
Dynamics of the superfluid to Mott-insulator transition in one dimension

S. R. Clark and D. Jaksch
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

(Received 25 May 2004; published 12 October 2004)

We numerically study the superfluid to Mott insulator transition for bosonic atoms in a one-dimensional
lattice by exploiting a recently developed simulation method for strongly correlated systems. We demonstrate
this method’s accuracy and applicability to Bose-Hubbard model calculations by comparison with exact results
for small systems. By utilizing the efficient scaling of this algorithm we then concentrate on systems of
comparable size to those studied in experiments and in the presence of a magnetic trap. We investigate spatial
correlations and fluctuations of the ground state as well as the nature and speed at which the superfluid
component is built up when dynamically melting a Mott insulating state by ramping down the lattice potential.
This is performed for slow ramping, where we find that the superfluid builds up on a time scale consistent with
single-atom hopping and for rapid ramping where the buildup is much faster than can be explained by this
simple mechanism. Our calculations are in remarkable agreement with the experimental results obtained by
Greineret al. [Nature(London) 415, 39 (2002)].
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I. INTRODUCTION

Recent experiments on loading Bose-Einstein condensates
into an optical lattice have allowed for the creation and study
of strongly correlated systems of atoms[1–4]. In particular
the superfluid(SF) to Mott insulating (MI ) transition first
observed in a seminal experiment by Greineret al. [1] has
received a lot of attention since it impressively demonstrated
a clean realization of the Bose-Hubbard model(BHM) [5]
which has long been considered a toy model in condensed
matter physics. Furthermore, in the ideal MI state each atom
is localized to a lattice site corresponding to a commensurate
filling of the optical lattice with zero-particle-number fluc-
tuations. These properties make MI states attractive candi-
dates for several applications, most notably quantum
memory, quantum computing[6–12], and quantum simula-
tions of many-body quantum systems[13,14].

The BHM Hamiltonian describes atoms loaded into a suf-
ficiently deep optical lattice[15,16]. It contains a kinetic
energy term, with matrix elementJ, describing the hopping
of particles from one site to the next and an interaction term,
with matrix elementU, which accounts for the repulsion of
two atoms occupying the same site. The ratioU /J increases
with the depth of the optical lattice and can be varied over
several orders of magnitude by tuning the optical lattice pa-
rameters[15]. In particular by changing the intensity of the
laser beams creating the optical lattice it is possible to varyJ
and U on time scales much smaller than the decoherence
time of the system. This opens up the possibility of directly
studying the dynamics of the BHM during the quantum
phase transition at temperatureT=0 [1,17]. According to
mean-field (MF) theory this phase transition occurs atuc
=U /zJ<5.8, wherez is the number of nearest-neighbor sites
in the lattice[5,18,19] and is easily accessible in an optical
lattice.

In [1] the dynamics of atoms in a three-dimensional(3D)
optical latticesz=6d was studied while more recently optical
lattice setups where the motion of the atoms was restricted to

1D sz=2d [2] were investigated. These experiments revealed
some striking properties of the quantum phase transition. In
particular a feature which is yet to be fully understood is the
time scale over which coherence is built up throughout the
atomic system when going from the MI to the SF limit[1].
Indeed it cannot be easily explained using MF theory and
numerical studies of this dynamical effect were, until now,
limited to small systems of approximately ten atoms. Re-
cently, however, it has been shown that quantum computa-
tions on 1D systems of qubits which do not give rise to
strong entanglement can be efficiently simulated on a classi-
cal computer via the so called time-evolving block decima-
tion (TEBD) algorithm [20]. An immediate application of
this discovery is to the simulation of the time evolution of
many-body 1D quantum systems which are governed by a
nearest-neighbor Hamiltonian[21]. The BHM is one of
many important model Hamiltonians which fall into this
class[22]. The simulation method is efficient for all such 1D
model Hamiltonians due to a universal property of 1D sys-
tems that their ground state and lowest-lying excitations tend
to contain only a small amount of entanglement[21].

In this paper we restrict our attention to the 1D BHM with
our physical motivation being to study the nature and speed
at which the superfluid component is built up as the system is
dynamically driven through the SF-MI transition. By exploit-
ing the efficient scaling of the TEBD algorithm with the size
of the system we are able to investigate this phenomenon for
setups which are of comparable size to those studied in ex-
periments[2]. First, in Sec. II, we introduce the 1D BHM for
describing atoms in optical lattices and briefly introduce the
TEBD algorithm as used in this paper. In Sec. III we then
demonstrate the applicability of the TEBD to the BHM by
comparison with exact numerical calculations for small sys-
tems. This is then followed by an investigation of SF and MI
ground states of larger lattice setups concentrating on their
spatial correlations and occupation number fluctuations to-
gether with a comparison to MF results. We then study the
dynamics of the MI to SF transition in Sec. IV when chang-
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ing the lattice depth on two different time scales. Most nota-
bly for rapid MI to SF ramping we find that the width of the
central interference peak, as observed after releasing the at-
oms from the lattice, shrinks with an increasing total ramp-
ing time with the same functional dependence found in[1].
This result is discussed in Sec. IV B. Finally, we summarize
our results in Sec. V.

II. MODEL AND NUMERICAL METHOD

In this section we introduce the BHM describing bosonic
atoms in an optical lattice where the motion is restricted to
1D and give a short overview of the numerical method used
in our simulations.

A. Model

By confining an ultracold bosonic gas in a 3D optical
lattice with a large depth in the two orthogonal directionsy
andz it is possible to create an array of effective 1D systems
in thex direction[2,10,23]. The dynamics of these systems is
governed by the external trapping and the optical lattice po-
tential along thex axis. The optical lattice then has a depth
V0 proportional to the laser intensity and a lattice perioda
=l /2, where l is the wavelength of the laser light. The
Hamiltonian describing each 1D system reduces to the 1D
BHM (for details see Appendix A) [15] (taking "=1
throughout)

H = o
m

− Jsbm
† bm+1 + H.c.d − mmbm

† bm +
U

2
bm

† bm
† bmbm,

s1d

where the operatorsbm sbm
† d are bosonic destruction(cre-

ation) operators for a bosonic particle in sitem, centered at
xm=ma, obeying the standard canonical commutation rela-
tions. The grand canonical Hamiltonian then hasmm=m
−VTsxmd as the local chemical potential for sitem, whereVT

is the external trapping potential. The parametersU and J
can be determined in terms of the Wannier functionswsxd as
shown in Appendix A, and under the assumptions outlined
are independent of the lattice sitem [15]. Their ratio can be
varied over a wide range by dynamically changing the depth
V0 of the optical lattice. For all the systems considered here
we take the wavelength of the light used to form the optical
lattice asl=826 nm, and the atomic species trapped as87Rb,
whereas=5.1 nm.

