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It is shown that matter solitons can be effectively managed by means of smooth variations of parameters of
optical lattices in which the condensate is loaded. The phenomenon is based on the effect of lattice modulations
on the carrier wave transporting the soliton and that is why it is well understood in terms of the effective mass
approach, where a particular spatial configuration of the band structure is of primary importance. Linear,
parabolic, and spatially localized modulations are considered as case examples. It is shown that these defects
can originate an accelerating and oscillating motion of matter solitons as well as they can simulate soliton
interactions with attractive and repulsive defects.
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I. INTRODUCTION

The realization of a Bose-Einstein condensate(BEC) in
an optical lattice[1] originated intensive experimental and
theoretical studies[1–14] of the phenomenon. One of the
main features induced by the periodicity is the appearance of
a band structure in the spectrum of the underlying linear
system, i.e., the gas of noninteracting atoms. The band spec-
trum is responsible for a number of effects, including modu-
lation instability [3,4] and formation of gap solitons[4],
Landau-Zener tunneling[5,6], Bloch oscillations of BEC’s
[1,5,7], the lensing effect[8], soliton stabilization[9], etc.
These effects, being based on the properties of the linear
system, are well described in terms of the concept of the
effective mass, which takes into account the wave nature of
the phenomenon and that is why its inverse value is also
referred to as the group velocity dispersion[4]. In practice,
laser lattices are never perfect. In particular, they are often
imposed simultaneously with other external potentials, like,
for example, a magnetic trap which significantly affects the
motion of a soliton[10]. Moreover, one can create spatially
localized lattices; propagation of matter waves through these
displays a number of interesting properties[11] such as reso-
nant transmission and soliton generation through modula-
tional instability. It is also highly relevant to mention that
very recently direct experimental observation of a gap matter
soliton in an 87Rb BEC, containing about 250 atoms, has
been reported[12].

In this paper we present an analysis of the BEC dynamics
in an optical lattice with smoothly modulated parameters. In
this case the band gap structure is still preserved but is de-
formed by the modulation. In particular, we show that this is
a way of managing the dynamics of matter waves—making
them accelerating, oscillating, etc.

The model and the physics of the phenomenon are de-
scribed in Sec. II. Acceleration of a matter soliton in a lin-
early modulated lattice is considered in Sec. III. Soliton os-
cillations in a lattice with a parabolic modulation of the
depth are considered in Sec. IV. Section V is devoted to
soliton interaction with spatially localized defects. The re-
sults of the paper are summarized in the Conclusion.

II. PHYSICS OF THE PHENOMENON

Let us consider a trap potential which can be written
down in the form Vtrap=sm/2dsvi

2x2+v0
2y2+v0

2z2d+Vesxd.
The first term in the right hand side of this expression de-
scribes a magnetic trap withvi andv0 being the longitudinal
and transverse linear oscillator frequencies. The condensate
is chosen to have a cigar shape with the aspect ratio satisfy-
ing the relationvi /v0!a0

2/j2!1 (a0 andj being the trans-
verse linear oscillator length and the healing length, respec-
tively). We are interested in excitations of a BEC having
characteristic scales of order of the healing length and a rela-
tively small potential amplitude, which allows us to neglect
the termsm/2dvi

2x2 in the expression for the trap potential
Vtrap. The termVesxd, wheree is a deformation parameter
controlling the potential shape, describes a smoothly modu-
lated optical lattice. It will be assumed to have the form
Vesxd; fse3/2xdV0sxd, where V0sxd=V0sx+Ld is the unper-
turbed lattice having periodL of order of the linear oscillator
length a0, L,a0, and fse3/2xd is a smooth modulation nor-
malized as follows:fs0d=1. Smoothness in the present con-
text means slow variation offse3/2xd on the scale of the heal-
ing length, or in other wordse,a0/j. Then one can apply a
multiple-scale expansion[4] in order to reduce the Gross-
Pitaevskii equation governing the dynamics of the BEC to an
effectively one-dimensional(1D) nonlinear Schrödinger
(NLS) equation with a slowly varying effective massma

;mase1/2Xd=f]k
2Eask;e1/2Xdg−1, and the group velocity of

the carrier wave depending on the coordinate,va

=]kEask;e1/2Xd:
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iCT + ivaCX = − s2mad−1CXX + xuCu2C. s1d

