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Dynamics of the superfluid to Mott-insulator transition in one dimension
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We numerically study the superfluid to Mott insulator transition for bosonic atoms in a one-dimensional
lattice by exploiting a recently developed simulation method for strongly correlated systems. We demonstrate
this method'’s accuracy and applicability to Bose-Hubbard model calculations by comparison with exact results
for small systems. By utilizing the efficient scaling of this algorithm we then concentrate on systems of
comparable size to those studied in experiments and in the presence of a magnetic trap. We investigate spatial
correlations and fluctuations of the ground state as well as the nature and speed at which the superfluid
component is built up when dynamically melting a Mott insulating state by ramping down the lattice potential.
This is performed for slow ramping, where we find that the superfluid builds up on a time scale consistent with
single-atom hopping and for rapid ramping where the buildup is much faster than can be explained by this
simple mechanism. Our calculations are in remarkable agreement with the experimental results obtained by
Greineret al. [Nature(London 415 39 (2002)].
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I. INTRODUCTION 1D (z=2) [2] were investigated. These experiments revealed
some striking properties of the quantum phase transition. In
Recent experiments on loading Bose-Einstein condensatggrticular a feature which is yet to be fully understood is the
into an optical lattice have allowed for the creation and studytime scale over which coherence is built up throughout the
of strongly correlated systems of atorfis-4]. In particular  atomic system when going from the Ml to the SF lirft{.
the superfluid(SH to Mott insulating (MI) transition first  Indeed it cannot be easily explained using MF theory and
observed in a seminal experiment by Greieg¢ral. [1] has  numerical studies of this dynamical effect were, until now,
received a lot of attention since it impressively demonstratedimited to small systems of approximately ten atoms. Re-
a clean realization of the Bose-Hubbard mo@@HM) [5] cently, however, it has been shown that quantum computa-
which has long been considered a toy model in condensetions on 1D systems of qubits which do not give rise to
matter physics. Furthermore, in the ideal Ml state each atorstrong entanglement can be efficiently simulated on a classi-
is localized to a lattice site corresponding to a commensurateal computer via the so called time-evolving block decima-
filling of the optical lattice with zero-particle-number fluc- tion (TEBD) algorithm [20]. An immediate application of
tuations. These properties make MI states attractive candihis discovery is to the simulation of the time evolution of
dates for several applications, most notably quantunmany-body 1D quantum systems which are governed by a
memory, quantum computingg—12, and quantum simula- nearest-neighbor Hamiltoniaf21]. The BHM is one of
tions of many-body quantum systerjis3,14. many important model Hamiltonians which fall into this
The BHM Hamiltonian describes atoms loaded into a sufclass[22]. The simulation method is efficient for all such 1D
ficiently deep optical latticg15,1G. It contains a kinetic model Hamiltonians due to a universal property of 1D sys-
energy term, with matrix elemeid describing the hopping tems that their ground state and lowest-lying excitations tend
of particles from one site to the next and an interaction termto contain only a small amount of entanglemgat].
with matrix elementU, which accounts for the repulsion of  In this paper we restrict our attention to the 1D BHM with
two atoms occupying the same site. The r&fib) increases our physical motivation being to study the nature and speed
with the depth of the optical lattice and can be varied overat which the superfluid component is built up as the system is
several orders of magnitude by tuning the optical lattice padynamically driven through the SF-MI transition. By exploit-
rameterg15]. In particular by changing the intensity of the ing the efficient scaling of the TEBD algorithm with the size
laser beams creating the optical lattice it is possible to Vary of the system we are able to investigate this phenomenon for
and U on time scales much smaller than the decoherenceetups which are of comparable size to those studied in ex-
time of the system. This opens up the possibility of directlyperimentq2]. First, in Sec. Il, we introduce the 1D BHM for
studying the dynamics of the BHM during the quantumdescribing atoms in optical lattices and briefly introduce the
phase transition at temperatufe=0 [1,17]. According to  TEBD algorithm as used in this paper. In Sec. Ill we then
mean-field(MF) theory this phase transition occurs @ demonstrate the applicability of the TEBD to the BHM by
=U/zJ=5.8, wherez is the number of nearest-neighbor sites comparison with exact numerical calculations for small sys-
in the lattice[5,18,19 and is easily accessible in an optical tems. This is then followed by an investigation of SF and Ml
lattice. ground states of larger lattice setups concentrating on their
In [1] the dynamics of atoms in a three-dimensiof8))  spatial correlations and occupation number fluctuations to-
optical lattice(z=6) was studied while more recently optical gether with a comparison to MF results. We then study the
lattice setups where the motion of the atoms was restricted tdynamics of the Ml to SF transition in Sec. IV when chang-
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ing the lattice depth on two different time scales. Most nota-also to calculations of the real time evolution of 1D systems
bly for rapid MI to SF ramping we find that the width of the [27] which is of particular importance here. The approach of
central interference peak, as observed after releasing the §27] is to take the DMRG ground state/0)) obtained for
oms from the lattice, shrinks with an increasing total ramp-the initial Hamiltonian and use it to define a decimation of
ing time with the same functional dependence foundllin  the Hilbert space in which the Schrodinger equation is nu-
This result is discussed in Sec. IV B. Finally, we summarizemerically integrated. The key assumption, and most severe

our results in Sec. V. approximation, within this scheme is that this static subspace
defined by|y(0)) is adequate to approximalt(t)) with rea-
Il. MODEL AND NUMERICAL METHOD sonable accuracy for all times. In general this will only be

] ] ) o _ true for short periods of time. Novel methods have been

In this section we introduce the BHM describing bosonicgeyised[28] which can maintain the accuracy over longer

atoms in an optical Iatuce_where the motion is restricted theriods by “targeting” other states in addition to the ground

1D and give a short overview of the numerical method usedgate, but in doing so the efficiency of the computation is
in our simulations. significantly reduced29]. In contrast the TEBD algorithm

can maintain typical DMRG accuracies while remaining ef-

A. Model ficient. Despite their differing origins it has recently been

By confining an ultracold bosonic gas in a 3D optical shown that TEBD and DMRG algorithms share some crucial

lattice with a large depth in the two orthogonal directigns cOnceptual and formal similaritie$22,29. Indeed both
andz it is possible to create an array of effective 1D systemdn€thods search for an approximation to the true wave func-
in thex direction[2,10,23. The dynamics of these systems is tion vx_nthm a restrl_cted class of wave functions Whlch are
governed by the external trapping and the optical lattice podesScribed by matrix product stat¢30,3] and do so with

tential along thex axis. The optical lattice then has a depth ideéntical decomposition and truncation procedures. The es-
V, proportional to the laser intensity and a lattice perid sential difference, which we shall emphasize shortly, is that

