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Population and phase dynamics of =1 spinor condensates in an external magnetic field
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We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of
spinorF=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number
conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term
of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We
determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the
hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the
populations are always a periodic function of time where the periodic motion can be a libration or a rotation.
Our studies also indicate the absence of metastability.
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I. INTRODUCTION n “ R
=3 aalan- o (alSlaaant 53 lFlaa)a
The recently realized trapping of sodium atoms by purely ak ak ak
optical means[1] opens up the possibility of studying Co t t o
“spinor” condensates in which the spin degrees of freedom + E,E Aok + Ak, Ak Farky
k

are not frozer{2]. 1k
Many authors have investigated, in the framework of Bo- G
goliubov theory, the ground state configurations and the low- c 5 R t o
lying collective excitations of homogeneous mixturesFof + 2_\/2 (a|Sa’) (B9 13+ Bk, BBk Aarky (1)
=1 spinor condensates in the absef®jeand in the presence kyka
of an external magnetic fiel@,4]. These studies predicted a dap
variety of new phenomena such as the existence of spin do- a'\p
mains in the ground statR,5] and the propagation of spin with
waves[3,4].
The mean-field dynamics inherent in these works is i 722
known to be equivalent to a classical dynamics whose de- &= om
grees of freedom are the phase and population of the three ‘
hyperfine leveld3,4]. In Eq. (2), a ; creates an atom in the hyperfine level

In this paper we show that this classical dynamics is i”'azl,o, -1, with momenturﬂlz, p andq are the intensities of
tegrable as a consequence of number conservation and ax{fk |inear and quadratic terms of the Zeeman eng2gand
symmetry in spin space. By a proper canonical transforma(-:O and c, are, respectively, the strengths of the spin-
tion it reduces to a dynamics involving only one degree Ofiyjependent and spin-dependent terms of the atom-atom in-
freedom. The determination of the equilibrium points revealsteraction[2—4].

a rich structure in phase-space. Contour plots of the constant 1o Hamiltonian(2) is number conserving and axially
energy surfaces show that the population is a periodic funcs‘;ymmetric in spin space,

tion of time, where the periodic motion can be a libration or o . A

a rotation. [H,N]=0,[H,e ¢S] =0.

Our studies differ from Ref[2—4] by taking explicitly
into account the constraint of the axial symmetry in spin
space. This allow us to make a detailed discussion of th

In the mean-field theory we suppose that the condensate is
@ coherent combination of atoms in the O state,

properties of the equilibrium configurations and of the popu- 1) = e~V2% 226 Zaaj;o|0> P
lation and phase dynamics of the spinor condensate, which '
complements previous workg2-4. where |0) is the vacuum. The complex numbezs are the

condensate wave functions for the atoms in the hyperfine
level a. To find the time evolution of,, we use the time-

Il. THE EQUATIONS OF MOTION dependent variational principl&,6]
The Hamiltonian of our system of=1 homogeneous 8S= 5J i(Z|2) - (ZH[2dt=0 (3)
mixture of bosonic atoms in the presence of an external mag-
netic field is equal tg2—4] which reduces to
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. * . - ok - - - —_ 2_ - CO_Z
85=46 (2 i7z,2,~Ho(Z,Z ))dt: 0, (4) Ho(N1,N2,Ng, 62) = = 2pNs + g §N1 =Ny |+ X/Nl
. . > ok - . C i 1 — . 2— —
where the Hamiltoniaty(Z,z") is given by + V2<2N§+ §(N1+ N2)<§N1— Nz)
Ho(Z,2') =(ZH|2) = - p(|2a? - |21+ (222 + |2-%) —— 7
c , ¢ +\/<—N1—N2) - 4N3
ol & ) ¢ el = 2 3
1— — —
+ 2zl (2l + |24+ 2212175 + 22,2 4(7)*]. x <§N1 * NZ)COS 202) : 13

