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Splitting instability of a multiply charged vortex in a Bose-Einstein condensate
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We consider the splitting mechanism of a multiply charged vortex into singly charged vortices in a Bose-
Einstein condensate confined in a harmonic potential at zero temperature. The Bogoliubov equations support
unstable modes with complex eigenfrequenc¢i@E modey which cause the splitting instability without the
influence of thermal atoms. The investigation of the excitation spectra shows that the negativectsiigrgy
mode plays an important role in the appearance of the CE modes. The configuration of vortices in splitting is
determined by the angular momentum of the associated NE mode. This structure has also been confirmed by
the numerical simulation of the time-dependent Gross-Pitaevskii equation.
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[. INTRODUCTION perturbations. Therefore the vortex state is intrinsically un-
. . : stable.
The discovery of Bose-Einstein condensa(B&Cs of In this paper, we consider the origin of the complex-

alkali-metal atomic gases enables us to make fundament@lgenfrequencyCE) modes and their effect upon the vortex
investigations into superfluidity and quantized vortices. Vor'splitting process. A vortex with a winding number- 2 may
tices in BECs have been created in three ways: phase imyit into various states, while a doubly charged vortex
printing [1,2], optical spoon stirring[3], and topological  erely splits into a pair of singly charged vortickisl]. We
phase engineering,5]. By using the third method, multiply i treat a quadruply quantized vortex in concrete calcula-
charged singular vortices are created in BECs, which havg, s in this paper. In Sec. II, we briefly introduce the for-
not been achieved in other systems such as supertid  alisms based on the mean field theory. The orthonormal
and"He [6,7]. o _conditions for CE modes are constructed there. In Sec. Ill, a
Recently, Leanhardtt al. succeeded in imprinting vorti- a5y insight into the origin of CE and negative-eney)
ces in Bose-Einstein condensates by using topological phasgsydes is provided by the collective excitation spectra of the
[5]. They observed doubly and quadruply quantized vorticegogoliubov equation. The possible structures of splitting are
in a nonrotating trap. Although such a multiply charged vor-5155 considered in Sec. IV, showing the results of numerical

tex ﬁs expected to be ur]stable and split into singly Chargegimulations of the Gross-Pitaevskii equati@®PE.
vortices, no obvious splitting has been observed in experi-
ment. Unfortunate_ly,_ since the center ef the externel poj[er?tial Il. FORMALISM
changes from a minimum to a saddle in the vortex imprinting
process, the vortex state cannot be trapped. Therefore, the  A. Stationary state with a multiply charged vortex
fate of the vortices has not been revealed in the experiment. BECs of weakly interacting atoms are well described by

In a nonrotating trap, the energy of a vortex state in-the GPE given by
creases in proportion to the square of the winding number ,
[8]. When there are some dissipative processes such as scat- oY h
tering with thermal atoms, the multiply charged vortex 'hﬁ_(_ NVZJrV“(r)_“J’gWF)\P' @)
should split into singly quantized vortices and escape from ) o
the condensate. The existence of negative-energy eigenvakhere¥(r,t) is the condensate wave functidvl,is the mass
ues among the excitation spectra shows that the vortex sta@d the trapped atomsy is the chemical potential, and
continuously turns into a vortex-free state without any en=4m%?a/M represents the strength of the interparticle inter-
ergy barriers[9-11]. Then what happens in a system in action. We treat repulsively interacting atoms and assume the
which all atoms are condensed and scattering with thermaFwave scattering length to be positive. The external trap
atoms is negligible? Does the vortex remain in the condenPotential has an axially symmetrical form with trap frequen-
sate without splitting? cies , and w, as Vy(r)=3Mw?(x2+y?) +:Mw?Z?. For sim-

There is another candidate for the splitting instability. Forplicity, we assume a pancake-shaped BEC, ig< w,, and
a multiply charged vortex in a BEC, the Bogoliubov equa-fix the z dependence of the order parameter B& ,t)
tions possess complex eigenfrequencies in certain regions ef (x,y,t),(z), wherey,(z) is the normalized ground state
the parameter space of the interaction strefigx-14. This  wave function of a one-dimensional harmonic oscillator.
fact means that there is an eigenmode growing exponentiallfhen we treat the two-dimensional wave functigtx,y,t)
and the condensate becomes unstable against infinitesimghich is normalized to the total atom number

