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Dynamics of matter solitons in weakly modulated optical lattices
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It is shown that matter solitons can be effectively managed by means of smooth variations of parameters of
optical lattices in which the condensate is loaded. The phenomenon is based on the effect of lattice modulations
on the carrier wave transporting the soliton and that is why it is well understood in terms of the effective mass
approach, where a particular spatial configuration of the band structure is of primary importance. Linear,
parabolic, and spatially localized modulations are considered as case examples. It is shown that these defects
can originate an accelerating and oscillating motion of matter solitons as well as they can simulate soliton
interactions with attractive and repulsive defects.
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I. INTRODUCTION The model and the physics of the phenomenon are de-

— . . ) scribed in Sec. Il. Acceleration of a matter soliton in a lin-
The realization of a Bose-Einstein condens@eC) in early modulated lattice is considered in Sec. Ill. Soliton os-

an optical lattice[1] originated intensive experimental and ¢jations in a lattice with a parabolic modulation of the
theoretical studie1-14 of the phenomenon. One of the yenih are considered in Sec. IV. Section V is devoted to
main features induced by the periodicity is the appearance Qyjiton interaction with spatially localized defects. The re-

a band structure in the spectrum of the underlying lineag s of the paper are summarized in the Conclusion.
system, i.e., the gas of noninteracting atoms. The band spec-

trum is responsible for a number of effects, including modu-

lation instability [3,4] _and formation of_ gap soliton§4], Il. PHYSICS OF THE PHENOMENON
Landau-Zener tunnelingp,6], Bloch oscillations of BEC's
[1,5,7, the lensing effec{8], soliton stabilization[9], etc. Let us consider a trap potential which can be written

These effects, being based on the properties of the lineatown in the form Vi,,=(m/2)(wf X2+ wgy?+ w3z?) +V(X).
system, are well described in terms of the concept of th&he first term in the right hand side of this expression de-
effective mass, which takes into account the wave nature dadcribes a magnetic trap with, and wg being the longitudinal
the phenomenon and that is why its inverse value is alsand transverse linear oscillator frequencies. The condensate
referred to as the group velocity dispersi@}. In practice, is chosen to have a cigar shape with the aspect ratio satisfy-
laser lattices are never perfect. In particular, they are ofteing the relationw,/ wy<a3/ &<1 (a, and ¢ being the trans-
imposed simultaneously with other external potentials, likeyverse linear oscillator length and the healing length, respec-
for example, a magnetic trap which significantly affects thetively). We are interested in excitations of a BEC having
motion of a soliton[10]. Moreover, one can create spatially characteristic scales of order of the healing length and a rela-
localized lattices; propagation of matter waves through thestively small potential amplitude, which allows us to neglect
displays a number of interesting propertjé§] such as reso- the term(m/Z)wfx2 in the expression for the trap potential
nant transmission and soliton generation through modulavt,ap, The termV.(x), where e is a deformation parameter
tional instability. It is also highly relevant to mention that controlling the potential shape, describes a smoothly modu-
very recently direct experimental observation of a gap mattefated optical lattice. It will be assumed to have the form
soliton in an®Rb BEC, containing about 250 atoms, hasV (x) = f(€/2x)V,(x), where Vy(x)=Vy(x+L) is the unper-
been reported12]. turbed lattice having period of order of the linear oscillator

In this paper we present an analysis of the BEC dynamicfength a,, L~a,, and f(¢¥) is a smooth modulation nor-
in an optical lattice with smoothly modulated parameters. INymalized as followsf(0)=1. Smoothness in the present con-
this case the band gap structure is still preserved but is dgaxt means slow variation d{€¥?) on the scale of the heal-
formed by the mpdulatlon. In pqrtlcular, we show that thIS' ISing length, or in other words~ ay/ ¢. Then one can apply a
a way of managing the dynamics of matter waves—makingyiple-scale expansiofd] in order to reduce the Gross-
them accelerating, oscillating, etc. Pitaevskii equation governing the dynamics of the BEC to an

effectively one-dimensional(1D) nonlinear Schrédinger
(NLS) equation with a slowly varying effective mass,

