
Static and rotating domain-wall cross patterns in Bose-Einstein condensates

Boris A. Malomed,1 H. E. Nistazakis,2 D. J. Frantzeskakis,2 and P. G. Kevrekidis3
1Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

2Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
3Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA

(Received 13 May 2004; published 18 October 2004)

For a Bose-Einstein condensate(BEC) in a two-dimensional(2D) trap, we introduce cross patterns, which
are generated by the intersection of two domain walls(DWs) separating immiscible species, with opposite
signs of the wave functions in each pair of sectors filled by the same species. The cross pattern remains stable
up to the zero value of the immiscibility parameteruDu, while simpler rectilinear(quasi-1D) DWs exist only for
values of uDu essentially exceeding those in BEC mixtures(two spin states of the same isotope) currently
available to the experiment. Both symmetric and asymmetric cross configurations are investigated, with equal
or different numbersN1,2 of atoms in the two species. In rotating traps, “propellers”(stable revolving crosses)
are found too. A full stability region for the crosses and propellers in the system’s parameter space is identified,
unstable crosses evolving into arrays of vortex-antivortex pairs. Stable rotating rectilinear DWs are found too,
at larger values ofuDu. All the patterns produced by the intersection of three or more DWs are unstable,
rearranging themselves into ones with two DWs. Optical “propellers” are also predicted in a twisted nonlinear
photonic-crystal fiber carrying two different wavelengths or circular polarizations, which can be used for
applications to switching and routing.
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I. INTRODUCTION

Domain walls (DWs) separating immiscible species are
generic dynamical structures in mixed Bose-Einstein con-
densates(BECs) [1]. Originally, the DWs were studied in
one-dimensional(1D) BEC models, but they can be naturally
extended into the 2D geometry as quasi-1D objects[2,3]; in
particular, circular DWs, between a less repulsive component
in the middle of the trap and a more repulsive one forming
an outer shell, have been found. Recently, complex 2D large-
area structures in rotating binary BECs were predicted in
simulations, including vortex lattices and sheets in mixtures
[4,5].

Our aim is to construct genuinely two-dimensional DW
patterns, in the form ofcrossesformed by the intersection of
two DWs, in trapped binary BECs. We will consider both
symmetric and asymmetric crosses, depending on the ratio of
the numbers of atoms in the two species(“stoichiometric
ratio9). Patterns in a rotating trap will be considered too. A
rotating DW cross seems like a “double-vane propeller,”
which may also be symmetric or asymmetric. Note that the
DWs may move, in the general case; however, their motion
is not amenable to straightforward observation in the 1D
settings, because of the relatively small size of domains
available in BEC experiments. Thus, the “propeller” offers a
unique possibility to createpermanently movingDWs. We
identify stability regions for the quiescent and rotating
crosses, and investigate the evolution of unstable ones. All
multihanded crosses, formed by the intersection of more than
two DWs, are shown to be unstable. We will also briefly
consider rotating one-dimensional(rectilinear) DWs, i.e.,
“single-vane propellers”(however, we conclude that the rec-
tilinear DWs are less relevant than the crosses for experi-
ments with currently available BEC mixtures).

An appealing feature of the cross structures is the feasi-
bility of their experimental realization in binary BECs. Ex-

perimental creation of two-component mixtures has already
been reported for different spin states in87Rb [6,7] and23Na
[8]. Accordingly, the use of a mixture of two spin states of
the same isotope seems to be the most straightforward way
of creating the DW cross configuration, as the latter can be
imprinted onto the BEC by optical beams passed through a
properly designed phase mask. Moreover, the DW cross ap-
pears, in our extensive computations, to be the most robust
structure among the various types of domain walls consid-
ered. Indeed, the immiscibility condition for the repulsive
BEC mixture (the one with positive scattering lengths of
atomic collisions) is