B. Numerical method

In this paper we exploit the recently devised TEBD simu-
lation algorithm[20,21] which allows the dynamics of 1D
systems with nearest-neighbor interactions, such as the
BHM, to be computed accurately and efficiently. The TEBD
algorithm has been shown to be closely related to the density
matrix renormalization group(DMRG) [24,25]. Over the
past decade the DMRG has provided enormous insight into
the static and dynamic equilibrium properties of 1D systems.
Although originally devised as a ground-state method, it has
been extended to yield accurate low-energy spectra[26] and

also to calculations of the real time evolution of 1D systems
[27] which is of particular importance here. The approach of
[27] is to take the DMRG ground stateucs0dl obtained for
the initial Hamiltonian and use it to define a decimation of
the Hilbert space in which the Schrödinger equation is nu-
merically integrated. The key assumption, and most severe
approximation, within this scheme is that this static subspace
defined byucs0dl is adequate to approximateucstdl with rea-
sonable accuracy for all times. In general this will only be
true for short periods of time. Novel methods have been
devised[28] which can maintain the accuracy over longer
periods by “targeting” other states in addition to the ground
state, but in doing so the efficiency of the computation is
significantly reduced[29]. In contrast the TEBD algorithm
can maintain typical DMRG accuracies while remaining ef-
ficient. Despite their differing origins it has recently been
shown that TEBD and DMRG algorithms share some crucial
conceptual and formal similarities[22,29]. Indeed both
methods search for an approximation to the true wave func-
tion within a restricted class of wave functions which are
described by matrix product states[30,31] and do so with
identical decomposition and truncation procedures. The es-
sential difference, which we shall emphasize shortly, is that
the TEBD algorithm updates the matrix product decomposi-
tion directly and in such a way that the resulting decimated
subspace in which the time evolution is computed is opti-
mally adapted at each step[22].

Here we briefly outline the essential features of the TEBD
algorithm, with specific attention to its application to the
BHM. Let us consider a 1D BHM composed ofM sites. An
arbitrary state of this system can be expanded in the Fock
basis

ucl = o
n1=0

`

¯ o
nM=0

`

cn1¯nM
un1, . . . ,nMl, s2d

where unml denotes the Fock state ofnm particles in sitem.
For the purpose of simulating this system the number of
Fock basis states per lattice site must be cut off to some
upper limit nmax. In all the numerical calculations we per-
formednmax=5. This is sufficient to avoid any cutoff effects
in the bosonic occupation, as long as only small filling fac-
tors of the lattice are used and the on-site interaction energy
U is sufficiently large compared to the hopping energyJ.

Now suppose we split the system into two contiguous
partsAm composed of the firstm sites andBm composed of
the lastM −m sites. We can think of this partitioning as cut-
ting themth bond situated between sitesm andm+1. For any
state ucl a Schmidt decomposition(SD) can be performed
which renders the state in the form

ucl = o
a=1

xm

la
fmgufa

Amlufa
Bml, s3d

wherexm is the Schmidt rank of the SD,la
fmg are the Schmidt

coefficients, andufa
cl, with cP hAm,Bmj, are the correspond-

ing Schmidt states of the respective subsystems. The
Schmidt rankxm is a useful measure of the entanglement
between the two subsystemsAm andBm [20]. Given any state
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ucl a set of sM −1d SD can be performed according to a
sequence of such partitions of the system withmP h1¯M
−1j, as depicted in Fig. 1(a).

Using the la
fmg and statesufa

sl for each subsystem ob-
tained from these SD it is possible[20] to construct a set of
G and l tensors which are equivalent to a matrix product
decomposition of the expansion coefficientscn1¯nM

of ucl in
the fixed Fock basis[22]. Specifically one finds

cn1¯nM
= o

a1,. . .,aM−1

Ga1

f1gn1la1

f1gGa1a2

f2gn2la2

f2g
¯ laM−1

fM−1gGaM

f1gnM , s4d

wherenm is the occupation number of sitem, andam are the
Schmidt indices of themth partition, each of which sums
from 1 to its respective Schmidt rankxm. With reference to
Fig. 1(b) we note that eachlam

fmg is labeled by the bond be-
tween sitesm and m+1, along with the corresponding
Schmidt indexam, whereas eachGam−1am

fmgnm is labeled by a site
m which resides between the two bondsm−1 andm, and so
also possess the Schmidt indicesam−1 andam of these bonds.

Under the circumstances described the expansion, Eq.(4),
is exact and as such the number of parameters stored could
grow exponentially with the size of the system. However, it
is a general feature of 1D systems with nearest-neighbor in-
teractions that the entanglement within their ground state and
low-lying excitations depends weakly on the size of the sys-
tem [21]. Indeed it can be shown that the entanglement of a
block of size, with the rest of the system remains finite as
,→` in 1D systems or at worst grows logarithmically with
, at criticality [22]. Consequently the entanglement between
the blocks of any of thesM −1d SD illustrated in Fig. 1(a)
can be saturated by some fixed Schmidt rank, which for the
systems we consider is typically small. It is this fact that
accounts for the success of the DMRG in 1D systems. Simi-
larly within TEBD it allows the maximum possible Schmidt
rank used in the matrix product decomposition, Eq.(4), to be

fixed to some valuex, thereby truncating it to the most sig-
nificant contributions. For an appropriate choice ofx this
approximation will be accurate with the error proportional to
the sum of the discarded eigenvalues in the SD[21]. This
clear interpretation of the central numerical parameterx
within TEBD is very useful. Once a value ofx is found to
saturate the entanglement of the ground state and low-lying
excitations of a system then this a direct measure of the role
of entanglement in the dynamics of the system. In total the
scaling in the number of parameters within the expansion,
Eq. (4), is quadratic inx and linear in the size of the system
M and in nmax. So upon fixingx and thus preventing its
possible exponential dependence onM, the description be-
comes efficient. As with DMRG this decomposition of a
state generates, for all practical purposes, an optimalx3x
matrix product state[22]. A noteworthy limit of this is the
approximation wherex=1, which forces the description of
the system to be of product form with respect to all sites.
Using the TEBD algorithm under this severe restriction is in
fact equivalent to MF theory and the Gutzwiller ansatz
[5,18,32,33,17].