* Electronic address: brazhnyi@cii.fc.ul.pt =m,(e2X)=[#&,(k; €/>X)]™L, and the group velocity of
"Electronic address: konotop@cii.fc.ul.pt the carrier wave depending on the coordinate,
*Electronic address: kuzmiak@ure.cas.cz =gE(k; €2X):
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A - FIG. 1. (a) The linearly modulated periodic
- ‘ \' * I (b) 12 a potentialV, given by Eq.(7). (b) The initial pro-
0.016 - . | file of the condensate near the upper bound of the
|\|)|2 i | & |Temigp gap for&@=1.46.(c) The profile of the conden-
0 | ) , 08 - sate at timd=100.(d) The band structure for the
oot6L ‘ ! ‘ ! ‘(c)_ potential (7) (solid line) and the energy of the
'2 8(1)/ soliton (dashed ling All data are computed for
A M’NMMWM oal i €=0.02.
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Wy +iv, Wy == (2m,) "Wy + x|V [2P. (1)  carrier wave backgroun@vith |k| # |ko| andv,, # 0), i.e., they

move with the velocitw ,, and are described by the formula
Hereafter,a andk stand for the number of the zone and for

the dimensionless wave vector in the first Brillouin zone V= xm,N exd (i/8)m,NT]

(BZ), respectivelyy=sgnas, a5 being thes-wave scattering P(X,T)= , (5)
length. In Eg.(1) we have passed to dimensionless slow 1

variables: X=ex/ay=€ex and T=e’wgt=€7. Taking into ac- _ _

count the smoothness of the potential, the spectrum 2 cos zmaN[X Xo(T)]

£.(k; €/%) at some point of the space, S&yXy(Xo=%o/ap),

can be computed from the linear eigenvalue problem with either y=-1, «=2, andm,>0, or y=1, a«=1, and

m, <0. Xo(T)=-v,T is the coordinate of the soliton center

& - -
d(;:;k +[E,(k: €¥%) - F(e¥% VR e =0. (2) andNis the normalized number of atoms,

In order to get a qualitative picture of the effects that can be N :f |W[7dX. (6)

observed in the matter wave dynamics we carry out humeri- —

cal simulations using the 1D modgustified for the low- Strictly speaking Eq(5) is a solution of the unperturbed

density BEC'$ NLS Equation(1) with v, andm,, constants. Since, however,
o 32 2 the parameters are changing slowly in space, the simplified
= = g+ HE VR + x|ty ®) picture based on the analytic for() appears to be good

It is to be emphasized here thétin Eq. (3) describes the enough for a qualitative understanding of various phenom-

complete macroscopic wave function wherdlasn Eq. (1)  €ha. _ o _
describes the behavior of its envelope. In what follows the consideration is restricted to the case

In the case of a homogeneous lattice, i.e., B.with ~ x=—1 and we discuss the dynamics of small amplitude
f(X)=1, there exists a solitary wave solutigoright matter brlghtzmatter solitons near the upper edge of the first band
solitor) which can be found by means of the stationary an9ap&?.
satz (X, 1) =u(X)e ¥, whereu(X) is a real valued function
satisfying the equation

I1l. MATTER WAVE ACCELERATION

(@) We first consider linear modulation of the lattice ampli-

tude[see Fig. 1a)]

Let us consider now the boundary of the BZ, i.t| _
=mag/L. As is known (see, e.g.[13]) stationary solitary V) = (1~ e )cos ), ()
wave solutions subject to zero boundary conditionswhose lowest forbidden gap is shown in Figd)L
Iimm%u()”(,“t):o exist only if€ belongs to a gap of the spec-  Let us assume that in the vicinity of the origin, i.e., near
trum of (2). For the sake of definiteness, below we deal withx=0, a bright static gap soliton with,=0 is createdsee Fig.
the first (lowesy forbidden gap, for which the lower and 1(b)]. Due to the nonzero extension of the soliton, it partially
upper edges will be denoted & and£@, respectivelysee  occupies the space where the soliton energy falls into the
an example in Fig. @)]. Thus the frequency of a static mat- allowed bandsee Fig. 1d)] and thus corresponds to running
ter soliton must satisfy the conditiaff? <€<£@. Then in  linear waves. This is the reason for the soliton to start to
the casey=-1(y=1) a small amplitude bright matter soliton move toward the region with a narrower gap, i.e., in the
can be excited with energy inside the gap in the vicinity ofpositive direction. Since it is assumed that in the leading
the uppere®@ (lower £&Y) band edge, respectivel¢]. For  approximation the energy of the soliton is conserved, the
the next consideration it is important to mention that enve-group velocity of the background increases and, therefore,
lope solitons can also exist faf>£@ if y=-1, and at the soliton velocity grows when the coordinate of the soliton
E<EWif y=1. These solitons are created against a movingenter increasggig. 2@)], which gives rise to soliton accel-

Ugz +[€ = Vo) Ju— xu®=0.
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FIG. 2. (a) The coordinate of the soliton cen-
ter of mass{X), vs time.(b) Dependences of the
carrier wave group velocity, obtained directly
from the periodic structurédots and velocity of
the soliton center of mass obtained from direct
numerical simulationgsolid line). (c) Evolution
of the dispersion of the solitorid) Dependence
of the effective massn, on the soliton coordi-
nate. Curves 1, 2, and 3 correspond &o
=0.02,0.03, and 0.04.