=\/2, where\ is the wavelength of the laser light. The the TEBD algorithm updates the matrix product decomposi-

Hamiltonian describing each 1D system reduces to the 1(40n directly and in such a way that the resulting decimated

BHM (for details see Appendix A [15] (taking #=1 subspace in which the time evolution is computed is opti-
mally adapted at each st¢p2].

throughouy : ) )
Here we briefly outline the essential features of the TEBD
U algorithm, with specific attention to its application to the
=N _ ynt _ t Zhtpt '
H =2 = (0D + H.C) = pirbib 2 b7 Dm0, BHM. Let us consider a 1D BHM composed bf sites. An
m . . .
arbitrary state of this system can be expanded in the Fock
(D basis
where the operatorb,, (b:n) are bosonic destructiotcre- o %
ation) operators for a bosonic particle in sitg centered at ) = E 2 (oS [ R W 8 (2)
Xm=ma, obeying the standard canonical commutation rela- =0 ny=0

tions. The grand canonical Hamiltonian then hag=pu
-V+(Xy,) as the local chemical potential for sitg whereV;
is the external trapping potential. The parametdrand J
can be determined in terms of the Wannier functiois) as

where|n,,) denotes the Fock state af, particles in sitem.
For the purpose of simulating this system the number of
Fock basis states per lattice site must be cut off to some

) . : . pper limit np,,. In all the numerical calculations we per-
shown in Appendix A, and under the assumptions outline ormedn,,=5. This is sufficient to avoid any cutoff effects

Sgiiégdgespgwngr?ne g"g'cz sma[l_ﬂ.”TheHr ratio ctr;n Ze tin the bosonic occupation, as long as only small filling fac-
. ange by dynamically changing the dep tfors of the lattice are used and the on-site interaction energy
V, of the optical lattice. For all the systems considered hereU is sufficiently large compared to the hopping enedgy
we_take the wavelength of the Iight used. to form thg optical Now suppose we split the system into two contiguous
lattice asi\-826 nm, and the atomic species trapped'Rb, partsA,, composed of the firstn sites andB,, composed of
wherea;=5.1 nm. the lastM —m sites. We can think of this partitioning as cut-
ting themth bond situated between sitesandm-+ 1. For any
B. Numerical method state|) a Schmidt decompositiotSD) can be performed

In this paper we exploit the recently devised TEBD simu-Which renders the state in the form
lation algorithm[20,21] which allows the dynamics of 1D Xem
systems with nearest-neighbor interactions, such as the ) = D )\[m]|¢Am>|¢Bm> )
BHM, to be computed accurately and efficiently. The TEBD o T e
algorithm has been shown to be closely related to the density
matrix renormalization grougDMRG) [24,25. Over the  wherey,,is the Schmidt rank of the S[A,Exm] are the Schmidt
past decade the DMRG has provided enormous insight intooefficients, and¢®), with ¢ € {A,, B}, are the correspond-
the static and dynamic equilibrium properties of 1D systemsing Schmidt states of the respective subsystems. The
Although originally devised as a ground-state method, it hasschmidt ranky,, is a useful measure of the entanglement
been extended to yield accurate low-energy spd@@hand  between the two subsysterg andB,, [20]. Given any state
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® fixed to some valug, thereby truncating it to the most sig-
4 B nificant contributions. For an appropriate choice yothis
L : approximation will be accurate with the error proportional to
‘ 1 ‘|| 2 |o-- '"'1| m |"'+1“' M-1 M ‘ the sum of the discarded eigenvalues in the [@M]. This
! : clear interpretation of the central numerical parameger
4 [ B. within TEBD is very useful. Once a value gf is found to
\ 1 \ 2 oo m-l| m ‘||m+1.. JM-1 M \ saturate the entanglement of the ground state and low-lying
' . excitations of a system then this a direct measure of the role
Y P | Bt of entanglement in the dynamics of the system. In total the
‘ 1 ‘ 2 |... ,,,_1| m ‘,,,H... M_1|‘ M ‘ scaling in the number of parameters within the expansion,
| Eq. (4), is quadratic iny and linear in the size of the system
M and in n,,. So upon fixingy and thus preventing its
®) R | possible exponential dependence M the description be-
l:.""“ ”J_, comes efficient. ,fAs V\ﬂth DMR? this decomposition l)c()f a
state generates, for all practical purposes, an optyma
E D l D l D -E matrix product stat¢22]. A noteworthy limit of this is the
1 m-1 m m+1 M approximation wherey=1, which forces the description of

, . the system to be of product form with respect to all sites.
~ FIG. 1. (@) The sequence of contiguous partitions of the systemjgjng the TEBD algorithm under this severe restriction is in
in which the SD are computed. The coefficients and st_atgs frongct equivalent to MF theory and the Gutzwiller ansatz
these SD are then used to form thend\ tensors(b) A depiction [5,18,32,33,1F
of theI" tensors assomateq to lattice sites anténsors associated Another crucial advantage of the TEBD algorithm is that
to bonds between those sites. once a state is expressed in the matrix product form (&q.

one- and two-site unitary transformations can be applied di-
|4y a set of(M—-1) SD can be performed according to a rectly and exactly to the system such that the resulting state
sequence of such partitions of the system witle {1---M can be efficiently returned to a matrix product fofe].

-1}, as depicted in Fig. (&). Indee.d, given a partitioning of the system into a two-block—
Using the \l™ and stateg¢3) for each subsystem ob- tWO-SIt® configuratior1---m-1][m m+1][m+2---M], the

tained from these SD it is possibj20] to construct a set of application of a two-site unitary to sites andm+1 only

I' and A tensors which are equivalent to a matrix productrequlres updates to be performed on the tensocal to

i ; - . iteg— [mlng y [mlplm+2]nm,g ; _
decomposition of the expansion coefficiens.., of |yyin  N0S€ sites—namel, "% A, T, . . The major com
T v

the fixed Fock basig22]. Specifically one finds putational effort of this updatné is limited to the rediagonal-
ization of the reduced density matrix of one of the adjacent
G-y, = > r&ll]“ly\all]rfl]gg)\%...)\Ey'\:'ﬂj]rgh]ﬂ”hﬂ, (4) siteT anq bIocI_< subs_ystems, such as ditas 1][m+2---M],

g, a1 which is of dimension(xNmna) X (xNmay at most[20]. The
crucial feature here is that a DMRG-style truncation to only
the most relevant eigenstates of this reduced density matrix
. : : . occurs in an optimal way at each application of a two-site
frpm 1 to its respective Sch[rnrj]@ ranky With reference to unitary. This is in contrast with time-dependent DMRG
Fig. 1(b) we note that eacham is labeled by the bond be- methods where the basis states which make up the matrix
tween sitesm and m+1, along with the corresponding product decomposition are fixed at the stf22,27. The
Schmidt indexay,, whereas eaCﬁ[an:_nln;m is labeled by a site number of basic operations required to perform this update
m which resides between the two bonds 1 andm, and so  scales a®©(x?) [20].
also possess the Schmidt indiegs ; and «,,, of these bonds. To compute the action of the time-evolution unitary