Hereafter,a andk stand for the number of the zone and for
the dimensionless wave vector in the first Brillouin zone
(BZ), respectively,x=sgnas, as being thes-wave scattering
length. In Eq.(1) we have passed to dimensionless slow
variables:X=ex/a0=ex̃ and T=e2v0t=e2t̃. Taking into ac-
count the smoothness of the potential, the spectrum
Eask;e3/2x̃d at some point of the space, sayx̃= x̃0sx̃0=x0/a0d,
can be computed from the linear eigenvalue problem

d2wak

dx̃2 + fEask;e3/2x̃0d − fse3/2x̃0dV0sx̃dgwak = 0. s2d

In order to get a qualitative picture of the effects that can be
observed in the matter wave dynamics we carry out numeri-
cal simulations using the 1D model(justified for the low-
density BEC’s)

ict̃ = − cx̃x̃ + fse3/2x̃dV0sx̃dc + xucu2c. s3d

It is to be emphasized here thatc in Eq. (3) describes the
complete macroscopic wave function whereasC in Eq. (1)
describes the behavior of its envelope.

In the case of a homogeneous lattice, i.e., Eq.(3) with
fsx̃d;1, there exists a solitary wave solution(bright matter
soliton) which can be found by means of the stationary an-
satz csx̃, t̃d=usx̃de−iEt̃, whereusx̃d is a real valued function
satisfying the equation

ux̃x̃ + fE − V0sx̃dgu − xu3 = 0. s4d

Let us consider now the boundary of the BZ, i.e.,uk0u
=pa0/L. As is known (see, e.g.,[13]) stationary solitary
wave solutions subject to zero boundary conditions
lim ux̃u→`usx̃, t̃d=0 exist only ifE belongs to a gap of the spec-
trum of (2). For the sake of definiteness, below we deal with
the first (lowest) forbidden gap, for which the lower and
upper edges will be denoted asEs1d andEs2d, respectively[see
an example in Fig. 1(d)]. Thus the frequency of a static mat-
ter soliton must satisfy the conditionEs1d,E,Es2d. Then in
the casex=−1sx=1d a small amplitude bright matter soliton
can be excited with energy inside the gap in the vicinity of
the upperEs2d (lower Es1d) band edge, respectively[4]. For
the next consideration it is important to mention that enve-
lope solitons can also exist forE.Es2d if x=−1, and at
E,Es1d if x=1. These solitons are created against a moving

carrier wave background(with ukuÞ uk0u andvaÞ0), i.e., they
move with the velocityva, and are described by the formula

CssX,Td =

Î− xmaN expfsi/8dmaN2Tg

2 coshH 1

2
maNfX − X0sTdgJ , s5d

with either x=−1, a=2, and m2.0, or x=1, a=1, and
m1,0. X0sTd=−vaT is the coordinate of the soliton center
andN is the normalized number of atoms,

N =E
−`

`

uCu2dX. s6d

Strictly speaking Eq.(5) is a solution of the unperturbed
NLS Equation(1) with va andma constants. Since, however,
the parameters are changing slowly in space, the simplified
picture based on the analytic form(5) appears to be good
enough for a qualitative understanding of various phenom-
ena.

In what follows the consideration is restricted to the case
x=−1 and we discuss the dynamics of small amplitude
bright matter solitons near the upper edge of the first band
gapEs2d.

III. MATTER WAVE ACCELERATION

We first consider linear modulation of the lattice ampli-
tude [see Fig. 1(a)]

Vesx̃d = s1 − e3/2x̃dcoss2x̃d, s7d

whose lowest forbidden gap is shown in Fig. 1(d).
Let us assume that in the vicinity of the origin, i.e., near

x̃=0, a bright static gap soliton withv2=0 is created[see Fig.
1(b)]. Due to the nonzero extension of the soliton, it partially
occupies the space where the soliton energy falls into the
allowed band[see Fig. 1(d)] and thus corresponds to running
linear waves. This is the reason for the soliton to start to
move toward the region with a narrower gap, i.e., in the
positive direction. Since it is assumed that in the leading
approximation the energy of the soliton is conserved, the
group velocity of the background increases and, therefore,
the soliton velocity grows when the coordinate of the soliton
center increases[Fig. 2(a)], which gives rise to soliton accel-

FIG. 1. (a) The linearly modulated periodic
potentialVe given by Eq.(7). (b) The initial pro-
file of the condensate near the upper bound of the
gap forEs2d=1.46.(c) The profile of the conden-
sate at timet̃=100.(d) The band structure for the
potential (7) (solid line) and the energy of the
soliton (dashed line). All data are computed for
e=0.02.
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eration [see Fig. 2(b)]. An example of the dynamics of the
coordinate of the condensate center of mass,kx̃l, and its dis-
persions=skx̃2l−kx̃l2d1/2 obtained by numerical integration
of Eq. (3) are shown in Figs. 2(a) and 2(c) (angular brackets
stand for the spatial average). From this figure one can see
that the soliton indeed undergoes acceleration in such a way
that the soliton velocity follows the change of the group
velocity of the background. Simultaneously, the dispersion of
the soliton increases as is shown in Fig. 2(c). At first sight
this result does not resemble the model given by Eq.(5)
because according to this model the soliton width should
decrease as the effective mass increases.

