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We theoretically investigate vortex-lattice phases of rotating spinor Bose-Einstein condensates(BEC’s) with
a ferromagnetic spin interaction by numerically solving the Gross-Pitaevskii equation. The spinor BEC under
slow rotation can sustain a rich variety of exotic vortices due to the multicomponent order parameters, such as
Mermin-Ho and Anderson-Toulouse coreless vortices(the two-dimensional Skyrmion and meron) and nonaxi-
symmetric vortices with shifting vortex cores. Here, we present the spin texture of various vortex-lattice states
at higher rotation rates and in the presence of an external magnetic field. In addition, the vortex phase diagram
is constructed in the plane of the total magnetizationM and the external rotation frequencyV by comparing the
free energies of possible vortices. It is shown that the vortex phase diagrams in theM-V plane may be divided
into two categories:(i) the coreless vortex lattice formed by the several types of Mermin-Ho vortices and(ii )
the vortex lattice filling in the cores with the pure polar(antiferromagnetic) state. In particular, it is found that
the type-(ii ) state forms composite lattices of coreless and polar-core vortices. The difference between type(i)
and type(ii ) results from the existence of the singularity of the spin textures, which may be experimentally
confirmed by the spin imaging within polarized light recently proposed by Carusotto and Mueller. We also
discuss the stability of triangular and square lattice states for rapidly rotating condensates.
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I. INTRODUCTION

The quantized vortex is one of the hallmarks of superflu-
idity and as such the macroscopic quantum phenomenon has
been studied in many different physical fields ranging from
condensed matter physics to neutron stars and cosmology.
Recently, quantized vortices have been successfully created
in Bose-Einstein condensates(BEC’s) of alkali-metal-atom
gases confined in a magnetic trap by several experimental
methods[1–4]. The static and dynamic properties of vortices
and vortex lattices have been investigated both theoretically
and experimentally[5]. Several groups are now able to pre-
pare a vortex array with more than 100 vortices in a BEC
[6,7].

Further achievement of Bose-Einstein condensation was
recently done by all optical methods without recourse to
magnetic trapping in23Na [8,9], 87Rb [10–12], and 174Yb
atoms[13]. Apart from174Yb atoms, these systems, so-called
spinor BEC’s, can keep internal degrees of freedom with the
hyperfine spinF=1 or 2. The two-body interaction of spin-1
bosons is written asgn+gsF ·F with two parametersgn and
gs which describe the density and spin interactions, respec-
tively [14,15]. The spin interaction of23Na spinor conden-
sates is antiferromagneticgs.0 [8], while it is shown by
Klausenet al. [16] that 87Rb condensates have a ferromag-
netic naturegs,0. Thus, we now have spinor BEC’s with
both ferromagnetic and antiferromagnetic interactions.

Due to this internal degree of freedom, a rich variety of
exotic topological excitations have been proposed by a large
number of authors after the pioneering work by Ohmi and
Machida [14] and Ho [15]: monopoles [17–19], three-
dimensional Skyrmions[20] and two-dimensional Skyrmi-

ons (coreless vortices) [21–24], Alice strings(half-quantum
vortices) [25–27], and other unconventional vortices
[28–35]. Spinor BEC’s provide us an opportunity to mi-
nutely study these exotic properties as a new example of
multicomponent superfluids. Among such exotic states, in
particular, Skyrmion excitations play an important role in
other physical systems: quantum field theory[36], the quan-
tum Hall system[37], superfluid3He [38], nematic liquid
crystals [39], and unconventional superconductivity[40].
The periodic structures of such a topological state have been
studied in rotating superfluid3He [38,41–44], and are called
the Mermin-Ho[45] and Anderson-Toulouse vortices[46]. In
the quantum Hall system, the textures and stability of Skyr-
mion lattices have also been studied[47,48].