It is convenient to introduce the dimensionless time and

space variables= w,t and(X,¥)=(x,y)/ayo, and the normal-
*Electronic address: yuki@scphys.kyoto-u.ac.jp ized order parameteg=a,oi/ N, where a, is the har-
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monic oscillator lengtha,o=\%/2Mw,. Energies are also
scaled byhw,, for example,u=u/fiw,. Then the GPE is
rewritten in a simple form

Y

ot )

(— VZ+ %rz— pt n|¢|2> &,

whereV2= g%+, r?=x?+y?, n=8waN, and we omit the tilde
for simplicity.
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restrictl =0, since the eigenvalue equation fdris just the
same as that for when one replaces,, v;, and w, with v_,
u_, and -w_;, respectively. Then we define the angular mo-
mentuml,, of excitations by comparing the amplitudes of
components exgil 6) as

lex=1 sgr(|u||2—|v||2>. (10)

Tc() )specify the sign of the angular momenta, we wé‘i% and

Assuming an axial symmetry around a vortex line, wew,;" for the eigenfunctions of,,=1 andle=-1, respectively.

express the condensate wave function with.asharged vor-
tex in equilibrium as

o(r,0) = Ar)e*?, 3

whereA(r) is a real function and satisfies the equations

L=0,1,2,...,

[D(L) + nA(r)?]A(r) = 0, (4)
__ & 1d L2 1,
blL)= a2 rdr 24 M ®

The chemical potential is found from the normalization
condition 27[3r dr{A(r)}?>=1. We assume. to be positive

The excitation energy is also defined by

6= oul*=v)?, (11

reflecting the relatiom,=-w_;. This is confirmed by expand-
ing the Hamiltonian up to the second order in perturbations.

C. Complex eigenmodes and orthonormality

Equation(7) is allowed to have complex eigenfrequencies
since it is a non-Hermite eigenvalue equatj@2]. Here, we
derive the normalization and orthogonality conditions for
eigenmodes including CE modes.

Consider two eigenmodes,,, , of Eq. (7) with eigenfre-

without loss of generality. The results of numerical calcula-9Uenciesoy, .. Using the property of the Hermitian operator

tions forL=4 are presented in Secs. Il and IV.

B. Collective excitations

To study the collective excitations of a BEC, we add small

fluctuations to the stationary state ag(r,6,t)=[A(r)

+f(r, 0,1)]€%% wheref is small and complex. Assuming that

the excitations are periodic ifiwith period 2r, we expand
into a Fourier series:

fr,o)= > [ur,ne?+u (r,te.

1=0,1,2,...

(6)

Substitutingy(r, 8,t) in Eq. (2) and linearizing with respect

to f, one obtains the well-known Bogoliubov equation

)

7AﬁWl(r) = o owy(r),

_ U|(r) ~_ 1 0
w(r) = o) 7 \o -1)

and 7Ai| is a symmetrical matrix
-~ [D(L+])+27A?
H= 2
nA

where

8

A ) 9
D(L-1)+29A%)" ©

We are interested in the eigenstates}ét, and take the time
dependence of the excitations\agr,t)=w;(r)exp(-imt). It

Hw Hywimd =(w Hywi,), where T denotes the transpose,
one obtains the equation

(12

When two eigenstates have different eigenfrequencies
(o # wyy), they are orthogonalw;, 6w,y =0. In particular,
in the case whew,, is complgx with a complex eigenvalue
), its complex conjugatev,, is also an eigenstate yvith
eigenvaluew, ,. The orthogonality condition fow;, andw,,
is written as

(@im = @)W}, GWyrp) = 0.

(13

According to Eqg10) and(11), a CE mode corresponds to
the excitation with zero angular momentum and zero excita-
tion energy.

Equation(12) indicates thatw,,ow;,) can be normalized.
For a real-eigenfrequenaqRE) mode, we choose the phase
so that the eigenfunction is real. Then the normalization con-
stant is defined to be consistent with its angular momentum
as

<WIT,ua'\N|,u> = <|U|M|2 - |v|,u|2> =0.

wiTowl) =1, (wiyTowi)=-1.  (14)
For a CE mode, we divide the eigenfunction into two real
functions wiR" as w;,=(1/y2)(w® +iw). The phase of
w,,, is determined in such a way that the following conditions
are satisfied:

WRTGWRY =1, (whTewy=—-1,

(153

should be noted here that the Bogoliubov equations with

different| are independent.
Usually, the summation in Eq6) is done for both posi-

(wWRTewy =0, (15b)

tive and negativé which correspond to the angular momentawith these conditions, the CE mode indeed satisfies E).

