in Egs.
(14). In (b), solid and dashed lines, respectively, show borders of
the stable-rotation region for symmetric and asymmetric cragses
the latter caselN;/N,=1.5).

68 um.
=1000, to test the stability of the configuration. The result-
a;n=1, ap=1.01, a;,=1.52, (14)  ing stability domain in thelN;/N,,Q) parametric plane is
which corresponds ta=-1.3. displayed in Fig. ). For example, af)=0.05, which cor-

Before proceeding further, it is important to note that,"€SPonds to the above-mentioned val(E3 and(13) of the
alongside the symmetric DW-cross configurations like the[)h.ys'f:al parameters, Fig(@ shows that stable DW crosses
one shown in Fig. @), asymmetricones are possible too, exist in the interval 0.65N;/N,<1.65. We note that, alter-
with different numbers of atoms in the two Speci€3, natively, it is possible to represent the domain of stability of

+Q,. Indeed, the TF approximatiaf10) yields the static DW crosses in the , uo) p_lane, for a fixed value
of Q) (then, each point of the domain would correspond to a
~ (i)( _ }QZR2> = 15 given value ofN;/N,). This can be done, e.g., upon rescaling

Q= 2a; M~ ’ the variables in Eqs(7) and (8) so thatQ)=1 (see also a

. . discussion in Sec. Il B in that case, the domain of stability
where R is the TF radius of the state; consequenty;  would be a triangular shaped zone enclosing the Jine
# ay, and/or uq # u, lead to Q;# Q,, and, as a result, to =u, [17].

asymmetric crosses. We have checked that the numerical re- gyglution of unstable DW crosses is also an issue of in-

sults always obey a natural relatidd;/N,=Q1/Q,=61/6,,  terest. A typical example of the instability developmeint
where ¢, is the intrinsic angle of th¢th sector, withé,1+6,  the component with the larger number of atorissdisplayed
=m. Examples of the symmetric and asymmetric DWin Fig. 4 for 4,=1.8025 andu,=1, which corresponds to
crosses are shown, respectively, in the top and bottom panej§ /N,=2.5. At an initial stage, the cross quickly rearranges

of Fig. 2. into a quasi-1D object, which is actually a dark soliton in the
species with the larger number of atoms, coupled to a bright
[ll. STABILITY AND ROTATION OF THE soliton in the other specigshis object resembles structures
DOMAIN-WALL PATTERNS considered in Ref3]). The latter configuration is itself sub-

ject to asnaking instability,which is a known feature of
quasi-1D dark solitons in BECs filling 2D are§$8] (we
Dynamical stability of the symmetric and asymmetric stress that, unlike the dark solitons, the rectilinear DWs are
DW crosses is a crucially important issue. We have founchot subject to this instabilily The snaking instability ini-
that, for a fixed trap’s strengtf, the stability strongly de- tiates a break-up of the dark stripe into four vortex-antivortex
pends on the stoichiometry ratid;/N,, more symmetric pairs in the first species, with the second species collecting
configurations being more robust. To show this, we fix theitself into spots coupled to the pairs. Finally, the four vortex-
nonlinearity coefficientsy; as in Egs.(14), setu,=1 and, antivortex pairs annihilate into two. The latter configuration
then, for a given value di in the interval(0,0.25, we vary  persists for long times, and it may be related to serpentine-
w1 to induce variation of the ratibl;/N,=Q,/Q,, as per Eq. shaped vortex sheets reported in recent 2D simulations of
(15). Finally, we simulate Eqs(7) in real time (up tot large-size BEC4d4]. It would be desirable to analyze this

A. Static domain-wall crosses
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FIG. 4. Evolution of the densityu,|? of the species with the FIG. 5. A stable rotating asymmetric domain-wall cross

larger number of atoms in an unstable DW cross, for the samé¢‘double-vane propelley! The four snapshot&), (b), (c), and(d)
parameters as in Fig. 2, but witls;=1.8025. In this casel;/N,  show the distribution of the densitju;|> at consecutive time
=2.5 and6,=57/7, 6,=27/7. The snapshot@)—(f) correspond to moments—+=0, T/6, T/3, andT/2, respectively—which cover half
t=0,t=100,t=310,t=316,t=1000, and=2200, respectivelythe of the rotation period,T/2=7/Q ~52.3 (=70 ms, in physical
physical time unit is 1.33 msThe density|u,|? is complementary  units). The parameters are as in Figgc)2and 2d) but with Q
to |u,/?, as in Figs. &) and 2d). =0.1 and(), =0.06.