®) As stated before, the dynamics follows from the condition
Imposing that the action is stationary with respect tothat the action(12) is stationary, which leads to Hamilton
variations ofz,, we get Hamilton equations of motion in equations of motion in these new canonical variables,
complex coordinates

g=2M =0
R (}) H I (9 H 1= " 1= !
|ﬁza:—*0, —|hza:—°. (6) dN;
dz, z,
To take advantage of number conservation and axial sym- ; _JdHy __dHo
metry in spin space we perform two canonical transforma- 2= IN, 2= 96,
tions. The first one introduces, as canonical variables in 2 2
phase space, the population and phase of each hyperfine ) )
component by the transformation 0s= '9_50' N3=0. (14)
z,= V/N_ae—iG‘a (7) d N3
such that the actiotd) reduces to The property that the Hamiltonian is cyclic #y and 6;

. has two important consequences. One is that the mean value
[ : > > of the total number of particles and of the component of the
S_ft (ﬁE Naba = HO(N’e))dt' (8) total spin of the condensate in the direction of the magnetic
1 @ J— —
field are constants of the motioN; =N, 2AN;=(ZS,|2). The
other is that the dynamics involves only one degree of free-

— (6;+ 645+ 6_ — dom
:—(l 0 ) N;=Nq+ Ng+N_g,

The second canonical transformation is given by

1 ’
3 — dHy = _ dH
62:__0, NZ:___O. (15)
__0_(91+0_1) ——N—1N+N dN, d 6
2= 70 R 3( 1+ N-y), To simplify the equations of motiofl5) we define new
variables which are the old variables divided by the number
— —  (N;—=N_y) of particles,n,=N,/N, to write the equations of motion as
03= 01— 04, N3=T- 9)
. 2 2 1 _
h Ny =2C,p (— —ﬁ) - 4ﬁ2(— +F>sin 26
Two of these variables are, respectively, the mean number 2752 3 2 3\z % 2
of atoms
Ny =(@NID (10) B
and one-half the mean value of the component of the total ~h 6;=q+Cp (2”2_ 5)
hyperfine spin in the direction of the magnetic field
— _(@S)2 2 1
3 3 cos X, (16)
In terms of these new canonical variables the action be- 2 _\2 —, 2
comes equal to S~ N2| —4n;

Equations(16) are the analog of the mean-field classical
_ _ equations of motion that describes atoms in two states
where the Hamiltonian is cyclic in the coordinat®sand 65, coupled by a Josephson-type tefwj.

S= ftz (2 ﬁﬁ; _ HO(Nl ﬁz ﬁs;z))dt (12) wherep=N/V is the density of the condensate.
t a

1
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FIG. 1. Equilibrium values oh, as function ofg/cyp for ng FIG. 2. Equilibrium values oh, as function ofq/cyp for ng

%1. Solid curve is(al), dashed iga2), and the lower boundary =0. The dashed straight line(isl). The vertical straight ling=0 is
22—% is (a3). The horizontal straight lines are the boundaries of(b2). The horizontal straight lines are the boundaries.of

3

n,.
-o)fm-2)
q _ 1 3 3 —
From Egs.(16), the following general properties of the @ + <2n2— §)+ > 2 cos %,=0.
equations of motion emerges. \/<— —E) - 4ﬁ§
(1) The population dynamics is independent of the 3
strength of the linear term of the Zeeman energy and of the (17b)

spin-independent component of the atom-atom inte@ction. In Egs.(16), (178, and (17 the constant of the motion

Indeed, only the phas# depends o and only the phasé,  T; is defined in the interval +<ny;<3 and the dynamic
depends ory. _ . variablen, in the interval < <n,<5-2n. In our discus-

(2) By a proper choice of time scaler=fi/|Cop|, the  sjon of the solutions of the equilibrium equations we con-
population dynamics, in the limg=0, is independent of the gjqer separately the cases# 0 andnz=0.

magnitude ofc,, dependin_g only on i_ts sign. In general, tha_t (@) n;#0. We have solutions which depend on the
is whenq# 0, the population dynamics depends on the ratio hased, and solutions which are independentf

g/cyp and on the sign of,. P i i i
(al) Solution which depends afy with cos26,=1. In
this case the equilibrium value ok is given by Eq.(17b)
IIl. PROPERTIES OF THE EQUATIONS OF MOTION with cos 29,=1. This equation has one solution in the inter-
val 0 <q/cp<1+y1-(2n5)% Wheng/c,p— - the equi-
librium value of n, approaches the upper boundaﬁy;%