Another crucial advantage of the TEBD algorithm is that
once a state is expressed in the matrix product form, Eq.(4),
one- and two-site unitary transformations can be applied di-
rectly and exactly to the system such that the resulting state
can be efficiently returned to a matrix product form[22].
Indeed, given a partitioning of the system into a two-block–
two-site configurationf1¯m−1gfm m+1gfm+2¯Mg, the
application of a two-site unitary to sitesm and m+1 only
requires updates to be performed on the tensorslocal to
those sites—namely,Gam−1am

fmgnm lam

fmgGamam+1

fm+1gnm+1. The major com-
putational effort of this update is limited to the rediagonal-
ization of the reduced density matrix of one of the adjacent
site and block subsystems, such as sitesfm+1gfm+2¯Mg,
which is of dimensionsxnmaxd3 sxnmaxd at most[20]. The
crucial feature here is that a DMRG-style truncation to only
the most relevant eigenstates of this reduced density matrix
occurs in an optimal way at each application of a two-site
unitary. This is in contrast with time-dependent DMRG
methods where the basis states which make up the matrix
product decomposition are fixed at the start[22,27]. The
number of basic operations required to perform this update
scales asOsx3d [20].

To compute the action of the time-evolution unitary
exps−iHdtd, for a time stepdt, we first make the observation
that for Hamiltonians with nearest-neighbor interactions,
which are composed of two-site operators at most, terms can
be separated into a sum of those involving odd sites,F, and
those involving even sites,G:

F = o
n odd

Fn,n+1, s5d

G = o
n even

Gn,n+1, s6d

H = F + G. s7d

Given that no terms withinF involve the same lattice sites
they all commute amongst themselves. Thus the action of
exps−iFdtd can be computed exactly as

FIG. 1. (a) The sequence of contiguous partitions of the system
in which the SD are computed. The coefficients and states from
these SD are then used to form theG andl tensors.(b) A depiction
of the G tensors associated to lattice sites andl tensors associated
to bonds between those sites.
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e−iFdt = p
n odd

e−iFn,n+1dt. s8d

Since each term in this product is a two-site unitary, they can
be applied individually to the state with the method detailed
in [20], and the same is also true forG. The complications in
computing the time evolution arise from the fact thatF and
G do not in general commute, and hence we approximate the
unitary time-evolution operator expfisF+Gddtg using a Trot-
ter expansion. Ignoring their noncommutativity would con-
stitute a first order expansion. If we define

s2sF,G,yd = e−iFy/2e−iGye−iFy/2, s9d

then the second-order expansion follows wheny=dt. For the
numerical simulations performed in this paper the fourth-
order expansion[34] was used, which has the form

e−isF+Gddt = p
l=1

5

s2sF,G,qldtd + Osdt5d, s10d

where the parametersql are defined as

q1 = q2 = q4 = q5 ; q =
1

s4 − 41/3d
, q3 = 1 − 4q. s11d

A detailed analysis of the errors and computational cost of
TEBD is given in [21], where it is shown that the Trotter
error propagates quadratically with the simulated time and so
the accuracy of the method can be maintained for long peri-
ods with appropriate choices of the parameters.

The pure TEBD implementation we employ here can be
improved further by combining the advantageous features of
TEBD outlined with the well-established optimizations of
DMRG such as good quantum numbers and White’s “state
prediction” method. In doing so an adaptive time-dependent
DMRG algorithm is obtained[22,29] illustrating the ex-
tremely close relationship between these two methods. Fi-
nally we note the very recent advances in generalizing TEBD
and DMRG to describe mixed state dynamics and generic
master equation evolution of 1D systems with nearest-
neighbor coupling[35,36]. This opens up the possibility of
simulating finite temperature effects, decoherence, and dissi-
pation.

III. GROUND STATES OF THE BHM

We first investigate the ground state of the BHM and
compare the numerical results with the exact ground states
for a small homogeneous system. Then we consider a larger
system in the presence of a shallow magnetic trapVT super-
imposed on the lattice and compare the results to those pre-
dicted by MF theory. In all cases the numerical ground state
was computed with the TEBD algorithm using continuous
imaginary time evolution from a simple product state, as
detailed in[21].

A. Comparison of exact and simulated ground states

To investigate the accuracy of the numerical simulation
and its applicability to the BHM we first consider a small

system in which an exact solution can be found readily. Spe-
cifically we use an optical lattice composed ofM =7 sites, a
trapping potential ofVT=0 with box boundary conditions,
and a total number of particlesN=7. The ground state is then
calculated numerically and exactly forU /2J=2, 6, and 20,
corresponding to the SF, intermediate, and MI regimes, re-
spectively. The numerical simulation was performed forx
=3, 5, and 7 in each case.

The one-particle density matricesrm,n=kbm
† bnl obtained

for each regime for the numerical and exact calculations are
visually indistinguishable in all cases. In order to highlight
the extent of the agreement we present a number of other
plots. Specifically in the SF regime the comparisons of the
spatial correlation of the central siteur4,4+du as a function of
the distanced are shown in Figs. 2(a) and 2(b) between the
exact and numerical calculations usingx=3 andx=5. Iden-
tical comparisons of the standard deviation of the site occu-
pation ssrm,md=skNm

2 l−kNml2d1/2, whereNm=bm
† bm, and the

spectrum of the one-particle density matriceseg [normalized
with trsrd=N] are shown in Figs. 2(c), 2(d) and 2(e), 2(f),
respectively. These results show that although there is quali-
tative agreement between exact andx=3 calculation, almost
all expectation values have a maximum deviation from the
exact calculation improved by an order of magnitude with
x=5. As expected for a SF ground state the one-particle den-
sity matrix spectrum in Fig. 2(f) is dominated by one eigen-
value of orderN. However, given that the lattice still has a
nonzero depth this state deviates from that of a pure SF,
whereucSFl~ som bm

† dNuvacl, since the sum of the remaining
eigenvalues(in descending order) is og=2

7 eg<2.5 and so
represents a significant quantum depletion of the SF.

For the intermediate and MI regime a similar factor of
improvement can be obtained; however, in this case thex

FIG. 2. Comparisons of the numerical(s) and exact(p) calcu-
lations withU /2J=2 for spatial correlationsur4,4+du with the central
sitem=4 obtained for(a) x=3 and(b) x=5, the standard deviation
of the site occupationssrm,md obtained for(c) x=3 and(d) x=5,
and the spectrumeg of the one-particle density matrix obtained for
(e) x=3 and(f) x=5. The dashed and dotted curves shown are to
guide the eye.
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=3 calculation already yields excellent agreement with the
exact calculation. Specifically we find the infidelity between
the numerical and exact many-body state is 1−F=1
− ukc0uc08lu<10−5, whereuc0l suc08ld is the numerical(exact)
ground state and the temperature corresponding to the differ-
ence in their ground-state energy asDT<10−2 nK. The com-
parisons of the spatial correlation, site occupancy standard
deviation, and one-particle density matrix spectrum for
U /2J=6 andU /2J=20, with x=3, are shown in Fig. 3.

