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We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of
spinorF=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number
conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term
of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We
determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the
hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the
populations are always a periodic function of time where the periodic motion can be a libration or a rotation.
Our studies also indicate the absence of metastability.
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I. INTRODUCTION

The recently realized trapping of sodium atoms by purely
optical means[1] opens up the possibility of studying
“spinor” condensates in which the spin degrees of freedom
are not frozen[2].

Many authors have investigated, in the framework of Bo-
goliubov theory, the ground state configurations and the low-
lying collective excitations of homogeneous mixtures ofF
=1 spinor condensates in the absence[3] and in the presence
of an external magnetic field[2,4]. These studies predicted a
variety of new phenomena such as the existence of spin do-
mains in the ground state[2,5] and the propagation of spin
waves[3,4].

The mean-field dynamics inherent in these works is
known to be equivalent to a classical dynamics whose de-
grees of freedom are the phase and population of the three
hyperfine levels[3,4].

In this paper we show that this classical dynamics is in-
tegrable as a consequence of number conservation and axial
symmetry in spin space. By a proper canonical transforma-
tion it reduces to a dynamics involving only one degree of
freedom. The determination of the equilibrium points reveals
a rich structure in phase-space. Contour plots of the constant
energy surfaces show that the population is a periodic func-
tion of time, where the periodic motion can be a libration or
a rotation.

Our studies differ from Ref.[2–4] by taking explicitly
into account the constraint of the axial symmetry in spin
space. This allow us to make a detailed discussion of the
properties of the equilibrium configurations and of the popu-
lation and phase dynamics of the spinor condensate, which
complements previous works[2–4].

II. THE EQUATIONS OF MOTION

The Hamiltonian of our system ofF=1 homogeneous
mixture of bosonic atoms in the presence of an external mag-
netic field is equal to[2–4]
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In Eq. (2), a
akW
†

creates an atom in the hyperfine levela,

a=1,0, −1, with momentum"kW, p andq are the intensities of
the linear and quadratic terms of the Zeeman energy[2] and
c0 and c2 are, respectively, the strengths of the spin-
independent and spin-dependent terms of the atom-atom in-
teraction[2–4].

The Hamiltonian(2) is number conserving and axially
symmetric in spin space,

fĤ,N̂g = 0,fĤ,e−isfŜz/"dg = 0.

In the mean-field theory we suppose that the condensate is
a coherent combination of atoms in thepW =0 state,

uzWl = es−1/2doa uzau2eoa zaaa0
†

u0l, s2d

where u0l is the vacuum. The complex numbersza are the
condensate wave functions for the atoms in the hyperfine
level a. To find the time evolution ofza, we use the time-
dependent variational principle[3,6]

dS= dE i"kzWuzẆl − kzWuĤuzWldt = 0 s3d

which reduces to
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dS= dE So
a

i"za
* ża − H0szW,zW *dDdt = 0, s4d

where the HamiltonianH0szW ,zW *d is given by

H0szW,zW *d = kzWuĤuzWl = − psuz1u2 − uz−1u2d+ qsuz1u2 + uz−1u2d

+
c0

2VSo
a
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+

c2

2V
fsuz1u2 − uz−1u2d2

+ 2uz0u2suz1u2 + uz−1u2d+ 2z1
*z−1

* z0
2 + 2z1z−1sz0

*d2g.

s5d

Imposing that the action is stationary with respect to
variations ofza, we get Hamilton equations of motion in
complex coordinates

i"ża =
] H0

] za
* , − i"ża

* =
] H0

] za

. s6d

To take advantage of number conservation and axial sym-
metry in spin space we perform two canonical transforma-
tions. The first one introduces, as canonical variables in
phase space, the population and phase of each hyperfine
component by the transformation

za = ÎNae−iua s7d

such that the action(4) reduces to

S=E
t1

t2 S"o
a

Nau̇a − H0sNW ,uWdDdt. s8d

The second canonical transformation is given by

ū1 =
su1 + u0 + u−1d

3
, N̄1 = N1 + N0 + N−1,

ū2 = u0 −
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2
, N̄2 =

2

3
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1

3
sN1 + N−1d,

ū3 = u1 − u−1, N̄3 =
sN1 − N−1d

2
. s9d

Two of these variables are, respectively, the mean number
of atoms

N̄1 = kzWuN̂uzWl s10d

and one-half the mean value of the component of the total
hyperfine spin in the direction of the magnetic field