Under the circumstances described the expansion4kg. exp(—iH &), for a time stepst, we first make the observation
is exact and as such the number of parameters stored coulldat for Hamiltonians with nearest-neighbor interactions,
grow exponentially with the size of the system. However, itwhich are composed of two-site operators at most, terms can
is a general feature of 1D systems with nearest-neighbor inse separated into a sum of those involving odd skesnd
teractions that the entanglement within their ground state anthose involving even site$:
low-lying excitations depends weakly on the size of the sys-
tem[21]. Indeed it can be shown that the entanglement of a F=2 Font1, (5

wheren,, is the occupation number of site, and «,,, are the
Schmidt indices of themth partition, each of which sums

block of size¢ with the rest of the system remains finite as n odd

¢ —o0 in 1D systems or at worst grows logarithmically with

¢ at criticality [22]. Consequently the entanglement between G=2 Gnn+1, (6)
the blocks of any of théM—-1) SD illustrated in Fig. (a) neven

can be saturated by some fixed Schmidt rank, which for the H=E+G 7

systems we consider is typically small. It is this fact that
accounts for the success of the DMRG in 1D systems. SimiGiven that no terms withirF involve the same lattice sites
larly within TEBD it allows the maximum possible Schmidt they all commute amongst themselves. Thus the action of
rank used in the matrix product decomposition, &), to be  exp(-iF ét) can be computed exactly as
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giFat = H e Fnn+1dt (8) 1.0 ®)
n odd Puwd 0.7
Since each term in this product is a two-site unitary, they can
be applied individually to the state with the method detailed 04
in [20], and the same is also true fGt The complications in 3
computing the time evolution arise from the fact tikaand x
G do not in general commute, and hence we approximate the 56
unitary time-evolution operator ejF +G) &t] using a Trot- 52
ter expansion. Ignoring their noncommutativity would con- o(Pes) 43
stitute a first order expansion. If we define 44 @
S,(F,G,y) = & F/2eriGygriFyi2, (9) [
5.0
then the second-order expansion follows wigerst. For the ®
numerical simulations performed in this paper the fourth- e, 30
order expansiofi34] was used, which has the form 1o
5

e =[] 5(F,G,q ) +O(8t°), (10)
I=1
. FIG. 2. Comparisons of the numeriq@) and exaci*) calcu-
where the parameters are defined as lations withU/2J=2 for spatial correlationp, 4.4 With the central
1 sitem=4 obtained fora) y=3 and(b) x=5, the standard deviation
=, =Qu=0=0= ——=, =1-4g. (11 of the site occupatiow(py, ) obtained for(c) y=3 and(d) x=5,
B~ =G =0 =1 (4- 41/3) & 4. (1Y and the spectrure,, of the one-particle density matrix obtained for
Ee) x=3 and(f) y=5. The dashed and dotted curves shown are to

A detailed analysis of the errors and computational cost o uide the eye,

TEBD is given in[21], where it is shown that the Trotter
error propagates quadratically with the simulated time and seystem in which an exact solution can be found readily. Spe-
the accuracy of the method can be maintained for long perieifically we use an optical lattice composedMf=7 sites, a
ods with appropriate choices of the parameters. trapping potential ofVt=0 with box boundary conditions,
The pure TEBD implementation we employ here can beand a total number of particléé=7. The ground state is then
improved further by combining the advantageous features ofalculated numerically and exactly faf/2J=2, 6, and 20,
TEBD outlined with the well-established optimizations of corresponding to the SF, intermediate, and Ml regimes, re-
DMRG such as good quantum numbers and White’s “stat@Pectively. The numerical simulation was performed for
prediction” method. In doing so an adaptive time-dependent3: 5, and 7 in each case. . : .
DMRG algorithm is obtained22,29 illustrating the ex- The one-particle density matrices,,=(by by obtained
tremely close relationship between these two methods. Ffor each regime for the numerical and exact calculations are
nally we note the very recent advances in generalizing TEBDYisually indistinguishable in all cases. In order to highlight
and DMRG to describe mixed state dynamics and generihe extent of the agreement we present a number of other
master equation evolution of 1D systems with nearestplots. Specifically in the SF regime the comparisons of the
neighbor coupling35,36. This opens up the possibility of Spatial correlation of the central sifg, 4. as a function of

simulating finite temperature effects, decoherence, and dissihe distanced are shown in Figs. (@) and 2b) between the
pation. exact and numerical calculations usigg3 andy=5. Iden-

tical comparisons of the standard deviation of the site occu-
pation a(pmm =(N2)—(N»?) Y2, whereN,=b! by, and the
spectrum of the one-particle density matrieggnormalized

We first investigate the ground state of the BHM andWith tr(p)=N] are shown in Figs. @), 2(d) and Ze), 2(f),
compare the numerical results with the exact ground stateégspectively. These results show that although there is quali-
for a small homogeneous system. Then we consider a largéative agreement between exact gyei3 calculation, almost
system in the presence of a shallow magnetic ¥aguper- all expectation values have a maximum deviation from the
imposed on the lattice and compare the results to those pré&xact calculation improved by an order of magnitude with
dicted by MF theory. In all cases the numerical ground stater=5. As expected for a SF ground state the one-particle den-
was computed with the TEBD algorithm using continuoussity matrix spectrum in Fig. @) is dominated by one eigen-
imaginary time evolution from a simple product state, asvalue of orderN. However, given that the lattice still has a
detailed in[21]. nonzero depth this state deviates from that of a pure SF,
where|iysp (=, bl )Nvag, since the sum of the remaining
eigenvalues(in descending ordgris Ezcz e,~2.5 and so
represents a significant quantum depletion of the SF.