In order to explain the apparent discrepancy, let us con-
sider the dispersion relation of the second zoneE2skd in the
vicinity of the band edge in more detail. SinceE2skd is an
even function of the wave vector, one can expand

E2skd = Es2d +
1

2
]k

2E2sk0dsk − k0d2 +
1

4!
]k

4E2sk0dsk − k0d4,

s8d

whereEs2d=E2sk0d. We assume that(i) the center of soliton is
displaced from the pointx̃=0, where its energy wasE2, to

some pointx̃=X̃ without change of energy, and(ii ) the gap is

large enough that within the range 0, x̃, X̃ in the leading
order one can neglect the change of the functional depen-
dence ofE2 on the wave vectork. Then one has the situation
illustrated in Fig. 3. When the soliton moves fromx̃=0 to

x̃=X̃, the acquired energy shiftDE toward the allowed zone

can be estimated asbX̃, whereb is a smallsb!1d angle
between the slope of the band gap edge and thex axis cor-

responding to the energyE2 (see the left figure in Fig. 3). The
same energy shift on the diagramE2skd, giving the energy
Es2d+DE, corresponds to the wave vectork1, which can be
approximately found from the equationsk1−k0d2=2m2DE:

k1=k0+Î2m2bX̃. Hence, one finds that the dependence of
the group velocity on the coordinatex̃ is given by

v2 = 5Î2bx̃

m2
, x̃ . 0,

0, x̃ ø 0,

s9d

while the dependence of the effective mass is approximated
by

m2sx̃d = m20 − m20
2 x̃2Dm, Dm=

b

6
m20]k

4E2sk0d, s10d

wherem20 is the effective mass at the boundary of the zone,
i.e., at x̃=0 [notice that it follows from Fig. 2(d) that
]k

4E2sk0d,0].
It is remarkable that the above simplified estimates yield

rather precise estimates for the relevant quantities. Indeed,
for e=0.02 from Fig. 1(d) and Fig. 2(d) one obtainsb

<0.0013 andm2<0.1, which gives forX̃=30 an estimate of

v2sX̃=30d<0.88, in accordance with Eq.(9), while the nu-

merical value isv2sX̃=30d<0.87 [see Fig. 2(b)].
Returning to the soliton dynamics shown in Figs. 1 and 2,

let us neglect the small change of the effective mass, i.e.,
make the substitutionma=ma0 in the equation for slowly
varying amplitude(1), and compute the following integral
identities:

dN

dT
=E

−`

`

svadXuCu2dX, s11d

dP

dT
= 0,P = − iE

−`

`

C̄CXdX, s12d

FIG. 2. (a) The coordinate of the soliton cen-
ter of mass,kx̃l, vs time.(b) Dependences of the
carrier wave group velocityv2 obtained directly
from the periodic structure(dots) and velocity of
the soliton center of mass obtained from direct
numerical simulations(solid line). (c) Evolution
of the dispersion of the soliton.(d) Dependence
of the effective massm2 on the soliton coordi-
nate. Curves 1, 2, and 3 correspond toe
=0.02,0.03, and 0.04.

FIG. 3. Schematic illustration of the calculus of the dependence
of the group velocity and the effective mass on the coordinate, for a
linearly modulated potential. The notations are defined in the text.
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dkX2l
dT