instability by means of a finite-mode stability analysis in the Typical values of the physical parameters admitting the
form of [19]. However, in the present setting, the modulus ofstable rotation of the DW cross can again be estimated for a
the wave function is not radially symmetrioor does the mixture of two spin states in th&Rb condensate. For in-
DW configuration bear a complex phase structunence it  stance, taking the trapping frequencies=2m X7 Hz and

is not directly amenable to such an approach. Understanding,=2m X 70 Hz, the TF radiuR=22 um, and 18 atoms in

the origin of such an instability would consitute an interest-each species, the rotation frequenay=27x0.84 Hz defi-

ing topic for future studies. nitely falls within the stable-rotation intervél6). Examples

of a stably rotating propeller witiN;/N,=1.2, and of its
self-destruction in the case 0¥, > (Q)max (for N;=N,), are

B. Domain-wall crosses in the rotating trap - g .
shown in Figs. 5 and 6, respectively.

For the rotating trap, witif), #0 in Egs.(7), we have As it was mentioned above, a dynamical property of the
found that both the symmetric and asymmetric DW crossepw crosses which is crucially important for their relevance
revolve stably in a certain frequency interval, to the currently available experimental settings, that have a

very small value of the immiscibili .
QD) min < QL < () max- (16) y iscibility parametgX| [see Eq

(1)], is the fact that the crosses remain stable for all the
If QO <(Qmin» the cross does not rotate at all, while at negative values ofA, up to A=0. This robustness carries
Q> (Q)max it decays(see below. These results are sum- over to the rotating crosses, as illustrated by Fig. 7, that
marized in Fig. ). In region |, the DW cross remains qui- shows a stable rotating cross in the casé ef0.
escent, in region Il it gets destroyed, while the stable rota- The results can alternatively be summarized upon consid-
tion occurs in region Il. Note that there are minimum valuesering rescaled variables in Eq§l) and (8). In particular,
of the trap strength which are necessary for the rotationtipon measuring the time, spatial variables, and normalized
Q,in=0.012 and 0.018 for the symmetric and asymmetricwave functions in units 0™, Q712 andQ*? respectively,
“double-vane propellers.” Those values correspond to thave obtain a system of two equations similar to Ef), but
edge points on the solid and dashed lines, respectively, iwith the Hamiltonian being given by
Fig. 3b), the rotation frequencies at these points beihg L L 0
=0.0034 and 0.010. ~ 1, 1, O

Note that the horizontal axis in Fig(l9 is extended up to Hzp = zvL " 2r [0) L 17

a relatively large valuef)=0.25(recall that it was assumed
above that the magnetic trap’s stren@this a small param- Then, we may present the domain of stability of the rotating
eter, in order to derive the 2D GP equations from the underDW crosses in the parameter pla(l¢;/N,,(, /) as fol-
lying 3D systenm. According to experience accumulated in lows: We setu,=1 and, for a given value g, (which sets
applications of asymptotic methods to various modéils  the value ofN;/N,), we vary the ratia} /) in the interval
cluding the GP equationthe value 0.25 is small enough to (0,1). Then, we numerically integrate the system of equa-
produce reliable results. tions foru;, for long times, to test the stability of the rotating
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» 0 s ’ FIG. 8. The region of the stable rotation of the domain-wall
o6 crosses, shown in the parameter pléNe/N,,Q, /Q). In region I,
yo . ',-i 06 the DW cross is quiescent, in region lll it is destroyed, while in
g; region Il it is rotating in a stable manner. Note that for values of
20 N;/N, outside the interval0.65, 1.5% the DW crosses are unstable.
-20 0 X 20

C. More general cross and propeller patterns

FIG. 6. An example of the evolution of an unstable symmetric  All the patterns produced by the intersection of more than
“double-vane propeller{rotating domain-wall crogsThe panelsin  two DWSs were found to be unstable, rearranging themselves
the left and right columns display the density distributigmng® and  into the fundamental crosses considered above. A typical ex-
|ug|?, respectively, at=0 [frames(a) and(b)], t=10[frames(c) and  ample of that, with four intersecting DWs ami/N,=1, is
(d)], andt=20 [frames(e) and(f)]. The parameters are as in Figs. gisplayed in Fig. 9. The same instability of the higher-order
2(3) and Zb), but with 2=0.1 and(, =0.08. crosses takes place in the rotating trap.

Two-dimensional patterns similar to the symmetric DW
DW cross. The results are shown in Fig. 8, where the stablezrosses can be formed single-componenBECs by two
rotation region is delineated in tHell parameter plane: In linear dark solitons intersecting under the right angieo-
region |, the DW cross remains quiescent, in region Il it isvided that the dark soliton itself may be stabléve have
destroyed, while the stable rotation occurs in region Il. Notechecked that such single-component patternsabwaysun-
that for values of N;/N, outside the shown interval, stable.
(0.65,1.5%, the DW crosses are unstable. Thus, for instance, The crosses in BECgbut not in the above-mentioned
at a typical value of the ratio between the rotation frequencyhotonic-crystal medjecan be extended into the 3D case, as
and the trap strengthQ), /Q2=0.1, the stoichiometry ratio patterns formed by the intersection of planar DWs. More-
must belong to the interval 0.65N;/N,<1.55. As men- over, torque can be applied to such a structure, making it
tioned above, the smallest value Qf /Q) necessary for the look like a double helix. Further, these patterns may revolve
stable rotatior{which is 0.0019 corresponds to the symmet- together with the trap. Results for the cross-shaped 3D pat-
ric case,N;/N,=1. terns will be reported elsewhere.
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FIG. 9. Instability of a higher-order domain-wall crodsft and