These plots, along with those wherex=5 for the SF re-
gime, illustrate the onset of increasing MI characteristics in
the ground states, in particular the rapidly decreasing spatial
correlations and fluctuations in occupancy, as well as the
change in the spectrum from being dominated by one single-
particle state to having seven almost equally occupied orbit-
als. These indicate that the MI ground state obtained is a very
close approximation to that of a pure MI, whereucMIl
~pm bm

† uvacl, representing commensurate filling of the lat-
tice. However, given that the lattice is not infinitely deep,
deviations with this pure MI state exist and are evident from
the persistence of small off-diagonal correlations visible at
d=1 in Fig. 3(b) and the spread of the spectrum about unity
in Fig. 3(f).

As expected we find that the agreement between the nu-
merical and exact calculations for a given value ofx im-
proves with increasingU /2J in line with the decrease in
off-diagonal correlations. In all cases thex=7 results gave
excellent agreement with the exact calculation. The worst
case being in the SF regime where an infidelity of 1−F
<10−4, and a deviation in ground-state energy ofDT
<10−2 nK was obtained.

We note here that the exact calculation was performed
with the canonical Hamiltonian withN=7, whereas the nu-

merical simulations used the grand canonical Hamiltonian.
With an appropriate choice of the chemical potentialm the
average particle number can be fixed toN=7, enabling the
comparisons above. Indeed for the calculations performed
the worst absolute value of the projection of the simulated
state outside theN=7 Fock subspace waskc0uPNÞ7uc0l
<10−13. Hence our results confirm the agreement of these
approaches for small systems, and we assume the agreement
holds for the larger systems.

B. MI and SF states with a superimposed magnetic trap

To consider systems closer to those studied in experi-
ments[2] we use a lattice withM =49 sites and made the
system inhomogeneous by superimposing a harmonic trap
potential VTsxmd=mAv2xm

2 /2, wherev is the trapping fre-
quency andmA is the mass of an atom. As with the smaller
system the ground states for the SF, intermediate and MI
regimes were calculated. The lattice was loaded with a total
number of particlesN=40 by choosing an appropriate
chemical potentialm in each regime. For all cases a trapping
frequency ofv=2p370 Hz was used and found to be suf-
ficient in eliminating any occupation at the boundaries of the
system.

The inhomogeneity caused by a spatially varying confin-
ing potential can result in the coexistence of spatially sepa-
rated SF and MI regions. Such properties have been con-
firmed experimentally [1,2] and have received intense
theoretical study with numerical calculations, in particular
through Gutzwiller-ansatz and MF theory[15,37] and quan-
tum Monte Carlo(QMC) [38,39] and DMRG [40] simula-
tions in 1D, as well as calculations using the QMC[41,42]
and numerical renormalization group[43] methods for 2D
and 3D systems. Here we explore the SF-MI coexistence
features of BHM ground states in order to confirm the physi-
cal picture arising from our numerical calculation for the
large inhomogeneous system. Specifically we make compari-
sons of the mean site occupancy and its standard deviation
between the numerical results and those obtained by MF
theory for each regime(see Appendix B for details of the MF
calculation) [33,37].

The one-particle density matrix of the resulting SF ground
state is shown in Fig. 4(a). Important features of this state are
outlined in Figs. 5(a)–5(d), where it can be seen that the
system is entirely SF. The MF results for the site occupancy
and its standard deviation are also shown in Figs. 5(a) and
5(b), and as expected there is good agreement between the
curves in both cases. For the intermediate regime, whose
one-particle density matrix is shown in Fig. 4(b), we see a
system possessing alternating regions of coherent SF and
incoherent MI phases[38,40]. The pattern of these regions
starts with a central SF region with a mean occupancy ex-
ceeding unity, which then becomes a singly occupied MI, a
SF region with mean occupancy less than unity, and finally
the vacuum MI. In Figs. 5(e) and 5(f) we see that the MI
region in Fig. 5(e) coincides with suppressed fluctuations in
occupancy shown in Fig. 5(f). The MF curves also plotted
show general agreement with these phase identifications;
however, the MF curve in Fig. 5(f) predicts a significantly

FIG. 3. Comparisons of the numerical(s) and exact(p) calcu-
lations, where the numerics were all performed withx=3, for spa-
tial correlationsur4,4+du with the central sitem=4 obtained with(a)
U /2J=6 and(b) U /2J=20, the standard deviation of the site occu-
pation ssrm,md obtained with(c) U /2J=6 and (d) U /2J=20, and
the spectrumeg of the one-particle density matrix obtained with(e)
U /2J=6 and(f) U /2J=20. Note the differing scales and that the
dashed and dotted curves are shown only to guide the eye.
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greater suppression of the particle number fluctuations for
the MI regions than the numerical results. Such deviations
are consistent with the fact that MF theory predicts a sharp
and well-pronounced SF-MI phase transition[33,37]. While
these prediction are known to be accurate for infinite homo-
geneous systems, for small inhomogeneous systems we see
that the role of correlations is important and that the transi-
tion between the SF and MI regions is not established with
such definiteness.

Given that the ground state for the intermediate regime
exhibits significantly sized SF regions which are separated
by a MI, we investigated whether any correlations were
present between these regions. Evidence of such correlations
would be the presence of elongated peaks in the one-particle
density matrix at the off-diagonal locations corresponding to
the intersection of the rowsm and columnsn of the SF
regions. To within the accuracy obtained withx=5 no such
correlation peaks were found in the one-particle density ma-
trix of the ground state. This was confirmed with continuous
imaginary time evolution not only for a product initial state
used conventionally, but also with an initial state which al-

ready contained significant correlations. Our results suggest
that if such SF correlations do exist within the ground state,
then they are extremely fragile. Despite this we shall see
shortly that such correlations do occur readily in dynamical
situations which cross the MI-SF transition, where the sys-
tem does not necessarily remain in the ground state.