=
i

m
E

−`

`

XsC̄XC − C̄CXddX

+E
−`

`

sX2vadXuCu2dX, kX2l =E
−`

`

X2uCu2dX,

s13d

whereN is the number of particles given by Eq.(6), P is the
wave momentum in the frame moving with the group veloc-
ity of the carrier wave, andÎkX2l /N is the average width of
the wave packet. Then it follows from Eq.(13) that the total
momentum is preserved. Moreover, for the soliton ansatz(5)
it is zero, which reflects the fact that the condensate is mov-
ing with the group velocity of the carrier wave, corroborating
the findings shown in Fig. 2(b). From Eq.(11) it follows that
the number of particles is not preserved. This, however, does
not contradict the conservation law of the total number of
atoms in the Gross-Pitaevskii equation since the model given
by Eq. (1) describes the main approximation of the ground
state and does not account for high-frequency radiation
while, on the other hand, in the leading order, the soliton is
moving in the inhomogeneous medium and thus represents a
radiating matter wave[14]. Considering the second band,
a=2, and approximating the solution by Eqs.(5) and (9),
one can rewrite Eq.(11) as

dN

dT
=Î b

2m20
E

0

` dX
ÎX

fuCssX,Tdu2 − uCss0,Tdu2g ø 0,

which reflects the fact that the soliton loses particles. Finally,
taking into account thatCs given by Eq. (5) is real, one
obtains from Eq.(13)

dkX2l
dT

= 5Î b

2m20
E

0

`

X3/2uCssX,Tdu2dX. 0,

which means an increase of the soliton width, as observed in
Figs. 1(c) and 2(c).

The wave packet during its motion follows the carrier
wave and thus rapidly acquires a relatively large group ve-
locity which is of the order of unity. The latter factor does
not allow adiabatic adjustment of the soliton parameters to
increase the effective mass of the carrier wave[see Eq.(10)
and Fig. 1(d)]. Nonadiabaticity of the process manifests itself
in radiative losses and broadening of the wave packet. This
process continues as the soliton moves to the region with
small potential depth, as observed in Fig. 1(c), and with time,
as a matter of fact, the wave loses its solitonic properties,
transforming itself into a dispersive wave packet. It is worth
pointing out that another simple way to look at the broaden-
ing of the wave packet is to take into account that the soliton
wave front has a larger velocity than the tail and this leads to
spreading of the pulse.

IV. OSCILLATION OF THE MATTER WAVE IN A
LATTICE SUBJECT TO PARABOLIC MODULATION

Let us consider now a soliton dynamics[the initial profile
is shown in Fig. 4(b)] in a lattice modulated by a parabolic
function [see Fig. 4(a)]

Vesx̃d = f1 + e5/2sx̃ − Dx̃d2gcoss2x̃d s14d

whereDx̃ is introduced for the initial relative shift between
the soliton center and the minimum of the parabolic modu-
lation. The upper bound of the first gap of this potential for
e=0.02 is depicted in Fig. 4(c).

Now one observes oscillations of the condensate cloud
(see Fig. 5). The accelerating part of this motion when the
soliton is moving toward the center of the potential is ex-
plained in the previous section. After passing the central part
of the potential, the soliton is decelerating and at some point
the velocity of the center of mass of the cloud becomes zero.
This occurs in the vicinity of the turning pointxturn, where
the energy of the soliton falls into the forbidden gap[the
intersections of dashed and solid lines in Fig. 4(c)]. In fact,
in considering a soliton moving from the right to the left near
the turning point, one can approximate the potential modu-
lation by a linear function. Then, by using Eq.(9), the veloc-
ity of the background, and hence the velocity of the soliton,
tends to zero asÎx−xturn, when the coordinate of the soliton
center approaches the turning point. Thus one can speak
about Bragg reflection of the soliton from an inhomogeneous
periodic potential.

There are two features of the soliton dynamics to point
out in this case. First, in contrast to the case of linear modu-

FIG. 4. (a) The inhomogeneous periodic potentialVe given by
Eq. (14) with e=0.02 andDx̃=45. (b) The initial profile of an en-
velope soliton[the same as in Fig. 1(a)]. (c) The upper edge of the
first band gap for the potential shown in(a).

FIG. 5. Dynamics of the center of mass(a) and of dispersion(b)
of the matter soliton. Parameters are the same as in Fig. 4 . The
dashed line corresponds tokx̃l=Dx̃.
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lation, in the initial stages the dispersion decreases[see Fig.
5(b)]. This compression of the pulse is explained by its large
extension; when the leading part of the wave packet under-
goes Bragg reflection and moves in the negative direction
while the soliton center still moves in the positive direction.
The second feature demonstrated in Fig. 5(a) is the appear-
ance of a smaller frequency modulating the amplitude of
oscillations of the wave packet. Assuming that the solution
can be described approximately by the formula(5) where the
coordinate of the soliton centerX0sTd depends periodically
on time with the effective linear oscillator frequencyn asso-
ciated with the effective parabolic potential, we estimate it as
n=2e5/4 (<0.014 in our simulations). This frequency ap-
proximately coincides with the higher frequency that can be
seen in Fig. 5(a), which is ,0.017. The observed discrep-
ancy is due to the fact that one is dealing with a modulated
periodic potential, rather than with a real parabolic one. On
the other hand, the envelope soliton is characterized by the
internal frequencyvint=m2N

2/8 [see Eq.(5)]. In our numeri-
cal simulations it is a low frequencyvint<0.002. Thus the
relation between the frequencies isvint /n<8.6, which cor-
responds to nine fast oscillations per one period of the slow
modulation observed in Fig. 5(a).