An earlier theoretical study focused on Skyrmion excita-
tions in a spinor BEC has been performed by Khawaja and
Stoof [20], who pointed out that the three-dimensional Skyr-
mion is not a thermodynamically stable object. The numeri-
cal analysis of the Gross-Pitaevskii and Bogoliubov equa-
tions under slow rotation, however, led to the conclusion that
such a topological excitation in the two-dimensional disk is
stable and robust in a ferromagnetic spin interaction[23]. In
addition, at the high rotation limit, Reijnderset al. [34] have
presented vortex- and Skyrmion-lattice states for spin-1
bosons in the lowest Landau level. They have also analyzed
the exact ground state near the critical rotation and have
proposed a rich variety of quantum Hall liquid states. In the
mean-field regime for rapidly rotating spinor BEC’s, a nu-
merical study of the Ginzburg-Landau equation has been per-
formed within the higher Landau levels[33]. Here, it has
been found that several types of vortex lattice with a shifted
core compete with each other, depending sensitively on the
spin interaction.

Previously in our series of papers[23,31], we have iden-
tified that in spinor BEC’s with a ferromagnetic spin interac-
tion, the Mermin-Ho vortex is favored under slow rotation.*Electronic address: mizushima@mp.okayama-u.ac.jp
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This coreless vortex naturally connects to the non vortex
state as the total magnetization becomes higher, i.e., the sca-
lar condensate limit. Upon increasing the rotation rate, the
stable region of the Mermin-Ho vortex shifts toward the low
magnetization region, while another vortex state, called the
polar-core vortex, appears in the high magnetization region.
This is the vortex state filling the core with the pure polar
(antiferromagnetic) state. In this paper, we will investigate
the structures of many vortices by numerically solving the
Gross-Pitaevskii equation. The main purpose of the present
paper is to address the sequence of states in a spinor BEC
with higher rotation frequency and complete the vortex
phase diagram in the plane of the external rotation frequency
V versus the magnetizationM in order to help establish the
properties of textures in spinor BEC’s. In addition, we will
discuss the stability of two lattice states for rapidly rotating
condensates, such as the Abrikosov lattice filling the cores
with the polar state and the square lattice having continuous
texture[41].

This paper is organized as follows. In Sec. II, we first
present the extended Gross-Pitaevskii equation for spinor
BEC’s, and then explain the numerical procedure to find lo-
cal minima of the energy functional. The spin textures and
other properties of the favored single-vortex state are shown
in Sec. III. In Sec. IV, we present the vortex phase diagram in
the V-M plane, obtained by comparing free energies. We
also display the detailed structures of each ground state. Fur-
thermore, in Sec. V, we show the instability of triangular or
square lattice states for rapidly rotating condensates upon
changing the total magnetization(or the external magnetic
field). The conclusion and discussion are given in Sec. VI.

II. THEORETICAL FORMULATION

A. Gross-Pitaevskii equation

The Hamiltonian for theF=1 spinor BEC in a frame ro-
tating with the frequencyV=Vẑ is [14,15]

H =E drFo
j

C j
†hhsrd − m − jBzjC j+

1

2o
i jkl

Ci
†C j

†hgnd jkdil

+ gsF ik ·F jljCkClG , s1d

whereC j andC j
† are the field creation and annihilation op-

erators for a boson in the eigenstates ofFz (i , j ,k, l =0, ±1).
The one-body Hamiltonian is written as

hsrd = −
"2¹2

2m
+ Vsrd − VLz, s2d

with the two-dimensional confinement potentialVsrd
= 1

2mv2sx2+y2d and the projection of the angular momentum
to the z axis Lz=−i"sx]y−y]xd. The interaction between at-
oms with massm is characterized by the interaction strengths
through the “density” channelgn=s4p"2/mdsa0+2a2/3d,
and the “spin” channelgs=s4p"2/mdsa2−a0d /3, wherea0

and a2 are thes-wave scattering lengths in the total spin 0
and 2 channels, respectively.m and Bz correspond to the

chemical potential and magnetic field along thez axis, re-
spectively.