Lastly, the one-particle density matrix for the MI regime
is shown in Fig. 4(c). It is clear from this and the correspond-
ing plots in Figs. 5(i) and 5(j) that the system is almost
completely in the singly occupied MI phase, aside from the
small SF regions at the far extremes before the vacuum.
Their presence is typified by the two peaks in the occupancy
standard deviation shown in Fig. 5(j). The MF calculation in
this case gives the same identification of the regions, except
for the very center of the trap, where a small SF region is
predicted to exist, as evidenced by the central peak in the MF
occupancy standard deviation curve of Fig. 5(j). Again MF

FIG. 4. The absolute valueurm,nu of the one-particle density
matrix as a function of site indicesm,n for (a) U /2J=2, (b)
U /2J=6, and(c) U /2J=20.

FIG. 5. Specific plots for the three regimes. ForU /2J=2 there is
(a) the site occupancyurm,mu, (b) the standard deviation of the site
occupancyssrm,md, both with the MF calculation shown as the
dashed curve,(c) the spatial correlations from the central sitem
=25, and(d) the spectrumeg of the one-particle density matrix,
showing only the 40 nonzero eigenvalues. The same plots are pre-
sented forU /2J=6 in (e)–(h) and forU /2J=20 in (i)–(l).
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theory predicts a much greater suppression of occupancy
fluctuations in the MI regions of the system than the numeri-
cal calculation. As with the smaller system the plots of Fig. 5
for the three ground states illustrate the transition from pre-
dominately SF to MI characteristics.

In all cases the ground-state calculations were performed
with x=5. To ensure convergence the calculations were re-
peated forx=7. The largest deviation between these two
calculations was found in the SF regime where the estimated
ground-state energy differed by a temperatureDTx=5→7
<0.2 nK. We made a similar comparison between thex=5
results and those of MF theory, which are equivalent tox
=1, where the largest deviation was found to beDTx=1→5
<3 nK. Given the larger occupancy of the system the calcu-
lations were also repeated with larger values ofnmax, con-
firming that no cutoff effects were encountered.

IV. DYNAMICS OF THE BHM

The most novel feature of the TEBD algorithm is its ca-
pacity to efficiently simulate the dynamics of 1D systems
which are inaccessible to exact calculation. Here we consider
dynamics which are generated by varying the optical lattice
depthV0std according to some ramping profile in time. The
result of this is that the parametersJstd andUstd in the BHM
Hamiltonian of Eq.(1) become time dependent. By appro-
priately choosing the range of values covered by the optical
depth V0std it is possible to dynamically drive the system
through the SF-MI transition. We shall consider such dynam-
ics occurring on two different time scales: first, via a slow
and smooth profile, and second, as fast linear ramping. Our
objective in both cases is to observe the nature and speed in
which coherence is reestablished within the system.

A. Slow dynamics

1. Profile of the slow dynamics

For the slow dynamical profile a smoothed “box” function
was used for the depthV0std. Such a profile for the dynamics
has been considered before for small systems[17]. It has the
form

V0std = VSF+ N VMI − VSF

1 + efst − tcd2−tw
2 g/ts

2 , s12d

wheretc, tw, andts are time parameters specifying the center,
width, and step size of the profile, respectively, whileN=1

+e−tw
2/ts

2
is the scaling factor required to ensure that the depth

varies fromVSF to VMI. The lattice depthsVSF andVMI were
chosen to be the depths equivalent toU /2J=2 and U /2J
=20, respectively, in correspondence with the parameters
used in the previous section for the SF and MI regime. The
exact shape of the profile forU /2J resulting from the ramp-
ing of V0std chosen is shown in Fig. 6(a). Large time param-
eters have been used in order to keep the time evolution of
the system sufficiently adiabatic and to prevent excessive
excitations.

2. Slow dynamics of the small system: M=7

First, we consider the slow dynamics applied to the small
system. This provides the opportunity to solve the BHM dy-
namics both numerically and exactly, allowing a direct com-
parison of the accuracy and a demonstration of the applica-
bility of the algorithm to the dynamics of the BHM. The
system was initially prepared in the SF ground state com-
puted earlier in Sec. III A and usingx=5 for the numerical
calculations. The time evolution was then performed for a
total time ttot=2tc, with time t running over the interval
f0,ttotg. The spectrumeg of the one-particle density matrix
rm,nstd is plotted as a function of time in Fig. 6(b). For times
t whereU /2J,uc the spectrum is, as expected, dominated
by one large eigenvalue whose value is of order of the num-
ber of atoms. AsU /2J crosses the MF critical valueuc the
eigenvalues are found to converge around the region of 1.
Indeed the state of the system given by the numerical calcu-
lation at the timet= tc in the dynamics, which corresponds to
U /2J=20, is found to have an infidelity with the numerical
MI ground state computed earlier in Sec. III A as 1
−F,10−4. This confirms that for a small and homogeneous
system the ramping is sufficiently adiabatic to ensure that the
system has entered the MI regime as the ground state and the
one-particle density matrix is diagonal.

FIG. 6. Slow dynamics of the small system:(a) the resulting
ramping profile of the parameterU /2J with time, where the time
parameters for theV0std profile are tc=60 ms, tw=24 ms, andts
=18 ms,(b) the spectrum of the one-particle density matrixeg with
time obtained from the numerical calculation,(c) the standard de-
viation of the site occupancyssrm,md with time obtained from the
numerical calculation,(d) the maximum deviation between the nu-
merical and exact spectrumDe with time, and(e) the infidelity 1
−F of the numerical many-body state compared to the exact state
with time.
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With decreasing optical depth and, in turn, decreasing
U /2J, the SF ground state is restored whenU /2J=2 is
reached again att=2tc. The infidelity between the initial nu-
merical SF ground state and the final numerical SF state was
found to be 1−F,10−3. In Fig. 6(c) the behavior of the
fluctuations in the site occupancy is as expected; namely, the
standard deviation in site occupancy is suppressed with in-
creasing lattice depth and restored with its subsequent de-
crease.

To test the accuracy of the TEBD algorithm a number of
comparisons to the exact calculation were made. The sim-
plest of these was the maximum relative deviation between
the exact and numerical results for the one-particle density
matrix spectrumDe=maxgsu1−eg /eg8ud, whereeg andeg8 are
the numerical and exact results, respectively. The time profile
De is plotted in Fig. 6(d). It is found that over the whole time
evolution the relative deviation is at mostDe<10−1. A simi-
lar relative deviation can be defined for the standard devia-
tion of the occupancy asDs=maxmsu1−sm/sm8 ud, where it is
found thatDs<10−2 at most during the time evolution.