D ; a11a22 − a12
2 ø 0, s1d

wherea11, a22, anda12 are strengths of the intraspecies and
interspecies interactions, respectively[see Eqs.(5) and (7)
below]. As is shown below, the crosses(both static and ro-
tating ones) remain stable up touDu=0, while the rectilinear
DW is stable only for

D ø Drect
scrd = − 0.061. s2d

On the other hand, experimental measurements[6,7] yield an
extremely small actual value ofuDu in the mixture of two spin
states of87Rb,

DRb < − 0.0009, s3d

which does notsatisfy the condition(2). For the mixture of
different spin states in23Na, the immiscibility parameter ex-
tracted from experimental measurements is larger,

DNa < − 0.036 s4d

[8], but it does not meet the condition(2) either.
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We also note in passing that work is currently in progress
towards the creation of two-component BECs with different
atomic species, such as41K: 87Rb [9] and7Li : 133Cs [10]. In
that case,uDu may take values very different from those given
in Eqs. (3) and (4). Furthermore, we should note that an
additional possibility to push the experimental values ofD
toward the critical one mentioned above is through the use of
the so-called Feshbach resonance[11] that can control the
strength of the interatomic interactions.

The same “propeller” effect may be implemented in com-
pletely different physical media, namely, photonic crystals
(PCs) or photonic-crystal fibers(PCFs), with a self-
defocusing nonlinearity and a superimposed twist. In PCFs,
the twist bends the inner holes, which run along the fiber,
into helices. In that case, the cross configuration may be
realized as an intersection of stable optical DWs separating
two orthogonal circular polarizations or two different carrier
wavelengths(previously, spatial-domain optical DWs be-
tween different polarizations were predicted in driven dissi-
pative cavities[12], but no experimental setting was pro-
posed to observe their permanent motion). The twist-induced
rotation of the DW cross may take place along the propaga-
tion distance, so that the entire pattern will seem like a
double helix. Twisted PCs per se were studied in a stack
model[13], and very recently the first twisted PCF was fab-
ricated[14] (it was used as a polarization filter). Note that,
combining a modulation of the air holes density along the
radius of the PCF core and a properly structured cladding,
the distribution of the effective refractive index across the
PCF can be made similar to the parabolic trapping potential
in the BEC model(see below).

Besides the first possibility to observe permanent motion
of optical DWs (in the spatial domain), the proposed con-
figuration suggests a design of a new all-optical switch: the
turn of the sectors occupied by a signal field, with a specific
circular polarization or wavelength, just by 90° is sufficient
for complete switching. The diameter of the twist-tolerant
PCFs,.100 mm, and their length, a few centimeters(which
is tantamount to tens of rotation periods) [14], make these
experiments and applications quite feasible. Moreover, the
copropagation of several different wavelengths in the PC fi-
ber can make astable multi-handedcross and propeller pos-
sible. The latter may be promising for routing applications in
wavelength-division-multiplexed(WDM) telecommunica-
tions. Similar configurations with more than two species may
also be relevant in terms of immiscible multicomponent BEC
mixtures. The latter issue will be considered elsewhere.

The paper is organized as follows. In Sec. II, we construct
the rectilinear and cross DW configurations and study some
of their properties. In Sec. III, we focus on the stability of
crosses, including rotating ones. The above-mentioned
“single-vane propeller”(a rotating rectilinear DW) is also
discussed. Section IV summarizes our findings and presents
our conclusions.

II. CONSTRUCTION AND PROPERTIES OF DOMAIN-
WALL CONFIGURATIONS

The two-component rotating repulsive BEC is described
by a system of coupled Gross-Pitaevskii(GP) equations[15],

i"
] c j

] t
= FĤ + o

k=1,2
gjkucku2Gc j, j = 1,2, s5d

wherec j are the wave functions of the two species, normal-
ized so thatNj =euc ju2dr is the respective number of atoms.