To investigate the accuracy of the numerical simulation For the intermediate and MI regime a similar factor of
and its applicability to the BHM we first consider a small improvement can be obtained; however, in this casexthe

IIl. GROUND STATES OF THE BHM

A. Comparison of exact and simulated ground states
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14 @ ® merical simulations used the grand canonical Hamiltonian.
1.0 With an appropriate choice of the chemical potengiathe
lPued g6 average particle number can be fixedNe 7, enabling the
02 comparisons above. Indeed for the calculations performed
o1 3 3 o0 1 3 3 the worst absolute value of the projection of the simulated
<t ¢ <00 ¢ state 1gut5|de theN=7 Fock subspace wa&/y| P70
~10*°. Hence our results confirm the agreement of these
23 r‘ e “ 7.0
21| / \ / \ approaches for small systems, and we assume the agreement
b 6.0 holds for the larger systems.
17 (c) 5.0 (d)
! 3 m 511 3 m 5 7 B. MI and SF states with a superimposed magnetic trap
20 . S :
(0 |12 0] To consider systems closer to those studied in experi-
. 15 ments[2] we use a lattice witiVi=49 sites and made the
1.0 10 system inhomogeneous by superimposing a harmonic trap
05 08 potential VT(xm):mszern/Z, where w is the trapping fre-
“1 3 y > 7 13 y 37 quency andm, is the mass of an atom. As with the smaller

system the ground states for the SF, intermediate and Ml
FIG. 3. Comparisons of the numeriq@) and exaci(*) calcu-  regimes were calculated. The lattice was loaded with a total
lations, where the numerics were all performed with3, for spa- number of particlesN=40 by choosing an appropriate
tial correlationsp, 444 With the central siten=4 obtained with@  chemical potentiak in each regime. For all cases a trapping
U/2J=6 and(b) U/2J=20, the standard deviation of the site occu- frequency ofw=27X 70 Hz was used and found to be suf-
pation o(py,m obtained with(c) U/2J=6 and(d) U/2J=20, and ficient in eliminating any occupation at the boundaries of the
the spectrune, of the one-particle density matrix obtained with) system.
U/2J=6 and(f) U/2J=20. Note the differing scales and that the The inhomogeneity caused by a Spatia“y Varying confin-
dashed and dotted curves are shown only to guide the eye. ing potential can result in the coexistence of spatially sepa-

=3 calculation already yields excellent agreement with thd2ied SF and Ml regions. Such properties have been con-

exact calculation. Specifically we find the infidelity betweenifmed experimentally[1,2] and have received intense
the numerical and exact many-body state is FE4  theoretical study with numerical calculations, in particular
(o] )| = 1075, where| i) (|46)) is the numericalexacy through Gutzwiller-ansatz and MF thedfy5,37 and quan-
ground state and the temperature corresponding to the diffefd™ Monte Carlo(QMC) [38,39 and DMRG[40] simula-
ence in their ground-state energysE~ 102 nK. The com-  tions in 1D, as well as calculations using the QNK1,42
parisons of the spatial correlation, site occupancy standar@nd numerical renormalization groug3] methods for 2D
deviation, and one-particle density matrix spectrum forand 3D systems. Here we explore the SF-MI coexistence
U/2J=6 andU/2J=20, with y=3, are shown in Fig. 3. features of BHM ground states in order to confirm the physi-
These plots, along with those wheye5 for the SF re- cal picture arising from our numerical calculation for the
gime, illustrate the onset of increasing MI characteristics inlarge inhomogeneous system. Specifically we make compari-
the ground states, in particular the rapidly decreasing spatiglons of the mean site occupancy and its standard deviation
correlations and fluctuations in occupancy, as well as théetween the numerical results and those obtained by MF
change in the spectrum from being dominated by one singletheory for each regimésee Appendix B for details of the MF
particle state to having seven almost equally occupied orbitealculation [33,37.
als. These indicate that the Ml ground state obtained is a very The one-particle density matrix of the resulting SF ground
close approximation to that of a pure MI, wheléy,) state is shown in Fig.(4). Important features of this state are
oIl b;rn|vac>, representing commensurate filling of the lat- outlined in Figs. §a)-5(d), where it can be seen that the
tice. However, given that the lattice is not infinitely deep, system is entirely SF. The MF results for the site occupancy
deviations with this pure MI state exist and are evident fromand its standard deviation are also shown in Figa) &nd
the persistence of small off-diagonal correlations visible a(b), and as expected there is good agreement between the
d=1 in Fig. 3b) and the spread of the spectrum about unitycurves in both cases. For the intermediate regime, whose

in Fig. ). one-particle density matrix is shown in Figth$, we see a
As expected we find that the agreement between the nisystem possessing alternating regions of coherent SF and
merical and exact calculations for a given value yofm- incoherent Ml phasef38,4Q. The pattern of these regions

proves with increasingJ/2J in line with the decrease in starts with a central SF region with a mean occupancy ex-
off-diagonal correlations. In all cases the=7 results gave ceeding unity, which then becomes a singly occupied MI, a
excellent agreement with the exact calculation. The worsSF region with mean occupancy less than unity, and finally
case being in the SF regime where an infidelity of FL— the vacuum MI. In Figs. @) and %f) we see that the Ml
~10% and a deviation in ground-state energy AT  region in Fig. %e) coincides with suppressed fluctuations in
~ 1072 nK was obtained. occupancy shown in Fig.(B. The MF curves also plotted
We note here that the exact calculation was performedhow general agreement with these phase identifications;
with the canonical Hamiltonian witiN=7, whereas the nu- however, the MF curve in Fig.(9 predicts a significantly
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FIG. 4. The absolute valufp,,| of the one-particle density . . ‘
matrix as a function of site indicem,n for (a) U/2J=2, (b) FIG. 5. Specific plots for the three regimes. Eb2J=2 there is
U/2J=6, and(c) U/2J=20. (a) the site occupancipm |, (b) the standard deviation of the site

occupancya(pmm), both with the MF calculation shown as the

. fth icl ber fl . f dashed curve(c) the spatial correlations from the central site
greater suppression of the particle number fluctuations OL 5, and(d) the spectrume,, of the one-particle density matrix,

the Ml regions than the numerical results. Such deviationgy,, ing only the 40 nonzero eigenvalues. The same plots are pre-
are consistent with the fact that MF theory predicts a sharRented foru/23=6 in (e)~(h) and forU/23=20 in (i)~().