The most conclusive comparison, however, is the infidel-
ity 1−Fstd of the exact and numerical many-body states over
the time evolution, shown in Fig. 6(e). It is clear from this
that the infidelity is bounded as 1−Fstd,4310−3 over the
whole evolution. The shape of the infidelity profile also gives
important information about the TEBD method. Namely, it
fits the general observation made in Sec. III A for the
ground-state calculations that for fixed numerical parameters
x andnmax the simulation is more accurate in the intermedi-
ate and MI regimes than the SF regime. This behavior is
precisely exhibited in the time dependence of the above com-
parisons where significant reductions in the deviations are
seen when the system enters the MI regime.

3. Slow dynamics of the larger system: M=49

The larger system possesses many of the essential charac-
teristics of current experimental implementations of the
SF-MI transition[1,2]. In particular, these include the inho-
mogeneous nature of the system caused by a trapping poten-
tial, and the larger number of both lattice sites and atoms, as
compared with the smaller system. With a linear size ofM
=49 sites the system considered is on the same scale as ex-
periments already performed[1,2]. The major difference is
that the mean occupancy at the center of our system iskncl
<1.5, roughly half that of most experiments, where it is
usual to havekncl<2.5. While the mean occupancy undoubt-
edly has an important influence in the dynamics, the system
simulated here is sufficiently close that it can demonstrate
much of the important physics.

The slow ramping profile, Fig. 6(a), was performed iden-
tically on the larger inhomogeneous system using the ground
state, Fig. 4(a), computed earlier as the initial state and for a
total time ttot=3tc. The resulting spectrumeg of the one-
particle density matrix is plotted as a function of time in Fig.
7. General features of this spectrum follow from the smaller
homogeneous system; namely, the trend for the eigenvalues
to decrease as the bottom of the ramping is reached. While
most eigenvalues converge to unity, as with the smaller sys-

tem, one in particular can be seen to remain much larger than
this during the entire dynamics. This is a clear indicator of a
significant SF region within the state as it is dynamically
driven into the MI regime. For the larger inhomogeneous
system we see that the slow ramping profile is not adiabatic
enough to bring the system into the MI ground state shown
in Fig. 4(c).

Indeed to examine the nature of the state generated by the
dynamics additional plots of the one-particle density matrix
are also shown in Fig. 7 for the two times indicated during
the dynamics. These show that the state of the system re-
mains close in form to that of the ground state for the inter-
mediate regime shown in Fig. 4(b), where a large SF region
exists at the center of the trap. However, unlike that ground
state we see that sizable correlations between the separated
SF regions, which were alluded to earlier in Sec. III B, do
exist and remain present even at the bottom of the profile for
Fig. 7(ii ) whereU /2J=20.

Another important difference between the spectra of the
small and larger system is the more prominent excitations

FIG. 7. The spectrum of the one-particle density matrixeg for
the slow dynamics of the larger inhomogeneous system, showing
only the largest ten eigenvalues. The dashed lines denote the two
times (i) t= tc/2 and(ii ) t= tc for which the absolute valueurm,nu of
the one-particle density matrix is plotted.
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which have been induced during the transition. These are
visible as the oscillatory behavior of the eigenvalues seen in
the latter section of the profile in Fig. 7. Their presence is
consistent with the fact that larger systems have more numer-
ous and closely spaced low-lying excitations; however, de-
spite this the oscillations have only a small amplitude and so
do not destroy the SF obtained at the end of the transition.

In order to examine the speed at which coherence is rees-
tablished in the system during the latter halfst. tcd of the
ramping profile the correlation length of the system must be
computed over time. The correlation length is typically de-
fined as the distance at which the off-diagonal elements of
the one-particle density matrix become negligible[44]. For
symmetrical systems, like those considered here, it is natural
to measure this from the central sitem=25. However, the
inhomogeneity of the system, which results in the kind of
correlations between spatially separated SF regions just dis-
cussed for Fig. 7(i), makes the determination of the correla-
tion length ambiguous. Instead we choose to examine a cut-
off length jc where the spatial correlations with the central
site have a specific valueur25,25+jc

u=1/e<0.37. This value is
large enough that it corresponds to tracking a point on the
central SF region and so can provide a relative measure of its
size. The change injc over time is plotted in Fig. 8(a). The
same plot also shows the fitted curve whose function is that
of a smooth “well” which is the reflection of the smooth
“box” used earlier in Eq.(12) about thet axis. The time
parameters of this fit are very close to those of the resulting
“well” for Jstd generated from theV0std profile. The variation
in jc over time demonstrates that it is capturing the essential
changes in the central SF region, including the oscillations in
its size at later times caused by excitations.

To investigate how much the presence of residual SF cor-
relations affects the time dependence ofjc the latter half

st. tcd of the same slow ramping profile was applied to the
MI ground state of Fig. 4(c) found earlier forU /2J=20. In
contrast to the state which is dynamically driven to the MI
regime this ground state has virtually no off-diagonal corre-
lations for any site. The change injc of time for this case is
shown in Fig. 8(b), and as before the fitted smooth well
function is also plotted. These show that despitejc starting
from a much smaller value for the MI ground state it still
acquires the mean value of the final SF state on the same
time scale as that of the dynamically driven state.

An important and experimentally motivated measure of
the coherence of a state can be obtained from its momentum
distribution functionpk. In experiments the interference pat-
tern resulting from the state of the system is examined by
allowing all the atoms within the lattice to expand freely for
a short period of time and then measure the absorptionIsxd at
pointsx on a distant observation line. In the simplest model
of this process one can neglect both the interactions between
atoms during the expansion and the spatial dependence of the
interference caused by the freely evolved Wannier function
envelopeswsx−xmd [45]. This gives the generic features of
the interference pattern at an observation pointx in terms of
the path phases acquired by each site in a 1D lattice of phase
coherent matter wave sources. In the far-field approximation
the intensityIsxd along the observation line is proportional to
the momentum distribution pk~om,nexpfiksm−ndgrm,n

[41,45].
The form of the momentum distribution is sufficiently

well behaved that its widthfw can be determined most easily
by taking its standard deviation. The variation offw in time
for the full dynamics is shown in Fig. 8(c), along with the
fitted smooth box function. The time parameters of this fit
are again very similar to those ofJstd. As expected it is seen
that fw increases in line with the decrease in off-diagonal
correlations. The time profile offw for the half-ramping of
the MI ground state is shown in Fig. 8(d) and again confirms
that the momentum distribution width of the SF is reestab-
lished on approximately the same time scale as that of the
dynamically driven state.