FIG. 7. A stable rotating symmetric domain-wall cross found right panels show distributions of the densitjag? and|u,|?). The
exactly at the immiscibility borderA=0 (corresponding toaq; frames(a) and (b) display the initial configuration at=0. Further
=ay=aip=1) and 0=0.1. The arrangement of the figure is the frames show the evolving configuratioris),(d) att=50, and(e),(f)
same as in Fig. 5. att=600. The parameters are as in Fige) 2and 2b).
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» B o7 fibers (PCF9. The crosses are stable in a wide range of pa-
: 06 rameters, including a certain interval of the stoichiometry
' 05 ratio N;/N,, the caséN; =N, being the most robust one. Add-
y o ' o4 ing the trap’s rotation(or twist of the PCF, in the optical
o> mode), we have shown that the DW crosses can rotate, pro-
20 o1 vided that the driving angular velocitpr the twist pitch, in
-20 0 20

the PCH is limited from below and from abovéf it is too
small, the cross does not rotate, and if it is too large, the

X
07 cross decays In the PCF, the rotation takes place not in
= (O 06 time, but in the spatial domain, i.e., along the propagation
‘ 05 distance, hence the optical cross actually looks like a double
¥ 70 . 04 helix. The rotating optical crosses have the potential for use
; 03 in switching and routing applications. Full stability domains
o2 for the quiescent and rotating crosses were identified, corre-
-20
-20 0 20
X

sponding to values of physical parameters accessible in cur-
rent experimentgboth for BECs and PChs
The crossegincluding the rotating onespersist exactly
FIG. 10. Rotation of the rectilinear domain wall at the smallestup to the zero value of the immiscibility paramefaf. This
value of the immiscibility parametefA|=0.061 (corresponding to ~ aspect of the robustness of the DW crosses is crucially im-
a1= =1, a,=1.03, andQ=0.1 at which it is stable. The ar- portant because, in the BEC mixtures of different spin states

rangement of the figure is the same as in Fig. 7. in Rb and®*Na, currently available to the experiment, the
actual value ofA| is very small. We have demonstrated that,
D. Rotating rectilinear domain walls in the cases of practical interest, the simplest rectilinear

A lained ab bl i DW | %quasi-lD DWs do not exist(in a stable forny while the
s was explained above, stable rectilinear DWs are lesg,,qqag remain entirely stable. For the sake of completeness,

rellevant ffor: the cyrr%r_ll'gly(expenmentall?\ltracta;]blle sm?ll we have also demonstrated a possibility of stable rotation of
values of the immiscibility parametéd|. Nevertheless, for the rectilinear DWs at larger values f|.

cpmpleteness of .the ana}lysis, anq also for the sake of POS” The patterns produced by the intersection of more than
sible future experiments in BEC mixtures of different atomic, o DWs were observed to be unstable. They rearrange

spe_cies, wh_ereA| may b_e much Ia_rger than in the presen_tly themselves into the fundamental crosses.
available mixtures of different spin states of the same iso- Finally, it is worth mentioning that, at angular velocities

tope, it makes sense to br lefly consider a pO.SSIbI|.Ity of s.tabl%f the rotating trap essentially exceeding the range of values
rotation of the DWs of this ty'p.e too. Numerlcal S|mulat|qns dealt with in this paper, one may expect the existence of
ShOW that, ger_1er_ally, the rectilinear DW W'thSt‘f".ndS rotat'on’rotating DWs separating not merely areas with the quasiuni-
within a certain interval of the angular velocitigsi. Eq. form distribution of the densities of immiscible species, but

(16)3’ ifitis Stablﬁ n Fhe stat||c trfap. r';'ere’t\)’yl? dg not _almft?] rather areas filled with triangular vortex lattiogsach species
produce comprehensive results for the stability domain ot the 4 ing its own lattice In single-component BECs, such

rotating rectilinear DWs. Instead, in Fig. 10 we display ANyeqular lattices, composed of a large number of vortices,
example of a stably rotating DW of this type. This exampleya g peen recently studied in detail in direct experiments
has a special purport, as it ShOWS. the_rot_ap_ng rectilinear DVYZO]. In fact, creation of the DW separating the vortex lat-

found.at t.hemmlmum valueof the immiscibility par_ameter; tices in immiscible components is the most straightforward
at which it may be stabldA|=0.061. Stable rotating recti- way for experimental observation ofratating DW pattern

linear DWs found in the generic case are quite similar to the ' secs This possibility will be considered in detail else-
one shown in Fig. 10. where
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