N̄3 =
kzWuŜzuzWl

2"
. s11d

In terms of these new canonical variables the action be-
comes equal to

S=E
t1

t2 So
a

"N̄aū
˙

a − H0sN̄1,N̄2,N̄3,ū2dDdt, s12d

where the Hamiltonian is cyclic in the coordinatesū1 andū3,

H0sN̄1,N̄2,N̄3,ū2d = − 2pN̄3 + qS2

3
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As stated before, the dynamics follows from the condition
that the action(12) is stationary, which leads to Hamilton
equations of motion in these new canonical variables,

ū
˙

1 =
] H0
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, N̄
˙

1 = 0,
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˙
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˙

3 = 0. s14d

The property that the Hamiltonian is cyclic inū1 and ū3
has two important consequences. One is that the mean value
of the total number of particles and of the component of the
total spin of the condensate in the direction of the magnetic

field are constants of the motion,N̄1=N, 2"N̄3=kzWuSzuzWl. The
other is that the dynamics involves only one degree of free-
dom

ū
˙

2 =
] H0

] N̄2

, N̄
˙

2 = −
] H0

] ū2

. s15d

To simplify the equations of motion(15) we define new
variables which are the old variables divided by the number

of particles,n̄a=N̄a /N, to write the equations of motion as

" ṅ̄2 = 2c2rÎS2

3
− n̄2D2

− 4n̄3
2S1

3
+ n̄2Dsin 2ū2,

− " ū
˙
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+
S2

3
− n̄2DS2n̄2 −

1

3
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2
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3
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2

cos 2ū22 , s16d

wherer=N/V is the density of the condensate.
Equations(16) are the analog of the mean-field classical

equations of motion that describes atoms in two states
coupled by a Josephson-type term[7].

D. R. ROMANO AND E. J. V. de PASSOS PHYSICAL REVIEW A70, 043614(2004)

043614-2



From Eqs.(16), the following general properties of the
equations of motion emerges.

(1) The population dynamics is independent of the
strength of the linear term of the Zeeman energy and of the
spin-independent component of the atom-atom interaction.

Indeed, only the phaseū3 depends onp and only the phaseū1
depends onc0.

(2) By a proper choice of time scale,t=" / uc2ru, the
population dynamics, in the limitq=0, is independent of the
magnitude ofc2, depending only on its sign. In general, that
is whenqÞ0, the population dynamics depends on the ratio
q/c2r and on the sign ofc2.

III. PROPERTIES OF THE EQUATIONS OF MOTION

A. Equilibrium configurations

From the equations of motion, Eqs.(16), we see that the
equations which determine the equilibrium configurations
are

ÎS2

3
− n̄2D2

− 4n̄3
2S1

3
+ n̄2Dsin 2ū2 = 0, s17ad

q

c2r
+ S2n̄2 −

1

3
D+

S2

3
− n̄2DS2n̄2 −

1

3
D + 4n̄3

2

ÎS2

3
− n̄2D2

− 4n̄3
2

cos 2ū2 = 0.

s17bd

In Eqs.(16), (17a), and(17b) the constant of the motion
n̄3 is defined in the interval −12 , n̄3,

1
2 and the dynamic

variable n̄2 in the interval −1
3 , n̄2,

2
3 −2un̄3u. In our discus-

sion of the solutions of the equilibrium equations we con-
sider separately the casesn̄3Þ0 andn̄3=0.

(a) n̄3Þ0. We have solutions which depend on the

phaseū2 and solutions which are independent ofū2.

(a1) Solution which depends onū2 with cos2ū2=1. In
this case the equilibrium value ofn̄2 is given by Eq.(17b)
with cos 2ū2=1. This equation has one solution in the inter-
val −`,q/c2r,1+Î1−s2n̄3d2. Whenq/c2r→−` the equi-
librium value of n̄2 approaches the upper boundary,n̄2= 2

3
−2un̄3u, for which the fraction of atoms occupying the hyper-
fine levels aren1= un̄3u+ n̄3, n0=1–2un̄3u, n−1= un̄3u− n̄3. On the
other hand whenq/c2r=1+Î1−s2n̄3d2, n̄2 is at the lower
boundary,n̄2=−1

3, in which case the fraction of atoms occu-
pying the hyperfine levels aren1= 1

2s1+2n̄3d, n0=0, andn−1

= 1
2s1–2n̄3d.
When we neglect the quadratic term of the Zeeman en-

TABLE I. Equilibrium configurations for different parameter domains.n̄3Þ0, antiferromagnetic case,
c2r.0.

q

uc2ru
,1−Î1−s2n̄3d2 (a1) maximum;(a3) minimum

1−Î1−s2n̄3d2,
q

uc2ru
,1+Î1−s2n̄3d2 (a1) maximum;(a2) minimum; (a3) undefineda

q

uc2ru
.1+Î1−s2n̄3d2 (a2) minimum; (a3) maximum

aThe classification undefined means that when we leave the line defining the corresponding boundary the

energy increases or decreases depending on the value of the phaseū2.