and well-pronounced SF-MI phase transitig@8,37. While
these prediction are known to be accurate for infinite homoready contained significant correlations. Our results suggest
geneous systems, for small inhomogeneous systems we sémat if such SF correlations do exist within the ground state,
that the role of correlations is important and that the transithen they are extremely fragile. Despite this we shall see
tion between the SF and MI regions is not established witlshortly that such correlations do occur readily in dynamical
such definiteness. situations which cross the MI-SF transition, where the sys-
Given that the ground state for the intermediate regimeéem does not necessarily remain in the ground state.
exhibits significantly sized SF regions which are separated Lastly, the one-particle density matrix for the Ml regime
by a MI, we investigated whether any correlations wereis shown in Fig. 4c). It is clear from this and the correspond-
present between these regions. Evidence of such correlatioitgy plots in Figs. &) and %j) that the system is almost
would be the presence of elongated peaks in the one-particempletely in the singly occupied MI phase, aside from the
density matrix at the off-diagonal locations corresponding tesmall SF regions at the far extremes before the vacuum.
the intersection of the rowsn and columnsn of the SF  Their presence is typified by the two peaks in the occupancy
regions. To within the accuracy obtained wjitx5 no such  standard deviation shown in Fig(j® The MF calculation in
correlation peaks were found in the one-particle density mathis case gives the same identification of the regions, except
trix of the ground state. This was confirmed with continuousfor the very center of the trap, where a small SF region is
imaginary time evolution not only for a product initial state predicted to exist, as evidenced by the central peak in the MF
used conventionally, but also with an initial state which al-occupancy standard deviation curve of Figj)5Again MF
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theory predicts a much greater suppression of occupancy 20 @ 43 o

fluctuations in the Ml regions of the system than the numeri- U 30

cal calculation. As with the smaller system the plots of Fig. 5 27 10 : Ls

for the three ground states illustrate the transition from pre- | o Y

dominately SF to MI characteristics. % 60 120 005 50 120
In all cases the ground-state calculations were performed ¢ [ms] ¢ [ms]

with xy=5. To ensure convergence the calculations were re-
peated fory=7. The largest deviation between these two
calculations was found in the SF regime where the estimated
ground-state energy differed by a temperatl@,-s .;
~0.2 nK. We made a similar comparison between y¥eb
results and those of MF theory, which are equivalenjyto
=1, where the largest deviation was found to &€ -, .5

=~ 3 nK. Given the larger occupancy of the system the calcu-
lations were also repeated with larger valuesngf,, con-
firming that no cutoff effects were encountered.

t [ms]

x 10" x10*
1.5 3.6
IV. DYNAMICS OF THE BHM » @ » ©
The most novel feature of the TEBD algorithm is its ca- Aeo.s I-Fu\*
pacity to efficiently simulate the dynamics of 1D systems B 00
which are inaccessible to exact calculation. Here we consider 0 t[fgs] 120 "o t[6m°s] 120

dynamics which are generated by varying the optical lattice
depthVo(t) according to some ramping profile in time. The £, 6. Slow dynamics of the small systei@) the resulting
result of this is that the parametel@) andU(t) in the BHM  ramping profile of the parametét/2J with time, where the time
Hamiltonian of Eq.(1) become time dependent. By appro- parameters for tha/y(t) profile aret,=60 ms,t,=24 ms, andts
priately choosing the range of values covered by the opticat18 ms,(b) the spectrum of the one-particle density magjwith
depth V(1) it is possible to dynamically drive the system time obtained from the numerical calculatiqe) the standard de-
through the SF-MI transition. We shall consider such dynamviation of the site occupancy(pmm) with time obtained from the

ics occurring on two different time scales: first, via a slow numerical calculation(d) the maximum deviation between the nu-
and smooth profile, and second, as fast linear ramping. Ouperical and exact spectrutke with time, and(e) the infidelity 1
objective in both cases is to observe the nature and speed it of the numerical many-body state compared to the exact state
which coherence is reestablished within the system. with time.

. 2. Slow dynamics of the small system: ¥
A. Slow dynamics

First, we consider the slow dynamics applied to the small
system. This provides the opportunity to solve the BHM dy-
For the slow dynamical profile a smoothed “box” function namics both numerically and exactly, allowing a direct com-
was used for the deptiy(t). Such a profile for the dynamics parison of the accuracy and a demonstration of the applica-
has been considered before for small systgh@s It has the  bility of the algorithm to the dynamics of the BHM. The
form system was initially prepared in the SF ground state com-
puted earlier in Sec. Ill A and using=5 for the numerical
Vi = Ver calculations. The time evolution was then performed for a
(12)  total time t=2t,, with time t running over the interval
[0,tie]. The spectrune, of the one-particle density matrix
pmn(t) is plotted as a function of time in Fig(l6). For times
wheret,, t,,, andt are time parameters specifying the center,t ywhere U/2J<u, the spectrum is, as expected, dominated
width, and step size of the profile, respectively, wbil&1 by one large eigenvalue whose value is of order of the num-
+e™W's is the scaling factor required to ensure that the depthber of atoms. AdJ/2J crosses the MF critical value, the
varies fromVgg to V). The lattice depth¥/se andV),, were  eigenvalues are found to converge around the region of 1.
chosen to be the depths equivalentld2J=2 andU/2J Indeed the state of the system given by the numerical calcu-
=20, respectively, in correspondence with the parametertion at the time=t. in the dynamics, which corresponds to
used in the previous section for the SF and MI regime. TheJ/2J=20, is found to have an infidelity with the numerical
exact shape of the profile fa#/2J resulting from the ramp- MI ground state computed earlier in Sec. A as 1
ing of Vy(t) chosen is shown in Fig.(8). Large time param- —-F<10 This confirms that for a small and homogeneous
eters have been used in order to keep the time evolution afystem the ramping is sufficiently adiabatic to ensure that the
the system sufficiently adiabatic and to prevent excessiveystem has entered the Ml regime as the ground state and the
excitations. one-particle density matrix is diagonal.

1. Profile of the slow dynamics

Vn(t) = Vet N——M——=F
o(t) = Vse Nl R
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With decreasing optical depth and, in turn, decreasing
U/2J, the SF ground state is restored whei2J=2 is
reached again dt=2t.. The infidelity between the initial nu-
merical SF ground state and the final numerical SF state was
found to be 1F<1073. In Fig. 6c) the behavior of the e
fluctuations in the site occupancy is as expected; namely, the
standard deviation in site occupancy is suppressed with in-
creasing lattice depth and restored with its subsequent de-
crease.

To test the accuracy of the TEBD algorithm a number of
comparisons to the exact calculation were made. The sim-
plest of these was the maximum relative deviation between
the exact and numerical results for the one-particle density
matrix spectrumie= maxy(|1—ey/e’7|), wheree, ande/, are
the numerical and exact results, respectively. The time profile
Aeis plotted in Fig. 6d). It is found that over the whole time
evolution the relative deviation is at mase~1071. A simi-
lar relative deviation can be defined for the standard devia-
tion of the occupancy as&o=max,(|1 -/ or), where it is .
found thatAo~ 1072 at most during the time evolution.