of excitations, and the normalization conditidju|>— v,
=1 (>0) is imposed, wherg:-)=2ax[g---rdr. In this

and the normalization conditiongv],aw;,)=((w;,)Tow; )
=1. According to Eq(15a), the functionsw®" correspond

case, however, we remove this normalization condition ando positive- and negative-angular-momentum excitatioms
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eigenstates We use the expressiomé;), andwl(r‘g instead of gF& T & T & T & T &
R respectively, and treat them and the other eigenmode ® = " "
wRD respectively, r ig s sl a & & a o«
equally. - ® & ® x
In this way, the orthonormal basis s&ﬁ"’) has been con- S4re ® ® X X =
structed with the following conditions: 5 & B x X
c 2F® s X X X
~ ~ o
Wi Towiy) = S (WY TOW) == O (168 3 @ x x X
5 O*®
x X X X
~ w
WWTewVy = 0. (16b) 2F x x x  [g¥]-
X X V)
m X
4 ! I I I I I & -
7 8

o
-
N
w
-~ A
[4,]
[e2]

I1l. ENERGY SPECTRUM
. A CoII.ectlve excitations VYIth 1’:0_ o FIG. 1. Excitation spectra of a quadruply charged vortex state at
First, we investigate at the noninteracting linf%=0).  the noninteracting limit. The symbotsand x represent"’ and
The equilibrium state satisfie®(L)A(r)=0. The eigenfunc- £\, respectively.
tion F- and eigenvalu&, are given analytically by

Ly = (LylLl oIt p2/oy omr2ia served and the excitation which can cause the vortex decay is
Fr(r) =Cor Ly (ri12)e ™, (17) not a NE mode but a CE mode, as we will show in the
following.
E-=|L|+2n+1, (18)
wheren=0,1,2,...denotes the radial quantum number and B. » dependence of energy levels

LL(x) is the generalized Laguerre polynomial function. The
coefficient C is defined by the normalization condition
(Fh(r)z)zl. The stationary stat@y(r) and its chemical po-

To calculate the energy spectrum fgr-0, we expand the
eigenmodesv, in W as

tential ug are :
w =2 (WY + W), 22
AO(r) ) Flé(r), Ho= EI6 =L+1. (19) | n:o( nYVin ﬂn In )
~ The Bogoliubov equation withy=0 decouples into the ~Supstituting Eq(22) into Eq.(7), we rewrite the Bogoliubov
independent equations equation as eigenvalue equations fag, By, ... ,an, Bn):
DL+DU =, (209 N
7> [2FET AL o + (LA B, ]
D(L-)V,=-QV,, (20b) m=0
+(E- - - w)ay =0, (239

where we write eigenfunctions and eigenfrequencies with
=0 in capital letters. The solutions ag=F:" ,v,=F-" i.e.,
the set of eigenmodes is given by

Wf#)=Fh*'(r><cl)>, WFX)=Fh"(r)(2), (21)

having eigenfrequencie®’=|L+I|+2n-L and Q'=—|L  wheren=0,1,... N andA(r),x are the numerical solutions
-1|-2n+L, respectively. According to Eq11), the excita- of Eq. (4).
tion energy ole(;’) is El(r‘f):—ﬂl(;’), while that ofW,(;” is We have numerically solved E¢23) for L=4 and O<l|
EW=0". Figure 1 shows the excitation spectra wijk0 <8 in the range of & »=<4000. The number of terms
with respect to the equilibrium state with a quadruply quansummed in Eq(23) is N=50. The NE modes exist for 1
tized vortex(L=4). There are a few negative energies among=!=<7 as expected from the result fg==0. The CE modes
the spectra of &£1<2L-1. These NE modes come from the appear for 2<1<6. The imaginary parts of the complex
fact thatyy, is not a ground state. For a noninteracting BEC,€igenfrequencies are shown in Fig. 2, which agrees well with
NE modes correspond to the eigenstates in the trap witkhe results for doubly and triply charged vortidd<].
lower energies thamy, The existence of these various NE  The origin of the CE modes is made clear by plotting
modes shows how unfavorable the multiply charged vortexhem as functions of. Figure 3 shows the excitation spectra
is. with |=2. Each eigenstate is identified by a radial quantum
In the case of a nonisolated system, the energy of th@umbermn=0,1,2,... and thsign of the angular momentum
condensate does not need to be conserved. It decreagés/- The solid lines in Figs. @ and 3b) represent,. and
through the growth of NE modes, leading to the vortex de-,”, respectively. There is a NE modé?, and ey (>0) is
cay. In an isolated system, however, the energy must be complotted with a broken line in both figures. We also plot the