FIG. 1. Equilibrium values ofn̄2 as function ofq/c2r for n̄3

= 1
4. Solid curve is(a1), dashed is(a2), and the lower boundary

n̄2=−1
3 is (a3). The horizontal straight lines are the boundaries of

n̄2.

FIG. 2. Equilibrium values ofn̄2 as function ofq/c2r for n̄3

=0. The dashed straight line is(b1). The vertical straight lineq=0 is
(b2). The horizontal straight lines are the boundaries ofn̄2.
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ergy, that isq=0, the equilibrium value ofn̄2 is n̄2= 1
2

s 1
3

−s2n̄3d2d and the occupation fractions aren1= 1
4s1+2n̄3d2,

n0=f1−s2n̄3d2g /2, andn−1= 1
4s1–2n̄3d2.

(a2) Solution which depends onū2 with cos2ū2=−1.
The equilibrium value ofn̄2 is now given by Eq.(17b) with

cos 2ū2=−1. This equation has one solution in the interval
q/c2r.1−Î1−s2n̄3d2. Whenq/c2r=1−Î1−s2n̄3d2 n̄2 is at
the lower boundaryn̄2=−1

3. On the other hand, whenq/c2r
→` it approaches the upper boundaryn̄2= 2

3 −2un̄3u.
(a3) Solution which does not depend on the phaseū2.

In this casen̄2 is at the lower boundaryn̄2=−1
3, indepen-

dently of the value ofq/c2r.
These properties are illustrated in Fig. 1 where we plot the

equilibrium values ofn̄2 as a function ofq/c2r for n̄3= 1
4.

(b) n̄3=0. In this case the equilibrium equations(17a)
and (17b) reduce to

S2

3
− n̄2DS1

3
+ n̄2Dsin 2ū2 = 0,

q

c2r
+ S2n̄2 −

1

3
Ds1 + cos 2ū2d = 0.

Again, we have two classes of solutions, dependent and in-

dependent of the phaseū2.

sb1d Solution which depends on the phaseū2 with

cos2ū2=1. The equilibrium value of n̄2 is n̄2= 1
2

s 1
3

−q/2c2rd in the interval −2,q/c2r,2. In this case the
occupation fraction of the hyperfine levels aren1=n−1

= 1
4s1+q/2c2rd, andn0= 1

2s1−q/2c2rd.

sb2d Solution which depends on the phaseū2 with

cos2ū2=−1. In this case there is a solution only atq=0

and it is the line cos 2ū2=−1, and −1
3 , n̄2,

2
3.

When n̄3=0, there are two solutions which does not de-
pend on the phases.

sb3d One is the lower boundaryn̄2=−1
3 in which case

the occupation fractions aren1=n−1= 1
2, andn0=0.

sb4d The other is the upper boundaryn̄2= 2
3 in which

case the occupation fractions aren1=n−1=0 andn0=1. The
solutionssb3d and sb4d exist for any value ofq/c2r.

The properties of then̄3=0 equilibrium configurations are
illustrated in Fig. 2, where we plot the equilibrium values of
n̄2 as a function ofq/c2r.

We would like to point out that it can be shown that the
phase dependent solutions of the equilibrium equations are
the roots of the third order equation,

4
q

c2r
f0
3 −

q

c2r
S2 +

q

c2r
D f0

2 − s2n̄3d22S1 + 2
q

c2r
D f0

+ s2n̄3d2XS1 +
q

c2r
D2

+ s2n̄3d2C = 0, f0 Þ 2un̄3u,

s18d

with n̄2= 2
3 − f0, wheref0 is the fraction of atoms outside the

mf =0 hyperfine level,f0=n1+n−1.
We can find analytical expressions for the roots of Eq.

(18) but they are not particularly illuminating and we will
not write them here.