From the equations of motion, Eq4.6), we see that the -2|ng|, for which the fraction of atoms occupying the hyper-

equations which determine the equilibrium configurationsflne levels arey =[ng| +1, no:#ﬂ_ﬁj’—zni:!n?"_n& On the
are other hand wherg/c,p=1+1-(2n3)%, n, is at the lower

boundary,n_2=—%, in which case the fraction of atoms occu-
pying the hyperfine levels arreal:%(1+273), ny=0, andn_;
2 1 _ =2(1-2ny).
(5 - nz) - 4ﬁ§<§ + n2>sin 260,=0, (179 When we neglect the quadratic term of the Zeeman en-

A. Equilibrium configurations

TABLE |. Equilibrium configurations for different parameter domaing# 0, antiferromagnetic case,

q <1-\J’Wﬁs)2 (al) maximum;(a3) minimum

|c2p|
1_\’m< q <1+V’Wﬁs)2 (al) maximum; (a2 minimum; (a3) undefined®
|c2pl
|Cq | >1+\'Wﬁ3)2 (a2 minimum; (a3) maximum
2P

*The classification undefined means that when we leave the line defining the corresponding boundary the
energy increases or decreases depending on the value of thefphase
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TABLE II. Equilibrium configurations for different parameter domaimsg# 0, ferromagnetic case,

C2p<0.
i>_(1_v,r1_(2—§)2) (al) minimum; (a3 maximum
|c2p]
_(1+\"1'(2_W3)2)<ﬁ<‘(1‘vwﬁs)2) (@D minimum; (@2 maximum;(a3) undefined
2P
i<_(1+\,,1—_(2ﬁ3)2) (a2 maximum;(a3 minimum
|c2p]
ergy, that isq=0, the equilibrium value ofy, is M,=3(5 (b2 Solution which depends on the phagg with

- (2n)?) ﬂ‘dz the occupation frg:tizons arg=3(1+My)°,  ¢os26,=—1. In this case there is a solution only g0
Mo=[1-(2ny) ]/?* andn,=3(1-25)% _ and it is the line cos &=-1, and 5 <n,<3.
(@2 Solution which depends ofy with cos26,=-1. When n;=0, there are two solutions which does not de-
The gquilibrium value oh, is now given by Eq(17b) with pend on the phases.
cos X,=-1. This equation has one solution in the interval (b3) One is the lower boundarﬁz:—é in which case
a/cp>1-\1-(2ny)% Wheng/c,p=1-\1-(2n;)2 n, is at  the occupation fractions arg=n_,=3, and no=0.
the lower boundaryi,=—3. On the other hand, wheay c;p (b4) The other is the upper boundang=3 in which
— it approaches the upper bounda_rfé—2|ﬁ3|. case the occupation fractions arg=n_,=0 andny=1. The
(a3 Solution which does not depend on the phése soI_LFEons(bS) ?nd (bfA,zhe_xEtOfor a.rl% yalue Oﬁf( Cop- i
In this casen, is at the lower boundary_|2=—%, indepen- . € properties of tha; =0 equilibrium configurations are
illustrated in Fig. 2, where we plot the equilibrium values of
dently of the value ofy/c,p. T, as a function ofj/c,p
These properties are illustrated in Fig. 1 where we plot the We would like to point out that it can be shown that the

equilibrium values of, as a function ofy/c,p for ng=1. has . o .
— . S - e dependent solutions of the equilibrium equations are
(b) n3=0. In this case the equilibrium equatiofis’ g {Dhe roots gf the third order equation q q
and(17b) reduce to '

2 1\ — L i(z L (2@22(1 2L,
3 n, 3 +n,|sin 26,=0, Cop Cop Cop Cop
2
+ (2@2«1 + i) + (2@2) =0, fo+ 2y,
i+<2ﬁ—}>(1+cos§)—0 cop
cp \7 7 3 Zo (18)
Again, we have two classes of solutions, dependent and irwith Wf%—fo, wheref is the fraction of atoms outside the

dependent of the phagh. my=0 hyperfine levelfp=n;+n_,.
b1) Soluti hich d d the phage with We can find analytical expressions for the roots of Eq.
i ) Solution w _'_C ) epenas on _e p a_g V\i' 1 (18) but they are not particularly illuminating and we will
cos26,=1. The equilibrium value ofn, is n2:5(§ not write them here.
—q/202p)_ in the interval -2<qg/c;p<2. In this case the A summary of our discussion is displayed in Tables -1V,
occupation fraction Ofl the hyperfine levels alg=n_;  where we consider separately the antiferromagnetic and the
=2(1+0/2c,p), andng=3(1-0q/2cyp). ferromagnetic limits. From the tables we can easily deter-