Finally we examine the speed at which the correlation
cutoff lengthjc increases with time over the latter half of the
slow ramping. At any given timet the characteristic time
scale at which single-atom hopping occurs is given by
ttunnelstd=p /2Jstd [46]. The simplest description of the
growth of the central SF region is based on atoms at the edge
of the system hopping towards the center. In this way corre-
lations can be established over the whole lattice ofM sites
[1]. An estimate for the overall time scale for this mechanism
to occur is given bytrestore=Mttunnel/2 [47], which for the
system and depths used here has a valuetrestore<23 ms. In
Fig. 9 the speed]jc/]t obtained from the function fitting is
plotted for (i) the full dynamics of the ramping and(ii ) the
half-ramping from the MI ground state. In line with the plots
of jc in Figs. 8(a) and 8(b) we see that there is a time delay
before there is a significant rate of change injc for the MI
ground state ramping. Since the restoration of correlations
occurs over the same total time scale in both cases the peak
in the correlation speed is higher for the MI ground state. In
addition to these curves the characteristic tunneling speed

FIG. 8. Slow dynamics of the larger inhomogeneous system
with the variation in the correlation cutoffjc, measured in lattice
sites, for(a) the complete slow ramping profile starting from the SF
ground state and for(b) the MI ground state beginning at the bottom
of the ramping. The momentum distribution widthfw, also mea-
sured in lattice sites, for the same situations is shown in(c) and(d),
respectively. The dashed curves present in all plots are the fitted
smooth “box” or “well” functions to the data.
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vtunnelstd=1/ttunnelstd over the ramping is also shown, and
most importantly we note that neither of the two correlation
speeds(i) nor (ii ) exceeds this curve. This confirms that the
ramping applied is sufficiently slow that the propagation of
the SF is dominated by single atom hopping.

B. Fast dynamics

1. Profile for fast dynamics

The time scale over which the slow ramping occurs is of
the order of 60 ms and so greater thantrestore. Here we con-
sider ramping occurring much more rapidly. Specifically we
replace the latter partst. tcd of the slow ramping profile with
a linear ramping of the optical depthV0std from VMI to VSF as

V0std = VMI −
sVMI − VSFd

tramp
st − tcd, s13d

where t runs from tc to tc+ tramp, and the total time of the
ramping istramp. This gives a total ramping profile similar to
that studied experimentally by Greineret al. [1].

2. Fast dynamics of the larger system: M=49

For the fast dynamics we restrict our attention to the state
that is dynamically driven to the MI regime by the slow
ramping profile att= tc. A number of simulation runs were
performed for total ramping timestramp between 0.1 ms and
10 ms, along withtramp=0 ms which is equivalent to the
initial state. The value ofjc obtained at the end of each of the
ramping times is plotted in Fig. 10(a). We see that there is a
steady monotonic increase in thejc for ramping timestramp,
except where it is broken by peaks and troughs which are the
expected manifestations of the trapping used. In particular
the trough centered aroundtramp<7 ms corresponds to the
period of an oscillation with frequency 2v, wherev is the
trapping frequency introduced in Sec. III B. On a similar
basis the spikes which appear aroundtramp<1 ms can be
seen to be a result of the excitation spectrum.

We take a special interest in the ramping timetramp
=8 ms wherejc obtains its maximum value approximately
equal to that of the SF ground state. The variation in time of
the spectrumeg of the one-particle density matrix andjc
during this particular ramping simulation is given in Figs.
10(b) and 10(c). A well-behaved monotonic increase injc is
observed which can be accurately fitted over the interval[0,
8] ms by a smooth box function, as used earlier. This again
provides the basis for computing the speed]jc/]t at which
the correlation cutoff lengthjc is increasing over the ramping
and is shown in Fig. 11(b) along with that of the character-
istic tunneling speedvtunnelstd for the rapid ramping profile.
Unlike the similar comparison for the slow dynamics we see
here that after approximately 3 msjc is increasing in time
much more rapidly than the single-site tunneling speedvtunnel
alone can account for. Indeed by the end of the ramping
]jc/]t is almost 3 times that of the maximum tunneling
speed. This is a clear indication that single-atom hopping is
not adequate to describe the growth of the central SF region
for such rapid dynamics. Instead the specific form and con-
tributions of higher-order correlation functions must play a
crucial role.

To draw direct comparisons with the results of Greineret
al. [1] on the restoration of coherence we also plot the mo-
mentum distribution widthfw obtained from the one-particle
density matrix at the end of each ramping in Fig. 11(a). The
data points for this quantity show a pronounced trend, with-
out any of the large-scale variations seen injc caused by the
trapping [41]. The decrease offw with increasingtramp fits
well to a double-exponential decay curve of the form

fwstrampd = A1 e−tramp/t1 + A2 e−tramp/t2 + C, s14d

where t1,t2 are the characteristic decay times,A1,A2 are
coefficients, andC is a constant. Most notably the exact

FIG. 9. A comparison between the speeds at which the correla-
tion cutoff lengthjc changes in time for(i) the full slow ramping
profile starting from the SF ground state and(ii ) the last half of the
ramping profile starting from the MI ground state at the bottom of
the ramping. The time profile for the single-atom hopping speed
vtunnelstd is also shown. All speeds are expressed in lattice sites per
ms.

FIG. 10. Results for rapid dynamics,(a) the final correlation
cutoff length jc obtained for different linear ramping timestramp,
focusing on tramp=8 ms we have(b) the spectrum of the one-
particle density matrixeg showing only the largest ten eigenvalues,
and (c) the variation injc over the simulation run, along with a
fitted smooth box function shown as the dashed curve.
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same functional form was found to fit the experimental data
in [1]. Since their experiment was conducted for a 3D lattice,
along with a larger mean occupancy and a deeper ramping
profile, exact agreement for the time parameters of this fit is
not expected. However, we do note that the ratio of the decay
times used for their fit and ours are botht2/t1<10. Simi-
larly we can make the same observation as made in[1] that
the momentum distribution widthfw has returned to its
steady-state value within a time scale approximately of order
ttunnel. This is much shorter than the expected timetrestore
required for coherence to spread over the whole lattice ofM
sites via single-atom hopping. This confirms that the restora-
tion of coherence as seen in the experiment is accurately
described by the BHM.

3. Validity of the simulation for fast dynamics

The simulations performed here assume that the dynamics
of the atoms is described by the lowest Bloch band of the
optical lattice. This assumption holds if the typical frequency
f <1/tramp of the ramp in U and J obeys f !n, where
n=Î4ERV0/2p is the harmonic approximation of the excita-
tion frequency to the first excited Bloch band[15]. The
shortest ramping time we considered istramp=0.1 ms, while
1/n=0.05 ms for the lattice on average over the ramping.
Because the conditionf !n is not fulfilled, we numerically
calculated the probability of exciting a single particle, when
initially prepared in the lowest Bloch band and located at the
central site of the lattice, during the ramping above as a
function of tramp. We find that the time evolution is well
approximated by the adiabatic time evolution for
tramp.0.05 ms and that it changes to being sudden for
tramp,0.005 ms. Therefore we expect only a small influence
to the form of the curve in Fig. 11(a) between the points at
tramp=0 ms andtramp=0.1 ms due to higher band excitations
which is not resolved in the experiments[1].