The most conclusive comparison, however, is the infidel-
ity 1-F(t) of the exact and numerical many-body states over
the time evolution, shown in Fig.(é). It is clear from this
that the infidelity is bounded as F+ft)<4Xx 1073 over the
whole evolution. The shape of the infidelity profile also gives
important information about the TEBD method. Namely, it
fits the general observation made in Sec. Il A for the
ground-state calculations that for fixed numerical parameters
x andn,,,, the simulation is more accurate in the intermedi-
ate and MI regimes than the SF regime. This behavior is
precisely exhibited in the time dependence of the above com-
parisons where significant reductions in the deviations are
seen when the system enters the MI regime.

]

FIG. 7. The spectrum of the one-particle density magjxor
the slow dynamics of the larger inhomogeneous system, showing
The larger system possesses many of the essential charagdy the largest ten eigenvalues. The dashed lines denote the two
teristics of current experimental implementations of thetimes(i) t=t./2 and(ii) t=t. for which the absolute valugp,| of
SF-MI transition[1,2]. In particular, these include the inho- the one-particle density matrix is plotted.
mogeneous nature of the system caused by a trapping poten-

tial, and the larger number of both lattice sites and atoms, a .m'don.e |nt;r)]art|CLt{lar gan be see_lr_1h'go Fema'ln mu_czllartger tpan

compared with the smaller system. With a linear sizevof 'S durng the entiré dynamics. This 1S a clear indicator ot a

=49 sites the system considered is on the same scale as &ygn/ficant SF region within the state as it is dynamically
riven into the MI regime. For the larger inhomogeneous

Fherir?he nt; alrr(leady per:]ormeﬁ,hZ]. Thnet rpajfor c:|fferet2¢cne)|s system we see that the slow ramping profile is not adiabatic
at the mean occupancy at the center ot our Syste()s enough to bring the system into the MI ground state shown

~1.5, roughly half that of most experiments, where it is, Fig. 4c).
usual to haven,)~2.5. While the mean occupancy undoubt-  |ndeed to examine the nature of the state generated by the
edly has an important influence in the dynamics, the systerdynamics additional plots of the one-particle density matrix
simulated here is sufficiently close that it can demonstrat@are also shown in Fig. 7 for the two times indicated during
much of the important physics. the dynamics. These show that the state of the system re-
The slow ramping profile, Fig.(6), was performed iden- mains close in form to that of the ground state for the inter-
tically on the larger inhomogeneous system using the grounghediate regime shown in Fig(l#), where a large SF region
state, Fig. 4a), computed earlier as the initial state and for aexists at the center of the trap. However, unlike that ground
total time t,=3t.. The resulting spectrune, of the one- state we see that sizable correlations between the separated
particle density matrix is plotted as a function of time in Fig. SF regions, which were alluded to earlier in Sec. Il B, do
7. General features of this spectrum follow from the smallefexist and remain present even at the bottom of the profile for
homogeneous system; namely, the trend for the eigenvalugsig. 7(ii) whereU/2J=20.
to decrease as the bottom of the ramping is reached. While Another important difference between the spectra of the
most eigenvalues converge to unity, as with the smaller syssmall and larger system is the more prominent excitations

3. Slow dynamics of the larger system: ##9
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18 @ ® (t>t,) of the same slow ramping profile was applied to the
’ MI ground state of Fig. &) found earlier forU/2J=20. In

12 contrast to the state which is dynamically driven to the Ml

s regime this ground state has virtually no off-diagonal corre-

lations for any site. The change & of time for this case is
shown in Fig. 8b), and as before the fitted smooth well

0 60 120 18060 120 180 function is also plotted. These show that despgijtestarting

¢ [ms] ¢[ms] from a much smaller value for the MI ground state it still
acquires the mean value of the final SF state on the same
time scale as that of the dynamically driven state.

An important and experimentally motivated measure of
the coherence of a state can be obtained from its momentum
distribution functionp,. In experiments the interference pat-
tern resulting from the state of the system is examined by
60 120 18060 120 180 allowing all the atoms within the lattice to expand freely for

#[ms] #(ms) a short period of time and then measure the absorptiorat
FIG. 8. Slow dynamics of the larger inhomogeneous SystenPOinst on a distant observation line. In t.he simplest model
T of this process one can neglect both the interactions between

with the variation in the correlation cutoff.,, measured in lattice atoms during the expansion and the spatial dependence of the
sites, for(a) the complete slow ramping profile starting from the SF . 9 p P P

ground state and fdb) the MI ground state beginning at the bottom |nterf|erence caused by thhg fre_ely e\r/]olved W_an][uer funcU?n
of the ramping. The momentum distribution widf), also mea- env? opesw(x—xp) [49]. This gives t e_gener_'_c eatures o
sured in lattice sites, for the same situations is show(e)imnd(d), the interference pattern at an observation pgiit terms of

respectively. The dashed curves present in all plots are the fittethe path phases acquired by each site in a 1D lattice of phase
smooth “box” or “well” functions to the data. coherent matter wave sources. In the far-field approximation

the intensityl (x) along the observation line is proportional to

which have been induced during the transition. These arthe momentum distribution py< =, .exdik(m-n)]pm,
visible as the oscillatory behavior of the eigenvalues seen ip41,45.
the latter section of the profile in Fig. 7. Their presence is The form of the momentum distribution is sufficiently
consistent with the fact that larger systems have more numewell behaved that its widtfi, can be determined most easily
ous and closely spaced low-lying excitations; however, deby taking its standard deviation. The variationfgfin time
spite this the oscillations have only a small amplitude and sdor the full dynamics is shown in Fig.(8), along with the
do not destroy the SF obtained at the end of the transition.fitted smooth box function. The time parameters of this fit

In order to examine the speed at which coherence is reesre again very similar to those dft). As expected it is seen
tablished in the system during the latter hélt>t;) of the  that f,, increases in line with the decrease in off-diagonal
ramping profile the correlation length of the system must becorrelations. The time profile of, for the half-ramping of
computed over time. The correlation length is typically de-the MI ground state is shown in Fig(d and again confirms
fined as the distance at which the off-diagonal elements ofhat the momentum distribution width of the SF is reestab-
the one-particle density matrix become negligidd]. For  lished on approximately the same time scale as that of the
symmetrical systems, like those considered here, it is naturalynamically driven state.
to measure this from the central site=25. However, the Finally we examine the speed at which the correlation
inhomogeneity of the system, which results in the kind ofcutoff length¢; increases with time over the latter half of the
correlations between spatially separated SF regions just disiow ramping. At any given time the characteristic time
cussed for Fig. (f), makes the determination of the correla- scale at which single-atom hopping occurs is given by
tion length ambiguous. Instead we choose to examine a Cuty,,o(t)=m/2J(t) [46]. The simplest description of the
off length ¢. where the spatial correlations with the central growth of the central SF region is based on atoms at the edge
site have a specific valyp,s »s.¢ |=1/e~0.37. This value is  of the system hopping towards the center. In this way corre-
large enough that it corresponds to tracking a point on théations can be established over the whole latticeMosites
central SF region and so can provide a relative measure of ifd]. An estimate for the overall time scale for this mechanism
size. The change ig, over time is plotted in Fig. @. The  to occur is given byt,esioree M Trunned 2 [47], Which for the
same plot also shows the fitted curve whose function is thasystem and depths used here has a valyg,s23 ms. In
of a smooth “well” which is the reflection of the smooth Fig. 9 the speedé¢./dt obtained from the function fitting is
“box” used earlier in Eq(12) about thet axis. The time plotted for(i) the full dynamics of the ramping an@) the
parameters of this fit are very close to those of the resultindpalf-ramping from the MI ground state. In line with the plots
“well” for J(t) generated from th¥(t) profile. The variation of & in Figs. 8a) and &b) we see that there is a time delay
in & over time demonstrates that it is capturing the essentidbefore there is a significant rate of changegirfor the Mi
changes in the central SF region, including the oscillations irground state ramping. Since the restoration of correlations
its size at later times caused by excitations. occurs over the same total time scale in both cases the peak