TABLE IlI. Equilibrium configurations for different parameter domaimg=0, antiferromagnetic limit,

C2p>0.

i<_2 (b3) minimum; (b4) maximum

|c2n]

_2<i<0 (b1) maximum;(b3) minimum; (b4) undefined

|c2p|
q=0 (b2) maximum;(b2), (b3), (b4) degenerate
minimum

O<i<2 (b2) maximum;(b3) undefinedb4) minimum
|c2n|

i>2 (b3) maximum;(b4) minimum

|c2n]
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TABLE IV. Equilibrium configurations for different parameter domaimg=0, ferromagnetic limit,

C2p<0.

i>2 (b3) maximum;(b4) minimum

|c2n]

O<i<2 (b2) minimum; (b3) maximum;(b4) undefined
|c2p

q=0 (b2) minimum; (b2), (b3), (b4) degenerate

maximum
_2<i<0 (b2) minimum; (b3) undefined(b4) maximum
|c2pl
i<_2 (b3) minimum; (b4) maximum
|c2n]

mine what are the ground state configurations for the differg/|c,p|. Wheng/|c,p| approaches its lowest value, is near
ent parameter domains and in the two limits consideredhe lower boundaryﬁzz—é, therefore themy=0 component
above. is practically immiscible with them;=+1 components.
Ground state configurations have been investigated iWheng/|c,p| increases(a2) approaches the upper boundary
Ref.[3], in the absence of the magnetic fiéfw=q=0). They _
observe that th¢degenerateground state in the antiferro- n2:§
magnetic limit are the polar states and in the ferromagnetigiominantly with them;=+1(-1) component depending on
limit, the ferromagnetic states. the sign ofnz, ny>0(<0), the population of the third com-
The polar states df3] haven;=0 and are the stat&b2),  ponent being negligible.
(b3), and(b4) atgq=0 (see Table Ill. Whenn;=0, the ground The next case isi;#0 and the ferromagnetic limit. For
state in the ferromagnetic limit is the stafiel) which is q/|62p|<—(1+\/1—(2ﬁg)2), the ground state spinor @3,

equal to the ferromagnetic state [@] with ng=0. where only them;=+1 components are miscible, the popu-
Whenn;# 0, the stategal) at q=0 are equal to the fer-

romagnetic states of3] and are the ground states in the
ferromagnetic limit(see Table . On the other hand, the
ground state in the antiferromagnetic limit is the st@t8),
which is not a polar state.

Reference4] investigate the ground state configurations
in the presence of the magnetic field and neglecting the qua- Energy
dratic term of the Zeeman energy. As shown in this paper, in
this case the ground state configurations coincide with the
ground state configurations in the absence of the magnetic
field, a fact overlooked ifd]. Besides a state with maximum
value ofng, nz=3, Ref. [4] identifies only the spinota3),
which is the ground state just in the antiferromagnetic limit
(see Table)l

The general case when we consider both the linear and
quadratic terms of the Zeeman energy have been studied in
Ref. [2]. Our approach differs fronf2], in the sense that we
take explicitly into account the constraints of axial symmetry
which simplifies considerably the discussion.

-2|ng|, in which case then;=0 component mixes pre-

B. Miscibility

One question that we can adress is the miscibility of the
hyperfine components in the ground state spirigts

Consider first the case;#0 and the antiferromagnetic
limit. For g<<1-11—-(2n3)?, the ground state spinor {83,
where only them;=+1 components are miscible, the popu- -
lation of the m;=0 component being null. Fog/|c,p|>1 FIG. 3. Top: energy surface as function &f andn,. Bottom:
-\1-(2n3)?, the ground state spinor i®2), in which case contour plot of the energy surface in thgh, plane. In these plots
the three components are generally miscible. Actually thén;=3 andg/|c,p|=0.4, in the antiferromagnetic limit. The energy is
miscibility of the hyperfine components depends on the ratiGn units of|c,p|. (¢, is in radians, Darker colors mean lower energy.