The single-species Hamiltonian in Eq.(5) is Ĥ=

−s"2/2md¹2−vLL̃z+Ṽ, wherem is the atomic mass(assum-
ing a mixture of two spin states of the same isotope), vL is

the rotation frequency, andL̃z= i"sx]y−y]xd is the angular-
momentum operator. The trapping potential is

Ṽ =
m

2
svr

2r2 + vz
2z2d, s6d

where r2;x2+y2, and the confining frequenciesvr and vz
are assumed to obey the conditionvr /vz;V!1. The in-
traspecies and interspecies interactions are characterized by
the coefficientsgjj =4p"2ajj /m and g12;g21=4p"2a12/m,
respectively, whereajk are the corresponding scattering
lengths; as mentioned above, we consider the(most typical)
case of positiveajk. Then, the condition of the immiscibility
between the components takes the well-known form of Eq.
(1).

Following Ref. [16], effective 2D GP equations can be
derived from the 3D ones. To this aim, measuring the coor-
dinates and time in units of the harmonic-oscillator
length and period, i.e.,Î" /mvz and 1/vz, respectively,
we seek solutions to Eqs. (5) as c jsr ,z,td
=s2pd−1/4Î"vz/g11ujsr ,tdF jszdexps−ig jtd, where F jszd
=p−1/4 exps−z2/2d is the ground state of the 1D harmonic
oscillator. Multiplying the resulting equations byF! and in-
tegrating it inz, we arrive at a system of 2D equations,

i
] uj

] t
= FĤ2D + o

k=1,2
a jkuuku2Guj, j = 1,2, s7d

Ĥ2D ; s− 1/2d¹'
2 + Vsrd − VLLz, s8d

where¹'
2 is the 2D Laplacian, and

Vsrd ; s1/2dV2r2, Lz ; isx]y − y]xd, VL ; vL/vz.

s9d

The nonlinearity coefficients in the 2D system(7) are a11
=1, a12=g12/g11, and a22=g22/g11. Then, the numbers of
atoms in the species areNj =s4Î2p3/2d−1Î" /mvzQj, where
Qj ;euuju2d2r ' are the norms of the 2D wave functions.

The spatial evolution of bimodal optical beams in the
above-mentioned twisted PCFs is also described by Eqs.(7)
for the amplitudesuj of the two components, witht replaced
by the propagation distancez, andVsrd in Eq. (8) is a poten-
tial function describing the cladding surrounding the PCF
proper. In this case,Nj are total powers of the two compo-
nents of the beam, and the nonlinear coefficients take values
close toa12=2a11=2a22; according to Eq.(1), the latter val-
ues definitely guarantee the “immiscibility”(mutual repul-
sion of the two optical modes).

Solutions to Eqs.(7) in the form of either a simple recti-
linear DW(first, without the rotation,VL=0) are constructed
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as follows. We start with the Thomas-Fermi(TF) configura-
tion for the two components with chemical potentialsm j,

sujdTF = e−im j tÎfm j − Vsrdg/a j j , s10d

if m j −Vsrd.0 andsujdTF=0 otherwise(in the PCFs, −m j are
the propagation constants of the optical modes). Then, to
construct a rectilinear DW, we effectively remove each com-
ponent from a half-plane, upon multiplyingsujdTF by

f jsxd ;
1

2
f1 − s− 1d jtanhxg. s11d

The resulting functionu1su2d is positive in the left(right)
half of the sx,yd plane.