A summary of our discussion is displayed in Tables I–IV,
where we consider separately the antiferromagnetic and the
ferromagnetic limits. From the tables we can easily deter-

TABLE III. Equilibrium configurations for different parameter domains.n̄3=0, antiferromagnetic limit,
c2r.0.

q

uc2ru
,−2

(b3) minimum; (b4) maximum

−2,
q

uc2ru
,0

(b1) maximum;(b3) minimum; (b4) undefined

q=0 (b1) maximum;(b2), (b3), (b4) degenerate
minimum

0,
q

uc2ru
,2

(b1) maximum;(b3) undefined;(b4) minimum

q

uc2ru
.2

(b3) maximum;(b4) minimum

TABLE II. Equilibrium configurations for different parameter domains.n̄3Þ0, ferromagnetic case,
c2r,0.

q

uc2ru
.−s1−Î1−s2n̄3d2d

(a1) minimum; (a3) maximum

−s1+Î1−s2n̄3d2d,
q

uc2ru
,−s1−Î1−s2n̄3d2d

(a1) minimum; (a2) maximum;(a3) undefined

q

uc2ru
,−s1+Î1−s2n̄3d2d

(a2) maximum;(a3) minimum
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mine what are the ground state configurations for the differ-
ent parameter domains and in the two limits considered
above.

Ground state configurations have been investigated in
Ref. [3], in the absence of the magnetic fieldsp=q=0d. They
observe that the(degenerate) ground state in the antiferro-
magnetic limit are the polar states and in the ferromagnetic
limit, the ferromagnetic states.

The polar states of[3] haven̄3=0 and are the states(b2),
(b3), and(b4) at q=0 (see Table III). Whenn̄3=0, the ground
state in the ferromagnetic limit is the state(b1) which is
equal to the ferromagnetic state of[3] with n̄3=0.

When n̄3Þ0, the states(a1) at q=0 are equal to the fer-
romagnetic states of[3] and are the ground states in the
ferromagnetic limit(see Table II). On the other hand, the
ground state in the antiferromagnetic limit is the state(a3),
which is not a polar state.

Reference[4] investigate the ground state configurations
in the presence of the magnetic field and neglecting the qua-
dratic term of the Zeeman energy. As shown in this paper, in
this case the ground state configurations coincide with the
ground state configurations in the absence of the magnetic
field, a fact overlooked in[4]. Besides a state with maximum
value of n̄3, n̄3= 1

2, Ref. [4] identifies only the spinor(a3),
which is the ground state just in the antiferromagnetic limit
(see Table I).

The general case when we consider both the linear and
quadratic terms of the Zeeman energy have been studied in
Ref. [2]. Our approach differs from[2], in the sense that we
take explicitly into account the constraints of axial symmetry
which simplifies considerably the discussion.

B. Miscibility

One question that we can adress is the miscibility of the
hyperfine components in the ground state spinors[2].

Consider first the casen̄3Þ0 and the antiferromagnetic
limit. For q,1−Î1−s2n̄3d2, the ground state spinor is(a3),
where only themf = ±1 components are miscible, the popu-
lation of the mf =0 component being null. Forq/ uc2ru.1
−Î1−s2n̄3d2, the ground state spinor is(a2), in which case
the three components are generally miscible. Actually the
miscibility of the hyperfine components depends on the ratio

q/ uc2ru. Whenq/ uc2ru approaches its lowest value,n̄2 is near
the lower boundary,n̄2=−1

3, therefore themf =0 component
is practically immiscible with themf = ±1 components.
Whenq/ uc2ru increases,(a2) approaches the upper boundary

n̄2=
2

3
−2un̄3u, in which case themf =0 component mixes pre-

dominantly with themf = +1s−1d component depending on
the sign ofn̄3, n̄3.0s,0d, the population of the third com-
ponent being negligible.

The next case isn̄3Þ0 and the ferromagnetic limit. For
q/ uc2ru,−(1+Î1−s2n̄3d2), the ground state spinor is(a3),
where only themf = ±1 components are miscible, the popu-

TABLE IV. Equilibrium configurations for different parameter domains.n̄3=0, ferromagnetic limit,
c2r,0.

q

uc2ru
.2

(b3) maximum;(b4) minimum

0,
q

uc2ru
,2

(b1) minimum; (b3) maximum;(b4) undefined

q=0 (b1) minimum; (b2), (b3), (b4) degenerate
maximum

−2,
q

uc2ru
,0

(b1) minimum; (b3) undefined;(b4) maximum

q

uc2ru
,−2

(b3) minimum; (b4) maximum

FIG. 3. Top: energy surface as function ofū2 and n̄2. Bottom:

contour plot of the energy surface in theū2-n̄2 plane. In these plots
n̄3= 1

4 andq/ uc2ru=0.4, in the antiferromagnetic limit. The energy is

in units of uc2ru. (ū2 is in radians.) Darker colors mean lower energy.
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lation of themf =0 component being null. On the other hand,
when q/ uc2ru.−s1+Î1−s2n̄3d2d the ground state spinor is
(a1). As in the antiferromagnetic limit, in this case the three
hyperfine components are generally miscible, the degree of
miscibility depending on the ratioq/ uc2ru. When this ratio
approaches its lowest value,n̄2 is near the lower boundary,
n̄2=−1