0.06 L | |

2 >

eration[see Fig. &0)]. An example of the dynamics of the responding to the energ} (see the left figure in Fig.)3The
coordinate of the condensate center of mé&gs,and its dis- same energy shift on the diagrafia(k), giving the energy
persiono=((X2)— X2 Y2 obtained by numerical integration £2+A¢&, corresponds to the wave vectey, which can be

of Eq. (3) are shown in Figs. @) and 2c) (angular brackets approximately found from the equatioli; —ko)?=2mA&:
stand for the spatial averagé=rom this figure one can see g, =k,+v2m,8X. Hence, one finds that the dependence of
that the soliton indeed undergoes acceleration in such a wape group velocity on the coordinakeis given by

that the soliton velocity follows the change of the group

velocity of the background. Simultaneously, the dispersion of 26%
the soliton increases as is shown in Figc)2At first sight \/ ==, X
this result does not resemble the model given by &. V2= my
because according to this model the soliton width should 0, %<0,

decrease as the effective mass increases.

_In order to explain the apparent discrepancy, let us congile the dependence of the effective mass is approximated
sider the dispersion relation of the second zépk) in the
vicinity of the band edge in more detail. Sin€gk) is an
even function of the wave vector, one can expand

(9)

. . My(X) = My — MaX2Am,  Am= gmzoﬂﬁfz(ko), (10)
EK) =2 + 2 fE k) (k= ko) + 1 Ealko) (k= ko)*,

wheremy is the effective mass at the boundary of the zone,
8 i.e.,, at Xx=0 [notice that it follows from Fig. @) that
where£@=¢,(k,). We assume that) the center of soliton is 5ﬁ52(!<°) =0 N . .
displaced from th &=0. where its eneray was,. t It is remarkablg that the above simplified estimates yield
ISplace ~0~ € po » Where 1ts energy 2 10 rather precise estimates for the relevant quantities. Indeed,
some poini=X without change of energy, artd) the gap is  for ¢=0.02 from Fig. 1d) and Fig. 2d) one obtainsg

large enough that within the range<X<X in the leading ~(.0013 andn,~0.1, which gives foiX=30 an estimate of

order one can neglect the change of the functional depen- 5 _ o~ : . . i
dence of¢, on the wave vectok. Then one has the situation 05(X=30)~0.88, in accordance with Eg9), while the nu

illustrated in Fig. 3. When the soliton moves fréas0 to ~ Merical value iw,(X=30)~0.87[see Fig. 2)].

X=X, the acquired energy shi&& toward the allowed zone Returning to the soliton dynamics shown in _Flgs. 1 anq 2,
~ let us neglect the small change of the effective mass, i.e.,

can be estimated §8X, whereg is a small(8<1) angle  mgake the substitutiom,=m,, in the equation for slowly
between the slope of the band gap edge andkthgis cor-  yarying amplitude(1), and compute the following integral

identities:

0 X .

} S‘li-AS ————————————————————— o

\ AE LAS dN f v.) |\If|2dX (1)

! —= v ,
- & _ a1 Jo.
ko k,
FIG. 3. Schematic illustration of the calculus of the dependence dP ®

of the group velocity and the effective mass on the coordinate, for a —=0,P=- if VW, dX, (12
linearly modulated potential. The notations are defined in the text. aT —o0
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FIG. 4. (a) The inhomogeneous periodic potentigl given by
Eq. (14) with €=0.02 andAX=45. (b) The initial profile of an en-
velope solitonthe same as in Fig.(&)]. (c) The upper edge of the
first band gap for the potential shown ().

whereN is the number of particles given by E@), P is the
wave momentum in the frame moving with the group veloc-
ity of the carrier wave, anQ/<X2>/N is the average width of
the wave packet. Then it follows from EL3) that the total
momentum is preserved. Moreover, for the soliton ang@tz _ 5 .
it is zero, which reflects the fact that the condensate is mov- VeX) =[1 + 79X~ AX)*Jcod 2X) (14)

ing with the group velocity of the carrier wave, corroborating

the findings shown in Fig.(®). From Eq.(11) it follows that ~ whereAX is introduced for the initial relative shift between
the number of particles is not preserved. This, however, doethie soliton center and the minimum of the parabolic modu-
not contradict the conservation law of the total number oflation. The upper bound of the first gap of this potential for
atoms in the Gross-Pitaevskii equation since the model gives=0.02 is depicted in Fig.(4).