To construct a DW cross in a similar fashion, we also start
from the TF ansatz(10), and then remove two quarter-planes
in each component, multiplying the expression(10) by
s1/2dff jsxdf jsyd+ f js−xdf js−ydg, where the factorsf1,2 are de-
fined as per Eq.(11). As a result, the wave functionsu1 and
u2 have support, respectively, practically only in the quad-
rants(sectors) 1 and 3(i.e.,xy.0), and 2 and 4(i.e.,xy,0).
Next, we multiply the entire configuration bys−1d jtanhx,
hence the functionsu1 and u2 are, respectively, positive
(negative) in the sectors 1(3) and 2(4). In other words, we
introduce the phase shift ofp between the two quadrants
filled by each species(in other words, we aim to construct a
DW cross which, simultaneously, is a “latent dark soliton9 in
each component). Without these phase shifts, the cross will
be obviously unstable against splitting into a set of two ap-
proximately parallel quasirectilinear DWs, as a pair of the
sectors filled by the same species without the phase shift
between them will tend to merge into a single stripelike pat-
tern.

After the prototype rectilinear or cross DW configuration
was constructed as described above, Eqs.(7) were numeri-
cally integrated in imaginary time, to let the system relax
into a stable stationary state closest to the prototype one
(which is a well-known technical ruse). For the DW-cross
case, the relaxation in imaginary time did not essentially al-
ter the prototype pattern, always converging to a numerically
exact stable cross pattern, provided that the immiscibility
condition (1) was met. This outcome of the imaginary-time
integration took place forarbitrarily small values of the im-
miscibility coefficientuDu, including the case whenD was set
precisely equal to 0. WithD.0, the integration always
showed that two species would completely mix into a uni-
form state.

In the case of the rectilinear DW, the imaginary-time in-
tegration converged to a stable quasi-1D DW pattern only if
the condition(2) was satisfied, which is more restrictive than
the general immiscibility criterion(1). For smaller values of
uDu, stable rectilinear DWs could never be found; instead, the
two species would completely mix up, even ifD was nega-
tive. Thus, the DW-cross pattern, although being more com-
plex than its simplest rectilinear counterpart, is a much more
robust one, and has a much better chance to be created in
experiments with the currently availableweakly immiscible
spin-state mixtures that actually do not satisfy the condition
(2), see Eqs.(3) and (4). The extra robustness of the DW-

cross structure may be explained by the additionalp phase
shifts lent to both its components, as described above.

As an example, in Fig. 1 we show the result of the relax-
ation for each type of the prototype pattern, with the value of
D taken as for the spin-state mixture in87Rb, see Eq.(3).
This was realized by settinga11=1, a22=0.94, anda12
=0.97 in Eq.(7). As is seen, the rectilinear DW pattern can-
not be formed indeed, preferring to mix itself up into a uni-
form state[panels(a) and (b)]. On the contrary, the initial
(prototype) DW-cross pattern readily relaxes into a configu-
ration of exactly the same type.

In the example shown in Fig. 1, the normalized magnetic-
trap strength isV=0.05 [see Eq.(9)], and both chemical
potentials are set equal to 1. In terms of the real-world pa-
rameters, this choice corresponds to a mixture of two spin
states in the87Rb condensate in a disk-shaped trap with

vr = 2p 3 6 Hz, vz = 2p 3 120 Hz s12d

[see Eq.(6)], the initial TF radius and numbers of atoms in
each species being

R= 34 mm, N = 3.63 103. s13d

In what follows below, we will display examples for larger
uDu, which may be unrealistically large directly(but may be
attainable through the use of the Feshbach resonance[11]
mentioned above). This allows us to generate patterns that
are much sharper and easier to understand, while qualita-
tively they are completely tantamount to those found at
smaller(more directly realizable) values of the immiscibility
parameter. So, we will fix

FIG. 1. Gray-scale plots showing the distribution of the density
uu1u2 of one species(the densityuu2u2 is complementary touu1u2) in
the initial configuration(a) corresponding to the prototype rectilin-
ear DW, and in the corresponding final counterpart(b), which is
generated by the numerical integration of the GP equations(7) in
imaginary time, in the case of weak immiscibility, withD=−9
310−4 (corresponding toa11=1, a22=0.94, a12=0.97) and V
=0.05. The panels(c) and (d) display the same for the initial and
final configurations in the case of the DW cross.
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a11 = 1, a22 = 1.01, a12 = 1.52, s14d

which corresponds toD=−1.3.
Before proceeding further, it is important to note that,

alongside the symmetric DW-cross configurations like the
one shown in Fig. 1(d), asymmetricones are possible too,
with different numbers of atoms in the two species,Q1
ÞQ2. Indeed, the TF approximation(10) yields