The spin angular momentum operatorsFasa=x,y,zd with
F=1 can be expressed in matrices as

Fx =
1
Î210 1 0

1 0 1

0 1 0
2 ,

Fy =
i

Î210 − 1 0

1 0 − 1

0 1 0
2 ,

Fz = 11 0 0

0 0 0

0 0 − 1
2 , s3d

where the basis is taken as the eigenvector of the spin pro-
jection along thez axis. These operators satisfy the commu-
tation relationfFa ,Fbg= ieabgFg. In this basis, the field op-
erators for spin-1 bosons are described asC
=sC+1,C0,C−1d.

ReplacingC in Eq. (1) by the condensate wave-function
c=kCl and following the standard procedure, the time-
dependent Gross-Pitaevskii(GP) equation is obtained as

i"
]

] t
c j = fhh − m − jBz + gnrjd jk + gskFl ·F jkgck, s4d

where kAl=oi jci
*srdAijc jsrd and the local densityrsrd

=c†srdcsrd.
Here, equilibrium states are found numerically via imagi-

nary time propagation of Eq.(4), t→t=−it, starting from an
arbitrary initial state with random phases of each component
and with random vortex configurations. This numerical pro-
cedure is equivalent to finding the local minima of the free
energy functional

Ffc j,c j
*g =E drHkhl +

1

2
sgnr2 + gskFl2dJ − mN2D − BzM ,

s5d

wherem andBz are interpreted as the Lagrange multipliers.
We use the total numberN2D and the total magnetization
M =o j edr j uc ju2 as independent variables. Since we assume
uniformity along thez direction, the order parameter must
satisfy the normalization condition

N2D = o
j
E dr uc jsrdu2. s6d

In order to satisfy this condition, the chemical potentialm is
varied during the numerical iteration. The propagation in
imaginary time continues until the fluctuation inm becomes
smaller than 10−10 and also that in the norm becomesø10−8.

The actual calculations are carried out by discretizing the
two-dimensional space into a 1002,4002 mesh. We have
performed an extensive search to find stable vortices, starting
with arbitrary initial vortex configurations for the ferromag-
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netic interaction strengthgs/gn=−0.02. In addition, we use
the following parameters: the mass of a87Rb atom m
=1.44310−25 Kg, the trapping frequencyv /2p=200 Hz,
and the particle number per unit length along thez axis
N2D=104/mm.

B. Local spin and nematic orders

It is convenient to introduce a new basis setcasa
=x,y,zd where the quantization axis is taken along thea
direction [14]. The transformation from the Cartesian repre-
sentationca to c j is obtained as

c = 1c+1

c0

c−1
2 =1

− 1
Î2

i
Î2

0

0 0 1

1
Î2

i
Î2

021cx

cy

cz
2 . s7d

Then it is useful to adopt the following representation with
real vectorsm andn:

c = Îrsm + ind. s8d

We also define thespin textureas

l = m 3 n, s9d

which describes the direction of the local spinl =kFl /r. Re-
cently, Mueller [35] showed that a tensorQab=ca

* srdcbsrd
can be decomposed as follows:

Qabsrd = ieabglgsrdrsrd + Nabsrd, s10d

Nabsrd = dabrsrd −
1

2
fkFaFbl + kFbFalg, s11d

where Nabsrd is a symmetric tensor with second rank and
describes the spin fluctuation. Furthermore, Carusotto and
Mueller [49] proposed that the local values of these spin and
nematic orders can be imaged by using polarized light. Thus
it may be convenient to define thelocal nematicityas

N = TrfN̂2g/r. s12d

The amplitude of this nematicity is obtained as

Nsrd = 1 −
1

2o
a

la
2srd, s13d

which reflects the competing characteristics between the lo-
cal spin order and the local nematic order.

III. SINGLE-VORTEX STATES

In an axisymmetric system, the order parameter is ob-
tained within the winding number of thej th componentwj
and the relative phasea j asc j = uc juexpfiswju+a jdg. From the
minimizing of the spin-interaction energygskFl2, it follows
that the winding and the relative phase satisfy the relations
2w0=w+1+w−1 and 2a0=a+1+a−1+np [29], wheren is an

integer and the even(odd) number corresponds to the ferro-
magnetic (antiferromagnetic) interaction. The spinor order
parameter then may be written as

c j = Îr jexphifwu − jsw8u + adgj, s14d

and the spin texture in thex-y plane is given asslx, lyd
~ (cossw8u+ad ,sinsw8u+ad), which is classified with the
winding numberw8 and the relative phasea. Here,w andw8
are related towj by wj =w− jw8, anda anda j also satisfy the
relationa j =−ja.