by Eq. (1) describes the main approximation of the ground Now one observes oscillations of the condensate cloud
state and does not account for high-frequency radiatiotsee Fig. 3. The accelerating part of this motion when the
while, on the other hand, in the leading order, the soliton issoliton is moving toward the center of the potential is ex-
moving in the inhomogeneous medium and thus representspdained in the previous section. After passing the central part
radiating matter wavg14]. Considering the second band, of the potential, the soliton is decelerating and at some point
a=2, and approximating the solution by Eq$) and (9), the velocity of the center of mass of the cloud becomes zero.

one can rewrite Eq(11) as This occurs in the vicinity of the turning poing,, where
" the energy of the soliton falls into the forbidden gghe
dN — /LJ d_)(m, X, T)[2- w0, T)Z] <0 intersections of dashed and solid lines in Fi¢gc)#t In fact,

dT 2mpolo VX ST s ' in considering a soliton moving from the right to the left near

_ _ ) _ the turning point, one can approximate the potential modu-
which reflects the fact that the soliton loses particles. Finallyjation by a linear function. Then, by using E@), the veloc-

taking into account that’s given by Eq.(5) is real, one ity of the background, and hence the velocity of the soliton,

obtains from Eq(13) tends to zero asx—Xy,,, when the coordinate of the soliton
d(x?) B (" center approaches the turning point. Thus one can speak
=51 /—f XWX, T)[2dX >0, about Bragg reflection of the soliton from an inhomogeneous
dT 2MyoJ g periodic potential.

which means an increase of the soliton width, as observed in Therg are two _featgres of the soliton dynam!cs to point

Figs. c) and 2¢). out in this case. First, in contrast to the case of linear modu-
The wave packet during its motion follows the carrier

wave and thus rapidly acquires a relatively large group ve-

locity which is of the order of unity. The latter factor does

not allow adiabatic adjustment of the soliton parameters to 60

increase the effective mass of the carrier wgsee Eq(10) <X> T

and Fig. 1d)]. Nonadiabaticity of the process manifests itself 30

in radiative losses and broadening of the wave packet. This

process continues as the soliton moves to the region with

small potential depth, as observed in Fi¢c)land with time, 0 e | : { : | ; | —
as a matter of fact, the wave loses its solitonic properties, - .
transforming itself into a dispersive wave packet. It is worth 40 - /\ N

pointing out that another simple way to look at the broaden- i i
ing of the wave packet is to take into account that the soliton O
wave front has a larger velocity than the tail and this leads to

spreading of the pulse. 20 (b) 7
| 1 L 1 | L
IV. OSCILLATION OF THE MATTER WAVE IN A 10, 7000 000 = a000 500 2500
LATTICE SUBJECT TO PARABOLIC MODULATION
Let us consider now a soliton dynamigke initial profile FIG. 5. Dynamics of the center of mags and of dispersiofib)
is shown in Fig. 4b)] in a lattice modulated by a parabolic of the matter soliton. Parameters are the same as in Fig. 4 . The
function [see Fig. 4a)] dashed line corresponds &) =AX.
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FIG. 6. (a) The lattice defect given by E@15) with ¢=0.05 and X 20
AX=100. (b) The upper edge of the lowest gélid line) and the
energy of the soliton with the initial velocity=0.1 (dashed ling
Intersections of these lines represent the turning po{nisProfile
of the reflected soliton at time=150. The initial soliton profile is

the same as in Fig.(f).

FIG. 7. (a) Periodic potential with the defect given by Ed.6)
and corresponding upper edg§€ of the first band gaghere the
dashed line is the initial soliton energyParameters of the defect
aree=0.05 andAX=100. Profiles of the soliton with different initial
velocitiesv=0.1 (b) andv=0.3 (c) at timest=300 andt=190, re-

i ) o ] ] ) spectively. The initial soliton profile is the same as in Fig. 6 .
lation, in the initial stages the dispersion decredseg Fig.