043614-5



D. R. ROMANO AND E. J. V. de PASSOS

FIG. 4. Top: energy surface as fum:tiongj andn,. Bottom:

contour plot of the energy surface in thg-n, plane. In these plots
n3=0 andq/|cyp|=0, in the ferromagnetic limit. The energy is in

units of [cypl|. (6, is in radians).

lation of them;=0 component being null. On the other hand,

when g/|c,p| >—-(1+1-(2n3)?) the ground state spinor is

(al). As in the antiferromagnetic limit, in this case the three
hyperfine components are generally miscible, the degree o

miscibility depending on the ratig/|c,p|. When this ratio
approaches its lowest valup, is near the lower boundary,
Wf-%, and them;=0 component is practically immiscible

PHYSICAL REVIEW 20, 043614(2004)
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FIG. 5. (a) ny, (b) 52 as function of time, in the case of rotation;
(©)n2, (d)gz as function of time, in the case of libration. Notice that
n, is always periodic. The time is in units @f/|c,p|. (6, is in
radians) The parameters are equal to the ones in Fig. 3. The initial
conditions aren,=0.159 and@:n-IZ for rotation anch,=-0.1 and
52=77/2 for libration.

miscible, the population of thex=0 component being neg-
ligible, near the lowest value af/ |c,p| to one where practi-
cally only the component;=0 is populated near the highest
value of g/|c,p|. For g/|c,p|>2 the ground state spinor is
(b4).

IV. DYNAMICS

The qualitative features of the population dynamics can
t%e easily visualized if we make portraits of the contour
curves Hp/N=const in the phase space Blaﬂgﬁz. Ex-
amples are shown in Fig. 3 and 4. We see thé is always
a periodic function of time. The motion can be a libration

with the mi=+1 component. On the other hand, whenwhené, is a limited function of time and a rotation in which

g/|cyp| increases approaching=# n, is near the upper
boundary,ﬁzzé—zﬁg,, in which case than;=0 component
mixes predominantly with then;=+1(-1) component de-
pending on the sign afi;, ng>0(<0), the population of the
third component being negligible.

The only case left is when;=0. Consider first the anti-
ferromagnetic limit. Fog/|c,p| <0 the ground state spinor is
(b3), for which n, is at the lower boundarny—:—lg. In this
spinor we have equal population of thg=+1 components,
the population of then;=0 component being null. On the
other hand, for/|c,p|> 0, the ground state spinor (s4) for
which n, is at the upper boundarﬁzzg. In this spinor all
atoms are in then;=0 state.

cased, always increase&ecreasesas a function of time.
Examples of these behaviors are displayed in Fig. 5.

V. SUMMARY AND CONCLUSIONS

In summary we have studied in this paper the classical
dynamics that underlies the mean-field description of an ho-
mogeneous mixture of spinér=1 condensate in an external
magnetic field.

As a consequence of number conservation and axial sym-
metry in spin space this dynamics is integrable. The equa-
tions of motion show that the population dynamics depends
only on the quadratic term of the Zeeman energy and on the

The ferromagnetic limit is richer than the previous one.strength of the spin-dependent component of the atom-atom

For q/|c,p| <-2 the ground state spinor ®3). However,
for —2<q/|c,p| <2, the ground state spinor ®1), where

interaction.
For a fixed mean value of the component of the conden-

the three components are generally miscible. Actually, itsate spin in the direction of the magnetic field we determine

changes from a spinor where practically only the= £1 are

the equilibrium configurations as a function of the ratio
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g/cyp. We also make a detailed discussion of the miscibilityBesides being a guide to what happens in the case of trapped
of the three hyperfine components in the ground state spinarondensates, classical Hamiltonians of the type considered in
as a function ofg/cyp. Our studies reveal the absence of this paper emerge in a mean-field description of the quantum

metastability in the sense that there is no two local minimasingle-mode approximation for spinor condensates in a trap
configurations in the parameter domain. We have shown thgg.

outside the equilibrium, the populations are always a peri-
odic function of time, where the periodic motion can be a
libration or a rotation. In the first case the phases always
limited whereas in the second case it always incredse ACKNOWLEDGMENTS
creasg as a function of time.
Finally we would like to remark that the restriction to a  D.R.R. would like to acknowledge financial support from
homogeneous mixture is not only of academic intefag]. CNPqg, and E.J.V.P. partial support from CNPq.
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