Qj = S p

2a j j
DSm j −

1

4
V2R2DR2, s15d

where R is the TF radius of the state; consequently,a11
Þa22 and/or m1Þm2 lead to Q1ÞQ2, and, as a result, to
asymmetric crosses. We have checked that the numerical re-
sults always obey a natural relation,N1/N2;Q1/Q2=u1/u2,
whereu j is the intrinsic angle of thej th sector, withu1+u2
;p. Examples of the symmetric and asymmetric DW
crosses are shown, respectively, in the top and bottom panels
of Fig. 2.

III. STABILITY AND ROTATION OF THE
DOMAIN-WALL PATTERNS

A. Static domain-wall crosses

Dynamical stability of the symmetric and asymmetric
DW crosses is a crucially important issue. We have found
that, for a fixed trap’s strengthV, the stability strongly de-
pends on the stoichiometry ratioN1/N2, more symmetric
configurations being more robust. To show this, we fix the
nonlinearity coefficientsa j j as in Eqs.(14), set m2=1 and,
then, for a given value ofV in the intervals0,0.25d, we vary
m1 to induce variation of the ratioN1/N2;Q1/Q2, as per Eq.
(15). Finally, we simulate Eqs.(7) in real time (up to t

=1000), to test the stability of the configuration. The result-
ing stability domain in thesN1/N2,Vd parametric plane is
displayed in Fig. 3(a). For example, atV=0.05, which cor-
responds to the above-mentioned values(12) and(13) of the
physical parameters, Fig. 3(a) shows that stable DW crosses
exist in the interval 0.65øN1/N2ø1.65. We note that, alter-
natively, it is possible to represent the domain of stability of
the static DW crosses in thesm1,m2d plane, for a fixed value
of V (then, each point of the domain would correspond to a
given value ofN1/N2). This can be done, e.g., upon rescaling
the variables in Eqs.(7) and (8) so thatV=1 (see also a
discussion in Sec. III B); in that case, the domain of stability
would be a triangular shaped zone enclosing the linem1
=m2 [17].

Evolution of unstable DW crosses is also an issue of in-
terest. A typical example of the instability development(in
the component with the larger number of atoms) is displayed
in Fig. 4 for m1=1.8025 andm2=1, which corresponds to
N1/N2=2.5. At an initial stage, the cross quickly rearranges
into a quasi-1D object, which is actually a dark soliton in the
species with the larger number of atoms, coupled to a bright
soliton in the other species(this object resembles structures
considered in Ref.[3]). The latter configuration is itself sub-
ject to a snaking instability,which is a known feature of
quasi-1D dark solitons in BECs filling 2D areas[18] (we
stress that, unlike the dark solitons, the rectilinear DWs are
not subject to this instability). The snaking instability ini-
tiates a break-up of the dark stripe into four vortex-antivortex
pairs in the first species, with the second species collecting
itself into spots coupled to the pairs. Finally, the four vortex-
antivortex pairs annihilate into two. The latter configuration
persists for long times, and it may be related to serpentine-
shaped vortex sheets reported in recent 2D simulations of
large-size BECs[4]. It would be desirable to analyze this

FIG. 2. Gray-scale plots of the densities of the two species,uu1u2
and uu2u2 (left and right panels), in the symmetric(a,b) and asym-
metric (c,d) DW-cross patterns. The parameters area11=1, a22

=1.01, a12=1.52, andV=0.05. In the symmetric configuration,
m1=m2=1, and in the asymmetric one,m1=1.1025, m2=1 and
N1/N2=1.2, u1=6p /11, u2=5p /11. The estimate(in physical
units) for the Thomas-Fermi diameter for both configurations is
68 mm.