A. Coreless vortices

In a ferromagnetic gas withl2=1, m andn in Eq. (5) are
unit vectors withm'n and hence these three real vectors
sl ,m,nd form a triad [14]. From the superfluid velocityv
=oas"r /2mdsma¹na−na¹mad, the local vorticity is ob-
tained as

¹ 3 v =
"

m o
a,b,g

eabglas¹ lbd 3 s¹ lgd, s15d

which implies the Mermin-Ho relation[45]. In other words,
since the original Hamiltonian for the nonrotating system
with a ferromagnetic spin-interaction has SOs3d symmetry
[15], the local spins may sweep the whole or half the unit
sphere. The Mermin-Ho(MH) vortex is thermodynamically
favored under slow rotation and weak magnetic field where
the spin interaction rather than the contribution of the mag-
netic field dominates the free energy Eq.(5). This coreless
vortex takesw=1 andw8 =1, corresponding to the winding
combinationkw+1,w0,w−1l=k0,1,2l. This is parametrized as

c = Îreiwu1
e−isw8u+ad cos2

b

2

Î2 sin
b

2
cos

b

2

eisw8u+ad sin2b

2

2 , s16d

where the bending anglebsrd runs over 0øbsrdøp and u
signifies the polar angle in polar coordinates. The spin tex-
ture is given as

lsrd = 1sin bsrdcossw8u + ad
sin bsrdsinsw8u + ad

cosbsrd
2 , s17d

where b has flexibility for M [23]. As shown in Figs.
1(a)–1(c), the MH vortex has a rich variety of two-
dimensional types of spin textures by changing the relative
phases between the spin components: Typical textures form
the radial disgyrationlirsa=0,pd and the circular disgyra-
tion l ' rsa=p /2d. Another type of MH vortex is classified
asw8 =−1, i.e., the winding combinationk2,1,0l. As seen in
Fig. 1(d), the projection of the texture to thex-y plane forms
a cross disgyration. This texture is also called the mixed-
twist (MT) texture [42,44]. These two typesk0,1,2l and
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k2,1,0l of coreless vortex are completely degenerate atM
=0.

B. Singular vortices

In the high magnetization region, the external magnetic
field gives the free energy dominant contribution beyond the
spin interaction energy. The texture then depends sensitively
on the applied magnetic field. The stable vortex in slowly
rotating BEC’s is the polar-core vortex, which takes the
winding w=0 andw8=−1, corresponding to the combination
k1,0,−1l. This vortex is thermodynamically favored over
two coreless type vortices in the high magnetization region,
which is independent of the strength and the sign of the spin
interaction, i.e., the polar-core vortex is the stable object for
both the ferromagnetic and antiferromagnetic interaction
[31]. In this configuration, thec0 component with zero wind-
ing numberw0=0 occupies the central region of the vortex
core which is made up of thec1 component. Figure 2 shows
the spin amplitude and the local nematicity. This state is
classified as the winding numberw8=−1 state and thus the
two-dimensional texture forms the cross disgyration, shown
in the inset of Fig. 2. However, this texture differs from that
of the MT vortex in the following ways.(i) The polar-core
vortex has a singularity at the center of the cross disgyration
where the local nematic order grows up.(ii ) Since the spin
Fz=0 component is localized in the core region whose length
scale is of the order of the density variation characterized by
jn=" /Î2mn0gn,0.1 mm, the spatial variation of local spin
and nematic orders is also of the order ofjn. Here,n0 denotes
the peak density of the condensate. As the total magnetiza-

tion M increases, this state continuously connects to the con-
ventional vortex state in a scalar BEC.

Recently, Leanhardtet al. [50] have created a coreless
vortex by using the Berry phase engineering method[51].
Bulgakov and Sadreev have also found that the polar-core
vortex k1,0,−1l becomes stable in a nonrotating harmonic
trap with an applied Ioffe-Pritchard magnetic field[52].