N
72 [(F AR o+ 2(FL AL B

m=0

+(Ey -+ w)B,=0, (23b)
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FIG. 2. Imaginary parts of eigenfrequencies fay |=5,6 and
(b) 1=2,3,4 asfunctions of the interaction strength. The result
_ . . . . 0 " L " N L L N
for 1=6 is magnified 100 tlmes_. The CE mode Ratdiffers from 0 1000 2000 3000 2000
others withl=4 as to the associated NE mogee text n

real parts of the complex frequencies with dotted lines. It is FIG. 4. Excitation spectra fd=4. The description of lines is in

clear from Fig. 3 that a conjugate palr of CE modes appearg'g 3@). There are two NE modes and both turn into CE excita-
tions. The pointP corresponds t® in Fig. 2 (see text

instead of two RE modes’” andw20 in the regions where

<“)+e(2‘8—0 As we mentioned in Sec. I, a CE mode corre-
sponds to an excitation with zero excitation energy and zer
angular momentum, which are made up of two excitationd® RE modes as changes. L o
such as(l/\2)(w(“)+|w(")) The real and imaginary parts, The second quantized description S|mpI|f|es this picture
which are divided so as to satisfy orthonormality, have &12,13. A boson field operator is defined alar) = o(r)
physical meaning: they correspond to positive- and negatlve+¢ r), where thec-number functionyy(r) denotes the con-

densate wave function and(r) is the fluctuation part. We

gnhgular-momentum excitations, which continuously change

6 ] decompose ¢(r) as @(r)=€-’2, | [uN(re'fay,+vM(r)
5t € ] xe %], 1. Here, o, is the creation operator associated
3 - with a fluctuatlonwl(” Let us fix the interaction strength, for
& r— < € 1 example, t07=200 where a pair of the CE modés/\?2)
'-'é' 3 “ | x(w(z‘gilw( )) exists. Then the Bogoliubov Hamiltonian is
S L€y . written as
8 2L €x
- — - =S S halnant Rewdalutn- algia
i B= In@un@in T RE€Wcl 20020 = Ay200v20
1t 1 A=uv (I,n)#(2,0
(@) Tt
0 . s s . . - - +1M wc(a0y20 T Au20%v20) (24)
6 . .
© -1 where o, is the complex eigenfrequency, and we have used
51 G e the relations
>
j=2
5 Re w, = (W TH W) = — (Wi THWY)), (254
w
c
o
o Im w, = (Wig "H W), (25b)
5 . .
X Equation(24) clearly shows that the two excnanomg‘g")
b are coupled to each other and should be created or annihi-
0 . . . . . . . ®) lated together.
0 1000 2000 3000 4000 In the above discussion, the NE mode is important for the
n appearance of CE modes. In the casd ©P, there exists

\Y
FIG. 3. Excitation spectra fde=2. The solid lines correspond to only one NE mOdeW(ZO) Therefore all CE modes with
excitation energies witte) positive angular momenta aib) nega- =2 are found by tracmgzo We also present the spectra for
tive angular momenta. In both figures, the negative-energy eiged-=4 in Fig. 4, where the solid lines represeﬁf There exist
values and the real part of the complex eigenfrequency are plottetio negative-energy elgenvalue% and 641 which are plot-
by broken and dotted lines, respectively. ted by broken lines. We have confirmed that the NE mode
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wﬂl‘)fl), as well aswﬁl‘g, turns into CE modes in the region where |y(r, 6)> = A2+ 2A8Re(u, + v)cog1 6)— Im(u, + v))sin(1 6)].

ef“g +e£1"1):0 is satisfiedat pointP in Figs. 2b) and 4. We (27)
have obtained all of the CE modes by inspecting the behav-

iors of NE modegsee Fig. 2 Assuming the conservation of the total angular momentum,

The 7 dependence of negative-energy eigenvalues is als#plitting of anL-charged vortex obeys the rul¢g an (L
important in this mechanism. Since their dependence differs|)-charged vortex stays at the trap center, &ndl singly
from that of positive energies, many CE modes appEms. quantized vortices are arrangedl#old symmetry.