FIG. 3. Stability regions for the static(a) and rotating(b) DW
crosses. The values of the nonlinear coefficients are fixed as in Eqs.
(14). In (b), solid and dashed lines, respectively, show borders of
the stable-rotation region for symmetric and asymmetric crosses(in
the latter case,N1/N2=1.5).
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instability by means of a finite-mode stability analysis in the
form of [19]. However, in the present setting, the modulus of
the wave function is not radially symmetric(nor does the
DW configuration bear a complex phase structure), hence it
is not directly amenable to such an approach. Understanding
the origin of such an instability would consitute an interest-
ing topic for future studies.

B. Domain-wall crosses in the rotating trap

For the rotating trap, withVLÞ0 in Eqs. (7), we have
found that both the symmetric and asymmetric DW crosses
revolve stably in a certain frequency interval,

sVLdmin , VL , sVLdmax. s16d

If VL, sVLdmin, the cross does not rotate at all, while at
VL. sVLdmax it decays(see below). These results are sum-
marized in Fig. 3(b). In region I, the DW cross remains qui-
escent, in region III it gets destroyed, while the stable rota-
tion occurs in region II. Note that there are minimum values
of the trap strength which are necessary for the rotation:
Vmin=0.012 and 0.018 for the symmetric and asymmetric
“double-vane propellers.” Those values correspond to the
edge points on the solid and dashed lines, respectively, in
Fig. 3(b), the rotation frequencies at these points beingVL
=0.0034 and 0.010.

Note that the horizontal axis in Fig. 3(b) is extended up to
a relatively large value,V=0.25 (recall that it was assumed
above that the magnetic trap’s strengthV is a small param-
eter, in order to derive the 2D GP equations from the under-
lying 3D system). According to experience accumulated in
applications of asymptotic methods to various models(in-
cluding the GP equation), the value 0.25 is small enough to
produce reliable results.

Typical values of the physical parameters admitting the
stable rotation of the DW cross can again be estimated for a
mixture of two spin states in the87Rb condensate. For in-
stance, taking the trapping frequenciesvr =2p37 Hz and
vz=2p370 Hz, the TF radiusR=22 mm, and 103 atoms in
each species, the rotation frequencyvL=2p30.84 Hz defi-
nitely falls within the stable-rotation interval(16). Examples
of a stably rotating propeller withN1/N2=1.2, and of its
self-destruction in the case ofVL. sVLdmax (for N1=N2), are
shown in Figs. 5 and 6, respectively.

As it was mentioned above, a dynamical property of the
DW crosses which is crucially important for their relevance
to the currently available experimental settings, that have a
very small value of the immiscibility parameteruDu [see Eq.
(1)], is the fact that the crosses remain stable for all the
negative values ofD, up to D=0. This robustness carries
over to the rotating crosses, as illustrated by Fig. 7, that
shows a stable rotating cross in the case ofD=0.

The results can alternatively be summarized upon consid-
ering rescaled variables in Eqs.(7) and (8). In particular,
upon measuring the time, spatial variables, and normalized
wave functions in units ofV−1, V−1/2, andV1/2, respectively,
we obtain a system of two equations similar to Eq.(7), but
with the Hamiltonian being given by

Ĥ2D ;
1

2
¹'

2 +
1

2
r2 −

VL

V
Lz. s17d

Then, we may present the domain of stability of the rotating
DW crosses in the parameter planesN1/N2,VL /Vd as fol-
lows: We setm2=1 and, for a given value ofm1 (which sets
the value ofN1/N2), we vary the ratioVL /V in the interval
s0,1d. Then, we numerically integrate the system of equa-
tions foruj, for long times, to test the stability of the rotating

FIG. 4. Evolution of the densityuu1u2 of the species with the
larger number of atoms in an unstable DW cross, for the same
parameters as in Fig. 2, but withm1=1.8025. In this case,N1/N2

=2.5 andu1=5p /7, u2=2p /7. The snapshots(a)–(f) correspond to
t=0, t=100, t=310, t=316, t=1000, andt=2200, respectively(the
physical time unit is 1.33 ms). The densityuu2u2 is complementary
to uu1u2, as in Figs. 2(c) and 2(d).