To investigate how much the presence of residual SF corin the correlation speed is higher for the MI ground state. In
relations affects the time dependence &fthe latter half addition to these curves the characteristic tunneling speed

© @
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FIG. 9. A comparison between the speeds at which the correla- 24 18
tion cutoff lengthé. changes in time fofi) the full slow ramping ®) ©
profile starting from the SF ground state aiidl the last half of the .12 L9
ramping profile starting from the MI ground state at the bottom of !
the ramping. The time profile for the single-atom hopping speed F
vunnelt) is also shown. All speeds are expressed in lattice sites per 0 4 s % p 3
ms. ¢t [ms] t [ms]

FIG. 10. Results for rapid dynamicé) the final correlation
cutoff length & obtained for different linear ramping timegy,,
focusing ont,,,=8 ms we have(b) the spectrum of the one-
particle density matrixe, showing only the largest ten eigenvalues,
and (c) the variation in&, over the simulation run, along with a
fitted smooth box function shown as the dashed curve.

Viunnelt) =1/ 7unnelt) Over the ramping is also shown, and
most importantly we note that neither of the two correlation
speedgi) nor (ii) exceeds this curve. This confirms that the
ramping applied is sufficiently slow that the propagation of
the SF is dominated by single atom hopping.

We take a special interest in the ramping timg,,

B. Fast dynamics =8 ms where¢; obtains its maximum value approximately
equal to that of the SF ground state. The variation in time of
the spectrume, of the one-particle density matrix angl

The time scale over which the slow ramping occurs is ofduring this particular ramping simulation is given in Figs.
the order of 60 ms and so greater thag,,. Here we con- 10(b) and 1Qc). A well-behaved monotonic increase §pis
sider ramping occurring much more rapidly. Specifically weobserved which can be accurately fitted over the intef@al
replace the latter paft>t,) of the slow ramping profile with 8] ms by a smooth box function, as used earlier. This again

a linear ramping of the optical depthy(t) from V,, to Vszas ~ Provides the basis for computing the speggl/ ét at which
the correlation cutoff lengtl. is increasing over the ramping

(Vmi — Vsp and is shown in Fig. Ib) along with that of the character-
Vo(t) = Vi = t (t-to), (13) istic tunneling speed,ne(t) for the rapid ramping profile.
rame Unlike the similar comparison for the slow dynamics we see
wheret runs fromt. to t.+t,,ymp and the total time of the here that after approximately 3 ngs is increasing in time
ramping ist,y, This gives a total ramping profile similar to - much more rapidly than the single-site tunneling spgggie
that studied experimentally by Greinet al. [1]. alone can account for. Indeed by the end of the ramping
d& ot is almost 3 times that of the maximum tunneling
speed. This is a clear indication that single-atom hopping is
not adequate to describe the growth of the central SF region
For the fast dynamics we restrict our attention to the statéor such rapid dynamics. Instead the specific form and con-
that is dynamically driven to the MI regime by the slow tributions of higher-order correlation functions must play a
ramping profile at=t.. A number of simulation runs were crucial role.
performed for total ramping timets,,, between 0.1 ms and To draw direct comparisons with the results of Greiaer
10 ms, along witht,,;,,;=0 ms which is equivalent to the al. [1] on the restoration of coherence we also plot the mo-
initial state. The value of; obtained at the end of each of the mentum distribution widtH,, obtained from the one-particle
ramping times is plotted in Fig. 18). We see that there is a density matrix at the end of each ramping in Fig(eéd1The
steady monotonic increase in tifgfor ramping times data points for this quantity show a pronounced trend, with-
except where it is broken by peaks and troughs which are theut any of the large-scale variations seergirtaused by the
expected manifestations of the trapping used. In particulatrapping [41]. The decrease of,, with increasingt,am, fits
the trough centered arourtg,,,~7 ms corresponds to the well to a double-exponential decay curve of the form
period of an oscillation with frequency«? wherew is the _ o s
trapping frequency introduced in Sec. Il B. On a similar Fultramp) = Ay € a7+ A @t 2+ C, (14)
basis the spikes which appear aroung,,~1 ms can be where 7,7, are the characteristic decay times,,A, are
seen to be a result of the excitation spectrum. coefficients, andC is a constant. Most notably the exact

1. Profile for fast dynamics

2. Fast dynamics of the larger system: #49
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13 V. CONCLUSION
(@)

In these studies we have established the accuracy and ap-
plicability of the TEBD algorithm to the BHM, for both the
computation of ground states and its dynamics. We have then
applied this method to systems of a size equivalent to those
studied in experiments and in the presence of a trapping po-
tential. In particular we have examined the nature and speed
in which coherence is reestablished within the system for
both slow and rapid dynamics which cross the SF-MI tran-
sition. Our results indicate that for slow ramping of the lat-

0 2 4 6 8 10 tice depth the SF growth is consistent with single atom hop-
£, [ms] ping as might naively be expected. However, for very rapid
ramping of the lattice depth we find that the SF growth is