3(a) and 4. The qualitative account for the dependence Although the above rules are applicable to both RE and
can be given by introducing the effective potential CE modes, only the latter can grow exponentially and cause
large changes of the condensate with a small perturbation. In
1 (L-1)2 t_he following, we investigate the effect of CE modes on the
Ver(l,r) = =12+ = +29A(r)?% - , (26)  time development of a vortex state.

B. Projection to elementary excitations
which is easily derived from the Bogoliubov equation for

: 9= We solve the GPE numerically and simulate the time de-
negative-angular-momentunt-l) excitations. When the

o . e velopment of splitting process. Regarding the time evolution
equilibrium state contains a vortex, the term produces a ot 5 condensate as individual developments of elementary

potential well centered at the vortex cqE]. On the other o citations, we again expand the time-dependent wave func-
hand, the second term represents the centrifugal potentigl, 45

depending upon the angular momentum of the fluctuation.

This term makes the well narrower fs-I| increases. ANE  y(r 6,t) = y()A()E-? + >, [uy(r,H)e'? + o] (r,t)e 1 7]e-?

mode corresponds to a bound state of the well, and therefore [

shows differenty dependence from the others. (29)
There are two effects on the negative-energy eigenvalues

associated with the change of By increasingz, (i) the  Converselyy andv, are written by using/(r, 6,t) as

chemical potentiaj increases as well, leading to a deeper om

well and smaller energy eigenvalues afig the coherence u(r,t) :f %w(r,e,t)e‘i(“')", (293

length(i.e., vortex core sizedecreases, leading to a narrower 0o 2m

well and larger energy eigenvalues. In the case=af (=L),

the negative-energy eigenvalues decrease rapidly) &% 27 4p _

creases by(i). In contrast, thd=1 negative energy eigen- v|(r,t):f 2—¢*(r,6,t)e'(L")9. (29b)

value increases due t@i). Therefore, the conditiorrﬁ o 4™

+¢€9=0 cannot be satisfied with any eigenmoae¥, and e expandw(r,t) in eigenmodes of the Bogoliubov equa-

no CE mode appears. tion as

wir)=> X yNoOwNm. (30)
IV. PATTERNS OF VORTEX SPLITTING A=u,v n=0,1,2,...

So far our discussion has been based on the spectrufY USIN9 th(% \grthonorrr(luavl) conditiond6), the coefficient is
analysis. We have found that the CE mode corresponds to @Ven by 7, ()=%{w, " (ow(r,1)), where the upper
zero-energy excitation and should grow in an isolated systlowen sign is for the superscript (v).
tem. In this section we consider the possible patterns of vor- In the extent of the linear approximatiom,(,f"’) for a RE
tex splitting. mode oscillates with the eigenfrequenay"’ as 5"
ocexp(—iwl(ﬁ"’)t). Then the amplitude is constant. For a con-
jugate pair of CE modeSl/\f'Z)(wl(r:‘,)iiwl(x]),) with eigenfre-
guencies w, and w;, the time dependence is given by

Here, we analyze the structure of BEC with fluctuations.(1/,2)(y") +iy") = exd-i(Re o)t = (Im wot], one of
The wave function perturbed by an eigenmaves written  \yhich is growing and the other is diminishing.
as Yy=[A(r)+8(ue'?+v, e %1€’ where § is a small and
real constant.

The structure of the vortex core in equilibrium can be
described with an asymptotic formA(r)~r(r —0). The The solution of Eq.(4) remains stationary without any
eigenmode at the center also behavesuasr!* and v, perturbations. We distort the trap potential in thdold sym-
~rl-l Then the perturbed wave function is written in the metrical form asVy(r, 6)=3r%1+6 cos(1,6)] during a short
lowest order ofr as ¢~ &!let? je. an(L-I)-charged period. By choosing the symmetry of the distortion, the
vortex exists at the center. One also finds that the condensagéggenmodes of=1, are selectively excited.
hasl-fold symmetry by linearizing the density with respectto  The distortion is small enough not to cause distinguish-

6. able splitting of the multiply charged vortex. When all of the

A. Vortex structure with elementary excitations

C. Time development of vortex structures
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0.02 T . T -
: . (a) — . -
A (distortion off) , ~ ) = \
b e ] ~ 4 \
Sootf f ‘
= : plus mode
minus mode
N i— - oy e
0 5 10 15 20
t [trap unif]
1 .
(b)
0.8t
— 06¢f
§; plus mod{
04r FIG. 7. Images of splitting patterns gt=340 after trap distor-
minus mode tion with () 1,=2, (b) I,=3, and(c) |,=4. The top panels are
0.2} density profiles and the bottom panels are the corresponding phase
v profiles. Three CE modes are selectively excited by chodging
0 . .
0 50 100 150 200 the RE modes are constant. Further time development is