FIG. 5. A stable rotating asymmetric domain-wall cross
(“double-vane propeller”). The four snapshots(a), (b), (c), and(d)
show the distribution of the densityuu1u2 at consecutive time
moments—t=0, T/6, T/3, andT/2, respectively—which cover half
of the rotation period,T/2=p /VL<52.3 (.70 ms, in physical
units). The parameters are as in Figs. 2(c) and 2(d) but with V
=0.1 andVL=0.06.
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DW cross. The results are shown in Fig. 8, where the stable-
rotation region is delineated in thefull parameter plane: In
region I, the DW cross remains quiescent, in region III it is
destroyed, while the stable rotation occurs in region II. Note
that for values of N1/N2 outside the shown interval,
s0.65,1.55d, the DW crosses are unstable. Thus, for instance,
at a typical value of the ratio between the rotation frequency
and the trap strength,VL /V=0.1, the stoichiometry ratio
must belong to the interval 0.65øN1/N2ø1.55. As men-
tioned above, the smallest value ofVL /V necessary for the
stable rotation(which is 0.0019) corresponds to the symmet-
ric case,N1/N2=1.

C. More general cross and propeller patterns

All the patterns produced by the intersection of more than
two DWs were found to be unstable, rearranging themselves
into the fundamental crosses considered above. A typical ex-
ample of that, with four intersecting DWs andN1/N2=1, is
displayed in Fig. 9. The same instability of the higher-order
crosses takes place in the rotating trap.

Two-dimensional patterns similar to the symmetric DW
crosses can be formed insingle-componentBECs by two
linear dark solitons intersecting under the right angle(pro-
vided that the dark soliton itself may be stable). We have
checked that such single-component patterns arealwaysun-
stable.

The crosses in BECs(but not in the above-mentioned
photonic-crystal media) can be extended into the 3D case, as
patterns formed by the intersection of planar DWs. More-
over, torque can be applied to such a structure, making it
look like a double helix. Further, these patterns may revolve
together with the trap. Results for the cross-shaped 3D pat-
terns will be reported elsewhere.

FIG. 6. An example of the evolution of an unstable symmetric
“double-vane propeller”(rotating domain-wall cross). The panels in
the left and right columns display the density distributionsuu1u2 and
uu2u2, respectively, att=0 [frames(a) and(b)], t=10 [frames(c) and
(d)], and t=20 [frames(e) and (f)]. The parameters are as in Figs.
2(a) and 2(b), but with V=0.1 andVL=0.08.

FIG. 7. A stable rotating symmetric domain-wall cross found
exactly at the immiscibility border,D=0 (corresponding toa11

=a22=a12=1) and V=0.1. The arrangement of the figure is the
same as in Fig. 5.

FIG. 8. The region of the stable rotation of the domain-wall
crosses, shown in the parameter planesN1/N2,VL /Vd. In region I,
the DW cross is quiescent, in region III it is destroyed, while in
region II it is rotating in a stable manner. Note that for values of
N1/N2 outside the intervals0.65,1.55d the DW crosses are unstable.