V. INTERACTION OF A SOLITON WITH A DEFECT

The phenomenon of the Bragg reflection of a soliton can
be directly observed in a system where the optical lattice has
a local increase of depth, as shown in Fig. 6(a):

Vesx̃d = f1 + e−e5/2sx̃ − Dx̃d2gcoss2x̃d. s15d

Local deformations of an optical lattice will be referred to as
lattice defects. In this case, as before, we also start with a
numerically obtained bright soliton, but add now some initial
velocity v with respect to the stationary background, which
is introduced by means of the phase factorcsx̃,0deivx̃/2. We
are interested in the scattering process at different initial ve-
locities, which are assumed to be small enough:v!1.

In this case solitons are reflected from the defect[see the
snapshot Fig. 6(c)]. This is the effect of the Bragg reflection,
which is explained in Fig. 6(b). Indeed, due to increase of the
lattice depth, the gap is also increased locally. That is why
the soliton, which was initially moving with a relatively
small group velocityv, at some point reaches the(curved)
band edge[it is given by the intersection of dashed and solid
lines in Fig. 6(b)] which prevents further propagation of the
carrier wave. Thus, the defect described by Eq.(15) can be
classified as repulsive.

Let us consider now the opposite situation, when the
depth of the periodic potential is locally decreased[see Fig.
7(a)]:

Vesx̃d = f1 − e−e5/2sx̃ − Dx̃d2gcoss2x̃d, s16d

what leads to local narrowing of the forbidden gap.
By using the arguments based on the band gap structure

outlined below one may argue that the modulation described
by Eq. (16) acts as an attractive impurity. Indeed, in the
region of the defect there exists a shrinking of the forbidden
band. Assuming as before that the soliton energyE is con-
stant, one concludes that in the region of the defect the en-
ergy shiftDE (see Fig. 3) toward the allowed zone depends
on the coordinateDE=DEsx̃d: it increases as the soliton ap-
proaches the center of the defect and then decreases as the
coordinate increases. Since largerDEsx̃d corresponds to
larger velocities of the carrier wave, the soliton is accelerat-
ing when it approaches the defect and decelerating when it
moves away from the defect.

Since the lattice modulation(16) acts as attractive, a num-
ber of atoms could be captured by such a defect, in the case
when the initial kinetic energy of the condensate is small
enough. This is exactly what we observe in the numerical
simulations shown in Fig. 7(b). The higher-velocity matter
waves pass through the defect without substantial change
[see Fig. 7(b)].

FIG. 6. (a) The lattice defect given by Eq.(15) with e=0.05 and
Dx̃=100. (b) The upper edge of the lowest gap(solid line) and the
energy of the soliton with the initial velocityv=0.1 (dashed line).
Intersections of these lines represent the turning points.(c) Profile
of the reflected soliton at timet=150. The initial soliton profile is
the same as in Fig. 1(b).

FIG. 7. (a) Periodic potential with the defect given by Eq.(16)
and corresponding upper edgeEs2d of the first band gap(here the
dashed line is the initial soliton energy). Parameters of the defect
aree=0.05 andDx̃=100. Profiles of the soliton with different initial
velocitiesv=0.1 (b) andv=0.3 (c) at timest=300 andt=190, re-
spectively. The initial soliton profile is the same as in Fig. 6 .
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VI. CONCLUSION

In conclusion, we have shown that in smoothly modulated
optical lattices that can be created by using quasimonochro-
matic laser beams one can effectively manage matter solitons
as they accelerate, decelerate, oscillate, or undergo reflection
depending on the type of modulation imposed. Since the
above processes are controlled by the periodic structure, not
only one dynamical but also other properties of matter waves
such as the energy, the effective mass, and the width of the
soliton can be manipulated. Although in a particular dynami-
cal process a matter wave can lose its solitonic properties,
the effective mass approximation provides a qualitative ex-

planation of the main features of the soliton dynamics, if the
wave packet possesses a substantially larger extension than
the lattice period and the lattice modulations are smooth
enough.
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