 [trap unif] shown in Fig. $b). When the plus mode increases beyond

. o » the linear approximation, it stops growing, and the minus
FIG. 5. Time development of elementary excitatio@.Initial — 1,04e starts growing instead. They interact with each other

changes. The broken lines correspond to the amplitude of the CEpy hegin to oscillate. Other excitations are also enlarged

modes(plus and minus modgswhich coincide with the solid lines more and more through a nonlinear process. Here, the RE

corresponding to the functions €x¢tm wt). The amplitudes of modes ofl =I, are selectively enlargedin the case of,=2,

qther modes plotted with the dotte_d lines are con_st{J)tFurther we found that the RE modes bt 4 are also excited through
t_lme developr_nent._ The plus_and minus mogtes sollq and broken this nonlinear process.
I|n_es, respectivelyinteract with c_each other and oscillate. The am- Figures §a—6(c) are the images of condensates at the
p!ltuQes of ot.her mode@otted line$ are also affected by the os- pointsA, B, andC in Fig. 5, respectively. The initial distor-
cillation and increase more and more. tion causes little change of the distributifffig. 6@)]. As the
complex mode grows, the vortex split into four singly quan-
excited modes have real eigenfrequencies, the configuratidized vortices arranged in threefold symmefisig. 6b)].
of cores does not change in time. In our simulation, no ob-The interaction of the CE modes results in the oscillation of
vious splitting occurs ay=500 where no CE mode exists. distances among the cores. The divided cores in Fig) 6
We have investigated how CE modes affect the configumove toward the center again as shown in Fi(c) Gnd
ration of vortices. We have simulated st 730 where there oscillate betvyeen these two states. In the oscillation, singly
exists a pair of CE mode(i/v’f)(wgiiwgg), and distorted  charged vortices never return to the quadruply charged vor-
with 1,=3. Figure 5 shows the time dependence sgf, tex. Their average distance bec_omes Iarger and larger. Simul-
which is the typical behavior of excitations including CE taneously, the center core begins to vibrate and the conden-

modes. While the amplitudes of eigenmodes are small, theff&t® becomes more and more distorted. The energy of the
. . ; -~ multiply charged vortex is gradually transferred to the exci-
time dependence agrees well with the linear approximatio

as shown in Fig. &): the amplitude of one of the CE modes fation energies of RE modes,

. We have also investigated the coexistence region of sev-
(plus modg increases as exiin wt), that of the other CE o5 cE modes. We have simulated a&340 where CE

mode(minus mod¢ decreases as eim wt), and those of  ,q0des ofl =2, 3, and 4 exist. FigureS@-7(c) are images

of splitting after distortion witH,, =2, 3, and 4, respectively.
The vortices in each image are arrangetl ifold symmetry.
This fact means that the splitting patterns can be controlled
by the initial distortion.

As we have mentioned before, the symmetry of the con-
figuration of vortices agrees with, i.e., the angular momen-
tum of excited states. At the center of the trap, however, a
doubly quantized vortex, which appears lin2 splitting,
seems unstable and soon decays into two singly charged vor-
tices[Fig. 7(a)].

FIG. 6. Contour plots of density profiles at the poiAtsB, and
C in Fig. 5. (a) A multiply charged vortex just after the distortion. V. CONCLUSION
(b), (c) Vortices arranged in threefold symmetry. Vortex cores move  We have calculated the collective excitation spectra of a
outward(b) and into the centefc) in the oscillation. BEC with a quadruply charged vortex, and discussed the
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origin of CE modes. A CE mode is decomposed into twothe trap, even in the case when several CE modes coexist.
excitations, whose total energy and angular momentum are In this paper, we have assumed a pancake-shaped BEC
equal to zero. This fact allows the CE mode to grow withoutand taken a two-dimensional approach. In a cigarette-shaped
any dissipative processes. To satisfy energy conservatioBEC as in the experiments, three-dimensional simulation

one of the elements must be a NE mode.sjtsependence shows that the splitting cannot be recognized by time of
affects the appearance of the CE mode. We have found all gfight because of the excitation along a vortex Ijid].

the CE modes existing in the region<Op=<4000(Fig. 2).

The possible patterns of vortex splitting are classified by
the angular momenta of fluctuations. These structures have ACKNOWLEDGMENTS
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