IV. VORTEX PHASE DIAGRAM

The vortex phase diagram is calculated by comparing the
free energy in the plane of the total magnetizationM and the
external rotation frequencyV. In Fig. 3, we display the re-
sulting phase diagram of the vortex state in theM-V plane
up to V=0.4v. The phase diagram for slow rotation up to
V=0.2v qualitatively agrees with the earlier result in Ref.
[23] where a few parameters are different from the current

FIG. 1. The spin textures of isolated Mermin-Ho vortices:(a)
and (b) radial disgyrationssw8= +1,a=0,pd; (c) the circular dis-
gyration sw8= +1,a=p /2d; (d) the cross disgyration withw8=−1.

FIG. 2. The spin amplitude of thel vector(solid line) and local
nematicity Nsrd (dashed line) of the polar-core vortex. The spin
texture projected to thex-y plane is shown in the inset.

FIG. 3. The vortex phase diagram in the plane of the total mag-
netizationM and the external rotation frequencyV. The solid lines
represent phase boundaries between different vortex states: the non-
vortex state, singular vortices, and continuous vortices. The details
of each phase are noted in the text.
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system. The rest of the phase diagram can be divided into
two categories:(i) coreless vortex lattices formed by the MH
and/or MT textures, and(ii ) singular vortex lattices filling the
core with the polar state. The phase boundary is depicted by
the solid line in Fig. 3. The phase of continuous vortices can
be classified as follows: MH-1, the single MH vortex state as
seen in Figs. 1(a)–1(c) MH-2 a pair state of the off-centered
MH vortex with radial or circular disgyration; and MT-n, the
vortex states ofn MT vortices mixing with some MH vorti-
ces sn=1,2,3d. Here we have identified the stable phase
within the number of the MT vortex rather than MH vortex,
because in the nonzeroM region the degeneracy of MH and
MT vortices is lifted by the presence of the external magnetic
field and the role of the MT vortex becomes important. The
details will be discussed in Sec. IV A. The other phases la-
beled by sP-nd in Fig. 3 are identified as singular vortex
lattices formed by a number of polar-core vortices. It is noted
that at the limit of a scalar condensate,M /N=1, the region
V,0.2v corresponds to the vortex-free state and at the ro-
tation rateV=0.4v the four vortices are energetically stable.
The composite state of MT and polar-core vortices also ap-
pears in a narrowM region, labeled by C-1 and C-2.

For a slowly rotating BEC,V,0.2v, the two axisymmet-
ric vortices shown in Figs. 1 and 2 are energetically favored.
It is seen that the single MH vortex is stable in the low
magnetization region of Fig. 3 while the single polar-core
vortex appears in the high magnetization region. The separa-
tion of this stable region can be qualitatively understood
from the energy of the external rotation drive −VLz. It is
easy to calculate the total angular momentumLz of axisym-
metric vortices; by using the total numberN2D and the total
magnetizationM, it is simply written as

Lz

"N2D
= w − w8

M

N2D
. s18d

At M /N2D=1, MH vortices withw=w8=1 are equivalent to
the vortex-free state withLz/"N2D=0. As M decreases, the
angular momentum increases as a linear function ofM and it
reaches the value of the single vortexLz/"N2D=1 at
M /N2D=1. Conversely, the polar-core vortex withw=0 and
w8=−1 forms a conventional vortex withLz/"N2D=1 at
M /N2D=1 and, asM decreases, the angular momentum
reaches to the zero because of the growth of the spin com-
ponents with zero and negative winding numbers. This con-
trasting behavior for the total magnetization may reflect the
competition of two axisymmetric vortices in the phase dia-
gram. For the higher rotation frequencies beyond the single
vortex region, it is also seen that the stable regions of singu-
lar and coreless vortices are similarly separated along the
magnetization axis. The detailed structures of these two
phases are discussed separately below.