FIG. 9. Instability of a higher-order domain-wall cross(left and
right panels show distributions of the densitiesuu1u2 and uu2u2). The
frames(a) and (b) display the initial configuration att=0. Further
frames show the evolving configurations:(c),(d) at t=50, and(e),(f)
at t=600. The parameters are as in Figs. 2(a) and 2(b).
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D. Rotating rectilinear domain walls

As was explained above, stable rectilinear DWs are less
relevant for the currently(experimentally) tractable small
values of the immiscibility parameteruDu. Nevertheless, for
completeness of the analysis, and also for the sake of pos-
sible future experiments in BEC mixtures of different atomic
species, whereuDu may be much larger than in the presently
available mixtures of different spin states of the same iso-
tope, it makes sense to briefly consider a possibility of stable
rotation of the DWs of this type too. Numerical simulations
show that, generally, the rectilinear DW withstands rotation,
within a certain interval of the angular velocities[cf. Eq.
(16)], if it is stable in the static trap. Here, we do not aim to
produce comprehensive results for the stability domain of the
rotating rectilinear DWs. Instead, in Fig. 10 we display an
example of a stably rotating DW of this type. This example
has a special purport, as it shows the rotating rectilinear DW
found at theminimum valueof the immiscibility parameters
at which it may be stable,uDu=0.061. Stable rotating recti-
linear DWs found in the generic case are quite similar to the
one shown in Fig. 10.

IV. CONCLUSIONS

Our analysis predicts the existence of symmetric and
asymmetric domain-wall(DW) crosses in immiscible mix-
tures of repulsive BECs in disk-shaped traps. The stable
crosses are distinguished by the phase shift ofp between
sectors filled by each component. The same patterns may
also be carried by bimodal light beams in photonic crystal

fibers (PCFs). The crosses are stable in a wide range of pa-
rameters, including a certain interval of the stoichiometry
ratio N1/N2, the caseN1=N2 being the most robust one. Add-
ing the trap’s rotation(or twist of the PCF, in the optical
model), we have shown that the DW crosses can rotate, pro-
vided that the driving angular velocity(or the twist pitch, in
the PCF) is limited from below and from above(if it is too
small, the cross does not rotate, and if it is too large, the
cross decays). In the PCF, the rotation takes place not in
time, but in the spatial domain, i.e., along the propagation
distance, hence the optical cross actually looks like a double
helix. The rotating optical crosses have the potential for use
in switching and routing applications. Full stability domains
for the quiescent and rotating crosses were identified, corre-
sponding to values of physical parameters accessible in cur-
rent experiments(both for BECs and PCFs).

The crosses(including the rotating ones) persist exactly
up to the zero value of the immiscibility parameteruDu. This
aspect of the robustness of the DW crosses is crucially im-
portant because, in the BEC mixtures of different spin states
in 87Rb and23Na, currently available to the experiment, the
actual value ofuDu is very small. We have demonstrated that,
in the cases of practical interest, the simplest rectilinear
(quasi-1D) DWs do not exist(in a stable form), while the
crosses remain entirely stable. For the sake of completeness,
we have also demonstrated a possibility of stable rotation of
the rectilinear DWs at larger values ofuDu.

The patterns produced by the intersection of more than
two DWs were observed to be unstable. They rearrange
themselves into the fundamental crosses.

Finally, it is worth mentioning that, at angular velocities
of the rotating trap essentially exceeding the range of values
dealt with in this paper, one may expect the existence of
rotating DWs separating not merely areas with the quasiuni-
form distribution of the densities of immiscible species, but
rather areas filled with triangular vortex lattices(each species
supporting its own lattice). In single-component BECs, such
regular lattices, composed of a large number of vortices,
have been recently studied in detail in direct experiments
[20]. In fact, creation of the DW separating the vortex lat-
tices in immiscible components is the most straightforward
way for experimental observation of arotating DW pattern
in BECs. This possibility will be considered in detail else-
where.
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FIG. 10. Rotation of the rectilinear domain wall at the smallest
value of the immiscibility parameter,uDu=0.061(corresponding to
a11=a22=1, a12=1.03), and V=0.1 at which it is stable. The ar-
rangement of the figure is the same as in Fig. 7.
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