5(b)]. This compression of the pulse is explained by its large
extension; when the leading part of the wave packet unde
goes Bragg reflection and moves in the negative directio
while the soliton center still moves in the positive direction. | _... : : :
The second feature demonstrated in Figg) 5 the appear- lattice depth, the gap is also increased locally. That is why

n f maller fr nev modulating the amplitud ghe soliton, which was initially moving with a relatively
ance of a smafler lrequency modulating the amplitude ol group velocityv, at some point reaches tlieurved

"hand edgéit is given by the intersection of dashed and solid
lines in Fig. §b)] which prevents further propagation of the
carrier wave. Thus, the defect described by Bdp) can be
classified as repulsive.

In this case solitons are reflected from the defsek the
I.s',napshot Fig. @)]. This is the effect of the Bragg reflection,
Which is explained in Fig. ®). Indeed, due to increase of the

can be described approximately by the form@pawhere the
coordinate of the soliton centefy(T) depends periodically
on time with the effective linear oscillator frequengyasso-
ciated with the effe_ctive pa_raboli(; potent?al,we estimate it as Let us consider now the opposite situation, when the
V:2.65/4 (%0'014 nour S|mulat!or)s This frequency ap- depth of the periodic potential is locally decreagsee Fig.
proximately coincides with the higher frequency that can be7(a)]:

seen in Fig. B), which is ~0.017. The observed discrep-

ancy is due to the fact that one is dealing with a modulated —ra 2% - A%

periodic potential, rather than with a real parabolic one. On Vel =[1-e Jeod2%),

the other hand, the envelope soliton is characterized by thghat leads to local narrowing of the forbidden gap.
internal frequencyw;,=m;N*/8 [see Eq(5)]. In our numeri- By using the arguments based on the band gap structure
cal simulations it is a low frequency;,,=0.002. Thus the oytlined below one may argue that the modulation described
relation between the frequenciesdsg,/v~28.6, which cor-  py Eq. (16) acts as an attractive impurity. Indeed, in the
responds to nine fast oscillations per one period of the slowegion of the defect there exists a shrinking of the forbidden

(16)

modulation observed in Fig.(8). band. Assuming as before that the soliton enefgg con-
stant, one concludes that in the region of the defect the en-
V. INTERACTION OF A SOLITON WITH A DEFECT ergy shiftA€ (see Fig. 3) toward the allowed zone depends

on the coordinatdAE=A&(X): it increases as the soliton ap-

b Lhe pillﬁengmenog .Of the I?ragg Leﬂecttrl]on oft.a ?T“:tc_m Cr?rgroaches the center of the defect and then decreases as the
€ directly observed in a system where the optical [atlice Nag,,ginate increases. Since largA€(X) corresponds to

a local increase of depth, as shown in Fig2)6 larger velocities of the carrier wave, the soliton is accelerat-
V(%) =[1 +e—e5/2(i—m2]cos(z)~()_ (15) ing when it approaches the defect and decelerating when it
moves away from the defect.
Local deformations of an optical lattice will be referred to as  Since the lattice modulatiofi6) acts as attractive, a num-
lattice defects. In this case, as before, we also start with Ber of atoms could be captured by such a defect, in the case
numerically obtained bright soliton, but add now some initialwhen the initial kinetic energy of the condensate is small
velocity v with respect to the stationary background, whichenough. This is exactly what we observe in the numerical
is introduced by means of the phase faclgk,0)€¥2. We  simulations shown in Fig. (B). The higher-velocity matter
are interested in the scattering process at different initial vewaves pass through the defect without substantial change
locities, which are assumed to be small enoughe1. [see Fig. M)].
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VI. CONCLUSION planation of the main features of the soliton dynamics, if the
wave packet possesses a substantially larger extension than

In conclusion, we have shown that in smoothly modulatedthe |attice period and the lattice modulations are smooth
optical lattices that can be created by using quasmonochrcgnough_

matic laser beams one can effectively manage matter solitons
as they accelerate, decelerate, oscillate, or undergo reflection
depending on the type of modulation imposed. Since the
above processes are controlled by the periodic structure, not The work of V.A.B. has been supported by the FCT Grant
only one dynamical but also other properties of matter wavedlo. SFRH/BPD/5632/2001. V.V.K. acknowledges support
such as the energy, the effective mass, and the width of thikom the European Grant COSYC No. HPRN-CT-2000-
soliton can be manipulated. Although in a particular dynami-00158. V.K. acknowledges support from COST P11 Action.
cal process a matter wave can lose its solitonic propertiesGooperative work was supported by the bilateral agreement
the effective mass approximation provides a qualitative exGRICES/Czech Academy of Sciences.
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