3, and themf =0 component is practically immiscible
with the mf = ±1 component. On the other hand, when
q/ uc2ru increases approaching +`, n̄2 is near the upper
boundary,n̄2= 2

3 −2n̄3, in which case themf =0 component
mixes predominantly with themf = +1s−1d component de-
pending on the sign ofn̄3, n̄3.0s,0d, the population of the
third component being negligible.

The only case left is whenn̄3=0. Consider first the anti-
ferromagnetic limit. Forq/ uc2ru,0 the ground state spinor is
(b3), for which n̄2 is at the lower boundary,n̄2=−1

3. In this
spinor we have equal population of themf = ±1 components,
the population of themf =0 component being null. On the
other hand, forq/ uc2ru.0, the ground state spinor is(b4) for
which n̄2 is at the upper boundary,n̄2= 2

3. In this spinor all
atoms are in themf =0 state.

The ferromagnetic limit is richer than the previous one.
For q/ uc2ru,−2 the ground state spinor is(b3). However,
for −2,q/ uc2ru,2, the ground state spinor is(b1), where
the three components are generally miscible. Actually, it
changes from a spinor where practically only themf = ±1 are

miscible, the population of themf =0 component being neg-
ligible, near the lowest value ofq/ uc2ru to one where practi-
cally only the componentmf =0 is populated near the highest
value of q/ uc2ru. For q/ uc2ru.2 the ground state spinor is
(b4).

IV. DYNAMICS

The qualitative features of the population dynamics can
be easily visualized if we make portraits of the contour

curves H0/N=const in the phase space planeū2-n̄2. Ex-
amples are shown in Fig. 3 and 4. We see thatn̄2std is always
a periodic function of time. The motion can be a libration

whenū2 is a limited function of time and a rotation in which

caseū2 always increases(decreases) as a function of time.
Examples of these behaviors are displayed in Fig. 5.

V. SUMMARY AND CONCLUSIONS

In summary we have studied in this paper the classical
dynamics that underlies the mean-field description of an ho-
mogeneous mixture of spinorF=1 condensate in an external
magnetic field.

As a consequence of number conservation and axial sym-
metry in spin space this dynamics is integrable. The equa-
tions of motion show that the population dynamics depends
only on the quadratic term of the Zeeman energy and on the
strength of the spin-dependent component of the atom-atom
interaction.

For a fixed mean value of the component of the conden-
sate spin in the direction of the magnetic field we determine
the equilibrium configurations as a function of the ratio

FIG. 4. Top: energy surface as function ofū2 and n̄2. Bottom:

contour plot of the energy surface in theū2-n̄2 plane. In these plots
n̄3=0 andq/ uc2ru=0, in the ferromagnetic limit. The energy is in

units of uc2ru. (ū2 is in radians.)

FIG. 5. (a) n̄2, (b) ū2 as function of time, in the case of rotation;

(c) n̄2, (d) ū2 as function of time, in the case of libration. Notice that

n̄2 is always periodic. The time is in units of" / uc2ru. (ū2 is in
radians.) The parameters are equal to the ones in Fig. 3. The initial

conditions aren̄2=0.159 andū2=p /2 for rotation andn̄2=−0.1 and

ū2=p /2 for libration.
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q/c2r. We also make a detailed discussion of the miscibility
of the three hyperfine components in the ground state spinor
as a function ofq/c2r. Our studies reveal the absence of
metastability in the sense that there is no two local minima
configurations in the parameter domain. We have shown that
outside the equilibrium, the populations are always a peri-
odic function of time, where the periodic motion can be a

libration or a rotation. In the first case the phaseū2 is always
limited whereas in the second case it always increase(de-
crease), as a function of time.

Finally we would like to remark that the restriction to a
homogeneous mixture is not only of academic interest[3,4].

Besides being a guide to what happens in the case of trapped
condensates, classical Hamiltonians of the type considered in
this paper emerge in a mean-field description of the quantum
single-mode approximation for spinor condensates in a trap
[8].
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