V. CONCLUSION

In these studies we have established the accuracy and ap-
plicability of the TEBD algorithm to the BHM, for both the
computation of ground states and its dynamics. We have then
applied this method to systems of a size equivalent to those
studied in experiments and in the presence of a trapping po-
tential. In particular we have examined the nature and speed
in which coherence is reestablished within the system for
both slow and rapid dynamics which cross the SF-MI tran-
sition. Our results indicate that for slow ramping of the lat-
tice depth the SF growth is consistent with single atom hop-
ping as might naively be expected. However, for very rapid
ramping of the lattice depth we find that the SF growth is
much greater than can be explained by this mechanism alone
and so points to the importance of higher-order correlation
functions. We made direct comparisons between our simula-
tion results for the momentum distribution widthfw during
rapid ramping and the experimental results obtained by
Greineret al. [1] and found that the reduction infw with the
ramping time follows precisely the same functional form as
their data, despite a number of significant differences in the
systems analyzed. Perhaps most fundamentally we have
shown that the results obtained in[1] for the rapid restoration
of coherence are consistent and explicable within the BHM
alone and are present even in 1D systems. Finally, we note
that a detailed knowledge of the correlations of atoms in
different sites and the particle number fluctuations as pro-
vided by our numerical calculations are important for utiliz-
ing the MI state in a number of applications[6–14].
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APPENDIX A: 1D OPTICAL LATTICES

The starting point for our physical model is the Hamil-
tonian for weakly interacting bosonic atoms in an external
trapping potential

H =E drc†sr dS−
1

2mA
¹2 + V0sr d + VTsr dDcsr d

+
1

2

4pas

mA
E drc†sr dc†sr dcsr dcsr d, sA1d

with csr d the bosonic field operator for atoms in a given
internal atomic state,V0sr d is the optical lattice potential, and
VTsr d describes a slowly varying additional external trapping
potential such as that created by magnetic fields. The inter-
action between the atoms is modeled by a contact potential
with s-wave scattering lengthas and mA is the mass of the
atoms.

We assume the optical lattice potential to have the form
V0sr d=o j=1

3 Vj0sin2skrjd with wave numberk=2p /l and l
the wavelength of the laser light yielding a lattice perioda
=l /2. The spatial coordinate is denoted byr =sr1,r2,r3d.

FIG. 11. Rapid ramping of an optical lattice from the MI
sU /2J=20d to the SFsU /2J=2d regime for N=40 atoms inM
=49 lattice sites superimposed by a magnetic trapping potential.
The width of the central interference fringefw as a function of the
ramping timetramp is shown in(a). The solid curve is a fit using a
double-exponential decay(t1=0.22 ms,t2=2.14 ms) (cf. [1]). In
(b) the rate of change of the correlation cutoff lengthjc is shown for
the ramping performed withtramp=8 ms, along with the profile for
the characteristic tunneling speedvtunnelstd for the ramping. Both are
plotted in units of lattice sites per ms.
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This lattice potential can be realized by interfering three
pairs of counterpropagating laser beams from three orthogo-
nal directions. The height of the potentialVj0 is proportional
to the intensity of the lasers in thej th pair of laser beams. We
assume the intensity to be very large in ther2 and r3 direc-
tions so that the atoms do not tunnel in either of these direc-
tions. Hence their motion is restricted to ther1;x direction
and this optical lattice setup thus allows the creation of ef-
fective 1D systems. The resulting atomic pipelines[2,10,23]
are well isolated from each other and we can thus restrict our
considerations to just one of them.

The center position of the lattice sitem of this 1D system
is given byxm=ma, and so a particle occupying the lowest
Bloch band which is localized at this site is described by the
wave functionfmsr d=w1sx−xmdw2sr2dw3sr3d, wherewj are
the Wannier functions of the lowest Bloch band[15] in the
j th direction. By neglecting all excitations to higher bands
and expanding the bosonic field operators into the mode
functionsfmsr d the HamiltonianH reduces to the 1D Bose-
Hubbard model[15] given in Eq.(1) Sec. II A. The param-
eterU of the BHM is given byU=4pasedr ufmsr du4/mA and
corresponds to the strength of the on-site repulsion of two
atoms occupying the same lattice sitem. The hopping matrix
elementJ between adjacent sitesm andm+1 is given by

J = −E dxw1sx − xmdS−
1

2mA

d2

dx2 + V0sin2skxdDw1sx − xm+1d.

sA2d

The numerical values forU andJ for different depths of the
optical latticeV0;V10 can be found in[15].

APPENDIX B: MF APPROXIMATION AND GUTZWILLER
ANSATZ

The presence of a trapping potential causes the system to
become inhomogeneous allowing the coexistence of spatially
separated SF and MI regions[15,37–43]. Now each lattice
site has a local chemical potentialmm, and together with the
overall U /2J parameter for the system this gives a phase
diagram coordinatep=s2J/U ,mm/Ud. The MF determina-
tion of which regime a given lattice site lies in is then based
on where preciselyp resides in the homogeneous BHM
phase diagram[5,41,48].

The MF calculations performed utilized the standard de-
coupling of the hopping term[18,33]

bm
† bm+1 = bm

† kbm+1l + kbm
† lbm+1 − kbm

† lkbm+1l, sB1d

which decompose the BHM Hamiltonian in Eq.(1) into a set
of M single site HamiltoniansHm. Specifically the single site
Hm has the form

Hm = − 2Jsfmbm
† + h.c.d − 2ufmu2 − mmbm

† bm +
U

2
bm

† bm
† bmbm,

sB2d

for each lattice sitem, dependent on the sites superfluid order
parameterfm=kbml, which is assumed to vary slowly over
the system, and its local chemical potentialmm. The MF
ground state is then a product state over sitesucMFl
=pm=1

M uc0
ml determined by minimizing the complete set ofM

site HamiltoniansHm with respect to the order parametersfm
and then diagonalizing to extract eigenstateuc0

ml with the
smallest eigenvalue for each site. Given that eachuc0

ml
=onm

cnm
unml this procedure is equivalent to approximation

methods based on the Gutzwiller ansatz[5,32] and has been
applied successfully in modeling the qualitative behavior of
BHM phase diagram[48].
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