FIG. 11. Rapid ramping of an optical lattice from the MI much greater than can be explained by this mechanism alone
(U/2J=20) to the SF(U/2J=2) regime forN=40 atoms inM  and so points to the importance of higher-order correlation
=49 lattice sites superimposed by a magnetic trapping potentiafynctions. We made direct comparisons between our simula-
The width of the central interference frindgg as a function of the  tion results for the momentum distribution widfty during
ramping timet,amp is shown in(a). The solid curve is a fit using a rapid ramping and the experimental results obtained by
double-exponential decayr;=0.22 ms,7,=2.14 m$ (cf. [1]). I Graineret al. [1] and found that the reduction iiy, with the
(b) the rate of change of the correlation cutoff lengths shown for ramping time follows precisely the same functional form as
the ramping performed Withay;=8 ms, along with the profile for o ya4n despite a number of significant differences in the
the charactel_ristic t““ﬂe““g speefhne(!) for the ramping. Both are systems :'Jmalyzed. Perhaps most fundamentally we have
plotted in units of lattice sites per ms. shown that the results obtained[iH for the rapid restoration

) i . of coherence are consistent and explicable within the BHM
same functional form was found to fit the experimental dataygne and are present even in 1D systems. Finally, we note
in [1]. Si_nce their experiment was conducted for a 3D Iattic_e{hat a detailed knowledge of the correlations of atoms in
along with a larger mean occupancy and a deeper rampingfferent sites and the particle number fluctuations as pro-

profile, exact agreement for the time parameters of this fit igiged by our numerical calculations are important for utiliz-
not expected. However, we do note that the ratio of the decamg the MI state in a number of applicatiof—14.

times used for their fit and ours are both/ ;= 10. Simi-
larly we can make the same observation as madé]ithat
the momentum distribution widtH,, has returned to its ACKNOWLEDGEMNTS

steady-state value within a time scale approximately of order ;. acknowledges useful discussions with Guifré Vidal

Twnnet THIS is much shorter than the expected tii8oe  ang the hospitality of Caltech. This work was supported by
required for coherence to spread over the whole latticél of EPSRC(UK).

sites via single-atom hopping. This confirms that the restora-

tion of coherence as seen in the experiment is accurately
described by the BHM. APPENDIX A: 1D OPTICAL LATTICES

1

L9

3. Validity of the simulation for fast dynamics The starting point for our physical model is the Hamil-

The simulations performed here assume that the dynami&gmar_] for weakly interacting bosonic atoms in an external
of the atoms is described by the lowest Bloch band of thdr@PPing potential
optical lattice. This assumption holds if the typical frequency 1
f~1/tmp of the ramp inU and J obeys f<v, where H :f drw’r(r)(— EV%VO(r) +VT(r)>¢(r)
v=v4ERV,/ 27 is the harmonic approximation of the excita- A
tion frequency to the first excited Bloch band5]. The
shortest ramping time we consideredig,,=0.1 ms, while
1/v=0.05 ms for the lattice on average over the ramping. o ) )
Because the conditioh< v is not fulfilled, we numerically ~With #(r) the bosonic field operator for atoms in a given
calculated the probability of exciting a single particle, wheninternal atomic state/y(r) is the optical lattice potential, and
initially prepared in the lowest Bloch band and located at theV+(r) describes a slowly varying additional external trapping
central site of the lattice, during the ramping above as gotential such as that created by magnetic fields. The inter-
function of t,,, We find that the time evolution is well action between the atoms is modeled by a contact potential
approximated by the adiabatic time evolution for with s-wave scattering lengthy andm, is the mass of the
tramp>0.05 ms and that it changes to being sudden foatoms.
tamp<0.005 ms. Therefore we expect only a small influence We assume the optical lattice potential to have the form
to the form of the curve in Fig. 14) between the points at Vo(r):Ef;l Vjosir?(krj) with wave numberk=27/\ and X
tramp=0 mMs andt,,,,=0.1 ms due to higher band excitations the wavelength of the laser light yielding a lattice pered
which is not resolved in the experiments. =\/2. The spatial coordinate is denoted by(rq,r,,r3).

S0 [apovounun, e

m
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This lattice potential can be realized by interfering threeAPPENDIX B: MF APPROXIMATION AND GUTZWILLER
pairs of counterpropagating laser beams from three orthogo- ANSATZ

nal directions. The height of the potenti}, is proportional The presence of a trapping potential causes the system to
to the intensity of the lasers in thth pair of laser beams. We  pecome inhomogeneous allowing the coexistence of spatially

assume the intensity to be very large in theandr; direc-

separated SF and MI regiof$5,37—-43. Now each lattice

tions so that the atoms do not tunnel in either of these direcsite has a local chemical potentja},, and together with the

tions. Hence their motion is restricted to the=x direction

overall U/2J parameter for the system this gives a phase

and this optical lattice setup thus allows the creation of efdiagram coordinatgp=(2J/U, u,,/U). The MF determina-

fective 1D systems. The resulting atomic pipelifi2gl0,23

tion of which regime a given lattice site lies in is then based

are well isolated from each other and we can thus restrict ousn where preciselyp resides in the homogeneous BHM

considerations to just one of them.
The center position of the lattice site of this 1D system
is given byx,=ma, and so a particle occupying the lowest

Bloch band which is localized at this site is described by the

wave function ¢pm(r) =wy(X—Xm)Wo(r)Ws(rs), wherew; are
the Wannier functions of the lowest Bloch bafib] in the

phase diagrani5,41,48.
The MF calculations performed utilized the standard de-
coupling of the hopping termil8,33

bbme1 = BB ) + (Oibimes = (B4 (Brys), (B
which decompose the BHM Hamiltonian in Ed) into a set

jth direction. By neglecting all excitations to higher bandsOf M single site Hamiltoniansi,,. Specifically the single site
and expanding the bosonic field operators into the mod&im has the form

functions ¢,,(r) the HamiltonianH reduces to the 1D Bose-
Hubbard mode[15] given in Eq.(1) Sec. Il A. The param-
eterU of the BHM is given byU =4mag [ dr|¢pmy(r)|*/m, and

corresponds to the strength of the on-site repulsion of two

atoms occupying the same lattice siteThe hopping matrix
element] between adjacent sites andm+1 is given by

2

1
ﬂdx2+vosin2(kx))w1(x—xm+l).

J= —fdxvvl(x—xm)<—

(A2)

The numerical values fdd andJ for different depths of the
optical latticeVy=V;, can be found irf15].

U
Hin= = 23ty + .C) = 2 buf? = panioim + - Db,

(B2)

for each lattice siten, dependent on the sites superfluid order
parameterp,,,=(b,), which is assumed to vary slowly over
the system, and its local chemical potentigl. The MF
ground state is then a product state over sitége)
=TI, |4 determined by minimizing the complete set\df
site HamiltoniandH,, with respect to the order parametefg
and then diagonalizing to extract eigenstatd) with the
smallest eigenvalue for each site. Given that eaghh
:Enmcnm|nm> this procedure is equivalent to approximation
methods based on the Gutzwiller ansgiz32] and has been
applied successfully in modeling the qualitative behavior of
BHM phase diagranj48].
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