A. Coreless vortices

In the low magnetization region, corresponding to zero or
weak magnetic field, the energy of the spin interaction is
dominant over the magnetization term. Here, the important
length scale is characterized by the spin-interaction strength
js=" /Î2mn0gs,10jn [53], which results from the competi-

tion between the spin interaction and the kinetic term. This
length scale becomes the order of spacing between neighbor-
ing vortices. This requires the continuous spin texture as the
energetically favored state. Such continuous vortex states can
be interpreted to consist of several MH and MT vortices.

Figure 4(a) shows one example of stable vortices atV
=0.35v andM /N2D=0 where the vector plots are the projec-
tion of the local spinl to thex-y plane and the density map of
lz represents the projection to thez axis. This state has a
continuous spin texture formed by two MH and two MT
vortices which are arranged regularly to form a square lat-
tice. This spin texture is similar to that proposed by Fujitaet
al. [41] in connection with the superfluid3He-A phase under
rotation. The total density profile forms a quite smooth bell
shape.

As M increases, the angular momentum of the MH vortex
continuously decreases as a function ofM while that of the
MT vortex increases. Therefore, at finiteM, the MT vortex
becomes the important object rather than the MH vortex.
Figures 4(a)–4(c) show the equilibrium state for the different
M: M /N2D=0.0 (a), 0.18 (b), 0.3 (c). At M =0, four degen-
erate coreless vortices form a square lattice. AsM increases,
two cores with the MT texture approach each other. As seen
in Fig. 4(b), the equilibrium state atM /N2D=0.18 forms a
double core of two MT vortices. Here, two MH textures with
circular disgyration start to be locked by the external mag-
netic field, which implies that the MH vortex continuously
deforms into the vortex-free state. In Fig. 4(c), the equilib-
rium texture atM /N2D=0.3 andV=0.35v is displayed; it
has axisymmetry with the higher winding numbersw= +2
andw8=−2, i.e.,k4,2,0l. This can also be regarded as a pair
state of the MT vortex withw8=−1. The spin texture then
can be obtained asl = ẑcosb+sin bsx̂ cos 2u− ŷ sin 2ud.
Here the bending anglebsrd varies frombsRd=0 around the
condensate surface tobs0d=p at the core. These three states
are classified as two MT vortices(MT-2) in the phase dia-
gram Fig. 3.

As the rotation rateV increases, however, vortex states
with various discrete rotational symmetries around the BEC
center are favored, such as the threefold(b), fourfold (c), and
fivefold symmetric states(d) in Fig. 4. It should be empha-
sized that all these states have no singularities in the spin
texture.

B. Singular vortices

As shown in Fig. 3, the singular vortices labeled by P-n
are energetically favored over coreless vortices in the high
magnetization regionM /N2D.0.5. At the high magnetiza-
tion limit M /N2D=1, all spins are polarized along thez axis.
This spin-polarized gas is then described within the scalar
order parameter and the rotating ground state forms the con-
ventional vortex lattice withm-fold discrete rotational sym-
metry (m=2, 3, 4, 5, and 6) [54]. As M decreases, the vor-
tex cores formed by the spinFz= +1 component are filled by
the other condensate with spinFz=0. We depict the density
profiles of each condensate with spinFz= +1 and 0 compo-
nents atV=0.4v and M /N2D=0.92 in Figs. 5(a) and 5(b).
This state consists of five polar-core vortices, labeled by P-5
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in Fig. 3. The spinFz=0 component is then localized in a
narrow region which is of the order of the length scale of the
density variationjn. Therefore a sharp peak of the local ne-
maticity appears in the vortex-core region, shown in Fig.
5(c). As seen in Fig. 5(d), the spins are almost locked by the
external magnetic field and the spin texture can continuously
vary around the cores. This forms a cross disgyration having
singularities at the center of the disgyration. The length scale
is characterized byjn!js and thus the spatial variation of
the spin texture is much shorter than the spacing between
vortices. The result is that there is no correlation between
each polar-core vortex.

Figures 5(e) and 5(f) show the density profiles of each
componentr+1 andr0 at V=0.4v and M /N2D=0.71. AsM
decreases, the spin 0 componentr0 spreads in between vor-
tices formed by the spinFz= +1 component. This leads to the
growth of the local nematicity, shown in Fig. 5(g). The spin
texture is depicted in Fig. 5(h) where the spin texture forms
five cross disgyrations having broader spatial variation than
that in Fig. 5(d). Then, a coreless vortex with radial disgyra-
tion is spontaneously created in the center of five polar-core
vortices in order to smoothly connect the five cross disgyra-
tions. This is similar to the texture of the coreless vortices
shown in Fig. 4(f). However, the length scale of the spatial

FIG. 4. The textures of continuous vortex lattices near low magnetization atV=0.35v: the vortex states with two MH and two MT
textures atM /N=0.0 andLz/"N=2.44 (a), M /N=0.18 andLz/"N=2.47 (b), andM /N=0.3 andLz/"N=2.58 (c). The density map oflz is
displayed in the left column of(a)–(c) in the range of −1(black) and +1(white). The vector plot corresponds to the projection of thel vector
to the x-y plane.(d)–(f) are other possible stationary state atM /N2D=0; V=0.4v (d) and 0.45v (e) and (f). All the vortex states have
continuous spin textures and the total density profiles always have a smooth bell shape.
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variation of the texture is characterized by the order of the
density variationjn rather thanjs. In addition, point singu-
larities exist in the spin texture. It should be noted that the
system keeps discrete rotational symmetry even if the total
magnetizationM further decreases, which is a common fea-
ture of the other ground states labeled by P-n in Fig. 3 (n
=2, 3, and 4).

V. VORTEX LATTICES

Here we show one example of the equilibrium state for
rapidly rotating BEC’s. Under slow rotation, the ground state
at M /N2D,0 consists of coreless MH and/or MT vortices as

seen in Sec. IV. The initial state is taken as the continuous
texture periodically arranged on the square lattice, whose
unit cell consists of two MH and two MT vortices as seen in
Fig. 4(a). By numerically solving the GP equation atV
=0.9v in the absence of an external magnetic field, the
square lattice is given as the equilibrium state, shown in Fig.
6(a). This lattice is constructed from two sublattices of the
MH vortex with circular disgyration and the MT vortex with
cross disgyration, and the local spins on the two sublattice
sites are locked to the alternate directionsẑ and −ẑ, respec-
tively. It is, however, found in the equilibrium spin that there
is slight distortion from a square array around the condensate
surface where the Thomas-Fermi radius is,5.8 mm.

FIG. 5. The equilibrium state atV=0.4v andM /N2D=0.92. The density profiles of the spinFz= +1 (a) andFz=0 (b) components, the
local nematicityN (c) in the region −6mm,x,y, +6 mm. (d) shows thel vector in the central region −4mm,x,y, +4 mm. In the left
figure, the density map oflz is shown in the range of 0(black) and +1(white), and the vector plot in the right figure corresponds to the
projection of thel vector to thex-y plane.(e)–(h) correspond to the equilibrium state atV=0.4v andM /N2D=0.71. The local nematicity in
(c) and (g) is displayed in the range of 0.5(black) and 1(white).

FIG. 6. (Color) The spin textures atV=0.9v andM /N2D=0.0 (a) andM /N2D=0.3 (b). At M /N2D=0.3 the total density profile and the
local nematicity are shown in(c) and (d), respectively. The local nematicity in(d) is displayed in the range of 0.5(black) and 1(white).
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In the presence of a weak magnetic field, the same initial
state yields another equilibrium state. The equilibrium tex-
ture and the total density profile atM /N2D=0.3 are depicted
in Figs. 6(b) and 6(c), respectively. At the BEC center, there
is a nonsingular Skyrmion texture with higher winding num-
ber whose spin texture is characterized by Eq.(17) with w
= +2 andw8= +2. This is also identified as a pair of MH
vortices with circular disgyration. In addition, two MT vor-
tices with cross disgyration form a double-core state and are
located around the center. It is, however, found that other
vortices with cross disgyration appear around the condensate
surface. They have point singularities and thus the local ne-
maticity shown in Fig. 6(d) grows up at the cores. This vor-
tex lattice can be identified as a composite lattice of a core-
less vortex and a polar-core vortex. It is noted that two length
scales of the spin variation exist in this lattice site,jn andjs.

On the other hand, we discuss the stability of the vortex
lattice in the highM region for rapidly rotating BEC’s. Fig-
ures 7(a)–7(d) show the structure of the equilibrium state at
V=0.9v and M /N2D=0.95: the total density profile(a), the
spin texture(b) and (c), and the local nematicity(d). The
initial state in the calculation of the GP equation is taken as
the vortex configuration with hexagonal symmetry which is
the most favored configuration in rotating scalar BEC’s, cor-
responding to the high magnetization limitM /N=1. The re-
sulting equilibrium state consists of vortices filling the cores
with the polar state and keeps hexagonal symmetry. As
shown in Fig. 7(d), local nematic order grows up in the nar-
row core region where the spin texture has singularities. This
length scale is characterized by the order of the density varia-
tion jn.

Figure 7(e) shows the total density profile atV=0.9v and
M /N2D=0.59. It is seen that the symmetry of the lattice dras-
tically changes from hexagonal symmetry to square, where
the initial state is taken as the vortex lattice regularly ar-
ranged in the hexagonal symmetry. This transition occurs at
the total magnetizationM /N2D,0.93 atV=0.9v. The spin
texture projected to thez axis is depicted in Figs. 7(f) and
7(g). As seen in Fig. 7(g), a coreless MH vortex with circular
disgyration is spontaneously created in the spacing between
polar-core vortices with cross disgyration. In addition, the
spatial distribution of the local nematicity spreads over the
spacing between neighboring vortices, shown in Fig. 7(h).
This results from the spatial continuity of the spin texture,
i.e., the ferromagnetic feature of the spin interaction. Such a
drastic change of the symmetry of the vortex lattice has also
been reported in two-component BEC’s[55,56].

VI. CONCLUSIONS

In this paper, we have presented the results of numerical
calculations of the vortex-lattice states in rotating BEC’s
with a ferromagnetic interaction. In the absence or presence
of an external magnetic field, we have studied the local prop-
erties of the stable states, such as the spin texture and the
local nematicity. In addition, the vortex phase diagram has
been constructed in the plane of the external rotation fre-
quencyV and the total magnetizationM. The stable phase
can be divided into two categories:(i) coreless vortices with
nonsingular spin texture and(ii ) singular lattices with polar
(antiferromagnetic) cores. In the resulting phase diagram,
competition between these two phases has been found.

FIG. 7. At V=0.9v andM /N2D=0.95, the total density profile(a) and spin texture projected to thez axis (b). In (b), the density map of
lz is shown in the range of 0(black) and +1(white), The l vector in the central region −1.8mmøx,yø +1.8 mm is depicted in(c), where
^ means the location of the spin singularityul u=0. (d) The two-dimensional profile of the local nematicity.(e)–(h) The equilibrium state at
V=0.9v andM /N2D=0.59. The local nematicity in(d) and (h) is displayed in the range of 0.5(black) and 1(white).
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Coreless lattices which are the most favored state in zero
magnetic field are formed by several types of two-
dimensional disgyration, corresponding to two-dimensional
Skyrmion lattices. In addition, for rapidly rotating BEC’s, a
coreless vortex regularly arranged on a square lattice has
been presented and its stability has been discussed. This
square lattice becomes unstable on applying the weak mag-
netic field and then neighboring MT vortices are paired and
form a double-core lattice or a Skyrmion lattice with higher
winding number.

In the highM region, it has also been demonstrated that
singular lattices are energetically favored over coreless vor-
tices. The projection of the texture to thex-y plane in a
singular vortex is the same as that in a coreless MT vortex.
With decreasingM, the spatial variation of the spin texture

becomes broader than the order of the density variationjn
and the correlation between neighboring vortices plays an
essential role. As a result, a drastic change of the hexagonal
lattice into a square one has been demonstrated, which may
be experimentally identified by using spin imaging within
polarized light as proposed by Carusotto and Mueller[49].
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